Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 381)
Detail práce
   Přihlásit přes CAS
Stock Markets Analysis Using New Genetic Annealed Neural Network
Název práce v češtině: Analýza akciových trhů s využitím nové geneticky žíhané neuronové sítě
Název v anglickém jazyce: Stock Markets Analysis Using New Genetic Annealed Neural Network
Klíčová slova: analýza akciových výnosov, neurónové siete, genetické algoritmy, simulované žíhanie, hybridné siete
Klíčová slova anglicky: stock returns analysis, neural networks, genetic algorithms, simulated annealing, hybrid networks
Akademický rok vypsání: 2011/2012
Typ práce: rigorózní práce
Jazyk práce: angličtina
Ústav: Institut ekonomických studií (23-IES)
Vedoucí / školitel: doc. PhDr. Jozef Baruník, Ph.D.
Řešitel: skrytý - zadáno vedoucím/školitelem
Datum přihlášení: 31.01.2012
Datum zadání: 31.01.2012
Datum a čas obhajoby: 21.03.2012 13:00
Místo konání obhajoby: IES, m 601
Datum odevzdání elektronické podoby:17.02.2012
Datum proběhlé obhajoby: 21.03.2012
Oponenti: prof. Ing. Miloslav Vošvrda, CSc.
 
 
 
Seznam odborné literatury
1. Aarts, E., Korst, J., Michiels, W. (2007). Theoretical aspects of local search. Springer, Berlin. ISBN 978-3-540-35853-4.

2. Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Petrov, B. N., Csaki, F. (eds.). 2nd International Symposium on Information Theory, s. 267-281. Akademia Kiado, Budapest.

3. Amato, S. et al. (1991). Simulated annealing approach in backpropagation. Neurocomputing, vol. 3, no. 5-6, s. 207-220.

4. Arifovic, J. (1994). Genetic algorithm learning and the cobweb model. Journal of Economic Dynamics and Control, vol. 18, no. 1, s. 3-28.

5. Bachelier, L. (1900). Theory of speculation. In Cootner, P. (ed.). The Random Character of Stock Market Prices. MIT Press, Cambridge (Massachusetts), 1964. ISBN 978-0-262-03009-0.

6. Baruník, J. (2008). How do neural networks enhance the predictability of Central European stock returns? Finance a uver – Czech Journal of Economics and Finance, vol. 58, no. 7-8, s. 358-376.

7. Basterrech, S. et al. (2011), Levenberg-Marquardt training algorithms for fandom neural networks. The Computer Journal, vol. 54, no. 1, s. 125-135.

8. Battiti, R. (1992). First and second-order methods for learning: between steepest descent and Newton´s method. Neural Computation, vol. 4, no. 2, s. 141-166.

9. Bebis, G., Georgiopoulos, M., Kasparis, T. (1997). Coupling weight elimination with genetic algorithms to reduce network size and preserve generalization. Neurocomputing, vol. 17, no. 3-4, s. 167-194.

10. Bildirici, M., Ersin, O. O. (2009). Improving forecasts of GARCH family models with the artificial neural networks: an application to the daily returns in Istanbul Stock Exchange. Expert Systems with Applications, vol. 36, no. 4, s. 7355-7362.

11. Black, F., Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, vol. 81, s. 637-654.

12. Blundell, S. J., Blundell, K. M. (2006). Concepts in thermal physics. Oxford University Press, Oxford. ISBN 978-0-19-856769-1.

13. Bollerslev, T. (1986). General autoregressive conditional heteroscedasticity. Journal of Econometrics, vol. 31, s. 307-327.

14. Bonnans, J. F. et al. (2006). Numerical optimization: theoretical and practical aspects, 2nd ed. Springer, Berlin. ISBN 3-540-35445-X.

15. Boshuizen, F. et al. (2010). Stochastic processes for finance: risk management tools. VU University, Amsterdam.

16. Box, G. E. P., Jenkins, G. M. (1976). Time series analysis: forecasting and control. Holden-Day, San Francisco. ISBN 0876211043.

17. Box, G. E. P., Jenkins, G. M., Reinsel, G. C. (1994). Time series analysis: forecasting and control. Prentice Hall, New Jersey. ISBN 0-13-060774-6.

18. Brandimarte, P. (2006). Numerical methods in finance and economics. Wiley-Interscience, New Jersey. ISBN 978-0-471-74503-7.

19. Brock, W., Dechert, W. D., Scheinkman, J. (1987). A test for independence based on the correlation dimension. Department of Economics, University of Wisconsin at Madison, University of Houston and University of Chicago.

20. Brockwell, P. J., Davis, R. A. (1987). Time series: theory and methods. Springer, New York. ISBN 0-387-96406-1.

21. Brownstone, D. (1996). Using percentage accuracy to measure neural network predictions in stock market movements. Neurocomputing, vol. 10, no. 3, s. 237-250.

22. Broyden, C. G. (1970). The convergence of a class of double-rank minimization algorithms. Journal of the Institute of Mathematics and Its Applications, vol. 6, no. 1, s. 76-90.

23. Campbell, J. Y., Lo, A. W., MacKinlay, A. C. (1997). The econometrics of financial markets. Princeton University Press, Princeton, New Jersey. ISBN 0-691-04301-9.

24. Castillo, P. A., et al. (2000). G-Prop: global optimization of multilayer perceptrons using GAs. Neurocomputing, vol. 35, no. 1-4, s. 149-163.

25. Černý, V. (1985). Thermodynamical approach to the Traveling salesman problem: an efficient simulation algorithm. Journal of Optimization Theory and Applications, vol. 45, no. 1, s. 41-51.

26. Chatfield, C. (2004). The analysis of time series: an introduction, 6th ed. Chapman & Hall/CRC, London. ISBN 1-58488-317-0.

27. Chen, A. S., Leung, M. T., Daouk, H. (2003). Application of neural networks to an emerging financial market: forecasting and trading the Taiwan Stock Index. Computers & Operations Research, vol. 30, no. 6, s. 901-923.

28. Chibante, R., ed. (2010). Simulated annealing theory with applications. Sciyo, Rijeka. ISBN 978-953-307-134-3.

29. Churchland, P. S., Sejnowski, T. J. (1992). The computational brain. MIT Press, Cambridge (Massachusetts). ISBN 0-262-03188-4.

30. Cipra, T. (2008). Finanční ekonometrie. Ekopress, Praha. ISBN 978-80-86929-43-9.

31. Clark, T. E., McCracken, M. W. (2001). Tests of equal forecast accuracy and encompassing for nested models. Journal of Econometrics, vol. 105, no. 1, s. 85-110.

32. Clark, T. E., West, K. D. (2006). Using out-of-sample mean suared prediction errors to test the martingale difference hypothesis. Journal of Econometrics, vol. 135, no. 1-2, s. 155-186.

33. Clements, M. P., Hendry, D. F. (1998). Forecasting economic time series. Cambridge University Press, Cambridge, UK. ISBN 0-521-63242-0.

34. Corradi, V., Swanson, N. R. (2002). A consistent testo for nonlinear out of sample predictive accuracy. Journal of Econometrics, vol. 110, no. 2, s. 353-381.

35. Cowles, A., Jones, H. E. (1937). Some a posteriori probabilities in stock market action. Econometrica, vol. 5, no. 3, s. 280-294.

36. Cox, D. R., Miller, H. D. (1968). The theory of stochastic processes. Wiley, New York. ISBN 0-412-151707-7.

37. Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems, vol. 2, no. 4, s. 303-314.

38. Da, Y., Xiurun, G. (2005). An improved PSO-based ANN with simulated annealing technique. Neurocomputing, vol. 63, s. 527-533.

39. Dam, M., Saraf, D. N. (2006). Design of neural networks using genetic algorithm for on-line property estimation of crude fractionators products. Computers and Chemical Engineering, vol. 30, no. 4, s. 722-729.

40. Dantas, A., Seixas, J. (2005). An Adaptive Neural System for Financial Time Series Tracking. Adaptive and Natural Computing Algorithms, vol. 4, s.421-424.

41. Davidon, W. C. (1976). Optimization by nonlinear scaling. Technical Report, Institutt for Teoretisk Fysikk, Trondheim, Norway.

42. De Falco, I., et al. (1998). Evolutionary Neural Networks for nonlinear dynamics modeling. Lecture Notes in Computer Science, vol. 1498, s. 593-602.

43. Dennis, J. E., Moré, J. J. (1977). Quasi-Newton methods, motivation and theory. SIAM Review, vol. 19, no. 1, s. 46-89.

44. Dennis, J. E., Schnabel, R. B. (1996). Numerical methods for unconstrained optimization and nonlinear equations. SIAM, Philadelphia. ISBN 0-89871-364-1.

45. Desai, V. S., Bharati, R. (1998). A comparison of linear regression and neural networks methods for predicting excess returns on large stocks. Annals of Operations Research, vol. 78, s. 127-163.

46. Dickey, D. A., Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, vol. 74, no. 366, s. 427-431.

47. Diebold, F. X., Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business & Economic Statistics, vol. 13, no. 3, s. 253-263.

48. Dorsey, R. E., Sexton, R. S. (1998). The use of parsimonious neural networks for forecasting financial time series. Journal of Computational Intelligence in Finance, vol. 6, no. 1, s. 24-31.

49. Dupačová, J., Hurt, J., Štěpán, J. (2002). Stochastic modeling in economics and finance. Kluwer, Dordrecht. ISBN 0-306-48167-7.

50. Durbin, J., Watson, G. S. (1950). Testing for serial correlation in least squares regression I. Biometrika, vol. 37, no. 3-4, s. 409-428.

51. Durbin, J., Watson, G. S. (1951). Testing for serial correlation in least squares regression II. Biometrika, vol. 38, no. 1-2, s. 159-177.

52. Eglese, R. W. (1990). Simulated annealing: a tool for operational research. European Journal of Operational Research, vol. 46, no.3, s. 271-281.

53. Engel, J. (1988). Teaching feed-forward neural networks by simulated annealing. Complex Systems, vol. 2, no. 6, s. 641-648.

54. Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, vol. 50, no. 4, s. 987-1007.

55. Engle, R. F., Bollerslev, T. (1986). Modeling the persistence of conditional variances. Econometric Reviews, vol. 5, no. 1, s. 1-50.

56. Enke, D., Thawornwong, S. (2005). The use of data mining and neural networks for forecasting stock market returns. Expert Systems with Applications, vol. 29, no. 4, s. 927-940.

57. Epanechnikov, V. A. (1969). Nonparametric estimation of a multivariate probability density. Theory of Probability and Its Applications, vol. 14, s. 153-158.

58. Fama, E. F. (1970). Efficient capital markets: a review of theory and empirical work. Journal of Finance, vol. 25, no. 1, s. 383-417.

59. Fama, E. F. (1991). Efficient capital markets: II. Journal of Finance, vol. 46, no. 5, s. 1575-1617.

60. Fabozzi, F. J. et al. (2007). Financial econometrics. Wiley, New Jersey. ISBN 978-0-471-78450-0.

61. Fan, J., Yao, Q. (2005). Nonlinear time series: nonparametric and parametric methods. Springer, New York. ISBN 978-0-387-26142-3.

62. Fausett, L. (1993). Fundamentals of neural networks: architectures, algorithms and applications. Prentice Hall, New Jersey. ISBN 978-0-13334-186-7.

63. Fernandez, A., Gomez, S. (2007). Portfolio selection using neural networks. Computers & Operations Research, vol. 34, no. 4, s. 1177-1191.

64. Fletcher, R. (1970). A new approach to variable metric algorithms. The Computer Journal, vol. 19, no. 3, s. 317-322.

65. Fletcher, R., Reeves, C. M. (1964). Function minimization by conjugate gradients. The Computer Journal, vol. 7, no. 2, s. 149-154.

66. Francq, Ch., Zakoian, J. M. (2010). GARCH models: structure, statistical inference and financial applications. Wiley, Chichester. ISBN 978-0-470-68391-0.

67. Franke, J., Härdle, W. K., Hafner, CH. M. (2008). Statistics of financial markets, 2nd ed. Springer, Berlin. ISBN 978-3-540-76272-0.

68. Franses, P. H., Van Dijk, D. (2003). Nonlinear time series models in empirical finance. Cambridge University Press, Cambridge (UK). ISBN 0-521-77041-6.

69. Galushkin, A. I. (2007). Neural networks theory. Springer, Berlin. ISBN 978-3-540-48124-9.

70. Gao, J. (2007). Nonlinear time series: semiparametric and nonparametric methods. Chapman & Hall/CRC, Boca Raton. ISBN 978-1-58488-613-6.

71. Geman, S., Geman, D. (1984). Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Transactions on Patterns Analysis and Machine Intelligence, vol. 20, no. 6, s. 721-741.

72. Gencay, R. (1998). Optimization of technical trading strategies and the profitability in securities markets. Economic Letters, vol. 59, no. 2, s. 249-254.

73. Ghazali, R. et al. (2009). Non-stationary and stationary prediction of financial time series using dynamic ridge polynomial neural network. Neurocomputing, vol. 72, no. 1-2, s. 2359-2367.

74. Glover, F. (1986). Future paths for integer programming and links to artificial intelligence. Computer Operational Research, vol. 13, no. 5, s. 533-549.

75. Glover, F., Kochenberger, G. A., eds. (2003). Handbook of metaheuristics. Kluwer, New York. ISBN 0-306-48056-5.

76. Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Professional, Reading (Massachusetts). ISBN 978-0-20115-767-3.

77. Goldfarb, D. (1970). A family of variable-metric methods derived by variational means. Mathematics of Computation, vol. 24, no. 109, s. 23-26.

78. Graupe, D. (2007). Principles of artificial neural networks, 2nd ed. World Scientific, New Jersey. ISBN 978-981-270-624-9.

79. Gregoriou, G. N., ed. (2009). Stock market volatility. Chapman & Hall/CRC, Boca Raton. ISBN 978-1-4200-9954-6.

80. Grossman, S., Stiglitz, J. (1980). On the impossibility of informationally efficient markets. American Economic Review, vol. 70, s. 393-408.

81. Gupta, M. G., Jin, L., Homma, N. (2003). Static and dynamic neural networks: from fundamentals to advanced theory. Wiley, New Jersey. ISBN 0-471-21948-7.

82. Hagan, M. T., Demuth, H. B., Beale, M. (1996). Neural network design. PWS Publishing, Boston. ISBN 7-111-10841-8.

83. Hagan, M. T., Menhaj, M. B. (1994). Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, vol. 5, no. 6, s. 989-993.

84. Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series subject to changes in regime. Econometrica, vol. 57, no. 2, s. 357-384.

85. Hamilton, J. D. (1994). Time series analysis. Princeton University Press, Princeton, New Jersey. ISBN 0-691-04289-6.

86. Harris, R., Sollis, R. (2003). Applied time series modelling and forecasting. Wiley, Chichester. ISBN 0-470-84443-4.

87. Haykin, S. (1999). Neural networks: a comprehensive foundation, 2nd ed. Pearson Education, Singapore. ISBN 81-7808-300-0.

88. Hebb, D. O. (1949). The organization of behavior: a neuropsychological theory. Lawrence Erlbaum Associates, New Jersey. ISBN 978-0-80584-300-2.

89. Hellstrom, T., Holmstrom, K. (1998). Predicting the stock market. Technical report IMa-TOM-1997-07, Center of Mathematical Modeling, Department of Mathematics and Physics, Mälardalen University, Västeras.

90. Hestenes, M. R. (1978). Conjugate direction methods in optimization. In Stoer, J. (ed.). Proceedings of the 8th IFIP Conference on Optimization Techniques, 1977, Part 1. Springer, Berlin. ISBN 3-540-08707-9. s. 8-27.

91. Hestenes, M. R., Stiefel, E. (1952). Methods of conjugated gradients for solving linear systems. Journal of Research of the National Bureau of Standards, vol. 49, no. 6, s. 409-436.

92. Hill, R. C., Griffiths, W. E., Lim, C. C. (2011). Principles of Econometrics, 3rd ed. Wiley, New Jersey. ISBN 978-0-470-62673-3.

93. Hinch, J. M.. (1980). Testing for gaussianity and linearity of a stationary time series. Journal of Time Series Analysis, vol. 3, no. 3, s. 169-176.

94. Hinton, G. E., Sejnowski, T. J. (1983). Optimal perceptual inference. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, s. 448-453.

95. Hochreiter, S., Schmidhuber, J. (1997). Flat minima. Neural Computation, vol. 9, s. 1-42.

96. Holland, J. H. (1975). Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor, Michigan. Reissued by MIT Press (1992), Cambridge (Massachusetts). ISBN 978-0-262-58111-0.

97. Hornik, K., Stinchcombe, M., White, H. (1989). Multilayer feedforward network are universal approximators. Neural Networks, vol. 2, no. 5, s. 359-366.

98. Hung, S., Liang, T., Liu, V. W. (1996). Integrate arbitrage pricing theory and artificial neural networks to support portfolio management. Decision Support Systems, vol. 18, no. 3-4, s. 301-316.

99. Huwaldt, J. A. (1999). Feed forward network with scaled conjugate gradient learning. <jhuwaldt@gte.net>.

100. Jarque, C. M., Bera, A. K. (1980). Efficient test for normality, homoscedasticity, and serial independence of regression residuals. Economic Letters, vol. 6, no. 3, s. 255-259.

101. Kamruzzaman, J., Begg, K. R., Sarker, R. A., eds. (2006). Artificial neural Networks in finance and manufacturing. Idea Group, London. ISBN 1-59140-672-2.

102. Kasabov, N. K. et al. (1997). FuNN/2 – a fuzzy neural network architecture for adaptive learning and knowledge acquisition. Information Sciences, vol. 101, no. 3-4, s. 155-175.

103. Kim, S. H., Chun, S. H. (1998). Graded forecasting using an array of bipolar predictions: application of probabilistic neural networks to a stock market index. International Journal of Forecasting, vol. 14, no. 3, s. 323-337.

104. Kim, T. Y. et al. (2004). Artificial neural networks for non-stationary time series. Neurocomputing, vol. 61, no. , s. 439-447.

105. Kinnebrock, W. (1994). Accelerating the standard backpropagation method using a genetic approach. Neurocomputing, vol. 6, no. 5-6, s. 583-588.

106. Kirchgässner, G., Wolters, J. (2007). Introduction to Modern Time Series Analysis. Springer, Berlin. ISBN 978-3-540-73290-7.

107. Kirkpatrick, S., Gelatt, C. D., Vecchi, M. (1983). Optimization by simulated annealing. Science, vol. 220, no. 4598, s. 671-680.

108. Knight, J., Satchell, S., eds. (2002). Forecasting volatility in the financial markets. Butterworth-Heinemann, Oxford. ISBN 0-75065515-1.

109. Kodogiannis, V., Lolis, A. (2002). Forecasting financial time series using neural network and fuzzy system-based techniques. Neural Computing & Applications, vol. 11, no. 2, s. 90-102.

110. Kohara, K. et al. (1997). Stock price prediction using prior knowledge and neural networks. International Journal of Intelligent Systems in Accounting, Finance, and Management, vol. 6, no.1, s. 11-22.

111. Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics, vol. 43, no. 1, s. 59-69.

112. Kohzadi, N. et al. (1996). A comparison of artificial neural network and time series models for forecasting commodity prices. Neurocomputing, vol. 10, no. 2, s. 169-181.

113. Koza, J. R., Rice, J. P. (1991). Genetic generation of both the weights and architecture for a neural network. IJCNN-91 Seattle International Joint Conference on Neural Networks, vol. 2, s. 397-404.

114. Kuo, R. J. (1998). A decision support system for the stock market through integration of fuzzy neural networks and fuzzy delphi. Applied Artificial Intelligence, vol. 12, no. 6, s. 501-520.

115. Lam, K., Lam, K. C. (2000). Forecasting for the generation of trading signals in financial markets. Journal of Forecasting, vol. 19, no. 1 , s. 39-52.

116. LeBaron, B. D., Weigend, A. (1998). A bootstrap evaluation of the effect of data splitting on financial time series. IEEE Transactions on Neural Networks, vol. 9, no. 2, s. 213-220.

117. Lee, K. Y., El-Sharkawi, M. A., eds. (2008). Modern heuristic optimization techniques: theory and applications to power systems. IEEE Press, New Jersey. ISBN 978-0471-45711-4.

118. Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. The Quarterly of Applied Mathematics, vol. 2, s. 164-168.

119. Liao, Z., Wang, J. (2010). Forecasting model of global stock index by stochastic time effective neural network. Expert Systems with Applications, vol. 37, no. 1, s. 834-841.

120. Lim, G. C., McNelis, P. D. (1998). The effect of the Nikkei and the S&P on the all ordinaries: a comparison of three models. International Journal of Finance & Economics, vol. 3, no. 3, s. 217-228.

121. Liu, Y. P., Wu, M. G., Qian, J. X. (2006). Evolving neural networks using the hybrid of ant colony optimization and BP algorithms. In Wang, J. et al. (eds.). Advances in Neural Networks – ISSN 2006, vol. 3971, s. 714-722.

122. Ljung, G. M., Box, G. E. P. (1978). On a measure of lack of fit in time series models. Biometrika, vol. 65, no. 2, s. 257-303.

123. Lo, A. W., MacKinlay, A. C. (1999). A non-random walk down wall street. Princeton University Press, Princeton, New Jersey. ISBN 0-691-09256-7.

124. Lowe, D. (1994). Novel exploitation of neural network methods in financial markets. Neural Networks, 1994. IEEE World Congress on Computational Intelligence. IEEE International Conference on Neural Networks, vol. 6, s. 3623-3628.

125. Lucas, R. E. (1978). Asset prices in an exchange economy. Econometrica, vol. 46, no. 6, s. 1429-1445.

126. Malkiel, B. (1992). Efficient market hypothesis. In Newman, P., Milgate,
M., Eatwell, J. (eds.), New palgrave dictionary of money and finance, Macmillan, London. ISBN 978-0-33352-722-1.

127. Mandelbrot, B. (1964). The variation of certain speculative prices. In Cootner, P. H. (ed.). The random character of stock market prices. MIT Press, Cambridge (Massachusetts). ISBN 978-0-262-03009-0.

128. Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, vol. 11, no. 2, s. 431-441.

129. MathWorks (2010). Global optimization toolbox user´s guide, 3rd ed. MathWorks, Natick (Massachusetts).

130. McCracken, M. W. (1999). Asymptotics for out-of-sample tests of causality. Lousiana State University, manuscript.

131. McCulloch, R. E., Tsay, R. S. (1993). Bayesian inference and prediction for mean and variance shifts in autoregressive time series. Journal of the American Statistical Association, vol. 88, no. 423, s. 968-978.

132. McCulloch, W. S., Pitts, W. H. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, vol. 5, s. 115-133.

133. McLeod, A. I., Li, W. K. (1983). Diagnostic checking ARMA time series models using squared-residual autocorrelations. Journal of Time Series Analysis, vol. 4, no. 4, s. 269-273.

134. McNelis, P. D. (2005). Neural networks in finance: gaining predictive edge in the market. Elsevier, Burlington. ISBN 0-12-485967-4.

135. Merton, R. C. (1990). Continuous time finance. Blackwell, Cambridge (Massachusetts). ISBN 0-631-15847-2.

136. Meese, R., Rogoff, K. (1998). Was it real? the exchange rate-interest differential relation over the modern floating-rate period. The Journal of Finance, vol. 43, no. 4, s. 933-948.

137. Metropolis, N. et al. (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics, vol. 21, no. 6, s. 1087-1092.

138. Michalewicz, Z. (1996). Genetic algorithms + data structures = evolution programs, 3rd ed. Springer, Berlin. ISBN 3-540-60676-9.

139. Mitchell, M. (1999). An introduction to genetic algorithms. MIT Press, Cambridge (Massachusetts). ISBN 0-262-13316-4.

140. Moeanaddin, R., Tong, H. (1990). Numerical evaluation of distributions in nonlinear autoregression. Journal of Time Series Analysis, vol. 11, no. 1, s. 33-48.

141. Møller, M. F. (1993). A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, vol. 6, no. 4, s. 525-533.

142. Motiwalla, L., Wahab, M. (2000). Predictable variation and profitable trading of US equities: a trading simulation using neural networks. Computer & Operations Research, vol. 27, no. 11-12, s. 1111-1129.

143. Nadayara, E. A. (1964). On estimating regression. Theory and Probability Application, vol. 9, no.1, s. 141-142.

144. Nelson, D. (1991). Conditional heteroscedasticity in asset returns: a new approach. Econometrica, vol. 59, no. 2, s. 347-370.

145. Nocedal, J., Wright, S. J. (2006). Numerical optimization, 2nd ed. Springer, New York. ISBN 978-0387-30303-1.

146. O´Connor, N., Madden, M. G. (2006). A neural network approach to predicting stock exchange movements using external factors. Knowledge-Based Systems, vol. 19, no. 5, s. 371-378.

147. Oh, K. J., Kim, K. (2002). Analyzing stock market tick data using piecewise nonlinear model. Expert Systems with Applications, vol. 22, no. 3, s. 249-255.

148. Olson, D., Mossman, CH. (2003). Neural network forecasts of Canadian stock returns using accounting ratios. International Journal of Forecasting, vol. 19, no. 3, s. 453-465.

149. Osman, I. H., Laporte, G. (1996). Metaheuristics: a bibliography. Annals of Operations Research, vol. 63, no. 5, s. 511-623.

150. Őstermark, R. (1999). A fuzzy neural network algorithm for multigroup classification. Fuzzy Sets and Systems, vol. 105, no. 1, s. 113-122.

151. Őzdamar, L., Demirhan, M. (2000). Experiments with new stochastic global optimization search techniques. Computers & Operations Research, vol. 27, no. 9, s. 841-865.

152. Panchal, G. et al. (2010). Searching most efficient neural network architecture using Akaike´s information criterion. International Journal of Computer Applications, vol. 1, no. 5, s. 41-44.

153. Pankratz, A. (1983). Forecasting with univariate Box-Jenkins models: concepts and cases. Wiley, New York. ISBN 0-471-03023-9.

154. Pantazopoulos, K. N. et al. (1998). Financial prediction and trading strategies using neurofuzzy approaches. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 28, no.4, s. 520-530.

155. Papoulis, A. (1984). Probability, random variables and stochastic processes, 2nd ed. McGraw-Hill, New York. ISBN 0-07-048468-6.

156. Phillips, P. C. B., Perron, P. (1988). Testing for unit root in times series regression. Biometrica, vol. 75, no. 2, s. 335-346.

157. Polak, E., Ribiére, G. (1969). Note sur la convergence de méthodes de directions conjuguées. Revue Francaise d´Informatique et de Recherche Opérationnelle, vol. 16, s. 35-43.

158. Powell, M. J. D. (1975). A view of unconstrained minimization algorithms that to not require derivatives. ACM Transactions on Mathematical Software, vol. 1, no. 2, s. 97-107.

159. Quah, T., Srinivasan, B. (1999). Improving returns on stock investment through neural network selection. Expert Systems with Applications, vol. 17, no. 4, s. 295-301.

160. Ramsey, J. B. (1969). Tests for specification errors in classical linear least squares regression analysis. Journal of the Royal Statistical Society. Series B(Methodological), vol. 31, no. 2, s. 350-371.

161. Reeves, C. R., Rowe, J. E. (2003). Genetic algorithms: principles and perspectives. Kluwer, Dordrecht. ISBN 0-306-48050-6.

162. Roberts, H. V. (1959). Stock market patterns and financial analysis: methodological suggestions. Journal of Finance, vol. 14, no. 1, s. 1-10.

163. Roberts, H. V. (1967). Statistical versus clinical prediction of the stock market. Unpublished manuscript, CRSP, University of Chicago.

164. Robinson, P. M. (1991). Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression. Journal of Econometrics, vol. 47, no. 1, s. 67-84.

165. Rojas, R. (1996). Neural networks: a systematic introduction. Springer, Berlin. ISBN 978-3-54060-505-8.

166. Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1986). Learning internal representations by error propagation. In Rumelhart, D. E., McClelland, J. L. (eds.). Parallel distributed processing: exploration in the microstructure of cognition. MIT Press, Cambridge (Massachusetts). ISBN 978-0-26248-120-4. s. 318-362.

167. Saad, E. W., Prokhorov, D. V., Wunsch, D. C. (1998). Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks. IEEE Transactions on Neural Networks, vol. 9, no. 6, s. 1456-1470.

168. Sarangapani, J. (2006). Neural network control of nonlinear discrete-time systems. CRC Press, Boca Raton. ISBN 978-0-8247-2677-5.

169. Sarkar, D., Modak, J. M. (2003). ANNSA: a hybrid artificial neural network/simulated annealing algorithm for optimal control problems. Chemical Engineering Science, vol. 58, no. 14, s. 3131-3142.

170. Schewchuk, J. R. (1994). An introduction to the conjugate gradient method without the agonizing pain. Technical Report, School of Computer Science, Carnegie Mellon University, Pittsburgh.

171. Schwefel, H. P. (1981). Numerical optimization of computer models. Wiley, New York. ISBN 0471099880.

172. Sexton, R. S., Dorsey, R. E., Johnson, J. D. (1999). Beyond backpropagation: using simulated annealing for training neural networks. Journal of End User Computing, vol. 11, no. 3, s. 3-10.

173. Shanno, D. F. (1970). Conditioning of quasi-Newton methods for function minimization. Mathematics of Computation, vol. 24, no. 111, s. 647-656.

174. Shi, H, Li, W. (2010). Evolving artificial neural networks using simulated annealing-based hybrid genetic algorithms. Journal of Software, vol. 5, no. 4, s. 353-360.

175. Siekmann, S. et al. (2001). Information fusion in the context of stock index prediction. International Journal of Intelligent Systems, vol. 16, no. 11, s. 1285-1298.

176. Sietsma, J., Dow, R. J. F. (1988). Neural net pruning-why and how. IEEE International Conference on Neural Networks, vol. 1, s. 325-333.

177. Sivandam, S. N., Deepa, S. N. (2008). Introduction to genetic algorithms. Springer, Berlin. ISBN 978-3-540-73189-4.

178. Socha, K., Blum, Ch. (2007). An ant colony optimization algorithm for continuous optimization: application to feed-forward neural network training. Neural Computing & Applications, vol. 16, no. 3, s. 235-247.

179. Sontag, E. D. (1992). Feedback stabilization using two-hidden-layer nets. IEEE Transactions on Neural Networks, vol. 3, s. 981-990.

180. Subba Rao, T., Gabr, M. M. (1980). A test for linearity of stationary time series analysis. Journal of Time Series Analysis, vol. 1, no. 2, s. 145-158.

181. Subudhi, B., Jena, D. (2008). Differential evolution and Levenberg Marquardt trained neural network scheme for nonlinear system identification. Neural Processing Letters, vol. 27, no. 3, s. 285-296.

182. Suman, B., Kumar, P. (2006). A survey of simulated annealing as a tool for single and multiobjective optimization. Journal of the Operational Research Society, vol. 57, no. 10, s. 1143-1160.

183. Sun, Y., Qian, J. (2007). Forecast the dangerous level of gas outburst based on GASA neural network in coal mine. ICNC 2007. Third International Conference on Natural Computation, vol. 2, s. 641-645.

184. Swales, G. S., Yoon, Y. (1992). Applying artificial neural networks to investment analysis. Financial Analysts Journal, vol. 48, no. 5, s. 78-80.

185. Talbi, E. (2009). Metaheuristics: from design to implementation. Wiley, New Jersey. ISBN 978-0-470-27858-1.

186. Tambouratzis, T. (1997). A simulated annealing artificial neural network implementation of the n-queens problem. International Journal of Intelligent Systems, vol. 12, no. 10, s. 739-751.

187. Tan, C. M., ed. (2008). Simulated annealing. In-teh, Rijeka. ISBN 978-953-7619-07-7.

188. Tong, H. (1990). Non-linear time series. Oxford University Press, Oxford. ISBN 978-0-198-52224-9.

189. Topchy, A. P., Lebedko, O. A., Miagkhik, V. V. (1996). Fast learning in multilayered neural networks by means of hybrid evolutionary and gradient algorithms. Proceedings of the International Conference on Evolutionary Computation and its Applications, EvCA´96, Moscow, s. 245-253.

190. Trippi, R. R., Turban, E., eds. (1996). Neural networks in finance and investing: using artificial intelligence to improve real-world problems. Irwin, Chicago. ISBN 1-55738-919-5.
191. Tsay, R. S. (2010). Analysis of financial time series. 3rd ed. Wiley, New Jersey. ISBN 978-0-470-41435-4.

192. Van Der Smagt, P. P.(1994). Minimisation methods for training feedforward neural networks. Neural Networks, vol. 7, no. 1, s. 1-11.

193. Van Laarhoven, P. J. M., Aarts, E. H. L., Lenstra, J. K. (1992). Job shop scheduling by simulated annealing. Operations Research, vol. 40, no. 1, s. 113-125.

194. Watson, G. S. (1964). Smooth regression analysis. Sankhya: The Indian Journal of Statistics, Series A, vol. 26, no. 4, s. 359-372.

195. Weise, T. (2008). Global optimization algorithms: theory and application. University of Kassel, Distributed Systems Group, Self-Published.

196. West, K. D., Edison, H. K., Cho, D. (1993). A utility-based comparison of some models of exchange rate volatility. Journal of International Economics, vol. 35, no. 1-2, s. 23-45.

197. White, D., Ligomenides, P. (1993). GANNet: a genetic algorithm for optimizing topology and weights in neural network design: the first step in finding neural network solution. Lecture Notes in Computer Science, vol. 686, s. 322-327.

198. Whitley, D., Starkweather, T., Bogart, C. (1990). Genetic algorithms and neural networks: optimizing connections and connectivity. Parallel Computing, vol. 14, no. 3, s. 347-361.

199. Widrow, B., Hoff, M. E. (1960). Adaptive switching circuits. IRE WESCON Convention Record, vol. 4, s. 96-104.

200. Wong, C. C. Chan, M. C., Lam, C. C. (2000). Financial time series forecasting by neural network using conjugate gradient learning algorithm and multiple linear regression weight initialization. Computing in Economics and Finance 2000. Society for Computational Economics Working Paper, vol. 61.

201. Wooldridge, J. M. (2006). Introductory Econometrics: a modern approach. 2nd ed. Boston, South-Western College Publishing. ISBN 978—0324113648.

202. Yao, X., Liu, Y. (1998). Towards designing artificial networks by evolution. Applied Mathematics and Computation, vol. 91, no. 1, s. 83-90.

203. Ye, J. et al. (2007). A tabu based neural network learning algorithm. Neurocomputing, vol. 70, no. 4-6 , s. 875-882.

204. Yim, J. (2002). A comparison of neural networks with time series models for forecasting returns on a stock market index. In Hendtlass, T., Ali, M. (eds.). IEA/AIE 2002, LNAI 2358. Springer, London. ISBN 3-540-43781-9. s. 25-35.

205. Zamani, M., Sadeghian, A. (2010). A variation of particle swarm optimization for training of artificial neural network. In Al-Dahoud, A. (ed.). Computational intelligence and modern heuristics. InTech, Vukovar. ISBN 978-953-7619-28-2.

206. Zhang, D. et al. (2010). A simulated annealing with a new neighborhood structure based algorithm for high school timetabling problem. European Journal of Operational Research, vol. 203, no. 3, s. 550-558.

207. Zhang, G. P., ed. (2004). Neural networks in business forecasting. Idea Group, London. ISBN 1-59140-215-8.

208. Zhang, M., ed. (2009). Artificial high order neural networks for economics and business. Information Science Reference, London. ISBN 978-1-59904-898-7.
Předběžná náplň práce
Tato práce si klade za cíl analyzovat výnosy akciových trhů s využitím nového typu neuronové sítě, která kombinuje principy klasických neuronových sítí a metaheuristických metod v podobě simulovaného žíhání a genetických algoritmů. V empirické části porovnává výkony prezentované sítě s klasickými metodami analýzy časových rad a třemi typy běžných neuronových sítí na pěti světových akciových indexech.
Předběžná náplň práce v anglickém jazyce
This thesis focuses on stock markets returns analysis using a new type of neural network which combines the principles of standard artificial neural networks and metaheuristic methods, namely simulated annealing and genetic algorithms. In empirical part compares the performance of the presented network with conventional time series analysis methods and free types of ordinary neural networks on five world stock indices.
 
Univerzita Karlova | Informační systém UK