Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 368)
Detail práce
   Přihlásit přes CAS
Využití vizuální zpětné vazby při obnově pohybových vzorců u pacientů s centrální parézou
Název práce v češtině: Využití vizuální zpětné vazby při obnově pohybových vzorců u pacientů s centrální parézou
Název v anglickém jazyce: Use of a visual biofeedback in the movement patterns recovery by patients with the central paresis
Klíčová slova: časná neurorehabilitace, virtuální realita, senioři, mozková příhoda
Klíčová slova anglicky: early neurorehabilitation, virtual reality, elderly, stroke
Akademický rok vypsání: 2015/2016
Typ práce: disertační práce
Jazyk práce: čeština
Ústav: Klinika rehabilitačního lékařství 1. LF UK a VFN (11-00640)
Vedoucí / školitel: doc. MUDr. Yvona Angerová, MBA, Ph.D.
Řešitel: skrytý - zadáno a potvrzeno stud. odd.
Datum přihlášení: 06.01.2016
Datum zadání: 06.01.2016
Datum potvrzení stud. oddělením: 06.01.2016
Datum a čas obhajoby: 20.05.2021 10:00
Datum odevzdání elektronické podoby:26.02.2021
Datum proběhlé obhajoby: 20.05.2021
Předmět: Obhajoba dizertační práce (B90002)
Oponenti: prof. MUDr. Václav Smrčka, CSc.
  doc. MUDr. Petr Kozler, Ph.D.
 
 
Seznam odborné literatury
1. Winters C, van Wegen EE, Daffertshofer A, Generalizability of the Proportional Recovery Model for the Upper Extremity After an Ischemic Stroke,Neurorehabil Neural Repair. 2015 Aug;29(7):614-22. doi: 10.1177/1545968314562115. Epub 2014 Dec 11
2. Zarahn E, Alon L, Ryan SL, et al. Prediction of motor recovery using initial impairment and fMRI 48 h poststroke. Cereb Cortex. 2011;21(12):2712-21
3. Biernaskie J, Chernenko G, Corbett D, Efficacy of Rehabilitative Experience Declines with Time after Focal Ischemic Brain Injury, Journal of Neuroscience, 2004, 24 (5) 1245-1254
4. Kwakkel G, van Peppen R, Wagenaar RC, Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke, 2004, 35:2529–2539
5. Murphy TH, Corbett D, Plasticity during stroke recovery: from synapse to behavior. Nat Rev Neurosci 2009, 10:861–872
6. Kitago T, Krakauer JW, Motor learning principles for neurorehabilitation, Handbook of Clinical Neurology, Chapter 8, Elsevier, Volume 110, 2013, Pages 93-103, ISSN 0072-9752, ISBN 9780444529015
7.Bertani R, Melegari C, De Cola MC, Effects of robot-assisted upper limb rehabilitation in stroke patients: a systematic review with meta-analysis,Neurol Sci. 2017 Sep;38(9):1561-1569
8.Veerbeek JM, Langbroek-Amersfoort AC, van Wegen EE, Effects of Robot-Assisted Therapy for the Upper Limb After Stroke,Neurorehabil Neural Repair. 2017 Feb;31(2):107-121 – A systematic Review and meta-analysis
9.Norouzi-Gheidari N, Archambault PS, Fung J, Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: systematic review and meta-analysis of the literature,J Rehabil Res Dev.2012;49(4):479-96.
10. Masiero S, Celia A, Rosati G. et al. Robotic-Assisted Rehabilitation of the Upper Limb After Acute Stroke, Archives of Physical Medicine and Rehabilitation, 2007, Volume 88, Issue 2, 142 – 149
11. Armeo Spring Hocoma, dostupné zhttps://www.hocoma.com/solutions/armeo-spring/, [cit.2021-02-25]
12. Gijbels D, Lamers, I, Kerkhofs L, et al. The Armeo Spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot study. J NeuroEngineering Rehabil 2011: 8, 5.
13. Laver KE., Lange B., George S., et al., Virtual reality for stroke rehabilitation. Cochrane Database of Systematic Reviews 2017, Issue 11. Art. No.: CD008349.
14. Homebalance® interactive system, dostupné zhttps://www.homebalance.cz/en.html, [cit.2021-02-25]
15. Srivastava A, Taly AB, Gupta A, et al. Post-stroke balance training: role of force platform with visual feedback technique. J Neurol Sci 2009; 287(1-2):89-93.
16. Chong J, Sacco R. Risk factors for stroke, assessing risk, and the mass and high-risk approaches for stroke prevention. In: Gorelick PB, editor. Continuum: Stroke Prevention. Hagerstwon, Maryland: Lippincott Williams and Wilkins; 2005. pp. 18–34
17. Ovbiagele B, Nguyen-Huynh MN. Stroke epidemiology: advancing our understanding of disease mechanism and therapy. Neurotherapeutics. 2011;8(3):319–329.
18.Thrift AG, Thayabaranathan T, Howard Get al., Global stroke statistics,Int J Stroke. 2017 Jan;12(1):13-32. doi: 10.1177/1747493016676285. Epub 2016 Oct 28
19. Zdravotnická ročenka ČR 2018, ÚZIS ČR 2019,www.uzis.cz, ISSN 1210-9991
20. Bruthans J., Analýza epidemiologických dat týkajících se morbidity a mortality spojené s CMP pomáhá hodnotit vliv prevence a léčby a určit postupy vedoucí ke zlepšení prognózy CMP v populaci, CMP jour., 2, 2019, č.1, s.5
21. Lin MP., Time matters greatly in acute stroke care. Neurol Neurochir Pol.2020;54(2):104-105.
22. Nowak K, Derbisz J, Jagiełła J, et al. Time from stroke onset to groin puncture affects rate of recanalisation after mechanical thrombectomy: a real-life single centre experience. Neurol Neurochir Pol. 2020;54(2):156-160.
23. Rudd M, Buck D, Ford GA, et al., A systematic review of stroke recognition instruments in hospital and prehospital settings. Emerg Med J. 2016 Nov;33(11):818-822. doi: 10.1136/emermed-2015-205197. Epub 2015 Nov 16. PMID: 26574548.
24. Zhelev Z, Walker G, Henschke N, et al., Prehospital stroke scales as screening tools for early identification of stroke and transient ischemic attack. Cochrane Database Syst Rev. 2019 Apr 9;4(4):CD011427. doi: 10.1002/14651858.CD011427.pub2.
25. Václavík D, Bar M, Klečka L, et al., Prehospital stroke scale (FAST PLUS Test) predicts patients with intracranial large vessel occlusion. Brain Behav. 2018 Sep;8(9):e01087. doi: 10.1002/brb3.1087. Epub 2018 Aug 7
26. Dufek M., Cerebrovaskulární onemocnění ve stáří, Neurologie pro praxi 2003/1, str.14-20
27. Manning NW, Campbell BC, Oxley TJ, et al. Acute ischemic stroke: time, penumbra, and reperfusion. Stroke 2014; 45: 640–644.
28. Saver JL. Time is brain - quantified. Stroke 2006; 37: 263–266.
29. Ruscher K, Isaev N, Trendelenburg G et al., Induction of hypoxia inducible factor 1 by oxygen glucose deprivation is attenuated by hypoxic preconditioning in rat cultured neurons. Neurosci Lett. 1998 Sep 25;254(2):117-20.
30. Gauberti M, De Lizarrondo SM, Vivien D., The "inflammatory penumbra" in ischemic stroke: From clinical data to experimental evidence. Eur Stroke J. 2016 Mar;1(1):20-27.
31. Rey F, Balsari A, Giallongo T et al., Erythropoietin as a Neuroprotective Molecule: An Overview of Its Therapeutic Potential in Neurodegenerative Diseases. ASN Neuro. 2019 Jan-Dec;11:1759091419871420.
32. Maresova D, Kozler P, Miletínová E, Zima T, Pokorny J. Locomotion in young rats with induced brain cellular edema – effects of recombinant human erythropoietin. Neuro Endocrinol Lett. 2018 Oct;39(4):310-314. PMID: 30531705.
33. Tsai TH, Lu CH, Wallace CG, Chang WN, Chen SF, Huang CR, Tsai NW, Lan MY, Sung PH, Liu CF, Yip HK. Erythropoietin improves long-term neurological outcome in acute ischemic stroke patients: a randomized, prospective, placebo-controlled clinical trial. Crit Care. 2015 Feb 25;19(1):49. doi: 10.1186/s13054-015-0761-8.
34. Mumenthaler M., Mattle H., Neurologie, Grada Publishing, 2001, ISBN 80-7169-545-9
35. Věstník MZ ČR 2010/2, https://www.mzcr.cz/vestnik/vestnik-c-2-2010/
36. Powers WJ, Rabinstein AA, Ackerson T, et al. 2018 Guidelines for the Early Management
of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the
American Heart Association/American Stroke Association [Article]. Stroke. 2018;49(3):e46-
e110.
37. Škoda O, Herzig R, Mikulík R, et al. Klinický standard pro diagnostiku a léčbu pacientů s
ischemickou cévní mozkovou příhodou a s tranzitorní ischemickou atakou – verze 2016
[Clinical Guideline for the Diagnostics and Treatment of Patients with Ischemic Stroke and
Transitory Ischemic Attack – Version 2016]. Česká a slovenská neurologie a neurochirurgie.
2016;79(3):351-363.
38. Hamann GF, Müller R, Alber B, et al. Treatment in acute stroke - Stroke unit is
mandatory [Review], Neurology Psychiatry and Brain Research. 2016;22(2):105-109.
39. Miller EL, Murray L, Richards L, et al., American Heart Association Council on
Cardiovascular Nursing and the Stroke Council. Comprehensive overview of nursing and
interdisciplinary rehabilitation care of the stroke patient: a scientific statement from the
American Heart Association. Stroke. 2010 Oct;41(10):2402-48.
40. Winstein CJ., Stein J., Arena R. et al, Guidelines for Adult Stroke Rehabilitation and Recovery, StrokeVolume 47, Issue 6, June 2016, Pages e98-e169
41. Kolář, P. et al., Rehabilitace v klinické praxi (1. vydání). Praha 2009: Galén. ISBN 978-80-7262-657-1
42. Gulyaeva NV, Molecular Mechanisms of Neuroplasticity: An Expanding Universe,Biochemistry (Mosc). 2017 Mar; 82(3):237-242
43. Ardiel E.L., Rankin C.H., An elegant mind: Learning and Memory 2010, 17: 191-201
44.KolbB,GibbR, Searching for the principles of brain plasticity and behavior,Cortex,Volume 58, September 2014, Pages 251-260
45. Kaas JH, Neural Plasticity, International Encyklopedia of the Social and Behavioral Sciences, 26v, 2001, pp. 10542-10546
46. Richards S, Mychasiuk R, Kolb B et al., Tactile stimulation during development alters behaviour and neuroanatomical organization of normal rats, Behaviour Brain Research 231 (2012), pp. 86-91
47.KolbB,GibbR, Tactile stimulation facilitates functional recovery and dendritic change after neonatal medial frontal or posterior parietal laesions in rats, Behavioural Brain Research 214 (2010), pp.115-120
48. Li S, Spasticity, Motor Recovery, and Neural Plasticity after Stroke. Front Neurol. 2017; 8:120. Published 2017 Apr 3. doi:10.3389/fneur.2017.00120
49. Shmuelof L, Krakauer JW, Mazzoni P,How is a motor skill learned? Change and invariance at the levels of task success and trajectory control.J Neurophysiol. 2012 Jul; 108(2):578-94
50. Herszage J,Censor N, Modulation of Learning and Memory: A Shared Framework for Interference and Generalization, Neuroscience 392 (2018) 270–280
51. Krakauer JW., Mazzoni P, Ghazizadeh A. et al., Generalization of motor learning depends on the history of prior action,PLoS Biol. 2006 Oct;4(10):e316
52.Winters C,van Wegen EE, Daffertshofer A, Generalizability of the Proportional Recovery Model for the Upper Extremity After an Ischemic Stroke,Neurorehabil Neural Repair. 2015 Aug;29(7):614-22. doi: 10.1177/1545968314562115. Epub 2014 Dec 11.
53. Zarahn E, Alon L, Ryan SL, et al. Prediction of motor recovery using initial impairment and fMRI 48 h poststroke. Cereb Cortex. 2011;21(12):2712-21.
54. Rosenkranz K, Seibel J, Kacar A, Rothwell J. Sensorimotor deprivation induces interdependent changes in excitability and plasticity of the human hand motor cortex. J Neurosci. 2014;34(21):7375‐7382.
55. Wang H, Camicia M, Terdiman J, Mannava MK, Sidney S, Sandel ME. Daily treatment time and functional gains of stroke patients during inpatient rehabilitation. PM R. 2013 Feb;5(2):122-8.
56. Corbetta D, Sirtori V, Castellini G, Moja L, Gatti R. Constraint-induced movement therapy for upper extremities in people with stroke. Cochrane Database of Systematic Reviews 2015, Issue 10. Art. No.: CD004433
57. Ptáček R, Novotný M, Biofeedback v teorii a praxi, Grada 2017,ISBN 978-80-271-9862-7
58. Giggins OM, McCarthy Persson U, Caufield B, Biofeedback in rehabilitation, Journal of NeuroEngineering and Rehabilitation 2013, 10:60
59.Goessl VC, Curtiss JE, Hofmann SG, The effect of heart rate variability biofeedback training on stress and anxiety: a meta-analysis,Psychol Med. 2017 Nov;47(15):2578-2586
60.Palomba D, Ghisi M, Scozzari S, Biofeedback-assisted cardiovascular control in hypertensives exposed to emotional stress: a pilot study,Appl Psychophysiol Biofeedback. 2011 Sep;36(3):185-92
61.Hassett AL, Radvanski DC, Vaschillo EG, A pilot study of the efficacy of heart rate variability (HRV) biofeedback in patients with fibromyalgia.Appl Psychophysiol Biofeedback. 2007 Mar;32(1):1-10
62. Kapitza KP, Passie T, Bernateck M,First non-contingent respiratory biofeedback placebo versus contingent biofeedback in patients with chronic low back pain: a randomized, controlled, double-blind trial, Appl Psychophysiol Biofeedback. 2010 Sep;35(3):207-17
63. Lehrer PM, Gevirtz R. Heart rate variability biofeedback: how and why does it work? Front Psychol. 2014;5:756. Published 2014 Jul 21. doi:10.3389/fpsyg.2014.00756
64. Akkaya N, Ardic F, Ozgen M, Efficacy of electromyographic biofeedback and electrical stimulation following arthroscopic partial meniscectomy: a randomized controlled trial,Clin Rehabil. 2012 Mar;26(3):224-36
65.Woodford H, Price C, EMG biofeedback for the recovery of motor function after stroke,Cochrane Database Syst Rev. 2007 Apr 18;(2):CD004585
66. Sládková P, Oborná P, Bodlák I et al.,Aplikace akcelerometru v rehabilitaci pacientů po poškození mozku,Rehabil. fyz. Lék., 20, 2013, No. 3, pp. 142-145.
67. Janatová M, Tichá M, Melecký R et al.,Pilotní studie využití tenzometrické plošiny v domácí terapii poruch rovnováhy. Česká a slovenská neurologie a neurochirurgie. 2016, roč. 79, č. 5, s. 591-594. ISSN 1210-7859.
68. Janatová M, Tichá M, Gerlichová M et al., Terapie poruch rovnováhy u pacientky po cévní mozkové příhodě s využitím vizuální zpětné vazby a stabilometrické plošiny v domácím prostředí. Rehabilitácia. 2015, roč. 52, č. 3, s. 140-146. DOI: ISSN 0375-0922.
69. Afzal MR, Oh MK, Choi HY, Yoon J. A novel balance training system using multimodal biofeedback. Biomed Eng Online. 2016;15:42. Published 2016 Apr 22.doi:10.1186/s12938-016-0160-7
70. Schenck C, Kesar TM. Effects of unilateral real-time biofeedback on propulsive forces during gait. J Neuroeng Rehabil. 2017;14(1):52. Published 2017 Jun 6. doi:10.1186/s12984-017-0252-z
71. Stanney K, Salvendy G, Deisinger J et al., Aftereffects and sense of presence in virtual environments: formulation of a research and development agenda. Int J Hum Comput Interact. 1998;10(2):135-87.
72. Keshner E, Virtual reality and physical rehabilitation: A new toy or a new research and rehabilitation tool?, Journal of neuroengineering and rehabilitation, 2005; 1. 8. 10.1186/1743-0003-1-8.
73. Wagner TH, Lo AC, Peduzzi P et al., An economic analysis of robot-assisted therapy for long-term upper-limb impairment after stroke. Stroke. 2011 Sep;42(9):2630-2
74. Amadeo®, Pablo®, Diego®, Myro®, Tymo®, dostupné nahttps://tyromotion.com/en/product-overview/, [cit.2021-01-15]
75. Thera trainer mobi, Thera Trainer balo, dostupné na https://thera-trainer.com/, [cit.2021-01-15]
76. Rehawalk®, dostupné nahttps://www.stargen-eu.cz/rehabilitace/nacvik-chuze/, [cit.2021-01-15]
77. Taveggia G, Borboni A, Salvi L at al., Efficacy of robot-assisted rehabilitation for the functional recovery of the upper limb in post-stroke patients: a randomized controlled study.Eur J Phys Rehabil Med. 2016 Dec;52(6):767-773. Epub 2016 Jul 13.
78. Colomer C, Baldovi A, Torrome S et al, Efficacy of Armeo® Spring during the chronic phase of stroke. Study in mild to moderate cases of hemiparesis, Neurologia. 2013 Jun;28(5):261-7.
79. Bartolo M, De Nunzio AM, Sebastiano F et al, Arm weight support training improves functional motor outcome and movement smoothness after stroke, Funct Neurol. 2014 Mar 5:1-7
80. Rodgers H, Bosomworth H, Krebs IH et al, Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial, Lancet 2019; 394: 51–62
81. Gueye T, Dedkova M, Rogalewicz V et al., Early post-stroke rehabilitation for upper limb motor function using virtual reality and exoskeleton: equally efficient in older patients. Neurol Neurochir Pol. 2020 Dec 14.
82.Calabrò RS,Russo M,Naro Aet al, Who May Benefit From Armeo Power Treatment? A
Neurophysiological Approach to Predict Neurorehabilitation Outcomes,PM R. 2016, Oct;8(10):971-978
83. Chen L, Lo WL, Mao YR, et al. Effect of Virtual Reality on Postural and Balance Control in Patients with Stroke: A Systematic Literature Review. Biomed Res Int. 2016; 2016:7309272.
84. de Rooij IJ, van de Port IG, Meijer JG, Effect of Virtual Reality Training on Balance and Gait Ability in Patients With Stroke: Systematic Review and Meta-Analysis, Phys Ther. 2016 Dec;96(12):1905-1918. Epub 2016 May 12.
85. Hung JW, Chou CX, Hsieh YW et al, Randomized comparison trial of balance training by using exergaming and conventional weight-shift therapy in patients with chronic stroke. Archives of Physical Medicine and Rehabilitation 2014;95(9):1629-37
86. Lee SW, Shin DC, Song CH., The effects of visual feedback training on sitting balance ability and visual perception of patients with chronic stroke. Journal of Physical Therapy Science 2013;25(5):635-9
87.Mohammadi R,Semnani AV,Mirmohammadkhani Met al., Effects of Virtual Reality Compared to Conventional Therapy on Balance Poststroke: A Systematic Review and Meta-Analysis,J Stroke Cerebrovasc Dis.2019 Jul;28(7):1787-1798
88. Lee HY, Kim YL, Lee SM, Effects of virtual reality based training and task oriented training on balance performance in stroke patients. Journal of Physical Therapy Science 2015;27(6):1883-8.
89. Llorens R, Gil-Gomez JA, Alcaniz M et al, Improvement in balance using a virtual-reality based stepping exercise: a randomized controlled trial involving individuals with chronic stroke. Clinical Rehabilitation 2015;29(3):261-8.
90. Morone G, Tramontano M, Iosa M et al, The efficacy of balance training with videogame-based therapy in subacute stroke patients: a randomized controlled trial. BioMed Research International 2014
91. Ozaki K, Kondo I, Hirano S et al,Training with a balance exercise assist robot is more effective than conventional training for frail older adults.Geriatr Gerontol Int. 2017 Nov;17(11):1982-1990.
92. Kamińska MS, Miller A, Rotter I et al, The effectiveness of virtual reality training in reducing the risk of falls among elderly people. Clin Interv Aging. 2018;13:2329–2338.
93. Bieryla KA, Dold NM, Feasibility of Wii Fit training to improve clinical measures of balance in older adults. Clin Interv Aging. 2013;8:775–781.
94. Zeng N, Pope Z, Lee JE et al, A systematic review of active video games on rehabilitative outcomes among older patients [published correction appears in J Sport Health Sci. 2017 Jun;6(2):251]. J Sport Health Sci. 2017;6(1):33–43.
95. Syed-Abdul S, Malwade S, Nursetyo A.A. et al, Virtual reality among the elderly: a usefulness and acceptance study from Taiwan. BMC Geriatr 19, 223 (2019).
96. Laver K, George S, Ratcliffe J et al, Use of an interactive video gaming program compared with conventional physiotherapy for hospitalised older adults: a feasibility trial. Disabil Rehabil. 2012;34(21):1802–1808.
97. Fugl-Meyer AR, Jääskö L, Leyman I, et al. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scandinavian journal of rehabilitation medicine. 1975;7(1):13-31.
98. Gladstone DJ, Danells CJ, Black SE. The Fugl-Meyer assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabilitation and neural repair. 2002 Sep;16(3):232-40.
99.Thompson-Butel AG, Lin G, Shiner CT, et al., Comparison of three tools to measure improvements in upper-limb function with poststroke therapy.Neurorehabil Neural Repair. 2015 May;29(4):341-8.
100. MoCA test. Available fromhttps://www.mocatest.org/Accessed February 25, 2020.
101. Dong Y, Lee W, Basri N, et al. The Montreal Cognitive Assessment is superior to the Mini-Mental State Examination in detecting patients at higher risk of dementia. International Psychogeriatrics 2012, 24(11), 1749-1755.
102. Ottenbacher KJ, Hsu Y, Granger CV, et al. The reliability of the Functional Independence Measure: a quantitative review. Arch Phys Med Rehabil 1996; 77:1226-32.
103. Choo SX, Stratford P, Richardson J, et al. Comparison of the sensitivity to change of the Functional Independence Measure with the Assessment of Motor and Process Skills within different rehabilitation populations, Disability and Rehabilitation 2018; 40:26, 3177-3184
104. Collen FM, Wade DT, Robb GF, et al. The rivermead mobility index: A further development of the rivermead motor assessment. Int.Disabil. Stud. 1991; 13:50-54.
105. Park GT, Kim M. Correlation between mobility assessed by the Modified Rivermead Mobility Index and physical function in stroke patients. J Phys Ther Sci. 2016;28(8):2389–2392.
106. Berg K, Wood-Dauphinee S, Williams JI, et al. Measuring balance in the elderly: Validation of an instrument. Can. J. Pub. Health, July/August supplement 2: S7-11, 1992.
107. Jeon YJ, Kim GM. Comparison of the Berg Balance Scale and Fullerton Advanced Balance Scale to predict falls in community-dwelling adults. J Phys Ther Sci. 2017;29(2):232–234.
108. Chen P, Hreha K, Fortis P,et al, Functional assessment of spatial neglect: a review of the Catherine Bergego scale and an introduction of the Kessler foundation neglect assessment process. Top Stroke Rehabil. 2012 Sep-Oct;19(5):423-35
109. Pollock A., Baer G., Campbell P. et al., Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database Syst Rev. 2014 Apr 22;2014(4):CD001920.
110. Runde D, Calculated Decisions: NIH stroke scale/score (NIHSS). Emerg Med Pract. 2020 Jul 15;22(7):CD6-CD7. PMID: 33112580.
111. Angerova Y, Marsalek P, Chmelova I, et al., Cost and cost-effectiveness of early inpatient rehabilitation after stroke varies with initial disability, International Journal of Rehabilitation Research: September 24, 2020, 43(4):376-382
112. Parton A, Malhotra P, Husain M, Hemispatial neglect, Journal of Neurology, Neurosurgery & Psychiatry 2004;75:13-21.
113. Di Monaco M, Schintu S, Dotta M, et all., Severity of unilateral spatial neglect is an independent predictor of functional outcome after acute inpatient rehabilitation in individuals with right hemispheric stroke. Archives of Physical Medicine and Rehabilitation, 2011, 92(8), 1250–1256.
114. Iwamoto Y, Imura T, Suzukawa T et al., Combination of Exoskeletal Upper Limb Robot and Occupational Therapy Improve Activities of Daily Living Function in Acute Stroke Patients. J Stroke Cerebrovasc Dis. 2019 Jul;28(7):2018-2025
115. Gueye T., Dedkova M., Outcome of the Armeo Therapy with the Patients Developing Spastic Paresis of the Upper Limb, IV. Kladruby Symposium on Interdisciplinary Neurorehabilitation, book of abstracts, 2017, ISBN: 978-80-270-2951-8
116. Katoozian L., Tahan N., Zoghi M. et al., The Onset and Frequency of Spasticity After First Ever Stroke. J Natl Med Assoc. 2018 Dec;110(6):547-552.
117. Schinwelski MJ, Sitek EJ, Wąż P, et al., Prevalence and predictors of post-stroke spasticity and its impact on daily living and quality of life. Neurol Neurochir Pol. 2019;53(6):449-457.
118. Wissel J, Ward AB, Erztgaard P et al. European consensus table on the use of botulinum toxin type a in adult spasticity. J Rehabil Med 2009; 41: 13–25
119. Lopez de Munain L., Juan-Garcia FJ., Duarte E. et al., Early pharmacologic treatment with botulinum toxin A in post-stroke spasticity: consensus evidence-based recommendations, Rev Neurol. 2016 Oct 16;63(8):363-369
120. Gracies JM, Pathophysiology of spastic paresis. I: Paresis and soft tissue changes. Muscle Nerve. 2005 May;31(5):535-51.
121. Gracies JM, Bayle N, Vinti M, et al., Five-step clinical assessment in spastic paresis. Eur J Phys Rehabil Med. 2010 Sep;46(3):411-21. PMID: 20927007.
122. Gracies, JM, Pathophysiology of Impairment in Patients with Spasticity and Use of Stretch as a Treatment of Spastic Hypertonia. Physical medicine and rehabilitation clinics of North America. 2001, 12(4): 747-68
123. Hsieh CL, Sheu CF, Hsueh IP et al., Trunk control as an early predictor of comprehensive activities of daily living function in stroke patients. Stroke. 2002 Nov;33(11):2626-30.
124. Bernhardt J., Langhorne P., Lindley RI. et al., Efficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): a randomised controlled trial. Lancet. 2015b; 386:46–55
125. Bernhardt J., Collier JM., Bate PJ. et al., Very early versus delayed mobilization after stroke systematic review and meta-analysis. Stroke. 2019; 50:E178–E179
126. Coleman ER., Moudgal R., Lang K. et al., Early rehabilitation after stroke: a narrative review. Curr Atheroscler Rep. 2017; 19:59.
127. Krakauer JW., Carmichael ST., Corbett D. et al., Getting neurorehabilitation right: what can be learned from animal models? Neurorehabil Neural Repair. 2012; 26:923–931
128. Norman G., Likert scales, levels of measurement and the “laws” of statistics. Adv in Health Sci Educ 15, 625–632 (2010)
129. Labovitz S., Some Observations on Measurement and Statistics, Social Forces, Volume 46, Issue 2, December 1967, Pages 151–160
Předběžná náplň práce
Smyslem disertační práce je zhodnotit účinnost dvou terapií s využitím virtuální reality (VRT) s vizuální zpětnou vazbou, Armeo Spring® exoskeletonu pro horní končetinu (Armeo) a Homebalance® interaktivního systému (Homebalance) v časné rehabilitaci po cévní mozkové příhodě (CMP) se zaměřením na seniory.
Účastníci randomizované studie do 30 dnů po CMP s parézou horní končetiny (studie Armeo) nebo s poruchou rovnováhy (studie Homebalance) byly zařazeni buď do intervenční skupiny IS (Armeo IS n=25; průměrný věk 66.5 let a Homebalance IS n=25; průměrný věk 69.6 let) provádějící VRT místo konvenční fyzioterapie nebo do kontrolní skupiny KS (Armeo KS, n=25, průměrný věk 68.1 let a Homebalance KS, n=25, průměrný věk 65.9 let), která měla jen konvenční fyzioterapii. Před a po třítýdenní terapii s 12 terapeutickými hodinami bylo provedeno hodnocení Montrealským kognitivním testem (MoCA), testem Funkční míra nezávislosti (FIM), Fugl-Meyerovým hodnocením motorického výkonu horní končetiny (FMA-UE), Modifikovaným Rivermeadským indexem mobility (m-RIM) a Bergovou škálou rovnováhy (BBS). Porovnali jsme výsledky účastníků ve věku <65 a ≥65 let. Přijetí obou VRT technologií bylo sledováno sebehodnotícím dotazníkem.
Ve studii Armeo se zlepšila signifikantně funkce paretické horní končetiny v obou skupinách (IS i KS), zlepšení ve FMA-UE bylo signifikantně větší v Armeo IS v porovnání s Armeo KS (p=0.02) a pacienti ≥ 65 let předvedli v porovnání s mladšími stejný rozsah zlepšení ve funkci paretické končetiny. Ve studii Homebalance se obě skupiny (IS i KS) signifikantně zlepšily v BBS a starší účastníci neměli horší výsledky než mladší. Přijímání nových technologií staršími pacienty bylo celkově dobré, i přes horší očekávání a větší nároky na soustředění.
Terapie využívající virtuální realitu s vizuální zpětnou vazbou mají v post-akutní rehabilitaci pacientů po iktu zahájené do 30 dnů od příhody srovnatelně dobré výsledky jako konvenční terapie. Přístroj Armeo Spring má pozitivní vliv na motorický výkon horní končetiny. Pacienti starší než 65 let nemají při této terapii horší výsledky a jejich přijetí VRT technologií je stejně pozitivní, jako u mladších pacientů. VRT technologie mohou být slibnou alternativou ke konvenční terapii u starších pacientů po cévní mozkové příhodě.
Předběžná náplň práce v anglickém jazyce
The purpose of this dissertation is to evaluate the effectiveness of two virtual reality therapies (VRT) with visual biofeedback, Armeo Spring® upper limb exoskeleton (Armeo) and Homebalance® interactive system (Homebalance), in early post-stroke rehabilitation with focus on the elderly.
Using a randomized controlled study design, participantswithin 30 days after stroke with arm paresis (Armeo study) or with balance problem (Homebalance study) were assigned either to the respective intervention group (Armeo IG n=25; mean age 66.5 years, and Homebalance IG n=25; mean age 69.6 years) performing VRT instead of conventional physiotherapy or to the control group (Armeo CG, n=25, mean age 68.1 years, and Homebalance CG, n=25, mean age 65.9 years) having conventional physiotherapy only. Montreal Cognitive Assessment (MoCA), Functional Independence Measure (FIM), Fugl Mayer Assessment–Upper Extremity Scale (FMA-UE), Modified Rivermead Mobility Index (m-RIM) and Berg Balance Scale (BBS) were performed before and after the 3-week therapy with 12 therapeutic sessions. Results of participants <65 and ≥65 years old were compared. Acceptance of both VRTs was evaluated by self-rated questionnaire.
In the Armeo study, paretic upper arm function improved significantly in both IG and CG groups, the improvement in FMA-UE was significantly higher in Armeo IG as compared to CG (p=0.02) and patients ≥ 65 years old presented equal magnitude of improvement in paretic arm function compared to younger patients. In the Homebalance study both IG and CG improved significantly in BBS, older participants didn´t have worst results than younger ones. The acceptance of the new virtual reality therapies by older people was generally good despite lower expectations and higher demands on concentration.
Therapies using virtual reality with visual biofeedback have similarly good results as the conventional therapy in post-stroke patients when starting not more than 30 days after stroke onset. The Armeo Spring device has a good influence on upper extremity motor performance. Patients ≥ 65 years old do not have worse outcomes, and they accept these therapies well, as the younger ones. VRT´s may be a promising alternative to conventional physiotherapy in older stroke patients.
 
Univerzita Karlova | Informační systém UK