Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 368)
Detail práce
   Přihlásit přes CAS
Sledování genetických faktorů ovlivňujících riziko vzniku a průběh karcinomů kolorekta a pankreatu
Název práce v češtině: Sledování genetických faktorů ovlivňujících riziko vzniku a průběh karcinomů kolorekta a pankreatu
Název v anglickém jazyce: Study of genetic factors modifying the risk of onset and progression of colorectal and pancreatic cancer
Klíčová slova: karcinom, pankreas, tlusté střevo, biotransformace, transport léčiv
Klíčová slova anglicky: carcinoma, pancreas, colon, biotransformation, drug transport
Akademický rok vypsání: 2011/2012
Typ práce: disertační práce
Jazyk práce: čeština
Ústav: externí pracoviště (11-00099)
Vedoucí / školitel: doc. RNDr. Pavel Souček, CSc.
Řešitel: skrytý - zadáno a potvrzeno stud. odd.
Datum přihlášení: 06.02.2012
Datum zadání: 06.02.2012
Datum potvrzení stud. oddělením: 06.02.2012
Datum a čas obhajoby: 23.05.2012 13:45
Místo konání obhajoby: Děkanát 3. LF UK
Datum odevzdání elektronické podoby:06.02.2012
Datum proběhlé obhajoby: 23.05.2012
Předmět: Obhajoba dizertační práce (B90002)
Oponenti: prof. RNDr. Lenka Skálová, Ph.D.
  prof. MUDr. Milan Macek, DrSc.
 
 
Seznam odborné literatury
1. Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across five continents: defining priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol. 2006;24: 2137-2150.
2. Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P. Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol. 2007;18: 581-592.
3. Novotvary 2007 ČR. IHIS ČR, NOR ČR, Česká Republika, pp24-30, 2010. ISBN 978-80-7280-849-6.
4. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ. Cancer statistics, 2008. CA Cancer J Clin. 2008;58(2):71-96.
5. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010 Jun 17. [Epub ahead of print]
6. Norat T, Bingham S, Ferrari P, Slimani N, Jenab M, Mazuir M, Overvad K, Olsen A, Tjønneland A, Clavel F, Boutron-Ruault MC, Kesse E, Boeing H, Bergmann MM, Nieters A, Linseisen J, Trichopoulou A, Trichopoulos D, Tountas Y, Berrino F, Palli D, Panico S, Tumino R, Vineis P, Bueno-de-Mesquita HB, Peeters PH, Engeset D, Lund E, Skeie G, Ardanaz E, González C, Navarro C, Quirós JR, Sanchez MJ, Berglund G, Mattisson I, Hallmans G, Palmqvist R, Day NE, Khaw KT, Key TJ, San Joaquin M, Hémon B, Saracci R, Kaaks R, Riboli E. Meat, fish, and colorectal cancer risk: the European Prospective Investigation into cancer and nutrition. J Natl Cancer Inst. 2005;97: 906-916.
7. Liang PS, Chen TY, Giovannucci E. Cigarette smoking and colorectal cancer incidence and mortality: systematic review and meta-analysis. Int J Cancer. 2009;124: 2406-2415.
8. Lo AC, Soliman AS, El-Ghawalby N, Abdel-Wahab M, Fathy O, Khaled HM, Omar S, Hamilton SR, Greenson JK, Abbruzzese JL.. Lifestyle, occupational, and reproductive factors in relation to pancreatic cancer risk. Pancreas. 2007;35:120-129.
9. Everhart J, Wright D. Diabetes mellitus as a risk factor for pancreatic cancer. A meta-analysis. JAMA. 1995;273:1605-1609.
10. Mukesh V. Pancreatic cancer epidemiology. Technol Cancer Res Treat. 2005;4:295-301.
11. Kiyohara. Genetic polymorphism of enzymes involved in xenobiotic metabolism and the risk of colorectal cancer. J Epidemiol. 2000;10:349–360.
12. Maitra A, Hruban RH. Pancreatic cancer. Annu Rev Pathol. 2008;3:157–188.
13. Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M, Pukkala E, Skytthe A, Hemminki K. Environmental and heritable factors in the causation of cancer – analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med. 2000;343:78–85.
14. Tomlinson IP, Webb E, Carvajal-Carmona L, Broderick P, Howarth K, Pittman AM, Spain S, Lubbe S, Walther A, Sullivan K, Jaeger E, Fielding S, Rowan A, Vijayakrishnan J, Domingo E, Chandler I, Kemp Z, Qureshi M, Farrington SM, Tenesa A, Prendergast JG, Barnetson RA, Penegar S, Barclay E, Wood W, Martin L, Gorman M, Thomas H, Peto J, Bishop DT, Gray R, Maher ER, Lucassen A, Kerr D, Evans DG; CORGI Consortium, Schafmayer C, Buch S, Völzke H, Hampe J, Schreiber S, John U, Koessler T, Pharoah P, van Wezel T, Morreau H, Wijnen JT, Hopper JL, Southey MC, Giles GG, Severi G, Castellví-Bel S, Ruiz-Ponte C, Carracedo A, Castells A; EPICOLON Consortium, Försti A, Hemminki K, Vodicka P, Naccarati A, Lipton L, Ho JW, Cheng KK, Sham PC, Luk J, Agúndez JA, Ladero JM, de la Hoya M, Caldés T, Niittymäki I, Tuupanen S, Karh A, Aaltonen L, Cazier JB, Campbell H, Dunlop MG, Houlston RS. A genome-wide association study identifies colorectal cancer susceptibility loci on chromosomes 10p14 and 8q23.3. Nat Genet. 2008;40:623-30.
15. Houlston RS, Cheadle J, Dobbins SE, Tenesa A, Jones AM, Howarth K, Spain SL, Broderick P, Domingo E, Farrington S, Prendergast JG, Pittman AM, Theodoratou E, Smith CG, Olver B, Walther A, Barnetson RA, Churchman M, Jaeger EE, Penegar S, Barclay E, Martin L, Gorman M, Mager R, Johnstone E, Midgley R, Niittymäki I, Tuupanen S, Colley J, Idziaszczyk S; COGENT Consortium, Thomas HJ, Lucassen AM, Evans DG, Maher ER; CORGI Consortium; COIN Collaborative Group; COINB Collaborative Group, Maughan T, Dimas A, Dermitzakis E, Cazier JB, Aaltonen LA, Pharoah P, Kerr DJ, Carvajal-Carmona LG, Campbell H, Dunlop MG, Tomlinson IP. (2010) Meta-analysis of three genome-wide association studies identifies susceptibility loci for colorectal cancer at 1q41, 3q26.2, 12q13.13 and 20q13.33. Nat Genet. 2010;42:973-7.
16. Bartek J, Lukas J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell. 2003;3(5):421-9.
17. Vilasová Z, Österreicher J, Vávrová J. Biodozimetrie I: Praktická potřeba biodozimetrie a nejdůležitější aktivované mechanismy po ozáření. Vojenské zdravotnické listy. 2005;r. LXXIV, č.2.
18. Kleibl Z, Novotný J, Malík R, Bezdíčková D, Kleiblová P, Foretová L, Krutílková V, Cínek M, Ilenčíková D, Petruželka L, Matouš B, Pohlreich P. Výskyt a význam mutace CHEK2*1100delC u pacientek s karcinomem prsu a v kontrolní skupině zdravých žen v České republice. Klinická onkologie. 2005;18:98-101.
19. Schutte M, Seal S, Barfoot R, Meijers-Heijboer H, Wasielewski M, Evans DG, Eccles D, Meijers C, Lohman F, Klijn J, van den Ouweland A, Futreal PA, Nathanson KL, Weber BL, Easton DF, Stratton MR, Rahman N; Breast Cancer Linkage Consortium. Variants in CHEK2 other than 1100delC do not make a major contribution to breast cancer susceptibility. Am J Hum Genet. 2003;72(4):1023-8.
20. Meijers-Heijboer H, Wijnen J, Vasen H, Wasielewski M, Wagner A, Hollestelle A, Elstrodt F, van den Bos R, de Snoo A, Fat GT, Brekelmans C, Jagmohan S, Franken P, Verkuijlen P, van den Ouweland A, Chapman P, Tops C, Möslein G, Burn J, Lynch H, Klijn J, Fodde R, Schutte M. The CHEK2 1100delC mutation identifies families with a hereditary breast and colorectal cancer phenotype. Am J Hum Genet. 2003;72(5):1308-14.
21. Kilpivaara O, Vahteristo P, Falck J, Syrjäkoski K, Eerola H, Easton D, Bartkova J, Lukas J, Heikkilä P, Aittomäki K, Holli K, Blomqvist C, Kallioniemi OP, Bartek J, Nevanlinna H. CHEK2 variant I157T may be associated with increased breast cancer risk. Int J Cancer. 2004;111(4):543-7.
22.Petruželka L, Konopásek B, Aschermannová A, Helmichová E, Janků F, Kleibl Z, Mališ J, Mareš P, Novotný J, Přibylová O, Špička I, Tesařová P. Klinická onkologie. Praha, Univerzita Karlova v Praze- Nakladatelství Karolinum, pp145-148, 2003. ISBN 80-246-0395-0.
23.Klener P, Abrahámová J, Fait V, Mališ J, Matějovský Z, Petruželka L, Žaloudík J. Klinická onkologie. Praha, Galén, pp 429-433, 2002. ISBN 80-7262-151-3.
24.Pannala R, Basu A, Petersen GM, Chari ST. New-onset diabetes: a potential clue to the early diagnosis of pancreatic cancer. Lancet Oncol. 2009;10:88-95.
25.Galmarini CM., Clarke ML, Jordheim L, Santos CL, Cros E, Mackey JR, Dumontet C. Resistance to gemcitabine in a human follicular lymphoma cell line is due to partial deletion of the deoxycytidine kinase gene. BMC Pharmacol. 2004;4:8.
26.Burris HA, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P, Nelson R, Dorr FA, Stephens CD, Von Hoff DD. Improvement in survival and clinical benefit with gemcitabine as first line therapy for patients with advanced pancreatic cancer: a randomized trial. J. Clin. Oncol. 1997 ;15:2403-2413.
27.NCCN Clinical Practice Guidelines in Oncology; Pancreatic Adenocarcinoma v.2.2010. (www.nccn.org, date accessed: 14 October 2010).
28.Berlin JD, Adak S, Vaughn DJ, et al. (2000). A phase II study of gemcitabine and 5-fluorouracil in metastatic pancreatic cancer: and Eastern Cooperative Oncology Group study (E3296). Oncology, 58, 215-218.
29.Herrmann R, Bodoky G, Ruhstaller T, Glimelius B, Bajetta E, Schüller J, Saletti P, Bauer J, Figer A, Pestalozzi B, Köhne CH, Mingrone W, Stemmer SM, Tàmas K, Kornek GV, Koeberle D, Cina S, Bernhard J, Dietrich D, Scheithauer W. Gemcitabine plus capecitabine compared with gemcitabine alone in advanced pancreatic cancer: a randomized, multicenter, phase III trial of the swiss group for clinical cancer research and the central European cooperative oncology group. J Clin Oncol. 2007;25:2212-2217.
30.Erkan M, Kleeff J, Esposito I, Giese T, Ketterer K, Büchler MW, Giese NA, Friess H. Loss of BNIP3 expression is a late event in pancreatic cancer contributing to chemoresistance and worsened prognosis. Oncogene. 2005;24(27):4421-4432.
31.Heinemann V, Shulz L, Issels RD, Plunkett W. Gemcitabine: a modulator of intracellular nucleotide and deoxynucleotide metabolism. Semin Oncol. 1995;22:11-18.
32.Robinson DR, Wu YM, Lin SF. The protein tyrosine kinase family of the human genome. Oncogene. 2000;19:5548-5557.
33.Ciardiello F, Tortora G. A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res. 2001;7:2958-2970.
34.Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, Au HJ, Murawa P, Walde D, Wolff RA, Campos D, Lim R, Ding K, Clark G, Voskoglou-Nomikos T, Ptasynski M, Parulekar W. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. Clin Oncol. 2007;25:1960-1966.
35.Johnson JR, Cohen M, Sridhara R, Chen YF, Williams GM, Duan J, Gobburu J, Booth B, Benson K, Leighton J, Hsieh LS, Chidambaram N, Zimmerman P, Pazdur R. Approval summary for erlotinib for treatment of patients with locally advanced or metastatic non-small cell lung cancer after failure of at least one prior chemotherapy regiment. Clin Cancer Res. 2005;11:6414-6421.
36.Lu JF, Eppler SM, Wolf J, Hamilton M, Rakhit A, Bruno R, Lum BL. Clinical pharmacokinetics of erlotinib i patients with solid tumors and exposure-safety relationship in patients with non-small cell lung cancer. Clin Pharmacol Ther. 2006;80:136-145.
37.Van Erp NP, Gelderblom H, Guchelaar HJ. Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treatment Reviews. 2009;35:692-706.
38. Soucek P,.Xenobiotics. Encyclopedia of Cancer,druhé vydání.. New York, Springer-Verlag, 2008. ISBN 978-3-540-47648-1.
39.Hecht SS. Biochemistry, biology, and carcinogenicity of tobacco-specific N-nitrosamines. Chem Res Toxicol. 1998;11:559-603.
40.Hecht SS. Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst. 1999;91:1194-1210.
41.Su T, Bao Z, Zhang QY, Smith TJ, Hong JY, Ding X. Human cytochrome P450 CYP2A13: predominant expression in the respiratory tract and its high efficiency metabolic activation of a tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Cancer Res. 2000;60:5074-5079.
42.Wang H, Tan W, Hao B, Miao X, Zhou G, He F, Lin D. Substantial reduction in risk of lung adenocarcinoma associated with genetic polymorphism in CYP2A13, the most active cytochrome P450 for the metabolic activation of tobacco-specific carcinogen NNK. Cancer Res. 2003;63:8057-8061.
43.Cauffiez C, Lo-Guidice JM, Quaranta S, Allorge D, Chevalier D, Cenée S, Hamdan R, Lhermitte M, Lafitte JJ, Libersa C, Colombel JF, Stücker I, Broly F. Genetic polymorphism of the human cytochrome CYP2A13 in a French population: implication in lung cancer susceptibility. Biochem Biophys Res Commun. 2004;30:662-669.
44.Zhang X, Chen Y, Liu Y, Ren X, Zhang QY, Caggana M, Ding X. Single nucleotide polymorphisms of the human cyp2a13 gene: evidence for a null allele. Drug Metab Dispos. 2003;31:1081-1085.
45.Hassett C, Aicher L, Sidhu JS, Omiecinski CJ. Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants. Hum Mol Genet. 1994;3:421-428.
46.Robien K, Boynton A, Ulrich CM. Pharmacogenetics of folate-related drug targets in cancer treatment. Pharmacogenomics. 2005;6:673-689.
47.van der Logt EM, Bergevoet SM, Roelofs HM, Te Morsche RH, Dijk Y, Wobbes T, Nagengast FM, Peters WH. Role of epoxide hydrolase, NADP;H:quinone oxidoreductase, cytochrome P450 2E1 or alcohol dehydrogenase genotypes in susceptibility to colorectal cancer. Mutat Res. 2006;593(1-2):39-49.
48.Haber PS, Apte MV, Applegate TL, Norton ID, Korsten MA, Pirola RC, Wilson JS. Metabolism of ethanol by rat pancreatic acinar cells. J Lab Clin Med. 1998;132:294-302.
49.Haber PS, Apte MV, Moran C, Applegate TL, Pirola RC, Korsten MA, McCaughan GW, Wilson JS. Nonoxidative metabolism of ethanol by rat pancreatic acini. Pancreatology. 2004;4:82-89.
50.Gukovskaya AS, Mouria M, Gukovsky I, Reyes CN, Kasho VN, Faller LD, Pandol SJ. Ethanol metabolism and transcription factor activation in pancreatic acinar cells in rats. Gastroenterology. 2002;122:106-118.
51.Vonlaufen A, Wilson JS, Pirola RC, Apte MV. Role of alcohol metabolism in chronic pancreatitis. Alcohol Res Health. 2007;30:48-54.
52.Tolstrup JS, Nordestgaard BG, Rasmussen S, Tybjaerg-Hansen A, Grønbaek M.. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes. Pharmacogenomics J. 2008;8:220-227.
53.Matsuo K, Hiraki A, Hirose K, Ito H, Suzuki T, Wakai K, Tajima K. Impact of the alcohol-dehydrogenase (ADH)1C and ADH1B polymorphisms on drinking behavior in nonalcoholic Japanese. Hum Mutat. 2007;28:506-510.
54.Yang SJ, Wang HY, Li XQ, Du HZ, Zheng CJ, Chen HG, Mu XY, Yang CX. Genetic polymorphisms of ADH2 and ALDH2 association with esophageal cancer risk in southwest China. World J Gastroenterol. 2007;13:5760-5764.
55.Lee CH, Lee JM, Wu DC, Goan YG, Chou SH, Wu IC, Kao EL, Chan TF, Huang MC, Chen PS, Lee CY, Huang CT, Huang HL, Hu CY, Hung YH, Wu MT. Carcinogenetic impact of ADH1B and ALDH2 genes on squamous cell carcinoma risk of the esophagus with regard to the consumption of alcohol, tobacco and betel quid. Int J Cancer. 2008;122:1347-1356.
56.Hiraki A, Matsuo K, Wakai K, Suzuki T, Hasegawa Y, Tajima K. Gene-gene and gene-environment interactions between alcohol drinking habit and polymorphisms in alcohol-metabolizing enzyme genes and the risk of head and neck cancer in Japan. Cancer Sci. 2007;98:1087-91.
57.Solomon PR, Selvam GS, Shanmugam G. Polymorphism in ADH and MTHFR genes in oral squamous cell carcinoma of Indians. Oral Dis. 2008;14:633-639.
58.Zimniak P, Nanduri B, Pikula S, Bandorowicz-Pikula J. Naturally occuring human glutathione S-transferase GSTP1-1 isoforms with isoleucine and valine in position 104 differ in enzymic properties. Eur J Biochem. 1994;224(3):893–899.
59.Jiao L, Bondy ML, Hassan MM, Chang DZ, Abbruzzese JL, Evans DB, Smolensky MH, Li D.. Glutathione S-transferase gene polymorphisms and risk and survival of pancreatic cancer. Cancer. 2007;109:840–848.
60.Ferraz JM, Zinzindohoué F, Lecomte T, Cugnenc PH, Loriot MA, Beaune P, Stücker I, Berger A, Laurent-Puig P. Impact of GSTT1, GSTM1, GSTP1 and NAT2 genotypes on KRAS2 and TP53 gene mutations in colorectal cancer. Int J Cancer. 2004;110(2):183-7.
61.Naccarati A, Soucek P, Stetina R, Haufroid V, Kumar R, Vodickova L, Trtkova K, Dusinska M, Hemminki K, Vodicka P.. Genetic polymorphisms and possible gene-gene interactions in metabolic and DNA repair genes: effects on DNA damage. Mutat Res. 2006;593(1-2):22-31.
62.Mena S, Ortega A, Estrela JM. Oxidative stress in environmental-induced carcinogenesis. Mutat Res. 2009;674:36-44.
63.Gonzalez FJ. Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1. Mutat Res. 2005;569:101.
64.Hao J, Li G, Pang B. Evidence for cigarette smoke-induced oxidative stress in the rat pancreas. Inhal Toxicol. 2009;21:1007-1012.
65.Del Guerra S, Lupi R, Marselli L, Masini M, Bugliani M, Sbrana S, Torri S, Pollera M, Boggi U, Mosca F, Del Prato S, Marchetti P.. Functional and molecular defects of pancreatic islets in human type 2 diabetes. Diabetes. 2005;54:727-735.
66.Fridovich I. The biology of oxygen radicals. Science. 1978;201:875-880.
67.Shimoda-Matsubayashi S, Matsumine H, Kobayashi T, Nakagawa-Hattori Y, Shimizu Y, Mizuno Y. Structural dimorphism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene. A predictive evidence for conformational change to influence mitochondrial transport and a study of allelic association in Parkinson’s disease. Biochem Biophys Res Commun. 1996;226:561-565.
68.Wang LI, Miller DP, Sai Y, Liu G, Su L, Wain JC, Lynch TJ, Christiani DC. Manganese superoxide dismutase alanine-to-valine polymorphism at codon 16 and lung cancer risk. J Natl Cancer Inst. 2001;93:1818-1821.
69.Hung RJ, Boffetta P, Brennan P, Malaveille C, Gelatti U, Placidi D, Carta A, Hautefeuille A, Porru S. Genetic polymorphisms of MPO, COMT, MnSOD, NQO1, interactions with environmental exposures and bladder cancer risk. Carcinogenesis. 2004;25:973-978.
70.Bergman M, Ahnström M, Palmebäck Wegman P, Wingren S. Polymorphism in the manganese superoxide dismutase (MnSOD) gene and risk of breast cancer in young women. J Cancer Res Clin Oncol. 2005;131:439-444.
71.Woodson K, Tangrea JA, Lehman TA, Modali R, Taylor KM, Snyder K, Taylor PR, Virtamo J, Albanes D. Manganese superoxide dismutase (MnSOD) polymorphism, alpha-tocopherol supplementation and prostate cancer risk in the alpha-tocopherol, beta-carotene cancer prevention study (Finland). Cancer Causes Control. 2003;14:513-518.
72.Wheatley-Price P, Asomaning K, Reid A, Zhai R, Su L, Zhou W, Zhu A, Ryan DP, Christiani DC, Liu G.. Myeloperoxidase and superoxide dismutase polymorphisms are associated with an increased risk of developing pancreatic adenocarcinoma. Cancer. 2008;112:1037-1042.
73.Siegel D, Anwar A, Winski SL, Kepa JK, Zolman KL, Ross D. Rapid polyubiquitination and proteasomal degradation of a mutant form of NAD(P)H:quinone oxidoreductase 1. Mol Pharmacol. 2001;59:263-268.
74. Jamieson D, Wilson K, Pridgeon S, et al. NAD(P)H:quinone oxidoreductase 1 and nrh:quinone oxidoreductase 2 activity and expression in bladder and ovarian cancer and lower NRH:quinone oxidoreductase 2 activity associated with an NQO2 exon 3 single-nucleotide polymorphism. Clin Cancer Res. 2007;13:1584-1590.
75.Lyn-Cook BD, Yan-Sanders Y, Moore S, Taylor S, Word B, Hammons GJ. Increased levels of NAD(P)H: quinone oxidoreductase 1 (NQO1) in pancreatic tissues from smokers and pancreatic adenocarcinomas: a potential biomarker of early damage in the pancreas. Cell Biol Toxicol. 2006;22:73-80.
76. http://nutrigene.4t.com/humanabc.htm (accessed October 6, 2010)
77.Stavrovskaya AA, Stromskaya TP. Transport proteins of the ABC family and multidrug resistance of tumor cells. Biochemistry (Mosc). 2008;73(5):592-604.
78.Mack JT, Brown CB, Tew KD. ABCA2 as a therapeutic target in cancer and nervous system disorders. Expert Opin Ther Targets. 2008;12(4):491-504.
79.Rabow AA, Shoemaker RH, Sausville EA, Covell DG. Mining the National Cancer Institute's tumor-screening database: identification of compounds with similar cellular activities. J Med Chem. 2002;45(4):818-40.
80.Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2(1):48-58.
81.Marzolini C, Paus E, Buclin T, Kim RB. Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther. 2004;75(1):13-33.
82.Vaclavikova R, Nordgard SH, Alnaes GI, Hubackova M, Kubala E, Kodet R, Mrhalova M, Novotny J, Gut I, Kristensen VN, Soucek P. Single nucleotide polymorphisms in the multidrug resistance gene 1 (ABCB1): effects on its expression and clinicopathological characteristics in breast cancer patients. Pharmacogenet Genomics. 2008;18(3):263-73.
83.Takane H, Kobayashi D, Hirota T, Kigawa J, Terakawa N, Otsubo K, Ieiri I. Haplotype-oriented genetic analysis and functional assessment of promoter variants in the MDR1 (ABCB1) gene. J Pharmacol Exp Ther. 2004;311(3):1179-1187.
84.Zhao YP, Zhang LY, Liao Q, Guo JC, Chen G, Li JY. Detection of multidrug resistant gene 1 in pancreatic cancer. Hepatobiliary Pancreat Dis Int. 2004;3(2):307-10.
85.Jensen PB, Holm B, Sorensen M, Christensen IJ, Sehested M. In vitro cross-resistance and collateral sensitivity in seven resistant small-cell lung cancer cell lines: preclinical identification of suitable drug partners to taxotere, taxol, topotecan and gemcitabin. Br J Cancer. 1997;75:869-77.
86.Bergman AM, Pinedo HM, Talianidis I, Veerman G, Loves WJ, van der Wilt CL, Peters GJ. Increased sensitivity to gemcitabine of P-glycoprotein and multidrug resistance-associated protein-overexpressing human cancer cell lines. Br J Cancer. 2003;88(12):1963-70.
87.Suwa H, Ohshio G, Arao S, Imamura T, Yamaki K, Manabe T, Imamura M, Hiai H, Fukumoto M. Immunohistochemical localization of P-glycoprotein and expression of the multidrug resistance-1 gene in human pancreatic cancer: relevance to indicator of better prognosis. Jpn J Cancer Res. 1996;87(6):641-9.
88.Lu Z, Kleeff J, Shrikhande S, Zimmermann T, Korc M, Friess H, Büchler MW. Expression of the multidrug-resistance 1 (MDR1) gene and prognosis in human pancreatic cancer. Pancreas. 2000;21(3):240-7.
89.Annilo T, Dean M. Degeneration of an ATP-binding cassette transporter gene, ABCC13, in different mammalian lineages. Genomics. 2004;84(1):34-46.
90.Zhou SF, Wang LL, Di YM, Xue CC, Duan W, Li CG, Li Y. Substrates and inhibitors of human multidrug resistance associated proteins and the implications in drug development. Curr Drug Metab. 2008;9(8):738-84.
91.Schuetz JD, Connelly MC, Sun D, Paibir SG, Flynn PM, Srinivas RV, Kumar A, Fridland A. MRP4: A previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat Med. 1999;5(9):1048-51.
92.Wijnholds J, Mol CA, van Deemter L, de Haas M, Scheffer GL, Baas F, Beijnen JH, Scheper RJ, Hatse S, De Clercq E, Balzarini J, Borst P. Multidrug-resistance protein 5 is a multispecific organic anion transporter able to transport nucleotide analogs. Proc Natl Acad Sci USA. 2000;97(13):7476-81.
93. Davidson JD, Ma L, Iverson PW, Lesoon A, Jin S, Horwitz L, Gallery M, Slapak CA. Human multi-drug resistance protein[u1] 5 (MRP5) confers resistance to gemcitabine. Proc Am Assoc Cancer Res. 2002;43:3868.
94.Reid G, Wielinga P, Zelcer N, De Haas M, Van Deemter L, Wijnholds J, Balzarini J, Borst P. Characterization of the transport of nucleoside analog drugs by the human multidrug resistance proteins MRP4 and MRP5. Mol Pharmacol. 2003;63(5):1094-103.
95.Oguri T, Achiwa H, Sato S, Bessho Y, Takano Y, Miyazaki M, Muramatsu H, Maeda H, Niimi T, Ueda R. The determinants of sensitivity and acquired resistance to gemcitabine differ in non-small cell lung cancer: a role of ABCC5 in gemcitabine sensitivity. Mol Cancer Ther. 2006;5(7):1800-6.
96.Takayanagi S, Kataoka T, Ohara O, Oishi M, Kuo MT, Ishikawa T.Human ATP-binding cassette transporter ABCC10: expression profile and p53-dependent upregulation. J Exp Ther Oncol. 2004;4(3):239-46.
97.Kruh GD, Guo Y, Hopper-Borge E, Belinsky MG, Chen ZS. ABCC10, ABCC11, and ABCC12. Pflugers Arch. 2007;453(5):675-84
98.König J, Hartel M, Nies AT, Martignoni ME, Guo J, Büchler MW, Friess H, Keppler D. Expression and localization of human multidrug resistance protein (ABCC) family members in pancreatic carcinoma. Int J Cancer. 2005;115(3):359-67.
99.Wada M. Single nucleotide polymorphisms in ABCC2 and ABCB1 genes and their clinical impact in physiology and drug response. Cancer Lett. 2006;234(1):40-50.
100.de Wolf C, Jansen R, Yamaguchi H, de Haas M, van de Wetering K, Wijnholds J, Beijnen J, Borst P. Contribution of the drug transporter ABCG2 (breast cancer resistance protein) to resistance against anticancer nucleosides. Mol Cancer Ther. 2008;7(9):3092-102.
101.Olempska M, Eisenach PA, Ammerpohl O, Ungefroren H, Fandrich F, Kalthoff H. Detection of tumor stem cell markers in pancreatic carcinoma cell lines. Hepatobiliary Pancreat Dis Int. 2007;6(1):92-7.
102.Baldwin SA, Beal PR, Yao SY, King AE, Cass CE, Young JD. The equilibrative nucleoside transporter family, SLC29. Pflugers Arch. 2004;447:735-743.
103.Gray JH, Owen RP, Giacomini KM. The concentrative nucleoside transporter family, SLC28. Pflugers Arch. 2004;447(5):728-734.
104.Mackey JR, Mani RS, Selner M, Mowles D, Young JD, Belt JA, Crawford CR, Cass CE. Functional nucleoside transporters are required for gemcitabine influx and manifestation of toxicity in cancer cell lines. Cancer Res. 1998;58(19):4349-4357.
105.García-Manteiga J, Molina-Arcas M, Casado FJ, Mazo A, Pastor-Anglada M. Nucleoside transporter profi les in human pancreatic cancer cells: role of hCNT1 in 2,2-difluorodeoxycytidine- induced cytotoxicity. Clin Can Res. 2003; 9(13):5000-5008.
106.Spratlin J, Sangha R, Glubrecht D, Dabbagh L, Young JD, Dumontet C, Cass C, Lai R, Mackey JR. The absence of human equilibrative nucleoside transporter 1 is associated with reduced survival in patients with gemcitabine- treated pancreas adenocarcinoma. Clin Cancer Res. 2004;10(20):6956-6961.
107.Giovannetti E, Del Tacca M, Mey V, Funel N, Nannizzi S, Ricci S, Orlandini C, Boggi U, Campani D, Del Chiaro M, Iannopollo M, Bevilacqua G, Mosca F, Danesi R. Transcription analysis of human equilibrative nucleoside transporter- 1 predicts survival in pancreas cancer patients treated with gemcitabine. Cancer Res. 2006;66(7):3928-3935.
108.Marchetti S, de Vries NA, Buckle T, Bolijn MJ, van Eijndhoven MA, Beijnen JH, Mazzanti R, van Tellingen O, Schellens JH. Effect of the ATP-binding cassette drug transporters ABCB1, ABCG2, and ABCC2 on erlotinib hydrochloride (Tarceva) disposition in in vitro and in in vivo pharmacokinetic studies employing Bcrp1-/-/MDR1a/1b-/-(triple-knockout) and wild-type mice. Mol Cancer Ther. 2008;7(8):2280-7.
109.Shi Z, Peng XX, Kim IW, Shukla S, Si QS, Robey RW, Bates SE, Shen T, Ashby CR Jr, Fu LW, Ambudkar SV, Chen ZS. Erlotinib (Tarceva, OSI-774) antagonizes ATP- binding cassette subfamily B member 1 and ATP- binding cassette subfamily G member 2- mediated drug resistance. Cancer Res. 2007;67(22):11012-20.
110.Kuang YH, Shen T, Chen X, Sodani K, Hopper-Borge E, Tiwari AK, Lee JW, Fu LW, Chen ZS. Lapatinib and erlotinib are potent reversal agents for MRP7 (ABCC10)-mediated multidrug resistance. Biochem Pharmacol. 2010;79(2):154-61
111.Li J, Cusatis G, Brahmer J, Sparreboom A, Robey RW, Bates SE, Hidalgo M, Baker SD. Association of variant ABCG2 and the pharmacokinetics of epidermal growth factor receptor tyrosine kinase inhibitors in cancer patients. Cancer Biol Ther. 2007;6(3):432-8.
112.Rudin CM, Liu W, Desai A, Karrison T, Jiang X, Janisch L, Das S, Ramirez J, Poonkuzhali B, Schuetz E, Fackenthal DL, Chen P, Armstrong DK, Brahmer JR, Fleming GF, Vokes EE, Carducci MA, Ratain MJ. Pharmacogenomic and pharmacokinetic determinants of erlotinib toxicity. J Clin Oncol. 2008;26(7):1119-27..
113.Rosty C, Ueki T, Argani P, Jansen M, Yeo CJ, Cameron JL, Hruban RH, Goggins M. Overexpression of S100A4 in pancreatic ductal adenocarcinomas is associated with poor differentiation and DNA hypomethylation. Am J Pathol. 2002;160:45-50.
114.Fleige S, Walf V, Huch S, Prgomet C, Sehm J, Pfaffl MW. Comparison of relative mRNA quantification models and the impact of RNA integrity in quantitative real-time RT-PCR. Biotechnol Lett. 2006,19:1601-13.
115.Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. 2009;55(4):611-22.
116.Vilardell F, Iacobuzio-Donahue CA. Cancer gene profiling in pancreatic cancer. Methods Mol Biol. 2010;576:279-92.
117.Zhong H, Simons JW. Direct comparison of GAPDH, beta-actin, cyclophilin, and 28S rRNA as internal standards for quantifying RNA levels under hypoxia. Biochem Biophys Res Commun. 1999;259(3):523-6.
118.Mane VP, Heuer MA, Hillyer P, Navarro MB, Rabin RL. Systematic method for determining an ideal housekeeping gene for real-time PCR analysis. J Biomol Tech. 2008;19(5):342-7.
119.Blanquicett C, Johnson MR, Heslin M, Diasio RB. Housekeeping gene variability in normal and carcinomatous colorectal and liver tissues: applications in pharmacogenomic gene expression studies. Anal Biochem. 2002;303(2):209-14.
120.Rubie C, Kempf K, Hans J, Su T, Tilton B, Georg T, Brittner B, Ludwig B, Schilling M. Housekeeping gene variability in normal and cancerous colorectal, pancreatic, esophageal, gastric and hepatic tissues. Mol Cell Probes. 2005;19(2):101-9.
121. Sugimura H, Caporaso NE, Shaw GL, Modali RV, Gonzalez FJ, Hoover RN, Resau JH, Trump BF, Weston A, Harris CC. Human debrisoquine hydroxylase gene polymorphisms in cancer patients and controls. Carcinogenesis. 1990;11:1527-1530.
122.Bustin SA, Nolan T. Template handling, preparation, and purification. The Real-Time PCR Encyclopedia A-Z of Quantitative real-time PCR. Vydáno Univerzitou v Line, La Jolla, CA, pp 87-120, 2004. ISBN: 0-9636817-8-8.
123.Pfaffl MW. Nucleic acids: mRNA identification and quantification. Nucleic Acids, Encyclopedia of Analytical Science, druhé vydání. Academic Press, pp 417-426, 2005. ISBN: 978-0-12-369397-6.
124.Kleibl Z, Havranek O, Novotny J, Kleiblova P, Soucek P, Pohlreich P. Analysis of CHEK2 FHA domain in Czech patients with sporadic breast cancer revealed distinct rare genetic alterations. Breast Cancer Res Treat. 2008;112(1):159-64.
125.Kleibl Z, Havranek O, Hlavata I, Novotny J, Sevcik J, Pohlreich P, Soucek P. The CHEK2 gene I157T mutation and other alterations in its proximity increase the risk of sporadic colorectal cancer in the Czech population. Eur J Cancer. 2009;45(4):618-24.
126.Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):research0034.
127.Andersen CL, Jensen JL, Ørntoft TF. Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets. Cancer Res. 2004;64 5245-5250.
128.Sarmanova J, Susova S, Gut I, Mrhalová M, Kodet R, Adámek J, Roth Z, Soucek P. Breast cancer: role of polymorphisms in biotransformation enzymes. Eur J Hum Genet. 2004;12:848-854.
129.Zatonski WA, Boyle P, Przewozniak K, Maisonneuve P, Drosik K, Walker AM. Cigarette smoking, alcohol, tea and coffee consumption and pancreas cancer risk: a case-control study from Opole, Poland. Int J Cancer. 1993;53:601-607.
130.Lin Y, Kikuchi S, Tamakoshi A, Yagyu K, Obata Y, Kurosawa M, Inaba Y, Kawamura T, Motohashi Y, Ishibashi T. Green tea consumption and the risk of pancreatic cancer in Japanese adults. Pancreas. 2008;37:25-30.
131.Wang H, Tan W, Hao B, Miao X, Zhou G, He F, Lin D. Substantial reduction in risk of lung adenocarcinoma associated with genetic polymorphism in CYP2A13, the most active cytochrome P450 for the metabolic activation of tobacco-specific carcinogen NNK. Cancer Res. 2003;63:8057-8061.
132.Schlicht KE, Michno N, Smith BD, Scott EE, Murphy SE. Functional characterization of CYP2A13 polymorphisms. Xenobiotica. 2007;37:1439-1449.
133.Chrostek L, Jelski W, Szmitkowski M, Puchalski Z. Alcohol dehydrogenase (ADH) isoenzymes and aldehyde dehydrogenase (ALDH) activity in the human pancreas. Dig Dis Sci. 2003;48:1230-1233.
134.Jelski W, Chrostek L, Szmitkowski M. The activity of class I, II, III, and IV of alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase in pancreatic cancer. Pancreas. 2007;35:142-146.
135.Tolstrup JS, Nordestgaard BG, Rasmussen S, Tybjaerg-Hansen A, Grønbaek M. Alcoholism and alcohol drinking habits predicted from alcohol dehydrogenase genes. Pharmacogenomics J. 2008;8:220-227.
136.Matsuo K, Hiraki A, Hirose K, Ito H, Suzuki T, Wakai K, Tajima K. Impact of the alcohol-dehydrogenase (ADH)1C and ADH1B polymorphisms on drinking behavior in nonalcoholic Japanese. Hum Mutat. 2007;28:506-510.
137.Jiao L, Silverman DT, Schairer C, Thiébaut AC, Hollenbeck AR, Leitzmann MF, Schatzkin A, Stolzenberg-Solomon RZ. Alcohol use and risk of pancreatic cancer: the NIH-AARP Diet and Health Study. Am J Epidemiol. 2009;169:1043-1051.
138.Rohrmann S, Linseisen J, Vrieling A, Boffetta P, Stolzenberg-Solomon RZ, Lowenfels AB, Jensen MK, Overvad K, Olsen A, Tjonneland A, Boutron-Ruault MC, Clavel-Chapelon F, Fagherazzi G, Misirli G, Lagiou P, Trichopoulou A, Kaaks R, Bergmann MM, Boeing H, Bingham S, Khaw KT, Allen N, Roddam A, Palli D, Pala V, Panico S, Tumino R, Vineis P, Peeters PH, Hjartåker A, Lund E, Redondo Cornejo ML, Agudo A, Arriola L, Sánchez MJ, Tormo MJ, Barricarte Gurrea A, Lindkvist B, Manjer J, Johansson I, Ye W, Slimani N, Duell EJ, Jenab M, Michaud DS, Mouw T, Riboli E, Bueno-de-Mesquita HB. Ethanol intake and the risk of pancreatic cancer in the European Prospective Investigation Into Cancer and Nutrition (EPIC). Cancer Causes Control. 2009;20:785-794.
139.Genkinger JM, Spiegelman D, Anderson KE, Bergkvist L, Bernstein L, van den Brandt PA, English DR, Freudenheim JL, Fuchs CS, Giles GG, Giovannucci E, Hankinson SE, Horn-Ross PL, Leitzmann M, Männistö S, Marshall JR, McCullough ML, Miller AB, Reding DJ, Robien K, Rohan TE, Schatzkin A, Stevens VL, Stolzenberg-Solomon RZ, Verhage BA, Wolk A, Ziegler RG, Smith-Warner SA. Alcohol intake and pancreatic cancer risk: a pooled analysis of fourteen cohort studies. Cancer Epidemiol Biomarkers Prev. 2009;18:765-776.
140.Carlsten C, Sagoo GS, Frodsham AJ, Burke W, Higgins JP. Glutathione Stransferase M1 (GSTM1) polymorphisms and lung cancer: a literature-based systematic HuGE review and meta-analysis. Am J Epidemiol. 2008;167:759-774.
141.Liu G, Ghadirian P, Vesprini D, Hamel N, Paradis AJ, Lal G, Gallinger S, Narod SA, Foulkes WD. Polymorphisms in GSTM1, GSTT1 and CYP1A1 and risk of pancreatic adenocarcinoma, Br J Cancer. 2000;82:1646-1649.
142.Duell EJ, Holly EA, Bracci PM, Liu M, Wiencke JK, Kelsey KT. A populationbased, case-control study of polymorphisms in carcinogen-metabolizing genes, smoking, and pancreatic adenocarcinoma risk. J Natl Cancer Inst. 2002;94:297-306.
143.Khandrika L, Kumar B, Koul S, Maroni P, Koul HK. Oxidative stress in prostate cancer. Cancer Lett. 2009;282:125-136.
144.Wittel UA, Pandey KK, Andrianifahanana M, Johansson SL, Cullen DM, Akhter MP, Brand RE, Prokopczyk B, Batra SK. Chronic pancreatic inflammation induced by environmental tobacco smoke inhalation in rats. Am J Gastroenterol. 2006;101:148-159.
145.Kang D, Lee KM, Park SK, Berndt SI, Peters U, Reding D, Chatterjee N, Welch R, Chanock S, Huang WY, Hayes RB. Functional variant of manganese superoxide dismutase (SOD2 V16A) polymorphism is associated with prostate cancer risk in the prostate, lung, colorectal, and ovarian cancer study. Cancer Epidemiol Biomarkers Prev. 2007;16:1581-1586.
146.Vineis P, Veglia F, Garte S, Malaveille C, Matullo G, Dunning A, Peluso M, Airoldi L, Overvad K, Raaschou-Nielsen O, Clavel-Chapelon F, Linseisen JP, Kaaks R, Boeing H, Trichopoulou A, Palli D, Crosignani P, Tumino R, Panico S, Bueno-De-Mesquita HB, Peeters PH, Lund E, Gonzalez CA, Martinez C, Dorronsoro M, Barricarte A, Navarro C, Quiros JR, Berglund G, Jarvholm B, Day NE, Key TJ, Saracci R, Riboli E, Autrup H. Genetic susceptibility according to three metabolic pathways in cancers of the lung and bladder and in myeloid leukemias in nonsmokers. Ann Oncol. 2007;18:1230-1242.
147.Cullen JJ, Mitros FA, Oberley LW. Expression of antioxidant enzymes in diseases of the human pancreas: another link between chronic pancreatitis and pancreatic cancer. Pancreas. 2003;26:23-27.
148.Cullen JJ, Hinkhouse MM, Grady M, Gaut AW, Liu J, Zhang YP, Weydert CJ, Domann FE, Oberley LW. Dicumarol inhibition of NADPH:quinone oxidoreductase induces growth inhibition of pancreatic cancer via a superoxide-mediated mechanism. Cancer Res. 2003;63:5513-5520.
149.Bartsch DK, Krysewski K, Sina-Frey M, Fendrich V, Rieder H, Langer P, Kress R, Schneider M, Hahn SA, Slater EP. Low frequency of CHEK2 mutations in familial pancreatic cancer. Fam Cancer. 2006;5:305-8.
150.Miyasaka Y, Nagai E, Yamaguchi H, Fujii K, Inoue T, Ohuchida K, Yamada T, Mizumoto K, Tanaka M, Tsuneyoshi M. The role of the DNA damage checkpoint pathway in intraductal papillary mucinous neoplasms of the pancreas. Clin Cancer Res. 2007;13:4371-7.
151.Suchy J, Cybulski C, Wokołorczyk D, Oszurek O, Górski B, Debniak T, Jakubowska A, Gronwald J, Huzarski T, Byrski T, Dziuba I, Gogacz M, Wiśniowski R, Wandzel P, Banaszkiewicz Z, Kurzawski G, Kładny J, Narod SA, Lubiński J. CHEK2 mutations and HNPCC - related colorectal cancer. Int J Cancer. 2010;126(12):3005-9.
152.Begleiter A, Hewitt D, Maksymiuk AW, Ross DA, Bird RP. A NADP;H:quinone oxidoreductase 1 polymorphism is a risk factor for human colon cancer. Cancer Epidemiol Biomarkers Prev. 2006;15:2422-2426.
153.Mitrou PN, Watson MA, Loktionov AS, Cardwell C, Gunter MJ, Atkin WS, Macklin CP, Cecil T, Bishop DT, Primrose J, Bingham SA. Role of NQO1C609T and EPHX1 gene polymorphisms in the association of smoking and alcohol with sporadic distal colorectal adenomas: results from the UKFSS Study. Carcinogenesis. 2007;28:875-882.
154.Vrana D, Pikhart H, Mohelnikova-Duchonova B, Holcatova I, Strnad R, Slamova A, Schejbalova M, Ryska M, Susova S, Soucek P. The association between Glutathione S-transferase Gene polymorphisms and pancreatic cancer in central European Slavonic population. Mutat Res. 2009;680:78-81
155.Dofkova M, Kopriva V, Resova D, Rehurkova I and Ruprich J. The development of food consumption in the Czech Republic after 1989. Public Health Nutr. 2001;4: 999-1003.
156.Heath SC, Gut IG, Brennan P, McKay JD, Bencko V, Fabianova E, Foretova L, Georges M, Janout V, Kabesch M, Krokan HE, Elvestad MB, Lissowska J, Mates D, Rudnai P, Skorpen F, Schreiber S, Soria JM, Syvänen AC, Meneton P, Herçberg S, Galan P, Szeszenia-Dabrowska N, Zaridze D, Génin E, Cardon LR, Lathrop M. Investigation of the fine structure of European populations with applications to disease association studies. Eur J Hum Genet. 2008;16:1413-1429.
157.McFadden E, Luben R, Wareham N, Bingham S, Khaw KT. Occupational social class, educational level, smoking and body mass index, and cause-specific mortality in men and women: a prospective study in the European Prospective Investigation of Cancer and Nutrition in Norfolk (EPIC-Norfolk) cohort. Eur J Epidemiol. 2008;23:511-522.
158.Zejglicova K, Kratenova J, Maly M, Kubinova R. Incidence of risk factors of chronic non-infectious diseases including socio-economic factors in the urban middle age population in the Czech Republic-results of HELEN study. Cas Lek Cesk. 2006;145:936-942.
159.Singh H, Turner D, Xue L, Targownik LE, Bernstein CN. Risk of developing colorectal cancer following a negative colonoscopy examination: evidence for a 10-year interval between colonoscopies. JAMA. 2006;295:2366-2373.
160.Sachse C, Smith G, Wilkie MJ, Barrett JH, Waxman R, Sullivan F, Forman D, Bishop DT, Wolf CR. A pharmacogenetic study to investigate the role of dietary carcinogens in the etiology of colorectal cancer. Carcinogenesis. 2002;23:1839-1849.
161.Chao C, Zhang ZF, Berthiller J, Boffetta P, Hashibe M. NAD(P)H:quinone oxidoreductase 1 NQO1 Pro187Ser polymorphism and the risk of lung, bladder, and colorectal cancers: a meta-analysis. Cancer Epidemiol Biomarkers Prev. 2006;15:979-987.
162.Camdeviren H. Glutathione S-transferase M1, T1, P1 genotypes and risk for development of colorectal cancer. Biochem Genet. 2005;43:149-163.
163.Yoshioka M, Katoh T, Nakano M, Takasawa S, Nagata N, Itoh H. Glutathione S-transferase (GST) M1, T1, P1, Nacetyltransferase (NAT) 1 and 2 genetic polymorphisms and susceptibility to colorectal cancer. J UOEH. 1999;21:133-147.
164.Ye Z, Parry JM. Genetic polymorphisms in the cytochrome P450 1A1, glutathione S-transferase M1 and T1, and susceptibility to colon cancer. Teratog Carcinog Mutagen. 2002;22:385-392.
165.Little J, Sharp L, Masson LF, Brockton NT, Cotton SC, Haites NE, Cassidy J. Colorectal cancer and genetic polymorphisms of CYP1A1, GSTM1 and GSTT1: a case-control study in the Grampian region of Scotland. Int J Cancer. 2006;119:2155-2164.
166.Hoensch H, Peters WH, Roelofs HM, Kirch W. Expression of the glutathione enzyme system of human colon mucosa by localisation, gender and age. Curr Med Res Opin. 2006;22:1075-1083.
167.Stoehlmacher J, Park DJ, Zhang W, Groshen S, Tsao-Wei DD, Yu MC, Lenz HJ. Association between glutathione Stransferase P1, T1, and M1 genetic polymorphism and survival of patients with metastatic colorectal cancer. J Natl Cancer Inst. 2002;94:936-942.
168.Huang K, Sandler RS, Millikan RC, Schroeder JC, North KE, Hu J. GSTM1 and GSTT1 polymorphisms, cigarette smoking, and risk of colon cancer: a population-based casecontrol study in North Carolina (United States). Cancer Causes Control. 2006;17:385-394.
169.Moore LE, Huang WY, Chatterjee N, Gunter M, Chanock S, Yeager M, Welch B, Pinsky P, Weissfeld J, Hayes RB.. GSTM1, GSTT1, and GSTP1 polymorphisms and risk of advanced colorectal adenoma. Cancer Epidemiol Biomarkers Prev. 2005;14:1823-1827.
170.Gao Y, Cao Y, Tan A, Liao C, Mo Z, Gao F. Glutathione Stransferase M1 polymorphism and sporadic colorectal cancer risk: an updating meta-analysis and HuGE review of 36 casecontrol studies. Ann Epidemiol. 2010;20:108-121.
171.Fleige S, Pfaffl MW. RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med. 2006;27:126-139.
172.Antonov J, Goldstein DR, Oberli A, Baltzer A, Pirotta M, Fleischmann A, Altermatt HJ, Jaggi R. Reliable gene expression measurements from degraded RNA by quantitative real-time PCR depend on short amplicons and a proper normalization. Lab Invest. 2005;85:1040-1050.
173.Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real time quantitative PCR and the 2-deltaCt methods. Methods. 2001;25:402-408.
174.Ellinger S, Müller N, Stehle P, Ulrich-Merzenich G. Consumption of green tea or green tea products: Is there an evidence for antioxidant effects from controlled interventional studies? Phytomedicine. 2011;18(11):903-15.
175.Walsh T, Casadei S, Coats KH, Swisher E, Stray SM, Higgins J, Roach KC, Mandell J, Lee MK, Ciernikova S, Foretova L, Soucek P, King MC. Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA. 2006;295(12):1379-88.
176.Menzel HJ, Sarmanova J, Soucek P, Berberich R, Grünewald K, Haun M, Kraft HG. Association of NQO1 polymorphism with spontaneous breast cancer in two independent populations. Br J Cancer. 2004;90(10):1989-94.
177. Munoz M, Henderson M, Haber M, Norris M. Role of the MRP1/ABCC1 multidrug transporter protein in cancer. IUBMB Life. 2007;59(12):752-7.
178. Guo Y, Kotova E, Chen ZS, Lee K, Hopper-Borge E, Belinsky MG, Kruh GD. MRP8, ATP-binding cassette C11 (ABCC11), is a cyclic nucleotide efflux pump and a resistance factor for fluoropyrimidines 2',3'-dideoxycytidine and 9'-(2'-phosphonylmethoxyethyl)adenine. J Biol Chem. 2003;278(32):29509-14.
179. Nambaru PK, Hübner T, Köck K, Mews S, Grube M, Payen L, Guitton J, Sendler M, Jedlitschky G, Rimmbach C, Rosskopf D, Kowalczyk DW, Kroemer HK, Weiss FU, Mayerle J, Lerch MM, Ritter CA. Drug efflux transporter multidrug resistance-associated protein 5 affects sensitivity of pancreatic cancer cell lines to the nucleoside anticancer drug 5-fluorouracil. Drug Metab Dispos. 2011;39(1):132-9.
180. Oude Elferink RP, Paulusma CC. Function and pathophysiological importance of ABCB4 (MDR3 P-glycoprotein). Pflugers Arch. 2007;453(5):601-10.
181. Fein F, Hermelin B, Becker MC, Felix S, Carbonnel F. Acute recurrent biliary pancreatitis associated with the ABCB4 gene mutation. Gastroenterol Clin Biol. 2007;31(1):106-9.
182. Duan Z, Brakora KA, Seiden MV. Inhibition of ABCB1 (MDR1) and ABCB4 (MDR3) expression by small interfering RNA and reversal of paclitaxel resistance in human ovarian cancer cells. Mol Cancer Ther. 2004;3(7):833-8.
183. Turton NJ, Judah DJ, Riley J, Davies R, Lipson D, Styles JA, Smith AG, Gant TW. Gene expression and amplification in breast carcinoma cells with intrinsic and acquired doxorubicin resistance. Oncogene. 2001;20(11):1300-6.
184. Chen HL, Gabrilovich D, Tampé R, Girgis KR, Nadaf S, Carbone DP. A functionally defective allele of TAP1 results in loss of MHC class I antigen presentation in a human lung cancer. Nat Genet. 1996;13(2):210-3.
185. Kasajima A, Sers C, Sasano H, Jöhrens K, Stenzinger A, Noske A, Buckendahl AC, Darb-Esfahani S, Müller BM, Budczies J, Lehman A, Dietel M, Denkert C, Weichert W. Down-regulation of the antigen processing machinery is linked to a loss of inflammatory response in colorectal cancer. Hum Pathol. 2010;41:1758-69.
186. Leibowitz MS, Andrade Filho PA, Ferrone S, Ferris RL. Deficiency of activated STAT1 in head and neck cancer cells mediates TAP1-dependent escape from cytotoxic T lymphocytes. Cancer Immunol Immunother. 2011;60(4):525-35.
187. Ramnath N, Tan D, Li Q, Hylander BL, Bogner P, Ryes L, Ferrone S. Is down-regulation of MHC class I antigen expression in human non-small cell lung cancer associated with prolonged survival. Cancer Immunol Immunother. 2006;55:891-899.
188. Han LY, Fletcher MS, Urbauer DL, Mueller P, Landen CN, Kamat AA, Lin YG, Merritt WM, Spannuth WA, Deavers MT, De Geest K, Gershenson DM, Lutgendorf SK, Ferrone S, Sood AK. HLA class I antigen processing machinery component expression and intratumoral T-cell infiltrate as independent prognostic markers in ovarian carcinoma. Clin Cancer Res. 2008;14:3372-3379.
189. Ayshamgul H, Ma H, Ilyar S, Zhang LW, Abulizi A. Association of defective HLA-I expression with antigen processing machinery and their association with clinicopathological characteristics in Kazak patients with esophageal cancer. Chin Med J (Engl). 2011;124(3):341-6.
190. Kaminski WE, Piehler A, Wenzel JJ. ABC A-subfamily transporters: structure, function and disease. Biochim Biophys Acta. 2006;1762:510-24.
191. Shulenin S, Nogee LM, Annilo T, Wert SE, Whitsett JA, Dean M. ABCA3 gene mutations in newborns with fatal surfactant deficiency. N Engl J Med. 2004;350:1296-1303.
192. Bergen AA, Plomp AS, Schuurman EJ, Terry S, Breuning M, Dauwerse H, Swart J, Kool M, van Soest S, Baas F, ten Brink JB, de Jong PT. Mutations in ABCC6 cause pseudoxanthoma elasticum. Nat Genet. 2000;25(2):228-31.
193. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989;245(4922):1066-73.
194. Naren AP, Quick MW, Collawn JF, Nelson DJ, Kirk KL. Syntaxin 1A inhibits CFTR chloride channels by means of domain-specific protein-protein interactons. Proc Natl Sci USA. 1998;95:10972-10977.
195. Hanrahan JW, Mathews CJ, Grygorczyk R, Tabcharani JA, Grzelczak Z, Chang XB, Riordan JR. Regulation of the CFTR chloride channel from human and sharks. J Exp Zool. 1996;275:283-291.
196. Weixel KM, Bradbury NA. The carboxyl terminus of the cystic fibrosis transmembrane conductance regulator binds to AP-2 clathrin adaptors. J Biol Chem. 2000;275:3655-3660.
Předběžná náplň práce
Úvod: Cílem této práce bylo sledování genetických faktorů ovlivňujících riziko vzniku a průběh karcinomů kolorekta a pankreatu. První část se zabývá etiologickými faktory, a to vlivem polymorfismů v biotransformačních enzymech a genetických alterací v genu CHEK2 na vznik těchto malignit. V druhé části jsou analyzovány geny transportu cytostatik jako případné prognostické a prediktivní markery odpovědi na onkologickou léčbu. Materiály a metody: Polymorfismy a další genetické alterace byly zjišťovány pomocí real-time PCR, alel-specifické PCR a PCR-RFLP metody v DNA získané z krve pacientů. Byla hodnocena frekvence polymorfismů a posuzován jejich význam s ohledem na dostupná epidemiologická data. Exprese genů byly stanoveny metodou qPCR v párových vzorcích tkání nádoru a okolního parenchymu. Výsledky: Pro většinu námi sledovaných polymorfismů se nepodařilo prokázat vztah mezi jejich přítomností a rizikem vzniku obou těchto malignit. Variantní alela CYP2A13*7, byla nalezena u 7 z 265 hodnocených zdravých kontrol, ale nebyla nalezena u žádného pacienta s karcinomem pankreatu. Výskyt variantní alely GSTP1-Val a genotypu GSTT1-null byl naopak spojen se zvýšeným rizikem vzniku karcinomu pankreatu (OR=2,38; 95% CI=1,17- 4,83). V souboru pacientů s kolorektálním karcinomem byl genotyp GSTT1-null v kombinaci s GSTM1-null genotypem spojen s mírně zvýšeným rizikem (OR=1,58; 95% CI=1,01- 2,47) a samotná delece GSTM1 zvyšovala riziko kolorektálního karcinomu po zohlednění ostatních sledovaných faktorů (OR=1,30; 95% CI=1,01-1,68). Porovnáním exprese všech 49 členů lidské nadrodiny ABC transportérů u vzorků nádoru pankreatu s okolní nenádorovou tkání pankreatu jsme zjistili, že 11 genů bylo statisticky významně upregulováno a 4 downregulovány (p<0,05) v tkáni adenokarcinomu. Zjištěná zvýšená exprese ABCB2, ABCB3, ABCB4, ABCC1, ABCC5 v nádorové tkáni je ve shodě s jejich dříve prokázaným fenotypem mnohočetné lékové rezistence. Downregulace ABCA3 (p=0,002), ABCA5 (p=0,010), ABCC6 (p<0,001) a ABCC7 (p=0,016) ve tkáni karcinomu pankreatu zatím nebyla publikována. Závěry: Naše výsledky ukazují, že polymorfismy v genech kódující biotransformační enzymy mohou ovlivňovat riziko vzniku maligního onemocnění slinivky břišní a tlustého střeva v české populaci. Výsledky pilotní studie zaměřené na expresi ABC transportérů ve tkáni karcinomu pankreatu prokázaly významné rozdíly v hladinách transkriptů těchto membránových enzymů, které jsou klíčové pro transport cytostatik ven z nádorových buněk. Pro potvrzení těchto výsledků jsou však nutné ověřující analýzy na větších souborech pacientů.
Předběžná náplň práce v anglickém jazyce
Introduction: The aim of this study was to evaluate the role of genetic and lifestyle factors in the risk of onset and progression of colorectal and pancreatic cancer. The first part deals with the etiological factors and the importance of polymorphisms in biotransformation enzymes and genetic alterations in the gene CHEK2 in the origin of these malignancies. In the second part, the ABC transporter genes were analyzed as potential prognostic and predictive markers of a treatment’s outcome. Materials and methods: The polymorphisms and other genetic alterations were detected using real-time PCR, allelespecific PCR and PCR-RFLP methods in DNA which was extracted from the blood of patients. The frequency of polymorphisms was evaluated and their importance was assessed with regard to the available epidemiological data. Gene expressions were determined by qPCR in paired samples of tumor tissue and adjacent non-tumorous parenchyma. Results: A majority of the observed polymorphisms failed to show a relationship between their presence and the risk of any of these malignancies. CYP2A13 variant allele*7 coding inactive enzyme was found in 7 of 265 controls and in none of 235 pancreatic carcinoma patients. In contrast, GSTP1-codon 105 Val variant allele and GSTT1-null genotype were associated with an elevated pancreatic cancer risk (OR=1.38; 95%CI=0.96-1.97 and OR=1.56; 95%CI=0.93-2.61, respectively). A combination of GSTT1-null and GSTP1-codon 105 Val variants further increased the risk of pancreatic cancer (OR=2.50; 95%CI=1.20-5.20). In the group of patients with colorectal cancer, the GSTT1-null genotype in combination with the GSTM1-null genotype was associated with a slightly increased risk (OR=1.58, 95% CI=1.01-2.47) and the actual deletion of GSTM1 increased the risk of colorectal cancer after adjusting for other observed factors (OR=1.30, 95% CI=1.01-1.68). By comparing the expression levels of all 49 members of the human ABC transporters in pancreatic tumor samples with nonmalignant pancreatic tissue, we found that 11 genes were significantly upregulated and 4 genes downregulated (p<0.05) in adenocarcinoma tissue. The observed increased expression of ABCB2, ABCB3, ABCB4, ABCC1, ABCC5 in tumor tissue is consistent with their previously demonstrated multidrug resistance phenotype. Downregulation of ABCA3 (p=0.002), ABCA5 (p=0.010), ABCC6 (p<0.001) and ABCC7 (p=0.016) in pancreatic cancer tissue has not yet been published. Conclusions: Our results indicate that polymorphisms in genes coding for biotransformation enzymes may influence the risk of malignant disease of the pancreas and colon in the Czech population. The results of the pilot study on the expressions of ABC transporters in pancreatic cancer tissues showed signifiant differences in transcript levels of these membrane proteins that are crucial for the transport of chemotherapeutic agents outside of tumor cells. However, analyses on larger sets of patients are necessary to verify and confirm these results.
 
Univerzita Karlova | Informační systém UK