Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 368)
Detail práce
   Přihlásit přes CAS
Chemické signály a komunikace u myšice křovinné (Apodemus sylvaticus)
Název práce v češtině: Chemické signály a komunikace u myšice křovinné (Apodemus sylvaticus)
Název v anglickém jazyce: Chemical signals and communication in the wood mouse (Apodemus sylvaticus)
Klíčová slova: Apodemus, feromony, pachový profil, komunikace
Klíčová slova anglicky: Apodemus, pheromones, odor profile, communication
Akademický rok vypsání: 2022/2023
Typ práce: diplomová práce
Jazyk práce: čeština
Ústav: Katedra zoologie (31-170)
Vedoucí / školitel: prof. Mgr. Pavel Stopka, Ph.D.
Řešitel: skrytý - zadáno a potvrzeno stud. odd.
Datum přihlášení: 01.11.2022
Datum zadání: 01.11.2022
Datum potvrzení stud. oddělením: 13.02.2023
Konzultanti: Mgr. Romana Stopková, Ph.D.
Seznam odborné literatury
Yoon, H., Enquist, L. W. & Dulac, C. Olfactory inputs to hypothalamic neurons controlling reproduction and fertility. Cell123, 669-682 (2006).
2 Marom, K. et al. The Vomeronasal System Can Learn Novel Stimulus Response Pairings. Cell Reports27, 676-684.e676 (2019).https://doi.org:10.1016/j.celrep.2019.03.042
3 Mucignat-Caretta, C., Cavaggioni, A. & Caretta, A. Male urinary chemosignals differentially affect aggressive behavior in male mice. J. Chem. Ecol.30, 777-791 (2004).
4 Zala, S. M., Potts, W. K. & Penn, D. J. Scent-marking displays provide honest signals of health and infection. Behavioral Ecology15, 338-344 (2004).https://doi.org:10.1093/beheco/arh022
5 Zala, S. M., Bilak, A., Perkins, M., Potts, W. K. & Penn, D. J. Female house mice initially shun infected males, but do not avoid mating with them. Behavioral Ecology and Sociobiology69, 715-722 (2015).https://doi.org:10.1007/s00265-015-1884-2
6 Mucignat-Caretta, C. et al. Urinary volatile molecules vary in males of the 2 European subspecies of the house mouse and their hybrids. Chem Senses35, 647-654 (2010).https://doi.org:10.1093/chemse/bjq049
7 Stopková, R., Stopka, P., Janotová, K. & Jedelsky, P. L. Species-specific expression of major urinary proteins in the house mice (Mus musculus musculus and Mus musculus domesticus). J Chem Ecol33, 861-869 (2007).
8 Pérez-Gómez, A. et al. Innate Predator Odor Aversion Driven by Parallel Olfactory Subsystems that Converge in the Ventromedial Hypothalamus. Current Biology25, 1340-1346 (2015).https://doi.org:10.1016/j.cub.2015.03.026
9 Yang, J. et al. Landscapes of bacterial and metabolic signatures and their interaction in major depressive disorders. Science Advances6, eaba8555 (2020).https://doi.org:10.1126/sciadv.aba8555
10 Ninkovic, V., Markovic, D. & Rensing, M. Plant volatiles as cues and signals in plant communication. Plant, Cell & Environmentn/a, 1-14 (2020).https://doi.org:https://doi.org/10.1111/pce.13910
11 Manoel, D. et al. Deconstructing the mouse olfactory percept through an ethological atlas. Current Biology (2021).https://doi.org:10.1016/j.cub.2021.04.020
12 Ackels, T. et al. Fast odour dynamics are encoded in the olfactory system and guide behaviour. Nature (2021).https://doi.org:10.1038/s41586-021-03514-2
13 Bansal, R. et al. Do all mice smell the same? Chemosensory cues from inbred and wild mouse strains elicit stereotypic sensory representations in the accessory olfactory bulb. BMC Biology19, 133 (2021).https://doi.org:10.1186/s12915-021-01064-7
14 Bergan, J. F., Ben-Shaul, Y. & Dulac, C. Sex-specific processing of social cues in the medial amygdala. Elife3, e02743 (2014).https://doi.org:10.7554/eLife.02743
15 Nagel, M. et al. A systematic comparison of semiochemical signaling in the accessory olfactory system of wild and lab strain mice. Chemical Senses43, E31-E31 (2018).
16 Spehr, M. et al. Parallel processing of social signals by the mammalian main and accessory olfactory systems. Cell. Mol. life Sci.63, 1476-1484 (2006).
17 van der Linden, C., Jakob, S., Gupta, P., Dulac, C. & Santoro, S. W. Sex separation induces differences in the olfactory sensory receptor repertoires of male and female mice. Nat Commun9, 5081 (2018).https://doi.org:10.1038/s41467-018-07120-1
18 Santoro, S. W. & Jakob, S. Gene expression profiling of the olfactory tissues of sex-separated and sex-combined female and male mice. Sci Data5, 180260 (2018).https://doi.org:10.1038/sdata.2018.260
19 Moss, R. L. et al. Urine-Derived Compound Evokes Membrane Responses in Mouse Vomeronasal Receptor Neurons. Journal of Neurophysiology77, 2856-2862 (1997).
20 Leinders-Zufall, T. et al. Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature405, 792-796 (2000).
21 Ibarra-Soria, X., Levitin, M. O. & Logan, D. W. The genomic basis of vomeronasal-mediated behaviour. Mamm Genome25, 75-86 (2014).https://doi.org:10.1007/s00335-013-9463-1
22 Wynn, E. H., Sánchez-Andrade, G., Carss, K. J. & Logan, D. W. Genomic variation in the vomeronasal receptor gene repertoires of inbred mice. BMC Genomics13, 415 (2012).https://doi.org:10.1186/1471-2164-13-415
23 Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell65, 175-187 (1991).https://doi.org:10.1016/0092-8674(91)90418-x
24 Whitten, W. K., Bronson, F. H. & Greenstein, J. A. Estrus-Inducing Pheromone of Male Mice: Transport by Movement of Air. Science161, 584-585 (1968).
25 Whitten, W. K. Modification of the oestrous cycle of the mouse by external stimuli associated with the male. Changes in the oestrous cycle determined by vaginal smears. J. Endocrinol.17, 307-313 (1958).
26 Novotny, M. V., Ma, W., Wiesler, D. & Zídek, L. Positive identification of the puberty-accelerating pheromone of the house mouse: the volatile ligands associating with the major urinary protein. Proc. R. Soc. Lond. B.266, 2017-2022 (1999).
27 Jemiolo, B. & Novotny, M. V. Inhibition of sexual maturation in juvenile female and male mice by a chemosignal of female origin. Physiology and Behavior55, 519-522 (1994).
28 Jemiolo, B., Harvey, S. & Novotny, M. Promotion of the Whitten effect in female mice by synthetic analogs of male urinary constituents. PNAS83, 4576-4579 (1986).
29 Janotova, K. & Stopka, P. The level of major urinary proteins is socially regulated in wild Mus musculus musculus. J Chem Ecol37, 647-656 (2011).https://doi.org:10.1007/s10886-011-9966-8
30 Stopka, P., Janotova, K. & Heyrovsky, D. The advertisement role of major urinary proteins in mice. Physiology & Behavior91, 667-670 (2007).
31 Kahan, A. & Ben-Shaul, Y. Extracting Behaviorally Relevant Traits from Natural Stimuli: Benefits of Combinatorial Representations at the Accessory Olfactory Bulb. PLoS Comput Biol12, e1004798 (2016).https://doi.org:10.1371/journal.pcbi.1004798
32 Rusu, A. S., Krackow, S., Jedelsky, P. L., Stopka, P. & Konig, B. A qualitative investigation of major urinary proteins in relation to the onset of aggressive behavior and dispersive motivation in male wild house mice (Mus musculus domesticus). Journal of Ethology26, 127-135 (2008).
33 Roberts, S. A., Davidson, A. J., McLean, L., Beynon, R. J. & Hurst, J. L. Pheromonal induction of spatial learning in mice. Science338, 1462-1465 (2012).https://doi.org:10.1126/science.1225638
34 Chamero, P. et al. Identification of protein pheromones that promote aggressive behaviour. Nature450, 899-903 (2007).
35 Sturm, T. et al. Mouse urinary peptides provide a molecular basis for genotype discrimination by nasal sensory neurons. Nat Commun4, 1616 (2013).https://doi.org:10.1038/ncomms2610
36 Leinders-Zufall, T. et al. MHC Class I peptides as chemosensory signals in the vomeronasal organ. Science306, 1003-1037 (2004).
37 Kwak, J. et al. Changes in volatile compounds of mouse urine as it ages: their interactions with water and urinary proteins. Physiol Behav120, 211-219 (2013).https://doi.org:10.1016/j.physbeh.2013.08.011
38 Kwak, J. et al. Differential binding between volatile ligands and major urinary proteins due to genetic variation in mice. Physiol Behav107, 112-120 (2012).https://doi.org:10.1016/j.physbeh.2012.06.008
39 Novotny, M. V. et al. A unique urinary constituent, 6-hydroxy-6-methyl-3-heptanone, is a pheromone that accelerates puberty in female mice. Chem. Biol.6, 377-383 (1999).
40 Novotny, M. V. Pheromones, binding proteins and receptor responses in rodents. Biochemical Society31, 117-122 (2003).
41 Zidek, L. et al. NMR Mapping of the Recombinant Mouse Major Urinary Protein I Binding site Occupied by the Pheromone 2-sec-Butyl-4,5-dihydrothiazole. Biochemistry38, 9850-9861 (1999).
42 Sharrow, S. D., Vaughn, J. L., Žídek, L., Novotny, M. V. & Stone, M. J. Pheromone binding by polymorphic mouse major urinary proteins. Protein Science11, 2247-2256 (2002).
43 Phelan, M. M., McLean, L., Hurst, J. L., Beynon, R. J. & Lian, L. Y. Comparative study of the molecular variation between 'central' and 'peripheral' MUPs and significance for behavioural signalling. Biochem Soc Trans42, 866-872 (2014).https://doi.org:10.1042/BST20140082
44 Phelan, M. M. et al. The structure, stability and pheromone binding of the male mouse protein sex pheromone darcin. PLoS One9, e108415 (2014).https://doi.org:10.1371/journal.pone.0108415
45 Robertson, D., Hurst, J., Hubbard, S., Gaskell, S. J. & Beynon, R. Ligands of urinary lipocalins from the mouse: uptake of environmentally derived chemicals. Journal of Chemical Ecology24, 1127-1140 (1998).
46 Janotová, K. & Stopka, P. Mechanisms of chemical communication: the role of Major Urinary Proteins. Folia Zool.58, 41-55 (2009).
47 Macek, P., Novak, P., Krizova, H., Zidek, L. & Sklenar, V. Molecular dynamics study of major urinary protein-pheromone interactions: A structural model for ligand-induced flexibility increase. FEBS Letters580, 682-684 (2006).
48 Timm, D. E., Baker, L. J., Mueller, H., Zidek, L. & Novotny, M. V. Structural basis of pheromone binding to mouse major urinary protein (MUP-I). Protein Science10, 997-1004 (2001).
49 Roberts, S. A. et al. Darcin: a male pheromone that stimulates female memory and sexual attraction to an individual male's odour. BMC Biol.8, doi:10. 1186/1741-7007-1188-1175. (2010).
50 Kaur, A. W. et al. Murine pheromone proteins constitute a context-dependent combinatorial code governing multiple social behaviors. Cell157, 676-688 (2014).https://doi.org:10.1016/j.cell.2014.02.025
51 Papes, F., Logan, D. W. & Stowers, L. The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell141, 692-703 (2010).
52 Demir, E. et al. The pheromone darcin drives a circuit for innate and reinforced behaviours. Nature (2020).https://doi.org:10.1038/s41586-020-1967-8
53 Johnson, D., Al-Shawi, R. & Bishop, J. O. Sexual dimorphism and growth hormone induction of murine phero-binding proteins. J. Mol. Endocrinol.14, 21-34 (1995).
54 Clissold, P. M., Hainey, S. & Bishop, J. O. Messenger RNAs coding for mouse urinary proteins are differentially induced by testosterone. Biochemical genetics22, 379-387 (1984).
55 Shaw, P. H., Held, W. A. & Hastie, N. D. The gene family for major urinary proteins: expression in several secretory tissues of the mouse. Cell32, 755-761 (1983).
56 Zidek, L., Novotny, M. V. & Stone, M. J. Increased protein backbone conformational entropy upon hydrophobic ligand binding. Nature Structural Biology6, 1118-1121 (1999).
57 Sheehan, M. J., Campbell, P. & Miller, C. H. Evolutionary patterns of major urinary protein scent signals in house mice and relatives. Mol Ecol28, 3587-3601 (2019).https://doi.org:10.1111/mec.15155
58 Hurst, J. L. et al. Molecular heterogeneity in major urinary proteins of Mus musculus subspecies: potential candidates involved in speciation. Sci Rep7, 44992 (2017).https://doi.org:10.1038/srep44992
59 Smadja, C. & Ganem, G. Divergence of odorant signals within and between the two European subspecies of the house mouse. Behavioral Ecology19, 223-230 (2008).
60 Smadja, C. & Ganem, G. Subspecies recognition in the house mouse: a study of two populations from the border of a hybrid zone. Behav. Ecol.13, 312-320 (2002).
61 Bímová, B., Albrecht, T., Macholán, M. & Piálek, J. Signalling components of mate recognition system in the house mouse. Behavioural Processes80, 20-27 (2009).
62 Cerna, M., Kuntova, B., Talacko, P., Stopkova, R. & Stopka, P. Differential regulation of vaginal lipocalins (OBP, MUP) during the estrous cycle of the house mouse. Sci Rep7, 11674 (2017).https://doi.org:10.1038/s41598-017-12021-2
63 Thoss, M. et al. Regulation of volatile and non-volatile pheromone attractants depends upon male social status. Sci Rep9, 489 (2019).https://doi.org:10.1038/s41598-018-36887-y
64 Enk, V. M. et al. Regulation of highly homologous major urinary proteins in house mice quantified with label-free proteomic methods. Mol Biosyst12, 3005-3016 (2016).https://doi.org:10.1039/c6mb00278a
65 Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics13, 2513-2526 (2014).https://doi.org:10.1074/mcp.M113.031591
66 Levy, M., Blacher, E. & Elinav, E. Microbiome, metabolites and host immunity. Current Opinion in Microbiology35, 8-15 (2017).https://doi.org:https://doi.org/10.1016/j.mib.2016.10.003
67 Stopková, R., Otčenášková, T., Matějková, T., Kuntová, B. & Stopka, P. Biological Roles of Lipocalins in Chemical Communication, Reproduction, and Regulation of Microbiota. Frontiers in Physiology12 (740006) (2021).https://doi.org:10.3389/fphys.2021.740006
68 Moudra, A. et al. Phenotypic and Clonal Stability of Antigen-Inexperienced Memory-like T Cells across the Genetic Background, Hygienic Status, and Aging. J Immunol206, 2109-2121 (2021).https://doi.org:10.4049/jimmunol.2001028
69 Kreisinger, J., Čížková, D., Vohánka, J. & Piálek, J. Gastrointestinal microbiota of wild and inbred individuals of two house mouse subspecies assessed using high-throughput parallel pyrosequencing. Molecular Ecology23, 5048-5060 (2014).https://doi.org:https://doi.org/10.1111/mec.12909
70 Gowaty, P. A., Drickamer, L. C. & Schmid-Holmes, S. Male house mice produce fewer offspring with lower viability and poorer performance when mated with females they do not prefer. Animal Behaviour65, 95-103 (2003).
71 Bimova, B. V. et al. Reinforcement selection acting on the European house mouse hybrid zone. Mol Ecol20, 2403-2424 (2011).https://doi.org:10.1111/j.1365-294X.2011.05106.x
72 Bianchi, F. et al. Vertebrate odorant binding proteins as antimicrobial humoral components of innate immunity for pathogenic microorganisms. PLOS ONE14, e0213545 (2019).https://doi.org:10.1371/journal.pone.0213545
Předběžná náplň práce
Student will focus on profiles of chemical signals in highly promiscuous wood mice (Apodemus). She/he will be collecting samples from wild wood mice (saliva, urine) and will use GC-MS approaches to reveal what molecules signal idndividuality, sex and species. These profiles will be compared with those from public databases (house mice, rats etc.).
Předběžná náplň práce v anglickém jazyce
Student will focus on profiles of chemical signals in highly promiscuous field mice (Apodemus). She/he will be collecting samples from wild wood mice (saliva, urine) and will use GC-MS approaches to reveal what molecules signal idndividuality, sex and species. These profiles will be compared with those from public databases (house mice, rats etc.).
 
Univerzita Karlova | Informační systém UK