Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 390)
Detail práce
   Přihlásit přes CAS
Fast and Accurate Algorithms in Numerical Linear Algebra
Název práce v češtině: Rychlé a přesné algoritmy v numerické lineární algebře
Název v anglickém jazyce: Fast and Accurate Algorithms in Numerical Linear Algebra
Klíčová slova: mixed precision|algorithms|numerical linear algebra|finite precision analysis|preconditioning|iterative methods
Klíčová slova anglicky: mixed precision|algorithms|numerical linear algebra|finite precision analysis|preconditioning|iterative methods
Akademický rok vypsání: 2024/2025
Typ práce: disertační práce
Jazyk práce: angličtina
Ústav: Katedra numerické matematiky (32-KNM)
Vedoucí / školitel: doc. Erin Claire Carson, Ph.D.
Řešitel: skrytý - zadáno a potvrzeno stud. odd.
Datum přihlášení: 09.09.2024
Datum zadání: 09.09.2024
Datum potvrzení stud. oddělením: 24.09.2024
Zásady pro vypracování
This thesis will involve investigating the effect of the use of low and mixed precision in storage and computations with hierarchical matrices, which arise diverse application areas from PDEs to machine learning. The thesis will involve the following:
* Rigorously proving that low-rank off-diagonal blocks of the matrix can be stored and/or computed in low precision without detriment to accuracy of subsequent computations (e.g., in hierarchical Cholesky factorization, or as preconditioners in Krylov subspace methods). This involves treating both deterministic and randomized approaches to low-rank approximation of pieces of the matrix, and may involve various particular hierarchical structures (e.g., H matrices, H^2 matrices, HSS matrices, etc.)
* Design of mixed precision algorithms involving hierarchical matrices
* Parallel implementation and evaluation on large-scale machines
* Application of the results to particular scientific application areas
Seznam odborné literatury
M. Bebendorf, Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems,
vol. 63 of Lecture Notes in Computer Science and Engineering, Springer-Verlag Berlin Heidelberg, 2008.

S. Börm, L. Grasedyck, and W. Hackbusch, Introduction to hierarchical matrices with applications, Engineering
analysis with boundary elements, 27 (2003), pp. 405–422.

P. Ghysels, S. L. Xiaoye, C. Gorman, and F.-H. Rouet, A robust parallel preconditioner for indefinite systems
using hierarchical matrices and randomized sampling, in Proceedings of the 2017 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), IEEE, 2017, pp. 897–906.

N. J. Higham and T. Mary, Solving block low-rank linear systems by LU factorization is numerically stable,
MIMS EPrint 2019.15, Manchester Institute for Mathematical Sciences, The University of Manchester, 2019.

J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li, Fast algorithms for hierarchically semiseparable matrices,
Numerical Linear Algebra with Applications, 17 (2010), pp. 953–976.

Keyes, David E., Hatem Ltaief, and George Turkiyyah. "Hierarchical algorithms on hierarchical architectures." Philosophical Transactions of the royal society A 378.2166 (2020): 20190055.

Abdulah, Sameh, et al. "Accelerating geostatistical modeling and prediction with mixed-precision computations: A high-productivity approach with parsec." IEEE Transactions on Parallel and Distributed Systems 33.4 (2021): 964-976.

Martinsson, Per-Gunnar. "A fast randomized algorithm for computing a hierarchically semiseparable representation of a matrix." SIAM Journal on Matrix Analysis and Applications 32.4 (2011): 1251-1274.

Higham, Nicholas J. Accuracy and stability of numerical algorithms. Society for industrial and applied mathematics, 2002.
Předběžná náplň práce
So-called hierarchical matrices arise in a number of application areas, from PDEs to machine learning. A key aspect of this structure is that subblocks of the matrix are represented by low-rank components, which significantly reduces the cost of storing and computing with such matrices. Intuition indicates that if we are using low-rank approximations of some pieces of the matrix, these can likely be stored and computed in low precision as well to further improve performance without affecting the accuracy of downstream computations. This thesis will involve rigorously proving this, designing mixed precision algorithms for hierarchical matrices, and developing high performance implementations.
Předběžná náplň práce v anglickém jazyce
So-called hierarchical matrices arise in a number of application areas, from PDEs to machine learning. A key aspect of this structure is that subblocks of the matrix are represented by low-rank components, which significantly reduces the cost of storing and computing with such matrices. Intuition indicates that if we are using low-rank approximations of some pieces of the matrix, these can likely be stored and computed in low precision as well to further improve performance without affecting the accuracy of downstream computations. This thesis will involve rigorously proving this, designing mixed precision algorithms for hierarchical matrices, and developing high performance implementations.
 
Univerzita Karlova | Informační systém UK