Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 368)
Detail práce
   Přihlásit přes CAS
Influence of porosity on tidal deformation in planetary bodies
Název práce v češtině: Vliv porozity na slapovou deformaci planet a měsíců
Název v anglickém jazyce: Influence of porosity on tidal deformation in planetary bodies
Klíčová slova: slapová deformace|poro(visko)elasticita|počítačové modelování
Klíčová slova anglicky: tidal deformation|poro(visco)elasticity|numerical modelling
Akademický rok vypsání: 2023/2024
Typ práce: diplomová práce
Jazyk práce: angličtina
Ústav: Katedra geofyziky (32-KG)
Vedoucí / školitel: doc. RNDr. Marie Běhounková, Ph.D.
Řešitel: skrytý - zadáno a potvrzeno stud. odd.
Datum přihlášení: 13.05.2024
Datum zadání: 13.05.2024
Datum potvrzení stud. oddělením: 13.05.2024
Konzultanti: doc. RNDr. Ondřej Souček, Ph.D.
Zásady pro vypracování
Exploring tidal deformation and its measurements presents a unique opportunity to probe the interiors of planetary bodies. Furthermore, the associated tidal dissipation can play a significant role in shaping planets' internal thermal evolution. Consequently, understanding the impact of planetary structure and rheological characteristics is crucial for accurately interpreting measurements and assessing long-term thermal evolution.

Although current research primarily focuses on the effects of advanced empirical rheological descriptions, the role of porosity in tidal deformation remains poorly understood (Liao et al., 2020; Rovira-Navarro et al., 2022; Kamata, 2023). Quantifying the influence of porosity on deformation becomes particularly significant for planetary bodies subjected to intense tidal heating, where substantial melting can occur, leading to the formation of porous regions. Similarly, the interiors of small moons, characterized by low gravity, may exhibit unconsolidated and porous structures (Roberts, 2015; Choblet et al., 2017).

This thesis aims to explore the behaviour of a poroelastic or poroviscoelastic medium and its impact on tidal response and dissipation. Within this thesis, the equations governing the deformation of such a medium will be derived (Cheng, 2016) and the corresponding weak form of these equations will be formulated. The numerical implementation will be conducted using the Firedrake or Fenics package (Ham et al., 2023; Alnaes et al., 2015). Specifically, the numerical investigations will concentrate on the porous core of Enceladus, a small moon of Saturn. The results will be compared with published results (Liao et al., 2020; Rovira-Navarro et al., 2022; Kamata et al., 2023).
Seznam odborné literatury
Alnæs, M.S., Blechta, J., Hake, J. et al. (2015). Supporting computer code for 'The FEniCS Project Version 1.5' (release notes). [Software].
Cheng, A. H.-D. (2016). Poroelasticity. ‎ Springer; 1st ed. 2016 edition, ISBN-10: ‎ 3319252003. https://doi.org/10.1007/978-3-319-25202-5
Choblet, G., Tobie, G., Sotin, C., Běhounková, M., Čadek, O., Postberg, F. and O. Souček (2017). Powering prolonged hydrothermal activity inside Enceladus, Nature Astronomy 1, 841-847, https://doi.org/10.1038/s41550-017-0289-8.
Ham, D. A., Kelly, P. H. J., Mitchell, L., Cotter, C. J., Kirby, R. C., Sagiyama, K., Bouziani, N., Vorderwuelbecke, S., Gregory, T. J., Betteridge, J., Shapero, D. R., Nixon-Hill, R. W., Ward, C. J., Farrell, P. E., Brubeck, P. D., Marsden, I., Gibson, T. H., Homolya, M., Sun, T., McRae, A. T. T., Luporini, F., Gregory, A., Lange, M., Funke, S. W., Rathgeber, F., & Bercea, G.-T., Markall, G. R. (2023). Firedrake User Manual (First edition). Imperial College London, University of Oxford, Baylor University and University of Washington, https://doi.org/10.25561/104839.
Kamata, S. (2023). Poroviscoelastic gravitational dynamics. Journal of Geophysical Research: Planets, 128, e2022JE007700. https://doi.org/10.1029/2022JE007700
Liao, Y., Nimmo, F., & Neufeld, J. A. (2020). Heat production and tidally driven fluid flow in the permeable core of Enceladus. Journal of Geophysical Research: Planets, 125, e2019JE006209. https://doi.org/10.1029/2019JE006209
Roberts, J.H. (2015). The fluffy core of Enceladus, Icarus 258, pp. 54-66. https://doi.org/10.1016/j.icarus.2015.05.033
Rovira‐Navarro, M., Katz, R.F., Liao, Y. van der Wal, W., Nimmo, F. (2022), The tides of Enceladus' porous core, Journal of Geophysical Research: Planets, 127(5), e2021JE007117. https://doi.org/10.1029/2021JE007117
 
Univerzita Karlova | Informační systém UK