Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 381)
Detail práce
   Přihlásit přes CAS
Proteomika jako nástroj studia molekulárních mechanizmů závažných onemocnění
Název práce v češtině: Proteomika jako nástroj studia molekulárních mechanizmů závažných onemocnění
Název v anglickém jazyce: Proteomics as a tool for understanding molecular mechanisms of human diseases
Klíčová slova: expresní proteomika, hmotnostní spektrometrie, dvourozměrná elektroforéza, lymfom buněk z plášťové zóny, TRAIL, rezistence, srdeční selhání, karcinom ovaria, biomarker
Klíčová slova anglicky: expression proteomics, mass spectrometry, two-dimensional electrophoresis, mantle cell lymphoma, TRAIL, drug resistance, heart failure, ovarian cancer, biomarker
Akademický rok vypsání: 2013/2014
Typ práce: disertační práce
Jazyk práce: čeština
Ústav: Ústav patologické fyziologie 1. LF UK (11-00180)
Vedoucí / školitel: doc. RNDr. Jiří Petrák, Ph.D.
Řešitel: skrytý - zadáno a potvrzeno stud. odd.
Datum přihlášení: 12.03.2014
Datum zadání: 12.03.2014
Datum potvrzení stud. oddělením: 12.03.2014
Datum a čas obhajoby: 21.05.2014 14:00
Místo konání obhajoby: Ústav biologie a lékařské genetiky 1. LF
Datum odevzdání elektronické podoby:13.03.2014
Datum proběhlé obhajoby: 21.05.2014
Předmět: Obhajoba dizertační práce (B90002)
Oponenti: doc. RNDr. Miroslav Šulc, Ph.D.
  RNDr. Hana Kovářová, CSc.
 
 
Seznam odborné literatury
POUŽITÁ LITERATURA


1. Wasinger, V.C., Cordwell, S.J., Cerpa-Poljak, A., Yan, J.X., Gooley, A.A., Wilkins, M.R., Duncan, M.W., Harris, R., Williams, K.L., and Humphery-Smith, I., Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis, 1995.16(7): p. 1090-4.
2. Harrow, J., Frankish, A., Gonzalez, J.M., Tapanari, E., Diekhans, M., Kokocinski, F., Aken, B.L., Barrell, D., Zadissa, A., Searle, S., Barnes, I., Bignell, A., Boychenko, V., Hunt, T., Kay, M., Mukherjee, G., Rajan, J., Despacio-Reyes, G., Saunders, G., Steward, C., Harte, R., Lin, M., Howald, C., Tanzer, A., Derrien, T., Chrast, J., Walters, N., Balasubramanian, S., Pei, B., Tress, M., Rodriguez, J.M., Ezkurdia, I., van Baren, J., Brent, M., Haussler, D., Kellis, M., Valencia, A., Reymond, A., Gerstein, M., Guigo, R., and Hubbard, T.J., GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res, 2012.22(9): p. 1760-74.
3. Kelleher, N.L., A cell-based approach to the human proteome project. J Am Soc Mass Spectrom, 2012.23(10): p. 1617-24.
4. Schwanhausser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., Chen, W., and Selbach, M., Global quantification of mammalian gene expression control. Nature, 2011.473(7347): p. 337-42.
5. Jensen, O.N., Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr Opin Chem Biol, 2004.8(1): p. 33-41.
6. Beck, M., Schmidt, A., Malmstroem, J., Claassen, M., Ori, A., Szymborska, A., Herzog, F., Rinner, O., Ellenberg, J., and Aebersold, R., The quantitative proteome of a human cell line. Mol Syst Biol, 2011.7: p. 549.
7. Anderson, N.L., The Human Plasma Proteome: History, Character, and Diagnostic Prospects. Molecular & Cellular Proteomics, 2002.1(11): p. 845-867.
8. Raymond, S., Nakamichi, M., and Aurell, B., Acrylamide gel as an electrophoresis medium. Nature, 1962.195: p. 697-8.
9. Shapiro, A.L., Vinuela, E., and Maizel, J.V., Jr., Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun, 1967.28(5): p. 815-20.
10. Pitt-Rivers, R. and Impiombato, F.S., The binding of sodium dodecyl sulphate to various proteins. Biochem J, 1968.109(5): p. 825-30.
11. Vesterberg, O. and Svensson, H., Isoelectric fractionation, analysis, and characterization of ampholytes in natural pH gradients. IV. Further studies on the resolving power in connection with separation of myoglobins. Acta Chem Scand, 1966.20(3): p. 820-34.
12. Bjellqvist, B., Ek, K., Righetti, P.G., Gianazza, E., Gorg, A., Westermeier, R., and Postel, W., Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J Biochem Biophys Methods, 1982.6(4): p. 317-39.
13. Martin, A.J. and Synge, R.L., A new form of chromatogram employing two liquid phases: A theory of chromatography. 2. Application to the micro-determination of the higher monoamino-acids in proteins. Biochem J, 1941.35(12): p. 1358-68.
14. Horvath, C.G., Preiss, B.A., and Lipsky, S.R., Fast liquid chromatography: an investigation of operating parameters and the separation of nucleotides on pellicular ion exchangers. Anal Chem, 1967.39(12): p. 1422-8.
15. Howard, G.A. and Martin, A.J., The separation of the C12-C18 fatty acids by reversed-phase partition chromatography. Biochem J, 1950.46(5): p. 532-8.
16. Sandra, K., Moshir, M., D'Hondt, F., Verleysen, K., Kas, K., and Sandra, P., Highly efficient peptide separations in proteomics Part 1. Unidimensional high performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci, 2008.866(1-2): p. 48-63.
17. Sandra, K., Moshir, M., D'Hondt, F., Tuytten, R., Verleysen, K., Kas, K., Francois, I., and Sandra, P., Highly efficient peptide separations in proteomics. Part 2: bi- and multidimensional liquid-based separation techniques. J Chromatogr B Analyt Technol Biomed Life Sci, 2009.877(11-12): p. 1019-39.
18. O'Farrell, P.H., High resolution two-dimensional electrophoresis of proteins. J Biol Chem, 1975.250(10): p. 4007-21.
19. Edman, P., A method for the determination of amino acid sequence in peptides. Arch Biochem, 1949.22(3): p. 475.
20. Whitehouse, C.M., Dreyer, R.N., Yamashita, M., and Fenn, J.B., Electrospray interface for liquid chromatographs and mass spectrometers. Anal Chem, 1985.57(3): p. 675-9.
21. Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., and Whitehouse, C.M., Electrospray ionization for mass spectrometry of large biomolecules. Science, 1989.246(4926): p. 64-71.
22. Karas, M. and Hillenkamp, F., Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem, 1988.60(20): p. 2299-301.
23. Wollnik, H., Time-of-Flight Mass Analyzers. Mass Spectrometry Reviews, 1993.12(2): p. 89-114.
24. March, R.E., Quadrupole ion trap mass spectrometry: a view at the turn of the century. International Journal of Mass Spectrometry, 2000.200(1-3): p. 285-312.
25. Hu, Q., Noll, R.J., Li, H., Makarov, A., Hardman, M., and Graham Cooks, R., The Orbitrap: a new mass spectrometer. J Mass Spectrom, 2005.40(4): p. 430-43.
26. Henzel, W.J., Billeci, T.M., Stults, J.T., Wong, S.C., Grimley, C., and Watanabe, C., Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci U S A, 1993.90(11): p. 5011-5.
27. Mann, M., Hojrup, P., and Roepstorff, P., Use of mass spectrometric molecular weight information to identify proteins in sequence databases. Biol Mass Spectrom, 1993.22(6): p. 338-45.
28. Yates, J.R., 3rd, Speicher, S., Griffin, P.R., and Hunkapiller, T., Peptide mass maps: a highly informative approach to protein identification. Anal Biochem, 1993.214(2): p. 397-408.
29. James, P., Quadroni, M., Carafoli, E., and Gonnet, G., Protein identification by mass profile fingerprinting. Biochem Biophys Res Commun, 1993.195(1): p. 58-64.
30. Thiede, B., Hohenwarter, W., Krah, A., Mattow, J., Schmid, M., Schmidt, F., and Jungblut, P.R., Peptide mass fingerprinting. Methods, 2005.35(3): p. 237-47.
31. Huang, T., Wang, J., Yu, W., and He, Z., Protein inference: a review. Brief Bioinform, 2012.13(5): p. 586-614.
32. Nagaraj, N., Wisniewski, J.R., Geiger, T., Cox, J., Kircher, M., Kelso, J., Paabo, S., and Mann, M., Deep proteome and transcriptome mapping of a human cancer cell line. Mol Syst Biol, 2011.7: p. 548.
33. Marshall, A.G., Hendrickson, C.L., and Jackson, G.S., Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev, 1998.17(1): p. 1-35.
34. Ong, S.E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., Steen, H., Pandey, A., and Mann, M., Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics, 2002.1(5): p. 376-86.
35. Gouw, J.W., Krijgsveld, J., and Heck, A.J., Quantitative proteomics by metabolic labeling of model organisms. Mol Cell Proteomics, 2010.9(1): p. 11-24.
36. Mirgorodskaya, O.A., Kozmin, Y.P., Titov, M.I., Korner, R., Sonksen, C.P., and Roepstorff, P., Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using (18)O-labeled internal standards. Rapid Commun Mass Spectrom, 2000.14(14): p. 1226-32.
37. Ross, P.L., Huang, Y.N., Marchese, J.N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A., and Pappin, D.J., Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics, 2004.3(12): p. 1154-69.
38. Thompson, A., Schafer, J., Kuhn, K., Kienle, S., Schwarz, J., Schmidt, G., Neumann, T., Johnstone, R., Mohammed, A.K., and Hamon, C., Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem, 2003.75(8): p. 1895-904.
39. Koehler, C.J., Strozynski, M., Kozielski, F., Treumann, A., and Thiede, B., Isobaric peptide termini labeling for MS/MS-based quantitative proteomics. J Proteome Res, 2009.8(9): p. 4333-41.
40. Neilson, K.A., Ali, N.A., Muralidharan, S., Mirzaei, M., Mariani, M., Assadourian, G., Lee, A., van Sluyter, S.C., and Haynes, P.A., Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics, 2011.11(4): p. 535-53.
41. Sant, M., Allemani, C., Tereanu, C., De Angelis, R., Capocaccia, R., Visser, O., Marcos-Gragera, R., Maynadie, M., Simonetti, A., Lutz, J.M., Berrino, F., and Group, H.W., Incidence of hematologic malignancies in Europe by morphologic subtype: results of the HAEMACARE project. Blood, 2010.116(19): p. 3724-34.
42. Perez-Galan, P., Dreyling, M., and Wiestner, A., Mantle cell lymphoma: biology, pathogenesis, and the molecular basis of treatment in the genomic era. Blood, 2011.117(1): p. 26-38.
43. Tsujimoto, Y., Yunis, J., Onorato-Showe, L., Erikson, J., Nowell, P.C., and Croce, C.M., Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14) chromosome translocation. Science, 1984.224(4656): p. 1403-6.
44. Williams, M.E., Swerdlow, S.H., Rosenberg, C.L., and Arnold, A., Characterization of chromosome 11 translocation breakpoints at the bcl-1 and PRAD1 loci in centrocytic lymphoma. Cancer Res, 1992.52(19 Suppl): p. 5541s-5544s.
45. Ferrero, S. and Dreyling, M., The current therapeutic scenario for relapsed mantle cell lymphoma. Curr Opin Oncol, 2013.25(5): p. 452-62.
46. Wiley, S.R., Schooley, K., Smolak, P.J., Din, W.S., Huang, C.P., Nicholl, J.K., Sutherland, G.R., Smith, T.D., Rauch, C., Smith, C.A., and et al., Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity, 1995.3(6): p. 673-82.
47. Pitti, R.M., Marsters, S.A., Ruppert, S., Donahue, C.J., Moore, A., and Ashkenazi, A., Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem, 1996.271(22): p. 12687-90.
48. Kaplan, M.J., Ray, D., Mo, R.R., Yung, R.L., and Richardson, B.C., TRAIL (Apo2 ligand) and TWEAK (Apo3 ligand) mediate CD4+ T cell killing of antigen-presenting macrophages. J Immunol, 2000.164(6): p. 2897-904.
49. Wallin, R.P., Screpanti, V., Michaelsson, J., Grandien, A., and Ljunggren, H.G., Regulation of perforin-independent NK cell-mediated cytotoxicity. Eur J Immunol, 2003.33(10): p. 2727-35.
50. Di Pietro, R. and Zauli, G., Emerging non-apoptotic functions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo2L. J Cell Physiol, 2004.201(3): p. 331-40.
51. Ashkenazi, A., Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer, 2002.2(6): p. 420-30.
52. Peter, M.E. and Krammer, P.H., The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ, 2003.10(1): p. 26-35.
53. Lee, H.W., Lee, S.H., Lee, H.W., Ryu, Y.W., Kwon, M.H., and Kim, Y.S., Homomeric and heteromeric interactions of the extracellular domains of death receptors and death decoy receptors. Biochem Biophys Res Commun, 2005.330(4): p. 1205-12.
54. Clancy, L., Mruk, K., Archer, K., Woelfel, M., Mongkolsapaya, J., Screaton, G., Lenardo, M.J., and Chan, F.K., Preligand assembly domain-mediated ligand-independent association between TRAIL receptor 4 (TR4) and TR2 regulates TRAIL-induced apoptosis. Proc Natl Acad Sci U S A, 2005.102(50): p. 18099-104.
55. Merino, D., Lalaoui, N., Morizot, A., Schneider, P., Solary, E., and Micheau, O., Differential inhibition of TRAIL-mediated DR5-DISC formation by decoy receptors 1 and 2. Mol Cell Biol, 2006.26(19): p. 7046-55.
56. Castro Alves, C., Terziyska, N., Grunert, M., Gundisch, S., Graubner, U., Quintanilla-Martinez, L., and Jeremias, I., Leukemia-initiating cells of patient-derived acute lymphoblastic leukemia xenografts are sensitive toward TRAIL. Blood, 2012.119(18): p. 4224-7.
57. Petrak, J., Toman, O., Simonova, T., Halada, P., Cmejla, R., Klener, P., and Zivny, J., Identification of molecular targets for selective elimination of TRAIL-resistant leukemia cells. From spots to in vitro assays using TOP15 charts. Proteomics, 2009.9(22): p. 5006-15.
58. Cheng, J., Hylander, B.L., Baer, M.R., Chen, X., and Repasky, E.A., Multiple mechanisms underlie resistance of leukemia cells to Apo2 Ligand/TRAIL. Mol Cancer Ther, 2006.5(7): p. 1844-53.
59. Scavennec, J., Maraninchi, D., Gastaut, J.A., Carcassonne, Y., and Cailla, H.L., Purine and pyrimidine ribonucleoside monophosphate patterns of peripheral blood and bone marrow cells in human acute leukemias. Cancer Res, 1982.42(4): p. 1326-30.
60. Natsumeda, Y., Prajda, N., Donohue, J.P., Glover, J.L., and Weber, G., Enzymic capacities of purine de Novo and salvage pathways for nucleotide synthesis in normal and neoplastic tissues. Cancer Res, 1984.44(6): p. 2475-9.
61. Galmarini, C.M., Popowycz, F., and Joseph, B., Cytotoxic nucleoside analogues: different strategies to improve their clinical efficacy. Curr Med Chem, 2008.15(11): p. 1072-82.
62. Bantia, S., Montgomery, J.A., Johnson, H.G., and Walsh, G.M., In vivo and in vitro pharmacologic activity of the purine nucleoside phosphorylase inhibitor BCX-34: the role of GTP and dGTP. Immunopharmacology, 1996.35(1): p. 53-63.
63. Bollee, G., Harambat, J., Bensman, A., Knebelmann, B., Daudon, M., and Ceballos-Picot, I., Adenine phosphoribosyltransferase deficiency. Clin J Am Soc Nephrol, 2012.7(9): p. 1521-7.
64. Allison, A.C. and Eugui, E.M., Mycophenolate mofetil and its mechanisms of action. Immunopharmacology, 2000.47(2-3): p. 85-118.
65. Fairbanks, L.D., Ruckemann, K., Qiu, Y., Hawrylowicz, C.M., Richards, D.F., Swaminathan, R., Kirschbaum, B., and Simmonds, H.A., Methotrexate inhibits the first committed step of purine biosynthesis in mitogen-stimulated human T-lymphocytes: a metabolic basis for efficacy in rheumatoid arthritis? Biochem J, 1999.342 ( Pt 1): p. 143-52.
66. Allison, A.C. and Eugui, E.M., The design and development of an immunosuppressive drug, mycophenolate mofetil. Springer Semin Immunopathol, 1993.14(4): p. 353-80.
67. Zhou, S., Liu, R., Baroudy, B.M., Malcolm, B.A., and Reyes, G.R., The effect of ribavirin and IMPDH inhibitors on hepatitis C virus subgenomic replicon RNA. Virology, 2003.310(2): p. 333-42.
68. Miles, R.W., Tyler, P.C., Furneaux, R.H., Bagdassarian, C.K., and Schramm, V.L., One-third-the-sites transition-state inhibitors for purine nucleoside phosphorylase. Biochemistry, 1998.37(24): p. 8615-21.
69. Haider, A.W., Larson, M.G., Benjamin, E.J., and Levy, D., Increased left ventricular mass and hypertrophy are associated with increased risk for sudden death. J Am Coll Cardiol, 1998.32(5): p. 1454-9.
70. Artham, S.M., Lavie, C.J., Milani, R.V., Patel, D.A., Verma, A., and Ventura, H.O., Clinical impact of left ventricular hypertrophy and implications for regression. Prog Cardiovasc Dis, 2009.52(2): p. 153-67.
71. Mudd, J.O. and Kass, D.A., Tackling heart failure in the twenty-first century. Nature, 2008.451(7181): p. 919-28.
72. Sears, S.F., Woodrow, L., Cutitta, K., Ford, J., Shea, J.B., and Cahill, J., A patient's guide to living confidently with chronic heart failure. Circulation, 2013.127(13): p. e525-8.
73. Rosolova, H., Cech, J., Simon, J., Spinar, J., Jandova, R., Widimsky sen, J., Holubec, L., and Topolcan, O., Short to long term mortality of patients hospitalised with heart failure in the Czech Republic--a report from the EuroHeart Failure Survey. Eur J Heart Fail, 2005.7(5): p. 780-3.
74. Haldeman, G.A., Croft, J.B., Giles, W.H., and Rashidee, A., Hospitalization of patients with heart failure: National Hospital Discharge Survey, 1985 to 1995. Am Heart J, 1999.137(2): p. 352-60.
75. Flaim, S.F., Minteer, W.J., Nellis, S.H., and Clark, D.P., Chronic arteriovenous shunt: evaluation of a model for heart failure in rat. Am J Physiol, 1979.236(5): p. H698-704.
76. Garcia, R. and Diebold, S., Simple, rapid, and effective method of producing aortocaval shunts in the rat. Cardiovasc Res, 1990.24(5): p. 430-2.
77. Brower, G.L. and Janicki, J.S., Contribution of ventricular remodeling to pathogenesis of heart failure in rats. Am J Physiol Heart Circ Physiol, 2001.280(2): p. H674-83.
78. Ruzicka, M., Yuan, B., and Leenen, F.H., Effects of enalapril versus losartan on regression of volume overload- induced cardiac hypertrophy in rats. Circulation, 1994.90(1): p. 484-491.
79. Brower, G.L., Henegar, J.R., and Janicki, J.S., Temporal evaluation of left ventricular remodeling and function in rats with chronic volume overload. Am J Physiol, 1996.271(5 Pt 2): p. H2071-8.
80. Ryan, T.D., Rothstein, E.C., Aban, I., Tallaj, J.A., Husain, A., Lucchesi, P.A., and Dell'Italia, L.J., Left ventricular eccentric remodeling and matrix loss are mediated by bradykinin and precede cardiomyocyte elongation in rats with volume overload. J Am Coll Cardiol, 2007.49(7): p. 811-21.
81. Benes, J., Jr., Melenovsky, V., Skaroupkova, P., Pospisilova, J., Petrak, J., Cervenka, L., and Sedmera, D., Myocardial morphological characteristics and proarrhythmic substrate in the rat model of heart failure due to chronic volume overload. Anat Rec (Hoboken), 2011.294(1): p. 102-11.
82. Stanley, W.C., Recchia, F.A., and Lopaschuk, G.D., Myocardial substrate metabolism in the normal and failing heart. Physiol Rev, 2005.85(3): p. 1093-129.
83. Lopaschuk, G.D., Ussher, J.R., Folmes, C.D., Jaswal, J.S., and Stanley, W.C., Myocardial fatty acid metabolism in health and disease. Physiol Rev, 2010.90(1): p. 207-58.
84. Ingwall, J.S. and Weiss, R.G., Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res, 2004.95(2): p. 135-45.
85. Dzeja, P.P., Phosphotransfer networks and cellular energetics. Journal of Experimental Biology, 2003.206(12): p. 2039-2047.
86. Smith, C.S., Bottomley, P.A., Schulman, S.P., Gerstenblith, G., and Weiss, R.G., Altered creatine kinase adenosine triphosphate kinetics in failing hypertrophied human myocardium. Circulation, 2006.114(11): p. 1151-8.
87. Bers, D.M., Altered cardiac myocyte Ca regulation in heart failure. Physiology (Bethesda), 2006.21: p. 380-7.
88. Ding, Y.F., Brower, G.L., Zhong, Q., Murray, D., Holland, M., Janicki, J.S., and Zhong, J., Defective intracellular Ca2+ homeostasis contributes to myocyte dysfunction during ventricular remodelling induced by chronic volume overload in rats. Clin Exp Pharmacol Physiol, 2008.35(7): p. 827-35.
89. Takewa, Y., Chemaly, E.R., Takaki, M., Liang, L.F., Jin, H., Karakikes, I., Morel, C., Taenaka, Y., Tatsumi, E., and Hajjar, R.J., Mechanical work and energetic analysis of eccentric cardiac remodeling in a volume overload heart failure in rats. Am J Physiol Heart Circ Physiol, 2009.296(4): p. H1117-24.
90. Camors, E., Monceau, V., and Charlemagne, D., Annexins and Ca2+ handling in the heart. Cardiovasc Res, 2005.65(4): p. 793-802.
91. Ravassa, S., Gonzalez, A., Lopez, B., Beaumont, J., Querejeta, R., Larman, M., and Diez, J., Upregulation of myocardial Annexin A5 in hypertensive heart disease: association with systolic dysfunction. Eur Heart J, 2007.28(22): p. 2785-91.
92. Giordano, F.J., Oxygen, oxidative stress, hypoxia, and heart failure. Journal of Clinical Investigation, 2005.115(3): p. 500-508.
93. Sheeran, F.L., Rydstrom, J., Shakhparonov, M.I., Pestov, N.B., and Pepe, S., Diminished NADPH transhydrogenase activity and mitochondrial redox regulation in human failing myocardium. Biochim Biophys Acta, 2010.1797(6-7): p. 1138-48.
94. Melenovsky, V., Benes, J., Skaroupkova, P., Sedmera, D., Strnad, H., Kolar, M., Vlcek, C., Petrak, J., Benes, J., Jr., Papousek, F., Oliyarnyk, O., Kazdova, L., and Cervenka, L., Metabolic characterization of volume overload heart failure due to aorto-caval fistula in rats. Mol Cell Biochem, 2011.354(1-2): p. 83-96.
95. Mehta, K., Fok, J.Y., and Mangala, L.S., Tissue transglutaminase: from biological glue to cell survival cues. Front Biosci, 2006.11: p. 173-85.
96. Park, D., Choi, S.S., and Ha, K.S., Transglutaminase 2: a multi-functional protein in multiple subcellular compartments. Amino Acids, 2010.39(3): p. 619-31.
97. Song, H., Kim, B.K., Chang, W., Lim, S., Song, B.W., Cha, M.J., Jang, Y., and Hwang, K.C., Tissue transglutaminase 2 promotes apoptosis of rat neonatal cardiomyocytes under oxidative stress. J Recept Signal Transduct Res, 2011.31(1): p. 66-74.
98. Small, K., Cardiac Specific Overexpression of Transglutaminase II (Gh) Results in a Unique Hypertrophy Phenotype Independent of Phospholipase C Activation. Journal of Biological Chemistry, 1999.274(30): p. 21291-21296.
99. Zhang, Z., Vezza, R., Plappert, T., McNamara, P., Lawson, J.A., Austin, S., Pratico, D., Sutton, M.S., and FitzGerald, G.A., COX-2-dependent cardiac failure in Gh/tTG transgenic mice. Circ Res, 2003.92(10): p. 1153-61.
100. Ou, H., Haendeler, J., Aebly, M.R., Kelly, L.A., Cholewa, B.C., Koike, G., Kwitek-Black, A., Jacob, H.J., Berk, B.C., and Miano, J.M., Retinoic Acid-Induced Tissue Transglutaminase and Apoptosis in Vascular Smooth Muscle Cells. Circulation Research, 2000.87(10): p. 881-887.
101. Li, X., Wei, X.L., Meng, L.L., Chi, M.G., Yan, J.Q., Ma, X.Y., Jia, Y.S., Liang, L., Yan, H.T., and Zheng, J.Q., Involvement of tissue transglutaminase in endothelin 1-induced hypertrophy in cultured neonatal rat cardiomyocytes. Hypertension, 2009.54(4): p. 839-44.
102. Eisenhofer, G., Kopin, I.J., and Goldstein, D.S., Catecholamine metabolism: a contemporary view with implications for physiology and medicine. Pharmacol Rev, 2004.56(3): p. 331-49.
103. Bianchi, P., Kunduzova, O., Masini, E., Cambon, C., Bani, D., Raimondi, L., Seguelas, M.H., Nistri, S., Colucci, W., Leducq, N., and Parini, A., Oxidative stress by monoamine oxidase mediates receptor-independent cardiomyocyte apoptosis by serotonin and postischemic myocardial injury. Circulation, 2005.112(21): p. 3297-305.
104. Kaludercic, N., Takimoto, E., Nagayama, T., Feng, N., Lai, E.W., Bedja, D., Chen, K., Gabrielson, K.L., Blakely, R.D., Shih, J.C., Pacak, K., Kass, D.A., Di Lisa, F., and Paolocci, N., Monoamine oxidase A-mediated enhanced catabolism of norepinephrine contributes to adverse remodeling and pump failure in hearts with pressure overload. Circ Res, 2010.106(1): p. 193-202.
105. Kaludercic, N., Carpi, A., Menabo, R., Di Lisa, F., and Paolocci, N., Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfusion injury. Biochim Biophys Acta, 2011.1813(7): p. 1323-32.
106. Riederer, P., Lachenmayer, L., and Laux, G., Clinical applications of MAO-inhibitors. Curr Med Chem, 2004.11(15): p. 2033-43.
107. Shah, M., Akar, F.G., and Tomaselli, G.F., Molecular basis of arrhythmias. Circulation, 2005.112(16): p. 2517-29.
108. Sohl, G. and Willecke, K., Gap junctions and the connexin protein family. Cardiovasc Res, 2004.62(2): p. 228-32.
109. Dupont, E., Matsushita, T., Kaba, R.A., Vozzi, C., Coppen, S.R., Khan, N., Kaprielian, R., Yacoub, M.H., and Severs, N.J., Altered connexin expression in human congestive heart failure. J Mol Cell Cardiol, 2001.33(2): p. 359-71.
110. Gutstein, D.E., Morley, G.E., Tamaddon, H., Vaidya, D., Schneider, M.D., Chen, J., Chien, K.R., Stuhlmann, H., and Fishman, G.I., Conduction Slowing and Sudden Arrhythmic Death in Mice With Cardiac-Restricted Inactivation of Connexin43. Circulation Research, 2001.88(3): p. 333-339.
111. Severs, N.J., Coppen, S.R., Dupont, E., Yeh, H.I., Ko, Y.S., and Matsushita, T., Gap junction alterations in human cardiac disease. Cardiovasc Res, 2004.62(2): p. 368-77.
112. Lampe, P.D. and Lau, A.F., The effects of connexin phosphorylation on gap junctional communication. The International Journal of Biochemistry & Cell Biology, 2004.36(7): p. 1171-1186.
113. Burstein, B., Comtois, P., Michael, G., Nishida, K., Villeneuve, L., Yeh, Y.H., and Nattel, S., Changes in connexin expression and the atrial fibrillation substrate in congestive heart failure. Circ Res, 2009.105(12): p. 1213-22.
114. Haugan, K., Marcussen, N., Kjolbye, A.L., Nielsen, M.S., Hennan, J.K., and Petersen, J.S., Treatment with the gap junction modifier rotigaptide (ZP123) reduces infarct size in rats with chronic myocardial infarction. J Cardiovasc Pharmacol, 2006.47(2): p. 236-42.
115. Moore, R.G., MacLaughlan, S., and Bast, R.C., Jr., Current state of biomarker development for clinical application in epithelial ovarian cancer. Gynecol Oncol, 2010.116(2): p. 240-5.
116. Karlsen, M.A., Sandhu, N., Hogdall, C., Christensen, I.J., Nedergaard, L., Lundvall, L., Engelholm, S.A., Pedersen, A.T., Hartwell, D., Lydolph, M., Laursen, I.A., and Hogdall, E.V., Evaluation of HE4, CA125, risk of ovarian malignancy algorithm (ROMA) and risk of malignancy index (RMI) as diagnostic tools of epithelial ovarian cancer in patients with a pelvic mass. Gynecol Oncol, 2012.127(2): p. 379-83.
117. Cho, K.R. and Shih Ie, M., Ovarian cancer. Annu Rev Pathol, 2009.4: p. 287-313.
118. Jemal, A., Bray, F., Center, M.M., Ferlay, J., Ward, E., and Forman, D., Global cancer statistics. CA Cancer J Clin, 2011.61(2): p. 69-90.
119. Roett, M.A. and Evans, P., Ovarian cancer: an overview. Am Fam Physician, 2009.80(6): p. 609-16.
120. Marcus, C.S., Maxwell, G.L., Darcy, K.M., Hamilton, C.A., and McGuire, W.P., Current Approaches and Challenges in Managing and Monitoring Treatment Response in Ovarian Cancer. J Cancer, 2014.5(1): p. 25-30.
121. States, D.J., Omenn, G.S., Blackwell, T.W., Fermin, D., Eng, J., Speicher, D.W., and Hanash, S.M., Challenges in deriving high-confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study. Nat Biotechnol, 2006.24(3): p. 333-8.
122. Tu, C., Rudnick, P.A., Martinez, M.Y., Cheek, K.L., Stein, S.E., Slebos, R.J., and Liebler, D.C., Depletion of abundant plasma proteins and limitations of plasma proteomics. J Proteome Res, 2010.9(10): p. 4982-91.
123. Boschetti, E. and Righetti, P.G., The ProteoMiner in the proteomic arena: a non-depleting tool for discovering low-abundance species. J Proteomics, 2008.71(3): p. 255-64.
124. Chen, Y., Lim, B.K., Peh, S.C., Abdul-Rahman, P.S., and Hashim, O.H., Profiling of serum and tissue high abundance acute-phase proteins of patients with epithelial and germ line ovarian carcinoma. Proteome Sci, 2008.6: p. 20.
125. Dieplinger, H., Ankerst, D.P., Burges, A., Lenhard, M., Lingenhel, A., Fineder, L., Buchner, H., and Stieber, P., Afamin and apolipoprotein A-IV: novel protein markers for ovarian cancer. Cancer Epidemiol Biomarkers Prev, 2009.18(4): p. 1127-33.
126. Muto, Y., Smith, J.E., Milch, P.O., and Goodman, D.S., Regulation of retinol-binding protein metabolism by vitamin A status in the rat. J Biol Chem, 1972.247(8): p. 2542-50.
127. Peterson, P.A., Rask, L., Ostberg, L., Andersson, L., Kamwendo, F., and Pertoft, H., Studies on the transport and cellular distribution of vitamin A in normal and vitamin A-deficient rats with special reference to the vitamin A-binding plasma protein. J Biol Chem, 1973.248(11): p. 4009-22.
128. Mahlck, C.G. and Grankvist, K., Plasma prealbumin in women with epithelial ovarian carcinoma. Gynecol Obstet Invest, 1994.37(2): p. 135-40.
129. Zhang, Z., Bast, R.C., Jr., Yu, Y., Li, J., Sokoll, L.J., Rai, A.J., Rosenzweig, J.M., Cameron, B., Wang, Y.Y., Meng, X.Y., Berchuck, A., Van Haaften-Day, C., Hacker, N.F., de Bruijn, H.W., van der Zee, A.G., Jacobs, I.J., Fung, E.T., and Chan, D.W., Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res, 2004.64(16): p. 5882-90.
130. Kozak, K.R., Su, F., Whitelegge, J.P., Faull, K., Reddy, S., and Farias-Eisner, R., Characterization of serum biomarkers for detection of early stage ovarian cancer. Proteomics, 2005.5(17): p. 4589-96.
131. Yang, Q., Graham, T.E., Mody, N., Preitner, F., Peroni, O.D., Zabolotny, J.M., Kotani, K., Quadro, L., and Kahn, B.B., Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature, 2005.436(7049): p. 356-62.
132. Graham, T.E., Yang, Q., Bluher, M., Hammarstedt, A., Ciaraldi, T.P., Henry, R.R., Wason, C.J., Oberbach, A., Jansson, P.A., Smith, U., and Kahn, B.B., Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med, 2006.354(24): p. 2552-63.
133. Tan, B.K., Chen, J., Lehnert, H., Kennedy, R., and Randeva, H.S., Raised serum, adipocyte, and adipose tissue retinol-binding protein 4 in overweight women with polycystic ovary syndrome: effects of gonadal and adrenal steroids. J Clin Endocrinol Metab, 2007.92(7): p. 2764-72.
134. Haider, D.G., Schindler, K., Prager, G., Bohdjalian, A., Luger, A., Wolzt, M., and Ludvik, B., Serum retinol-binding protein 4 is reduced after weight loss in morbidly obese subjects. J Clin Endocrinol Metab, 2007.92(3): p. 1168-71.
135. Kowalska, I., Straczkowski, M., Adamska, A., Nikolajuk, A., Karczewska-Kupczewska, M., Otziomek, E., and Gorska, M., Serum retinol binding protein 4 is related to insulin resistance and nonoxidative glucose metabolism in lean and obese women with normal glucose tolerance. J Clin Endocrinol Metab, 2008.93(7): p. 2786-9.
136. Rabilloud, T., Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics, 2002.2(1): p. 3-10.
137. Zhou, S., Bailey, M.J., Dunn, M.J., Preedy, V.R., and Emery, P.W., A quantitative investigation into the losses of proteins at different stages of a two-dimensional gel electrophoresis procedure. Proteomics, 2005.5(11): p. 2739-47.
138. Wilkins, M.R., Sanchez, J.C., Williams, K.L., and Hochstrasser, D.F., Current challenges and future applications for protein maps and post-translational vector maps in proteome projects. Electrophoresis, 1996.17(5): p. 830-8.
139. Santoni, V., Molloy, M., and Rabilloud, T., Membrane proteins and proteomics: un amour impossible? Electrophoresis, 2000.21(6): p. 1054-70.
140. Gygi, S.P., Corthals, G.L., Zhang, Y., Rochon, Y., and Aebersold, R., Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. Proc Natl Acad Sci U S A, 2000.97(17): p. 9390-5.
141. Thiede, B., Koehler, C.J., Strozynski, M., Treumann, A., Stein, R., Zimny-Arndt, U., Schmid, M., and Jungblut, P.R., High resolution quantitative proteomics of HeLa cells protein species using stable isotope labeling with amino acids in cell culture(SILAC), two-dimensional gel electrophoresis(2DE) and nano-liquid chromatograpohy coupled to an LTQ-OrbitrapMass spectrometer. Mol Cell Proteomics, 2013.12(2): p. 529-38.
142. Petrak, J., Ivanek, R., Toman, O., Cmejla, R., Cmejlova, J., Vyoral, D., Zivny, J., and Vulpe, C.D., Deja vu in proteomics. A hit parade of repeatedly identified differentially expressed proteins. Proteomics, 2008.8(9): p. 1744-9.
143. Speers, A.E. and Wu, C.C., Proteomics of integral membrane proteins--theory and application. Chem Rev, 2007.107(8): p. 3687-714.
144. Hofmann, A., Gerrits, B., Schmidt, A., Bock, T., Bausch-Fluck, D., Aebersold, R., and Wollscheid, B., Proteomic cell surface phenotyping of differentiating acute myeloid leukemia cells. Blood, 2010.116(13): p. e26-34.
145. Blackler, A.R., Speers, A.E., Ladinsky, M.S., and Wu, C.C., A shotgun proteomic method for the identification of membrane-embedded proteins and peptides. J Proteome Res, 2008.7(7): p. 3028-34.
146. Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E.L., Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol, 2001.305(3): p. 567-80.
147. Tran, J.C., Zamdborg, L., Ahlf, D.R., Lee, J.E., Catherman, A.D., Durbin, K.R., Tipton, J.D., Vellaichamy, A., Kellie, J.F., Li, M., Wu, C., Sweet, S.M., Early, B.P., Siuti, N., LeDuc, R.D., Compton, P.D., Thomas, P.M., and Kelleher, N.L., Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature, 2011.480(7376): p. 254-8.
Předběžná náplň práce
Cílem této dizertační práce je demonstrovat využití nástrojů expresní proteomiky k řešení několika biomedicínských problémů. Různé proteomické přístupy a nástroje využijeme ke studiu molekulárních mechanizmů závažných onemocnění jak na biologických vzorcích pacientů, tak na modelovém organizmu a buněčné kultuře. Konkrétně budeme řešit tři různé projekty, a to hledání potenciálních molekulárních cílů pro selektivní likvidaci buněk lymfomů z plášťové zóny rezistentních na protinádorovou molekulu TRAIL, studium molekulárních mechanizmů srdečního selhání s využitím potkaního modelu objemového přetížení a hledání diagnosticky využitelných biomarkerů karcinomu ovaria.
Předběžná náplň práce v anglickém jazyce
The aim of this Thesis is to demonstrate the application of the tools of expression proteomics in solving diverse challenges in biomedicine. We employ various proteomic approaches and tools for studying molecular mechanisms of human diseases using pacient biological samples, or a model organism and a cell culture. We conduct three different research projects, namely: A quest for potencial molecular targets for selective elimination of TRAIL-resistant mantle cell lymphoma cells; Investigation of molecular mechanisms of heart failure using a rat model of the disease induced by volume overload; and Searching for diagnostically usable serum biomarkers of ovarian cancer.
 
Univerzita Karlova | Informační systém UK