Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 368)
Detail práce
   Přihlásit přes CAS
Slapově indukovaný magmatismus v Europě a jiných oceánských světech
Název práce v češtině: Slapově indukovaný magmatismus v Europě a jiných oceánských světech
Název v anglickém jazyce: Tidally-induced seafloor magmatism in Europa and other Ocean Worlds
Klíčová slova: planetární nitra|numerické modelování|slapy|magmatismus|Europa|oceánské světy
Klíčová slova anglicky: Planetary interiors|Numerical modelling|Tides|Magmatism|Europa|Ocean Worlds
Akademický rok vypsání: 2021/2022
Typ práce: disertační práce
Jazyk práce: čeština
Ústav: Katedra geofyziky (32-KG)
Vedoucí / školitel: doc. RNDr. Marie Běhounková, Ph.D.
Řešitel: skrytý - zadáno a potvrzeno stud. odd.
Datum přihlášení: 16.09.2022
Datum zadání: 16.09.2022
Datum potvrzení stud. oddělením: 22.09.2022
Zásady pro vypracování
The main objective of the thesis is to quantify tidally-induced magmatism necessary for providing energy and chemical resources in subsurface Oceans. This thesis aims to provide a theoretical frame for answering the following major questions:
- What impact does local melt have on the heterogeneity of tidal dissipation?
- How do tidally-induced melt production and transport influence the thermal state of the rocky mantle and lithosphere and the associated seafloor magmatism?
- What are the extent and variability of seafloor magmatism in Europa and their geophysical signatures?
- Did Ganymede, Titan, and Triton experience periods with enhanced tidally-induced magmatism?

To address these questions, numerical simulations two numerical approaches will be used: (i) tool describing melt migration in a convecting mantle (Danberg and Heister, 2016; Bangerth et al., 2018) and (ii) 3d coupled computation of heterogeneous tidal heating and heat transport with parameterized melt migration (Běhounková et al., 2010, 2021). Using the results of numerical simulations, geophysical and chemical signatures of tidally-induced seafloor magmatism will be predicted on Europa to be tested by NASA/Europa Clipper and ESA/JUICE missions and to anticipate potential signatures in other Ocean Worlds: Ganymede, Titan, and Triton.
Seznam odborné literatury
Bangerth, W., Dannberg, J., Fraters, M., Gassmoeller, R., Glerum, A., Heister, T., & Naliboff, J.. (2018). ASPECT: Advanced Solver for Problems in Earth's ConvecTion, User Manual (Version8). https://doi.org/10.6084/M9.FIGSHARE.4865333.
Běhounková, M., Tobie, G., Choblet, G., Čadek, O. (2010). Coupling mantle convection and tidal dissipation: applications to Enceladus and Earth-like planets, J. Geophys. Res. 115, E09011.
Běhounková, M., Tobie, G., Choblet, G., Kervazo, M., Melwani Daswani, M., Dumoulin, C. and Vance, S.D. (2021) Tidally-induced magmatic Pulses on the oceanic floor of Jupiter’s moon Europa, Geophys. Res. Lett., 48, e2020GL090077.
Bercovici, D., Ricard, Y. and Schubert, G., A two-phase model for compaction and damage: 1 General Theory. J. Geophys. Res. 2001, 106, 8887-8906.
Bierson, C. J., & Nimmo, F.. (2016). A test for Io's magma ocean: Modeling tidal dissipation with a partially molten mantle. Journal of Geophysical Research: Planets, 121(11), 2211-2224.
Bland, M. T., Showman, A. P., & Tobie, G.. (2009). The orbital–thermal evolution and global expansion of Ganymede. Icarus, 200(1), 207-221.
Dannberg, J., & Heister, T.. (2016). Compressible magma/mantle dynamics: 3-D, adaptive simulations in ASPECT. Geophysical Journal International, 207(3), 1343-1366.
Hussmann, H., & Spohn, T.. (2004). Thermal-orbital evolution of Io and Europa. Icarus, 171(2), 391-410.
Kalousová, K., Sotin, C., Choblet, G., Tobie, G., Grasset, O. (2018) Two-phase convection in Ganymede's high-pressure ice layer - implications for its geological evolution, Icarus, 299, pp. 133-147
Kalousová, K., Sotin, C. (2018). Melting in high-pressure ice layers of large ocean worlds - implications for volatiles transport, Geophys. Res. Lett., 45 (16) , pp. 8096-8103.
Katz, R.F., Porosity-driven convection and asymmetry beneath mid-ocean ridges. Geochem. Geophys. Geosyst. 2010, 11, Q0AC07.
Kaula, W. M. (1964) Tidal Dissipation by Solid Friction and the Resulting Orbital Evolution, Reviews of Geophysics 2.
Lainey V., Arlot J.-E., Karatekin O., Van Hoolst T. (2009) Strong tidal dissipation in Io and Jupiter from astrometric observations, Nature, 459 (7249), pp. 957-959.
Lourenço, D. L., Rozel, A. B., Ballmer, M. D., & Tackley, P. J.. (2020). Plutonic‐squishy lid: a new global tectonic regime generated by intrusive magmatism on Earth‐like planets. Geochemistry, Geophysics, Geosystems, 21(4), e2019GC008756.
Moore, W. B. (2001). The thermal state of Io. Icarus, 154(2), 548-550.
Moore W.B., Simon J.I., Webb A.A.G. (2017), Heat-pipe planets, Earth Planet. Sci. Lett., 474, pp. 13-19.
Nimmo, F., & Spencer, J. R.. (2015). Powering Triton’s recent geological activity by obliquity tides: Implications for Pluto geology.
Spencer D.C., Katz R.F., Hewitt I.J. (2020) Magmatic intrusions control Io’s crustal thickness, J. Geophys. Res. Planets, 125 (6), No. e2020JE006443.
Spencer, D. C., Katz, R. F., & Hewitt, I. J.. (2021). Tidal controls on the lithospheric thickness and topography of Io from magmatic segregation and volcanism modelling. Icarus, 359, 114352.
Šrámek, O., Ricard, Y. and Bercovici, D., (2007) Simultaneous melting and compaction in deformable two-phase media. Geophys. J. Int., 168, 964-982.
Předběžná náplň práce v anglickém jazyce
During the last two decades, outer Solar System exploration revealed salty, subsurface Oceans on several Icy Moons. Characterising the habitability of these Oceans is a major goal of three ambitious missions currently under development: ESA/JUICE to Ganymede and Europa, NASA/Europa Clipper to Europa, and NASA/Dragonfly to Titan. Detection of magmatic activities and associated hydrothermal interactions on the Ocean floor will enormously increase the astrobiological potential of these Ocean Worlds.
 
Univerzita Karlova | Informační systém UK