Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 368)
Detail práce
   Přihlásit přes CAS
Tidal Deformation of an Icy Moon with a Subsurface Ocean
Název práce v češtině: Slapová deformace ledového měsíce s podpovrchovým oceánem
Název v anglickém jazyce: Tidal Deformation of an Icy Moon with a Subsurface Ocean
Klíčová slova: Ledové měsíce|slapy|elastická deformace|Navier-Stokesova rovnice|přiblížení mělké vody
Klíčová slova anglicky: Icy moons|tides|elastic deformation|Navier-Stokes equation|shallow water approximation
Akademický rok vypsání: 2018/2019
Typ práce: diplomová práce
Jazyk práce: angličtina
Ústav: Katedra geofyziky (32-KG)
Vedoucí / školitel: prof. RNDr. Ondřej Čadek, CSc.
Řešitel: skrytý - zadáno a potvrzeno stud. odd.
Datum přihlášení: 05.01.2019
Datum zadání: 11.01.2019
Datum potvrzení stud. oddělením: 25.04.2019
Datum a čas obhajoby: 11.02.2021 08:30
Datum odevzdání elektronické podoby:06.01.2021
Datum odevzdání tištěné podoby:06.01.2021
Datum proběhlé obhajoby: 11.02.2021
Oponenti: RNDr. Ondřej Šrámek, Ph.D.
 
 
 
Konzultanti: doc. RNDr. Ondřej Souček, Ph.D.
Zásady pro vypracování
Enceladus is one of the few Solar System bodies for which there is direct evidence of subsurface oceans. Observations by Cassini suggest that Enceladus' ocean contains nutrients, organic molecules and energy sources, which are believed to be essential for the emergence of life. Although our knowledge of Enceladus has increased dramatically over the past fifteen years, the heat sources maintaining the ocean in a liquid state are still unclear. The goal of the diploma project is to answer the question of whether the tides in the subsurface ocean can produce enough heat to keep the ocean liquid over a geological time scale. In the first step, the student will solve two independent problems: (i) Elastic deformation of a spherical ice shell induced by a tidal force, and (ii) viscous flow in the ocean driven by the same force using a shallow water approximation. Both problems will be solved using a spectral decomposition of the appropriate partial differential equations. In the next step, the two problems will be coupled through a boundary condition at the ice-water interface and solved simultaneously. The resulting ocean flow will be used to estimate the mechanical energy dissipated in the liquid part of the moon and discussed in the context of Enceladus' global heat budget. Possible extensions of the work: (i) using a more general rheology of ice (Maxwell, Andrade etc.), (ii) including the tidal deformation of Enceladus' core, (iii) considering irregular shape of the ice shell, (iv) replacing shallow water equations by 3d equations, and (v) application to other icy moons with subsurface oceans (Europa, Mimas etc.).
Seznam odborné literatury
Basic information about icy moons with subsurface oceans:
Nimmo, F., Pappalardo, R. T., 2016. Ocean worlds in the outer solar system. J. Geophys. Res.-Planets 121, 1378-1399.
Elastic deformation of a spherical shell:
Souček et al., 2016. Effect of the tiger stripes on the deformation of Saturn's moon Enceladus. Geophys. Res. Lett. 43, 7417-7423.
Souček et al., 2018. Tidal dissipation in Enceladus' uneven, fractured ice shell, manuscript.
Shallow water approximation:
Einspigel D., 2012. Barotropic ocean tide model, diploma thesis, Charles University, Prague.
Spectral method:
Matas, J., 1995. Mantle viscosity and density structure, diploma thesis, Charles University, Prague.
Recent papers on the same topic:
Matsuyama et al., 2018. Ocean tidal heating in icy satellites with solid shells. Icarus 312, 208-230.
Enceladus' heat budget:
Nimmo et al., 2018. The thermal and orbital evolution of Enceladus: observational constraints and models. In: Schenk, P. M. et al. (Ed.), Enceladus and the Icy Moons of Saturn. Univ. of Arizona, Tucson, p. in press.
Souček et al., 2018. Tidal dissipation in Enceladus' uneven, fractured ice shell, manuscript.
 
Univerzita Karlova | Informační systém UK