Financial Distress Prediction in Digital Finance Platforms
Název práce v češtině: | Predikce finanční tísně na platformách digitálních financí |
---|---|
Název v anglickém jazyce: | Financial Distress Prediction in Digital Finance Platforms |
Klíčová slova: | FinTech, predikce selhání, CAMELS, logistická regrese, model uspořádané odezvy, ROC, vzácná událost, BMA |
Klíčová slova anglicky: | FinTech, failure prediction, CAMELS, logistic regression, ordered response model, ROC, rare event, BMA |
Akademický rok vypsání: | 2022/2023 |
Typ práce: | diplomová práce |
Jazyk práce: | angličtina |
Ústav: | Institut ekonomických studií (23-IES) |
Vedoucí / školitel: | prof. Ing. Evžen Kočenda, M.A., Ph.D., DSc. |
Řešitel: | skrytý - zadáno vedoucím/školitelem |
Datum přihlášení: | 05.05.2023 |
Datum zadání: | 05.05.2023 |
Datum a čas obhajoby: | 19.06.2024 09:00 |
Místo konání obhajoby: | Opletalova, O206, místnost. č. 206 |
Datum odevzdání elektronické podoby: | 29.04.2024 |
Datum proběhlé obhajoby: | 19.06.2024 |
Oponenti: | prof. PhDr. Ladislav Krištoufek, Ph.D. |
Seznam odborné literatury |
Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23(4), 589-609.
Altman, E. I., Iwanicz Drozdowska, M., Laitinen, E. K., & Suvas, A. (2017). Financial distress prediction in an international context: A review and empirical analysis of Altman’s Z‐score model. Journal of International Financial Management & Accounting, 28(2), 131-171. Arena, M. (2008). Bank failures and bank fundamentals: A comparative analysis of Latin America and East Asia during the nineties using bank-level data. Journal of Banking & Finance, 32(2), 299-310. Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of Accounting Research, 71-111. Berger, A. N., & Bouwman, C. H. (2013). How does capital affect bank performance during financial crises? Journal of Financial Economics, 109(1), 146-176. Betz, F., Oprică, S., Peltonen, T. A., & Sarlin, P. (2014). Predicting distress in European banks. Journal of Banking & Finance, 45, 225-241. Bongini, P., Claessens, S., & Ferri, G. (2001). The political economy of distress in East Asian financial institutions. Journal of Financial Services Research, 19, 5-25. Chiaramonte, L., & Casu, B. (2017). Capital and liquidity ratios and financial distress. Evidence from the European banking industry. The British Accounting Review, 49(2), 138-161. Claessens, S., Frost, J., Turner, G., & Zhu, F. (2018). Fintech credit markets around the world: size, drivers and policy issues. BIS Quarterly Review September. Cole, R. A., & Gunther, J. W. (1995). Separating the likelihood and timing of bank failure. Journal of Banking & Finance, 19(6), 1073-1089. Cole, R. A., & Gunther, J. W. (1998). Predicting bank failures: A comparison of on-and off-site monitoring systems. Journal of Financial Services Research, 13(2), 103-117. Cole, R. A., & White, L. J. (2012). Déjà vu all over again: The causes of US commercial bank failures this time around. Journal of Financial Services Research, 42, 5-29. Cornelli, G., Frost, J., Gambacorta, L., Rau, P. R., Wardrop, R., & Ziegler, T. (2023). Fintech and big tech credit: Drivers of the growth of digital lending. Journal of Banking & Finance, 148, 106742. Demirgüç-Kunt, A., & Detragiache, E. (1998). The determinants of banking crises in developing and developed countries. Staff Papers, 45(1), 81-109. Elekdag, S. A., Emrullahu, D., & Ben Naceur, S. (2024). Does FinTech Increase Bank Risk Taking? IMF Working Papers, 2024(017), A001. Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861-874. Feldkircher, M. (2014). The determinants of vulnerability to the global financial crisis 2008 to 2009: Credit growth and other sources of risk. Journal of International Money and Finance, 43, 19-49. Fernandez, C., Ley, E., & Steel, M. F. (2001). Model uncertainty in cross‐country growth regressions. Journal of Applied Econometrics, 16(5), 563-576. Figini, S. (2012, May). Bayesian model averaging for financial evaluation. In 46TH SCIENTIFIC MEETING OF THE ITALIAN STATISTICAL SOCIETY. Gelman, A., & Hill, J. (2006). Data analysis using regression and multilevel/hierarchical models. Cambridge University Press. Greenacre, J. (2020). What Regulatory Problems Arise When Fintech Lending Expands into Fledgling Credit Markets? Washington University Journal of Law & Policy, 61, 229. Hamdaoui, M. (2016). Are systemic banking crises in developed and developing countries predictable? Journal of Multinational Financial Management, 37, 114-138. Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29-36. Havranek, T., Rusnak, M., & Sokolova, A. (2017). Habit formation in consumption: A meta-analysis. European Economic Review, 95, 142-167. Hodula, M. (2023). Interest rates as a finance battleground? The rise of Fintech and big tech credit providers and bank interest margin. Finance Research Letters, 53, 103685. Jackson, H. E. (2020). The Nature of the Fintech Firm. Washington University Journal of Law & Policy, 61, 9. Kick, T., & Koetter, M. (2007). Slippery slopes of stress: ordered failure events in German banking. Journal of Financial Stability, 3(2), 132-148. King, G., & Zeng, L. (2001). Logistic regression in rare events data. Political Analysis, 9(2), 137-163. Kočenda, E., & Iwasaki, I. (2020). Bank survival in Central and Eastern Europe. International Review of Economics & Finance, 69, 860-878. Kočenda, E., & Iwasaki, I. (2022). Bank survival around the World: A meta‐analytic review. Journal of Economic Surveys, 36(1), 108-156. Kočenda, E., & Vojtek, M. (2011). Default predictors in retail credit scoring: Evidence from Czech banking data. Emerging Markets Finance and Trade, 47(6), 80-98. Lane, W. R., Looney, S. W., & Wansley, J. W. (1986). An application of the Cox proportional hazards model to bank failure. Journal of Banking & Finance, 10(4), 511-531. Lin, C. C., & Yang, S. L. (2016). Bank fundamentals, economic conditions, and bank failures in East Asian countries. Economic Modelling, 52, 960-966. López-Iturriaga, F. J., López-de-Foronda, Ó., & Pastor-Sanz, I. (2010). Predicting bankruptcy using neural networks in the current financial crisis: A study of US commercial banks. Available at SSRN 1716204. Lunardon, N., Menardi, G., & Torelli, N. (2014). ROSE: a package for binary imbalanced learning. R Journal, 6(1). McDonald, T., & Dan, L. (2021). Alipay’s ‘Ant Credit Pay’ meets China’s factory workers: the depersonalization and re-personalization of online lending. Journal of Cultural Economy, 14(1), 87-100. McFadden, D. (1973). Conditional logit analysis of qualitative choice behavior. In: Zarembka, P., Ed., Frontiers in Econometrics, Academic Press, 105-142. Omarova, S. T. (2020). Dealing with disruption: emerging approaches to fintech regulation. Washington University Journal of Law & Policy, 61, 25. Park, S. H., Goo, J. M., & Jo, C. H. (2004). Receiver operating characteristic (ROC) curve: practical review for radiologists. Korean Journal of Radiology, 5(1), 11-18. Rogoff, K. (2017). The curse of cash: How large-denomination bills aid crime and tax evasion and constrain monetary policy. Princeton University Press. Schwarz, J., & Pospíšil, M. (2018). Bankruptcy, investment, and financial constraints: evidence from the Czech Republic. Eastern European Economics, 56(2), 99-121. Signorell, A., Aho, K., Alfons, A., Anderegg, N., Aragon, T., Arppe, A., ... & Borchers, H. W. (2019). DescTools: Tools for descriptive statistics. R package version 0.99, 28, 17. Stock, J. H., & Watson, M. W. (2006) Introduction to Econometrics 2nd edn., Addison Wesley Upper Saddle River, NJ Van, M. G., Şehribanoğlu, S., & Van, M. H. (2021). Analysis of the factors which affect financial failure and bankruptcy with generalized ordered logit model. Uluslararası Yönetim İktisat ve İşletme Dergisi, 17(1), 63-78. Van den Berg, J., Candelon, B., & Urbain, J. P. (2008). A cautious note on the use of panel models to predict financial crises. Economics Letters, 101(1), 80-83. Vazquez, F., & Federico, P. (2015). Bank funding structures and risk: Evidence from the global financial crisis. Journal of Banking & Finance, 61, 1-14. Williams, R. (2016). Analyzing rare events with logistic regression. Retrieved January, 10(2017), 355-361. |
Předběžná náplň práce |
Výzkumná otázka: Jaké faktory nejvíce přispívají k finanční tísni FinTech firem: kapitálová přiměřenost, provozní činnosti nebo ziskovost?
Tato práce se snaží zodpovědět tuto otázku pomocí logistického modelu a analýzou účetních dat 973 FinTech firem po celém světě v letech 2018 až 2023. Analýza také bere v úvahu nefinanční proměnné a robustnost je testována pomocí modelu uspořádané odezvy a metody Bayesovského průměrování modelů. Výsledky naznačují, že během krizí je finanční tíseň FinTech firem ovlivněna především ziskovostí a provozními činnostmi, přičemž kapitálová přiměřenost hraje méně významnou roli. Hypotéza č. 1: Ukazatel kapitálové přiměřenosti není nejúčinnějším ukazatelem pro vysvětlení selhání FinTech firem. Hypotéza č. 2: Jiné kontrolní proměnné, jako je velikost společnosti, věk společnosti, soukromé vlastnictví a umístění ve vyspělých zemích, významně neovlivňují finanční tíseň FinTech firem. Hypotéza č. 3: Logistické modely mohou poskytnout relativně přesné vyhodnocení rizika selhání FinTech firem. |
Předběžná náplň práce v anglickém jazyce |
Research question: What factors contribute most to the financial distress of FinTech firms: capital adequacy, operating activities, or profitability?
This paper tries to answer this question by using a logistic model and analyzing the accounting-based data of 973 FinTech firms worldwide between 2018 and 2023. The analysis also considers non-financial variables, and the robustness checks are performed using the ordered response model and the Bayesian model averaging method. The results suggest that during crises, the financial distress of FinTech firms is mainly influenced by profitability and operating activities, with capital adequacy playing a less significant role. Hypothesis #1: The capital adequacy ratio is not the most effective indicator for explaining the failure of FinTech firms. Hypothesis #2: Other control variables, such as company size, company age, private ownership, and location in developed countries, do not significantly influence the financial distress of FinTech firms. Hypothesis #3: Logistic models can provide relatively accurate evaluations of the failure risk of FinTech firms. |