Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 368)
Detail práce
   Přihlásit přes CAS
Kvantové provázání na dvojrozměrné mřížce
Název práce v češtině: Kvantové provázání na dvojrozměrné mřížce
Název v anglickém jazyce: Quantum spin fractionalization in quasi-2D compounds
Klíčová slova: nepružný rozptyl neutronů|magnetické vlastnosti|automatizace|laueho difrakce|kvantové provázání
Klíčová slova anglicky: inelastic neutron scattering|magnetic properties|automatization|laue diffraction|quantum entanglement
Akademický rok vypsání: 2023/2024
Typ práce: disertační práce
Jazyk práce:
Ústav: Katedra fyziky kondenzovaných látek (32-KFKL)
Vedoucí / školitel: RNDr. Petr Čermák, Ph.D.
Řešitel:
Konzultanti: Ross Harvey Colman, Dr.
Dr. rer. nat. Jeroen Custers
Zásady pro vypracování
1. Enrollment and completion of compulsory courses required for the 4F13 doctoral program at Charles University.
2. Characterization of materials candidates for QSL using inelastic neutron scattering.
3. Comparison of magnetic excitation spectra with theoretical models.
4. Utilization of high-angle neutron scattering for the analysis of spin wave spectra in polarized state to determine magnetic exchange interactions.
5. Exchange visits to the Bavarian partner (Uni Augsburg) for knowledge transfer, sample exchange, and utilization of their complementary infrastructure, specifically joint neutron scattering experiments.
6. Development and usage of automatic Laue sample aligner machine ALSA.
7. Contribution to the preparation of publications
8. Presentation of results at workshops or conferences
9. Summarizing the results, writing the dissertation
Seznam odborné literatury
1. G. Shirane, S. M. Shapiro and J. M. Tranquada. Neutron scattering with a triple-axis spectrometer: basic techniques. Cambridge University Press, 2002.
2. A.T. Boothroyd. Principles of Neutron Scattering from Condensed Matter. Oxford University Press, 2020.
3. C.-A. Wang, et al., Npj Quantum Inf. 9, 58 (2023)
4. S. M. Durbin, et al., J. Appl. Phys. 131, 224401 (2022)
5. A. A. M. Irfan, et al., New J. Phys. 23, 083022 (2021)
6. M. Enderle, et al., Phys. Rev. Lett. 104, 237207 (2010)
7. K. Matan, et al., Phys. Rev. B 105, 134403 (2022)
8. P.-L. Dai, et al., Phys. Rev. X 11, 021044 (2021)
9. K. W. Plumb, et al., Nat. Phys. 15, 54 (2019)
10. A. O. Scheie, et al., Nat. Phys. (2023)

and actual publications related to the topic
Předběžná náplň práce
viz Anglická upoutávka
Předběžná náplň práce v anglickém jazyce
Quantum entanglement describes the connection between particles in a system, where the properties of each particle depend on the state of all other particles in the system, irrespective of distance. Particles can no longer be described individually, expressing non-local correlations.
Bose-Einstein condensates or superconductors are macroscopically entangled quantum states of condensed matter. Noisy intermediate-scale quantum computers use the entanglement of superconducting qubits to perform calculations not possible with typical binary calculations [1]. Future quantum processors may utilize non-local entanglement that can manifest itself in topological order and fractionalized excitations, enabling fault-tolerant quantum computation. Quantum spin liquids (QSLs) containing a macroscopic number of entangled spin states in the absence of conventional symmetry breaking and long-range magnetic order, can be host of such excitations. Entanglement in QSLs is an inherently difficult to study property though. Entanglement itself can only be measured directly by some very complex experimental setups involving the use of entangled scattering probes [2,3], and no experimental confirmation has yet been published using these methods.
The task of the student will be to characterize the spinon quasiparticle excitations of several QSL candidate materials to unambiguously prove quantum entanglement in these fascinating ground-states.
It is 3-years fully funded position (0.75 FTE).
 
Univerzita Karlova | Informační systém UK