Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 390)
Detail práce
   Přihlásit přes CAS
Deep Neural Networks for Graph Data Processing
Název práce v češtině: Deep Neural Networks for Graph Data Processing
Název v anglickém jazyce: Deep Neural Networks for Graph Data Processing
Klíčová slova: hluboké neuronové sítě|grafové neuronové sítě|grafové konvoluční sítě|grafové autoenkodéry|grafové neuronové sítě s pozorností|planární grafy
Klíčová slova anglicky: deep neural networks|graph neural networks|graph convolutional networks|graph autoencoders|graph attention networks|planar graphs|graph isomorphism
Akademický rok vypsání: 2023/2024
Typ práce: bakalářská práce
Jazyk práce: angličtina
Ústav: Katedra teoretické informatiky a matematické logiky (32-KTIML)
Vedoucí / školitel: doc. RNDr. Iveta Mrázová, CSc.
Řešitel: skrytý - zadáno a potvrzeno stud. odd.
Datum přihlášení: 17.06.2024
Datum zadání: 17.06.2024
Datum potvrzení stud. oddělením: 13.07.2024
Datum a čas obhajoby: 06.09.2024 09:00
Datum odevzdání elektronické podoby:15.07.2024
Datum odevzdání tištěné podoby:15.07.2024
Datum proběhlé obhajoby: 06.09.2024
Oponenti: Mgr. Vladan Majerech, Dr.
 
 
 
Zásady pro vypracování
The student shall review the following topics in his bachelor's thesis:

- neural network architectures applicable to deep learning – convolutional neural networks (CNN), recurrent neural networks of the long short-term memory (LSTM) type, and transformers, among others,

- graph neural networks and their variants, in particular, the models of graph convolutional networks (GCN), graph autoencoders (GAE), and graph attention networks (GAT).

He shall propose a suitable strategy to reliably process real-world graph data (e.g., from the areas of chemistry or biology). Preferably, the processed data shall have a planar graph form. Furthermore, the student shall develop a suitable representation of the involved data and implement the models. Evaluating the results and the gained experience will be vital to the thesis.
Seznam odborné literatury
1. Some of the textbooks available for the chosen area of research, e.g.:
- C. C. Agarwal: Neural Networks and Deep Learning, Springer, (2018).
- C. M. Bishop, H. Bishop: Deep Learning, Springer, (2024).
- W. L. Hamilton: Graph Representation Learning, Springer, (2022).
- L. Wu, P. Cui, J. Pei, L. Zhao: Graph Neural Networks: Foundations, Frontiers, and Applications, Springer, (2022).


2. Journal papers and other publications:
- R. Dimitrov, Z. Zhao, R. Abboud, and I. I. Ceylan: PlanE: Representation Learning over Planar Graphs, in: Proc. of NeurIPS 2023, (2023), 27 p.
- W. Gao, S. P. Mahajan, J. Sulam, and J. J. Gray: Deep Learning in Protein Structure Modeling and Design, in: Patterns, Vol. 1, No. 9, (2020), 23 p.
- D. Grattarola and C. Alippi: Graph Neural Networks in TensorFlow and Keras with Spektral, in: IEEE Computational Intelligence Magazine, Vol. 16, No. 1, (2021), pp. 99-106.
- Ch. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and M. Neumann: TUDataset: A collection of benchmark datasets for learning with graphs, in: Proc. of ICML 2020 - workshop "Graph Representation Learning and Beyond," (2020), 11 p.
- F. Scarselli et al.: The Graph Neural Network Model, in: IEEE Transactions on Neural Networks, Vol. 20, No.1, 2009, pp. 61-80.
- Z. Wu, S. Pan, F. Chen, G. Long, Ch. Zhang, and P. S. Yu: A Comprehensive Survey on Graph Neural Networks, in: IEEE Transactions on Neural Networks and Learning Systems, Vol. 32, No. 1, (2021), pp. 4-24.
- J. Zhou, G. Cui, S. Hu, Z. Zhang, Ch. Yang, Z. Liu, L. Wang, Ch. Li, and M. Sun: Graph Neural Networks: A Review of Methods and Applications, in: AI Open 1, (2020), pp. 57-81.

3. Relevant articles from leading academic journals, e.g.:
IEEE Transactions on Neural Networks and Learning Systems, Neural Networks, Neurocomputing, etc.
 
Univerzita Karlova | Informační systém UK