Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 368)
Detail práce
   Přihlásit přes CAS
Zlepšení předpověďi kosmického počasí kombinací různých zdrojů dat a technik
Název práce v češtině: Zlepšení předpověďi kosmického počasí kombinací různých zdrojů dat a technik
Název v anglickém jazyce: Improvement of Space weather prediction using a combination of different data sources and techniques
Akademický rok vypsání: 2024/2025
Typ práce: disertační práce
Jazyk práce:
Ústav: Katedra fyziky povrchů a plazmatu (32-KFPP)
Vedoucí / školitel: Gilbert Pi, Ph.D.
Řešitel:
Konzultanti: prof. RNDr. František Němec, Ph.D.
Zásady pro vypracování
The principal task of the present effort in solar-terrestrial physics is the transport of solar wind particles and energy into the magnetosphere with a motivation to contribute to the reliability of space weather predictions. However, these processes are highly dynamic due to varying upstream conditions. For accurate and timely space weather forecasting, advanced knowledge of the ambient solar wind is required, both for its direct impact on the magnetosphere and for accurately forecasting the propagation of large solar wind structures to Earth (e.g., ICMEs, CIRs). With a space weather monitor in the L5 Lagrange point (e.g., using the STEREO spacecraft or possible new planned probes to L5) and with the remote observations of the Sun (applying the Solar Orbiter surface image), we can quantify the solar wind forecast outputs and compare them with existing observations at the L1 point (ACE, Wind, DISCOVR, THEMIS, MMS).
In the proposed (Ph.D.) topic, the student will analyze all the above-mentioned data sources and focus on building a model using different techniques (including machine learning). The aim is to directly predict the arrival of space weather agents, thereby improving our knowledge of the evolution of the solar wind in the heliosphere.
Seznam odborné literatury
[1] Turner, H., Lang, M., Owens, M., Smith, A., Riley, P., Marsh, M., & Gonzi, S. (2023). Solar wind data assimilation in an operational context: Use of near-real-time data and the forecast value of an L5 monitor. Space Weather, 21, e2023SW003457. https://doi.org/10.1029/2023SW003457
[2] Mishra, W. and Teriaca L. (2023), Propagation of coronal mass ejections from the Sun to the Earth, Journal of Astrophysics and Astronomy, 44 (1), DOI: 10.1007/s12036-023-09910-6
[3] A Statistical Study of coronal mass ejections for solar cycle 23 (Chinese), Master thesis, NCU, 2005
[4] Lin, R.-P., Y. Yang, F. Shen, G. Pi, and Y. Li (2024), An Algorithm For Determination of CME Kinematic
Parameters Based On Machine Learning, ApJS, accepted.
[5] Nafchi, M.A., F. Němec , G. Pi, Z. Němeček, J. Šafranková, K. Grygorov, J. Šimůnek, T.-C. Tsai (2024), Magnetopause Location Modeling Using Machine Learning: Inaccuracy Due to Solar Wind Parameter Propagation, Frontiers in Astronomy and Space Sciences, submitted.
Předběžná náplň práce
The principal task of the present effort in solar-terrestrial physics is the transport of solar wind particles and energy into the magnetosphere with a motivation to contribute to the reliability of space weather predictions. However, these processes are highly dynamic due to varying upstream conditions. For accurate and timely space weather forecasting, advanced knowledge of the ambient solar wind is required, both for its direct impact on the magnetosphere and for accurately forecasting the propagation of large solar wind structures to Earth (e.g., ICMEs, CIRs). With a space weather monitor in the L5 Lagrange point (e.g., using the STEREO spacecraft or possible new planned probes to L5) and with the remote observations of the Sun (applying the Solar Orbiter surface image), we can quantify the solar wind forecast outputs and compare them with existing observations at the L1 point (ACE, Wind, DISCOVR, THEMIS, MMS).

https://physics.mff.cuni.cz/kfpp/php/dis-abs.php?id=457&langen=0
Předběžná náplň práce v anglickém jazyce
The principal task of the present effort in solar-terrestrial physics is the transport of solar wind particles and energy into the magnetosphere with a motivation to contribute to the reliability of space weather predictions. However, these processes are highly dynamic due to varying upstream conditions. For accurate and timely space weather forecasting, advanced knowledge of the ambient solar wind is required, both for its direct impact on the magnetosphere and for accurately forecasting the propagation of large solar wind structures to Earth (e.g., ICMEs, CIRs). With a space weather monitor in the L5 Lagrange point (e.g., using the STEREO spacecraft or possible new planned probes to L5) and with the remote observations of the Sun (applying the Solar Orbiter surface image), we can quantify the solar wind forecast outputs and compare them with existing observations at the L1 point (ACE, Wind, DISCOVR, THEMIS, MMS).

https://physics.mff.cuni.cz/kfpp/php/dis-abs.php?id=457&langen=0
 
Univerzita Karlova | Informační systém UK