Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 368)
Detail práce
   Přihlásit přes CAS
Proudem hnané skyrmiony
Název práce v češtině: Proudem hnané skyrmiony
Název v anglickém jazyce: Current driven skyrmions
Klíčová slova: Skyrmiony|Transport|Nerovnováha|Neuromorfní počítání
Klíčová slova anglicky: Skyrmions|Transport|Non-equlibrium|Neuromorphic computing
Akademický rok vypsání: 2024/2025
Typ práce: diplomová práce
Jazyk práce:
Ústav: Katedra fyziky kondenzovaných látek (32-KFKL)
Vedoucí / školitel: RNDr. Martin Žonda, Ph.D.
Řešitel:
Zásady pro vypracování
What will student learn:

Quantum classical equation of motion

Basics of nonequlibrium Green functions

Various Machine Learning techniques

What will student do:

Investigate transport in a layered magnetic system

Constructing models of skyrmionic devices for computing

Setting, running, and analyzing numerical simulations

Applying machine learning for phase classification and skyrmion tracking
Seznam odborné literatury
Daniel C. Mattis, The Theory of Magnetism Made Simple
L. Peng et al., Dynamic transition of current-driven single-skyrmion motion in a room-temperature chiral-lattice magnet, Nature Communications 12, 6797 (2021)
A. Geron: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:Concepts, Tools, and Techniques to Build Intelligent Systems, O’Reilly Media (2019)
Předběžná náplň práce v anglickém jazyce
Controlling skyrmion motion via electronic current is a promising technology potentially leading to skyrmion-based spintronic devices and with application in neuromorphic computing. Recent experimental progress allowed us to track and control skyrmions in some layered systems even at room temperatures, via short current pulses. Yet, a lot of theoretical problems remain unsolved, and this prohibits faster technological progress. The task of the student will be to address some of them. For example, the student will be searching for a way to move, place and stop skyrmions. This is important for building an analogue of artificial neural network in condensed matter device. In practice, this will mean to theoretically investigate a system that combines classical spins (Heisenberg vectors) with conducting electrons (quantum particles) driven out of equilibrium by external voltage drop or by a voltage pulse. The results, e.g., the phase diagrams and the movement of the skyrmion will be tracked by machine learning techniques.
 
Univerzita Karlova | Informační systém UK