Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 368)
Detail práce
   Přihlásit přes CAS
Lipidomická analýza tukové tkáně pacientů s ischemickou chorobou srdeční
Název práce v češtině: Lipidomická analýza tukové tkáně pacientů s ischemickou chorobou srdeční
Název v anglickém jazyce: Lipidomic analysis of adipose tissue in patients with ischemic heart disease
Klíčová slova: Lipidomická analýza, epikardiální tuková tkáň, subkutánní tuková tkáň, ischemická choroba srdeční, diabetes mellitus 2. typu
Klíčová slova anglicky: Lipidomic analysis, epicardial adipose tissue, subcutaneous adipose tissue, coronary artery disease, type 2 diabetes mellitus
Akademický rok vypsání: 2021/2022
Typ práce: disertační práce
Jazyk práce: čeština
Ústav: IV. interní klinika – gastroenterologie a hepatologie 1. LF UK a VFN (11-00540)
Vedoucí / školitel: RNDr. Marek Vecka, Ph.D.
Řešitel: skrytý - zadáno a potvrzeno stud. odd.
Datum přihlášení: 14.12.2021
Datum zadání: 14.12.2021
Datum potvrzení stud. oddělením: 14.12.2021
Datum a čas obhajoby: 22.06.2022 13:00
Místo konání obhajoby: posluchárna Ústavu lékařské biochemie a laboratorní diagnostiky 1. LF UK a VFN
Datum odevzdání elektronické podoby:10.04.2022
Datum proběhlé obhajoby: 22.06.2022
Předmět: Obhajoba dizertační práce (B90002)
Oponenti: prof. Ing. Rudolf Poledne, CSc.
  RNDr. Jan Neckář, Ph.D.
 
 
Seznam odborné literatury
Abdel-latif, A. et al. 2016. “Lysophospholipids in Coronary Artery and Chronic Ischemic Heart Disease.” Curr Opin Lipidol 26(5): 432–37.
Abel, E. et al. 2001. “Adipose-Selective Targeting of the GLUT4 Gene Impairs Insulin Action in Muscle and Liver.” Nature 409: 729–33.
Akash, M. S. H., Kanwal R. a Shuqing Ch. 2013. “Role of Inflammatory Mechanisms in Pathogenesis of Type 2 Diabetes Mellitus.” Journal of Cellular Biochemistry 114(3): 525–31.
Alizargar, J. et al. 2020. “Use of the Triglyceride ‑ Glucose Index ( TyG ) in Cardiovascular Disease Patients.” Cardiovascular Diabetology 19(8): 2–4. https://doi.org/10.1186/s12933-019-0982-2.
Ameer, F. et al. 2014. “De Novo Lipogenesis in Health and Disease.” Metabolism: Clinical and Experimental 63(7): 895–902. http://dx.doi.org/10.1016/j.metabol.2014.04.003.
Appari, M., Channon, K.,M. a McNeill, E. 2018. “Metabolic Regulation of Adipose Tissue Macrophage Function in Obesity and Diabetes.” 29(3): 297–312.
Baker, A. R. et al. 2006. “Human Epicardial Adipose Tissue Expresses a Pathogenic Profile of Adipocytokines in Patients with Cardiovascular Disease.” Cardiovascular Diabetology 7: 1–7.
Bambace, C. et al. 2014. “Inflammatory Profile in Subcutaneous and Epicardial Adipose Tissue in Men with and without Diabetes.” Heart Vessels 29: 42–48.
Barber, M. N. et al. 2012. “Plasma Lysophosphatidylcholine Levels Are Reduced in Obesity and Type 2 Diabetes.” PLoS ONE 7(7): 1–12.
Barchuk, M. et al. 2020. “Untargeted Lipidomics Reveals a Specific Enrichment in Plasmalogens in Epicardial Adipose Tissue and a Specific Signature in Coronary Artery Disease.” Arteriosclerosis, Thrombosis, and Vascular Biology 40(April): 986–1000.
Barthel, A. a Hans‐Georg J. 2008. “Insulin Receptor.” In Encyclopedia of Molecular Pharmacology, eds. Stefan Offermanns and Walter Rosenthal. Berlin, Heidelberg: Springer Berlin Heidelberg, 632–36. https://doi.org/10.1007/978-3-540-38918-7_80.
Beretta, M., Bauer, M. a Hirsch E. 2015. “PI3K Signaling in the Pathogenesis of Obesity: The Cause and the Cure.” Advances in Biological Regulation 58: 1–15. http://dx.doi.org/10.1016/j.jbior.2014.11.004.
Chaurasia, B. et al. 2016. “Adipocyte Ceramides Regulate Subcutaneous Adipose Browning , Inflammation , and Metabolism.” Cell Metabolism 24(6): 820–34. http://dx.doi.org/10.1016/j.cmet.2016.10.002.
Błachnio-Zabielska, A. U. et al. 2012. “Increased Bioactive Lipids Content in Human Subcutaneous and Epicardial Fat Tissue Correlates with Insulin Resistance.” Lipids 47(12): 1131–41.
Bligh, E. G. a W J Dyer, W. J. 1959. “A Rapid Method of Total Lipid Extraction and Purification.” Canadian journal of biochemistry and physiology 37(8): 911–17.
Blüher, M. 2016. “Adipose Tissue Inflammation : A Cause or Consequence of Obesity-Related Insulin Resistance ?” Clinical Science 130: 1603–14.
Boden, G. 1999. “Free Fatty Acids, Insulin Resistance a Type 2 Diabetes Mellitus.” Proceedings of the Association of American Physicians 111(3): 241–48.
Budoff, M. 2016. “Triglycerides and Triglyceride-Rich Lipoproteins in the Causal Pathway of Cardiovascular Disease.” The American Journal of Cardiology 118(1): 138–45. http://dx.doi.org/10.1016/j.amjcard.2016.04.004.
Burden, D. W. 2012. “Guide to the Disruption of Biological Samples – 2012.” Random primers 25(12): 1–25.
Calderon, C. L. et al. 2008. “Involvement of Protein Kinase C and Not of NF κ B in the Modulation of Macrophage Nitric Oxide Synthase by Tumor-Derived Phosphatidyl Serine.” 016960: 713–21.
Cequier-sa, E. et al. 2008. “Dichloromethane as a Solvent for Lipid Extraction and Assessment of Lipid Classes and Fatty Acids from Samples of Different Natures Dichloromethane as a Solvent for Lipid Extraction and Assessment of Lipid Classes and Fatty Acids from Samples of Different.” Society: 4297–4303.
Chei, C. et al. 2018. “Serum Fatty Acid and Risk of Coronary Artery Disease.” Circulation 82(December): 3013–20.
Chylikova, J. et al. 2018. “M1 / M2 Macrophage Polarization in Human Obese Adipose Tissue.” Biomedical papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia 162(2): 79–82.
Cignarelli, A. et al. 2019. “Insulin and Insulin Receptors in Adipose Tissue Development.” International Journal of Molecular Sciences 20(3): 759.
Connelly, M. A. et al. 2017. “Branched Chain Amino Acids Are Associated with Insulin Resistance Independent of Leptin and Adiponectin in Subjects with Varying Degrees of Glucose Tolerance.” Metabolic syndrome and related disorders 15(4): 183–86.
Crown, S. B., Nicholas M. a Maciek R. A. 2015. “Catabolism of Branched Chain Amino Acids Contributes Significantly to Synthesis of Odd- Chain and Even-Chain Fatty Acids in 3T3-L1 Adipocytes.” Plos One 10(12): 1–22.
Curat, C. A. et al. 2006. “Macrophages in Human Visceral Adipose Tissue : Increased Accumulation in Obesity and a Source of Resistin and Visfatin.” Diabetologia 49: 744–47.
Czech, M. P. 2020. “Mechanisms of Insulin Resistance Related to White , Beige , and Brown Adipocytes.” Molecular Metabolism 34(January): 27–42. https://doi.org/10.1016/j.molmet.2019.12.014.
Ding, J. et al. 2009. “The Association of Pericardial Fat with Incident Coronary Heart Disease: The Multi-Ethnic Study of Atherosclerosis (MESA).” American Journal of Clinical Nutrition 90: 499–504.
Djekic, D. et al. 2016. “Replication of LC-MS Untargeted Lipidomics Results in Patients with Calcific Coronary Disease: An Interlaboratory Reproducibility Study.” International journal of cardiology 222: 1042–48.
Dobiásová, M. a Frohlich J. 2001. “The Plasma Parameter Log (TG/HDL-C) as an Atherogenic Index: Correlation with Lipoprotein Particle Size and Esterification Rate in ApoB-Lipoprotein-Depleted Plasma (FER(HDL)).” Clinical biochemistry 34(7): 583–88.
Dudek, J., Hartmann, M. a Rehling P. 2019. “The Role of Mitochondrial Cardiolipin in Heart Function and Its Implication in Cardiac Disease.” BBA - Molecular Basis of Disease 1865(4): 810–21. https://doi.org/10.1016/j.bbadis.2018.08.025.
Dunn, W. B. et al. 2011. “Procedures for Large-Scale Metabolic Profiling of Serum and Plasma Using Gas Chromatography and Liquid Chromatography Coupled to Mass Spectrometry.” Nature Protocols 6(7): 1–9.
Engin, A. B. 2017. “What Is Lipotoxicity?” Advances in experimental medicine and biology 960: 197–220.
Erion, D. M. a Shulman, G. I. 2013. “Diacylglycerol-Mediated Insulin Resistance.” Nature Medicine 16(4): 400–402.
Fang, Z., Pyne, S. a Pyne, N. J. 2019. “Ceramide and Sphingosine 1-Phosphate in Adipose Dysfunction.” Progress in Lipid Research 74(April): 145–59. https://doi.org/10.1016/j.plipres.2019.04.001.
Fasshauer, M. a Blüher, M. 2015. “Adipokines in Health and Disease.” CellPress 36(7): 461–70.
Feng, L. et al. 2018. “Lipid Biomarkers in Acute Myocardial Infarction Before and After Percutaneous Coronary Intervention by Lipidomics Analysis.” Medical science monitor 24: 4175–82.
Fillmore, N. et al. 2019. “Cardiac Branched-Chain Amino Acid Oxidation Is Reduced during Insulin Resistance in the Heart.” American journal of physiology. Endocrinology and metabolism 315: 1046–52.
Folch, J., Lees,M. a Stanley, G. S. 1957. “A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues.” The Journal of biological chemistry 226(1): 497–509.
Fuchs, B. et al. 2011. “Lipid Analysis by Thin-Layer Chromatography — A Review of the Current State.” Journal of Chromatography A 1218(19): 2754–74. http://dx.doi.org/10.1016/j.chroma.2010.11.066.
Gao, S. et al. 2018. “Cross-Sectional Positive Association of Serum Lipids and Blood Pressure with Serum Sodium within the Normal Reference Range of 135-145 Mmol/L.” Arteriosclerosis, Thrombosis, and Vascular Biology 37(3): 598–606.
Ghosh, A. et al. 2017. “Role of Free Fatty Acids in Endothelial Dysfunction.” Journal of Biomediacal Science 24:50: 1–15.
Ghosh, S. et al. 2012. “Macrophage Cholesteryl Ester Mobilization and Atherosclerosis.” Vascul Pharmacol 23(1): 1–7. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf.
Green, C. R. et al. 2016. “Branched Chain Amino Acid Catabolism Fuels Adipocyte Differentiation and Lipogenesis.” Physiology & behavior 176(1): 139–48.
Grzybek, M. et al. 2019. “Comprehensive and Quantitative Analysis of White and Brown Adipose Tissue by Shotgun Lipidomics.” Molecular Metabolism 22(January): 12–20. https://doi.org/10.1016/j.molmet.2019.01.009.
Guasch-Ferré, M. et al. 2017. “Plasma Metabolites from Choline Pathway and Risk of Cardiovascular Disease in the PREDIMED (Prevention with Mediterranean Diet) Study.” Journal of the American Heart Association 6(11).
Guilherme, A. et al. 2020. “Molecular Pathways Linking Adipose Innervation to Insulin Sensitivity in Obesity and Type 2 Diabetes.” Nature Reviews Endocirnology 15(4): 207–25.
Guillou, H. et al. 2010. “The Key Roles of Elongases and Desaturases in Mammalian Fatty Acid Metabolism : Insights from Transgenic Mice.” Progress in Lipid Research 49(2): 186–99. http://dx.doi.org/10.1016/j.plipres.2009.12.002.
Ha, E. E. a Bauer, R. C. 2019. “ATVB Recent Highlights: Emerging Roles for Adipose Tissue in Cardiovascular Disease.” Arteriosclerosis, Thrombosis, and Vascular Biology 38(8): 1–15.
Haluzík, M., Haluzíková, P. a Trachta D. 2010. “Hormony Tukové Tkáně.” Vnitřní lékařství 56(10): 1028–34.
Haluzík, M. 2018. Průvodce Léčbou Diabetu 2. Typu pro Internisty. Aeskulap. Mladá fronta.
Hannun, Y. A. a Obeid, L. M. 2008. “Principles of Bioactive Lipid Signalling: Lessons from Sphingolipids.” Nature Reviews Molecular Cell Biology 9(2): 139–50.
Harada, K. et al. 2014. “Impact of Abdominal and Epicardial Fat on the Association between Plasma Adipocytokine Levels and Coronary Atherosclerosis in Non-Obese Patients.” Atherosclerosis 237(2): 671–76. http://dx.doi.org/10.1016/j.atherosclerosis.2014.10.014.
Hatting, M. et al. 2019. “Insulin Regulation of Gluconeogenesis.” Annals of the New York Academy of Sciences 1411(1): 21–35.
Herder, C., Carstensen, M. a Ouwens, D. M. 2013. “Anti-Inflammatory Cytokines and Risk of Type 2 Diabetes.” Diabetes, obesity & metabolism 15: 39–50.
Hodson, L., Skeaff, C. M. a Fielding B. A. 2008. “Fatty Acid Composition of Adipose Tissue and Blood in Humans and Its Use as a Biomarker of Dietary Intake.” Progress in Lipid Research 47: 348–80.
Holčapek, M., Liebisch, G. a Ekroos K. 2020. “Lipidomic Analysis.” Analytical and Bioanalytical Chemistry 412: 2187–89.
Hradec, J. a Býma., S. 2007. “Centrum doporučených postupů pro praktické lékaře Ischemická Choroba Srdeční. ” Centrum doporučených postupů pro prakické lékaře.
Hsu, Fong-fu. 2019. “Mass Spectrometry Based Shotgun Lipidomics-a Critical Review.” Analytical and Bioanalytical Chemistry 410(25): 6387–6409.
Huang, P. L. 2009. “A Comprehensive Definition for Metabolic Syndrome.” Disease models & mechanisms 2(5–6): 231–37.
Hyötyläinen, T. a Orešič, M. 2015. “Optimizing the Lipidomics Workflow for Clinical Studies — Practical Considerations.” Analytical and Bioanalytical Chemistry 407: 4973–93.
Gianluca, I. et al. 2005. “Adiponectin Expression in Human Epicardial Adipose Tissue in Vivo Is Lower in Patients with Coronary Artery Disease.” Cytokine 29(6): 251–55.
Gianluca, I. et al. 2015. “Local and Systemic Effects of the Multifaceted Epicardial Adipose Tissue Depot.” Nature reviews. Endocrinology 11(6): 363–71.
Itani, S. I. et al. 2002. “Lipid-Induced Insulin Resistance in Human Muscle Is Associated With Changes in Diacylglycerol , Protein.” Diabetes 3(17): 2005–11.
Jové, M. et al. 2014. “Human Omental and Subcutaneous Adipose Tissue Exhibit Specific Lipidomic Signatures.” FASEB Journal 28(3): 1071–81.
Kahle, M. et al. 2015. “High Fat Diet-Induced Modifications in Membrane Lipid and Mitochondrial-Membrane Protein Signatures Precede the Development of Hepatic Insulin Resistance in Mice.” Molecular Metabolism 4(1): 39–50.
Karen, I. a Svačina, Š. 2018. “Doporučené Diagnostické a Terapeutické Postupy pro Všeobecné Praktické Lékaře- Diabetes Mellitus. ” Novelizace. Centrum doporučených postupů pro praktické lékaře.
Kelley, D. et al. 1988. “Skeletal Muscle Glycolysis , Oxidation , and Storage of an Oral Glucose Load.” The American Society for Clinical Investigation 81: 1563–71.
Kohno, S. et al. 2018. “Lipidomic Insight into Cardiovascular Diseases.” Biochemical and biophysical research communications 504(3): 1–12.
Konukoglu, D. a Uzun, H. 2017. 2 Hypertension : From Basic Research to Clinical Practice.
Kostal, V., Katzenmeyer, J. a Arriaga, E., A. 2008. “Capillary Electrophoresis in Bioanalysis.” Analytical Chemistry 80(12): 4533–50.
Krahmer, N. et al. 2011. “Phosphatidylcholine Synthesis for Lipid Droplet Expansion Is Mediated by Localized Activation of CTP:Phosphocholine Cytidylyltransferase.” Cell Metabolism 14(4): 504–15. http://dx.doi.org/10.1016/j.cmet.2011.07.013.
Kurano, M. et al. 2019. “Regulation of Plasma Glycero-Lysophospholipid Levels by Lipoprotein Metabolism.” Biochemical Journal 476(23): 3565–81. https://doi.org/10.1042/BCJ20190498.
Kurosaka, K. et al. 2003. “Silent Cleanup of Very Early Apoptotic Cells by Macrophages.” The Journal of Immunology 171(9): 4672–79. http://www.jimmunol.org/cgi/doi/10.4049/jimmunol.171.9.4672.
Kyrklund, T. 1987. “Two Procedures to Remove Polar Contaminants from a Crude Brain Lipid Extract by Using Prepacked Reversed-Phase Columns.” Lipids 22(4): 274–77.
Lackey, D. E. et al. 2013. “Regulation of Adipose Branched-Chain Amino Acid Catabolism Enzyme Expression and Cross-Adipose Amino Acid Flux in Human Obesity.” American journal of physiology. Endocrinology and metabolism 304(11): E1175-87.
Lamari, F. N. et al. 2002. “Structure Analysis of Lipoglycans and Lipoglycan-Derived Carbohydrates by Capillary Electrophoresis and Mass Spectrometry.” Biomedical chromatography : BMC 16(2): 116–26.
Li, M. et al. 2014. “Analytical Methods in Lipidomics and Their Applications.” Analytical Chemistry 86(1): 161–75.
Lommen, A. 2009. “MetAlign : Interface-Driven , Versatile Metabolomics Tool for Hyphenated Full-Scan Mass Spectrometry Data Preprocessing.” Analytical Chemistry 81(8): 3079–86.
Longo, M. et al. 2019. “Adipose Tissue Dysfunction as Determinant of Obesity-Associated Metabolic Complications.” International Journal of Molecular Sciences 20(9): 2358.
Lopaschuk, G. D. et al. 2010. “Myocardial Fatty Acid Metabolism in Health and Disease.” Physiological reviews 90: 207–58.
López-Bascón, M. A. et al. 2018. “Influence of Sample Preparation on Lipidomics Analysis of Polar Lipids in Adipose Tissue.” Talanta 177(September 2017): 86–93. http://linkinghub.elsevier.com/retrieve/pii/S0039914017309608.
Marchetti, A. A. a Mignerey, A. C. 1993. “Deconvolution of Mass Spectra.” Nuclear Instruments and Methods in Physics Research 324: 288–96.
Margolis, M. et al. 2015. “Phospholipid Makeup of the Breast Adipose Tissue Is Impacted by Obesity and Mammary Cancer in the Mouse: Results of a Pilot Study.” Biochimie 108: 133–39.
Matloch, Z. et al. 2016. “The Role of Epicardial Adipose Tissue in Heart Disease.” Physiol. Res 65: 23–32.
Matyash, V. et al. 2008. “Methods Lipid Extraction by Methyl- Tert -Butyl Ether for High-Throughput Lipidomics.” Journal of Lipid Research 49.
Meex, R. C. R, Schrauwen, P. a Hesselink, M. K. C. 2009. “Modulation of Myocellular Fat Stores: Lipid Droplet Dynamics in Health and Disease.” American journal of physiology. Regulatory, integrative and comparative physiology 297(4): R913-24. http://ajpregu.physiology.org/content/297/4/R913.abstract.
Mehrotra et al. 2015. “Endothelium as a Gatekeeper of Fatty Acid Transport.” Trends in endocrinology and metabolism 25(2): 99–106.
Metherel, A. H. a Stark, K. D. 2016. “The Stability of Blood Fatty Acids during Storage and Potential Mechanisms of Degradation: A Review.” Prostaglandins Leukotrienes and Essential Fatty Acids 104: 33–43.
Miller, M. et al. 2011. “Triglycerides and Cardiovascular Disease A Scientific Statement From the American Heart Association.” AHA Scientific Statement: 2292–2333.
Moseti, D., Regassa, A. a Kim, W. K. 2016. “Molecular Regulation of Adipogenesis and Potential Anti-Adipogenic Bioactive Molecules.” International Journal of Molecular Sciences 17(1): 1–24.
Nakanishi, T. a Kato, S. 2014. “Impact of Diabetes Mellitus on Myocardial Lipid Deposition: An Autopsy Study.” Pathology Research and Practice 210(12): 1018–25. http://dx.doi.org/10.1016/j.prp.2014.04.008.
Narváez-Rivas, M. a Zhang Q. 2016. “Comprehensive Untargeted Lipidomic Analysis Using Core-Shell C30 Particle Column and High Field Orbitrap Mass Spectrometer.” Journal of Chromatography A 1440: 123–34. http://dx.doi.org/10.1016/j.chroma.2016.02.054.
Ortega, F. J. et al. 2010. “Thyroid Hormone Responsive Spot 14 Increases during Differentiation of Human Adipocytes and Its Expression Is Down-Regulated in Obese Subjects.” International Journal of Obesity 34(3): 487–99.
Otoki, Y. et al. 2017. “Plasma Phosphatidylethanolamine and Triacylglycerol Fatty Acid Concentrations Are Altered in Major Depressive Disorder Patients with Seasonal Pattern.” Lipids 52(6): 559–71.
Pakiet, A., Stepnowski, P. a Sledzinski, T. 2019. “Changes in Lipids Composition and Metabolism in Colorectal Cancer : A Review.” Lipids in Health & Disease 18: 1–21.
Park, Gyung-min et al. 2020. “Triglyceride Glucose Index Is a Useful Marker for Predicting Subclinical Coronary Artery Disease in the Absence of Traditional Risk Factors.” Lipids in Health & Disease 19(7): 1–7.
Patel, T. P. et al. 2016. “Insulin Resistance : An Additional Risk Factor in the Pathogenesis of Cardiovascular Disease in Type 2 Diabetes.” Heart Failure Reviews 21(1): 11–23.
Pati, S. et al. 2016. “Extraction, Chromatographic and Mass Spectrometric Methods for Lipid Analysis.” Biomediacal Chromatography 30(February): 695–709.
Patterson, R. E. et al. 2016. “Comparison of Blood Plasma Sample Preparation Methods for Combined LC-MS Lipidomics and Metabolomics.” J Chromatogr B 1002: 260–66.
Paul, A.. 2018. Adipose Tissue Heterogeneity - Development and Application of Nonlinear Microscopy Methods. https://research.chalmers.se/publication/500015/file/500015_Fulltext.pdf.
Perreault, L. et al. 2018. “Intracellular Localization of Diacylglycerols and Sphingolipids Influences Insulin Sensitivity and Mitochondrial Function in Human Skeletal Muscle.” JCI insight 3(3): 1–21.
Petersen, M. C. et al. 2018. “Mechanims of Insulin Action and Insulin Resistance.” Physiol. Res 98: 2133–2223.
Pezeshkian, M a Mahtabipour, M. R. 2013. “Epicardial and Subcutaneous Adipose Tissue Fatty Acids Profiles in Diabetic and Non-Diabetic Patients Candidate for Coronary Artery Bypass Graft.” Bioimpacts 3(2): 83–89. http://www.ncbi.nlm.nih.gov/pubmed/23878791%5Cnhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3713874/pdf/bi-3-83.pdf.
Pezeshkian, M. et al. 2009. “Fatty Acid Composition of Epicardial and Subcutaneous Human Adipose Tissue.” Metabolic syndrome and related disorders 7(2): 125–31.
Pickersgill, L. et al. 2007. “Key Role for Ceramides in Mediating Insulin Resistance in Human Muscle Cells *.” The Journal of biological chemistry 282(17): 12583–89.
Pluskal, T. S., Villar-Briones, C. A a Orešič M. 2010. “MZmine 2: Modular Framework for Processing, Visualizing, and Analyzing Mass Spectrometry-Based Molecular Profile Data.” BMC Bioinformatics 11(395): 1471–2105. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2918584/pdf/1471-2105-11-395.pdf%0Ahttp://www.biomedcentral.com/1471-2105/11/395.
Pol, A., Gross, S. P. a Parto., R. G. 2014. “Biogenesis of the Multifunctional Lipid Droplet: Lipids, Proteins, and Sites.” Journal of Cell Biology 204(5): 635–46.
Poss, A. M. et al. 2020. “Machine Learning Reveals Serum Sphingolipids as Cholesterol-Independent Biomarkers of Coronary Artery Disease Find the Latest Version : Machine Learning Reveals Serum Sphingolipids as Cholesterol-Independent Biomarkers of Coronary Artery Disease.” The journal of clinical investigation 130(3): 1363–76.
Quehenberger, O. et al. 2010. “Lipidomics Reveals a Remarkable Diversity of Lipids in Human Plasma,.” Journal of Lipid Research 51(11): 3299–3305. http://www.jlr.org/lookup/doi/10.1194/jlr.M009449.
Rabkin, S W. 2007. “Epicardial Fat: Properties, Function and Relationship to Obesity.” Obesity reviews : an official journal of the International Association for the Study of Obesity 8(3): 253–61.
Rauschert, S. et al. 2016. “Lipidomics Reveals Associations of Phospholipids With Obesity and Insulin Resistance in Young Adults.” Journal of Clinical Endocrinology and Metabolism 101(March): 871–79.
Rauschert, S. et al. 2019. “Phospholipids in Lipoproteins: Compositional Differences across VLDL, LDL, and HDL in Pregnant Women.” Lipids in Health and Disease 18(1): 1–11.
Rezaee, F. a Dashty, M. 2013. “Role of Adipose Tissue in Metabolic System Disorders Adipose Tissue Is the Initiator of Metabolic Diseases.” Journal of Diabetes & Metabolic Disorders S13(008): 1–9.
Rosqvist, F. et al. 2017. “Fatty Acid Composition in Serum Cholesterol Esters and Phospholipids Is Linked to Visceral and Subcutaneous Adipose Tissue Content in Elderly Individuals: A Cross-Sectional Study.” Lipids in Health and Disease 16(1): 1–10.
Sá, P. M. et al. 2017. “Transcriptional Regulation of Adipogenesis Adipose Tissue : A Dynamic Organ.” Comprehensive Physiology 7(April): 635–74.
Saburkina, I. et al. 2011. “The Epicardial Neural Ganglionated Plexus of the Ovine Heart: Anatomical Basis for Experimental Cardiac Electrophysiology and Nerve Protective Cardiac Surgery.” Heart Rhythm 7(7): 942–50.
Sacks, H. S. et al. 2009. “Uncoupling Protein-1 and Related Messenger Ribonucleic Acids in Human Epicardial and Other Adipose Tissues : Epicardial Fat Functioning As.” Endocrine Research - Brief Report 94(September): 3611–15.
Samad, F. et al. 2011. “Adipose Tissue and Ceramide Biosynthesis in the Pathogenesis of Obesity.” Advances in experimental medicine and biology 721: 67–86.
Samaras, K. et al. 2010. “Subcutaneous and Visceral Adipose Tissue Gene Expression of Serum Adipokines That Predict Type 2 Diabetes.” Obesity 18(5): 884–89. http://dx.doi.org/10.1038/oby.2009.443.
Sarjeant, K. a Stephens, J. M. 2012. “Adipogenesis.” Cold Spring Harb Perspect Biol 4: 1–19.
Sfyri, P. a Matsakas, A. 2017. “Crossroads between Peripheral Atherosclerosis , Western-Type Diet and Skeletal Muscle Pathophysiology : Emphasis on Apolipoprotein E Deficiency and Peripheral Arterial Disease.” Journal of Biomediacal Science 24(1): 1–25.
Smith, C. A. et al. 2006. “XCMS : Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment , Matching , and Identification.” Analytical Chemistry 78(3): 779–87.
Smith, U. 2002. “Impaired ('diabetic’) Insulin Signaling and Action Occur in Fat Cells Long before Glucose Intolerance--Is Insulin Resistance Initiated in the Adipose Tissue?” International journal of obesity and related metabolic disorders : journal of the International Association for the Study of Obesity 26(7): 897–904.
Smith, U. a Kahn B. 2016. “Adipose Tissue Regulates Insulin Sensitivity: Role of Adipogenesis, de Novo Lipogenesis and Novel Lipids.” Journal of Internal Medicine 280(5): 465–75. https://onlinelibrary.wiley.com/doi/10.1111/joim.12540.
Sobczak, A. I. S., Blindauer, C. A. a Stewart A. J. 2019. “Changes in Plasma Free Fatty Acids Associated with Type-2 Diabetes.” Nutrients 11(2022): 1–42.
Song, Y. et al. 2020. “The Roles of Epicardial Adipose Tissue in Heart Failure.” Heart Failure Reviews (2999).
Souček, F. a Novák, J. 2018. “Role Epikardiálního Tuku v Patofyziologii Srdečních Onemocnění.” Kardiologická revue - Interní medicína 20(3): 212–17.
Sprecher, H. 2000. “Metabolism of Highly Unsaturated N-3 and n-6 Fatty Acids.” Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids 1486(2–3): 219–31.
Styczynski, M. P. et al. 2007. “Systematic Identification of Conserved Metabolites in GC / MS Data for Metabolomics and Biomarker Discovery.” Analytical Chemistry 79(3): 966–73.
Suh, P. et al. 2008. “Multiple Roles of Phosphoinositide-Specific Phospholipase C Isozymes.” BMB reports 41(6): 415–34.
Sukhorukov, V. N., Karagodin, V. P. a Orekhov, A. N. 2016. “Atherogenic modification of low-density lipoproteins.” Biomeditsinskaia khimiia 62(4): 391–402.
Summerhill, V. I. et al. 2019. “The Atherogenic Role of Circulating Modified Lipids in Atherosclerosis.” Molecular Sciences 20(14): 3561.
Syme, C. et al. 2016. “Glycerophosphocholine Metabolites and Cardiovascular Disease Risk Factors in Adolescents: A Cohort Study.” Circulation 134(21): 1629–36.
Toczylowski, K. et al. 2019. “Plasma Concentration and Expression of Adipokines in Epicardial and Subcutaneous Adipose Tissue Are Associated with Impaired Left Ventricular Filling Pattern.” Journal of Translational Medicine 17(310): 1–11. https://doi.org/10.1186/s12967-019-2060-7.
Tomášová, P. et al. 2019. “Minor Lipids Profiling in Subcutaneous and Epicardial Fat Tissue Using LC / MS with an Optimized Preanalytical Phase.” Journal of Chromatography B 1113(October 2018): 50–59. https://doi.org/10.1016/j.jchromb.2019.03.006.
Tomášová, P. et al. 2020. “Lipid Profiling in Epicardial and Subcutaneous Adipose Tissue of Patients with Coronary Artery Disease.” Journal of proteome research 19(10): 3993–4003.
Veen, J. N. et al. 2017. “The Critical Role of Phosphatidylcholine and Phosphatidylethanolamine Metabolism in Health and Disease.” Biochimica et Biophysica Acta - Biomembranes 1859(9): 1558–72. http://dx.doi.org/10.1016/j.bbamem.2017.04.006.
Vianello, E. et al. 2016. “Epicardial Adipocyte Hypertrophy : Association with M1-Polarization and Toll-like Receptor Pathways in Coronary Artery Disease Patients.” Nutrition, Metabolism and Cardiovascular Diseases 26(3): 246–53. http://dx.doi.org/10.1016/j.numecd.2015.12.005.
Wall, P. E. 2005. Thin-Layer Chromatography. ed. R.M. Smith. The Royal Society of Chemistry.
Watson, A. D. 2006. “Lipidomics : A Global Approach to Lipid Analysis in Biological Systems.” Journal of Lipid Research 47: 2101–11.
Wojtowicz, P. et al. 2013. “Techniky Metabolomiky v Biomedicíně.” Chemické listy 107: 3–11.
Wolrab, D. et al. 2020. “Determination of One Year Stability of Lipid Plasma Profile and Comparison of Blood Collection Tubes Using UHPSFC/MS and HILIC-UHPLC/MS.” Analytica Chimica Acta 1137: 74–84.
World Health Organization. 2019. “Classification of Diabetes Mellitus. 2019.
Worley, B. a Powers R. 2013. “Multivariate Analysis in Metabolomics.” Current metabolomics 1(1): 92–107.
Wu, J. et al. 2019. “Integrative Analyses of Myocardial Lipidome and Proteome Implicate Mitochondrial Dysfunction in Lethal Ventricular Tachyarrhythmia ( LVTA ) Induced by Acute Myocardial Ischemia ( AMI ).” Journal of Proteomics 197(January): 14–22. https://doi.org/10.1016/j.jprot.2019.01.021.
Wu, Z., Shon, J. C. and Liu, K. 2014. “Mass Spectrometry-Based Lipidomics and Its Application to Biomedical Research.” Journal of Lifestyle Medicine 4(1): 17–33.
Xu, F. et al. 2013. “Metabolic Signature Shift in Type 2 Diabetes Mellitus Revealed by Mass Spectrometry-Based Metabolomics.” Journal of Clinical Endocrinology and Metabolism 98(6): 1060–65.
Xu, H. et al. 2003. “Chronic Inflammation in Fat Plays a Crucial Role in the Development of Obesity-Related Insulin Resistance.” Journal of Clinical Investigation 112(12): 1821–30.
Xua, Q. a Liang, Y. 2001. “Monte Carlo Cross Validation.” Chemometrics and Intelligent Laboratory Systems 56: 1–11.
Yang, Y. et al. 2019. “Advances of Supercritical Fluid Chromatography in Lipid Profiling.” Journal of Pharmaceutical Analysis 9(1): 1–8.
Benjamini Y. and Yekutieli D. 2001. “The Control of the False Discovery Rate in Multiple Testing under Dependency.” The Annals of Statistics 29(4): 1165–88.
Zhang, H. et al. 2020. “Identification of Potential Serum Metabolic Biomarkers of Diabetic Kidney Disease : A Widely Targeted Metabolomics Study.” Journal of Diabetes Research 2020: 11.
Zhang, Y. et al. 2007. “PGC-1 a Inhibits Oleic Acid Induced Proliferation and Migration of Rat Vascular Smooth Muscle Cells.” PLoS ONE 2(11): e1137.
Zhang, Y. et al. 1994. “Positional Cloning of the Mouse Obese Gene and Its Human Homologue.” Nature 372(6505): 425–32.
Zhao, J. et al. 2019. “Triglyceride Is an Independent Predictor of Type 2 Diabetes among Middle ‑ Aged and Older Adults : A Prospective Study with 8 ‑ Year Follow ‑ Ups in Two Cohorts.” Journal of Translational Medicine 17: 403. https://doi.org/10.1186/s12967-019-02156-3.
Zimmet, P. Z., George, K. a Alberti M.M. 2006. “Introduction: Globalization and the Non-Communicable Disease Epidemic.” OBESITY 14(1): 1–3.
Zlobine, I., Gopal, K. a Ussher, J. R. 2016. “Biochimica et Biophysica Acta Lipotoxicity in Obesity and Diabetes-Related Cardiac Dysfunction.” Biochimica et Biophysica Acta 1861(10): 1555–68. http://dx.doi.org/10.1016/j.bbalip.2016.02.011.
Předběžná náplň práce
Ischemická choroba srdeční je celosvětově jednou z nejčastějších příčin úmrtí. Vzniká v důsledku ucpávání cév aterogenními pláty. Rozvoj onemocnění, její prognóza a léčba je ovlivněna častou přítomností dalších komorbidit, jako jsou diabetes mullitu 2. typu či obezita. Všechna tato onemocnění souvisejí s metabolismem lipidů a s tukovou tkání. Tuková tkáň již není považována za pouhé úložiště energie, ale je důležitým endokrinním orgánem, jejíž působky mají dopad na celotělový metabolismus. Hlavním cílem práce bude zavést metodu vhodnou pro analýzu lipidů v tukové tkáni, zhodnotit vliv umístění tukové tkáně v podkoží a v epikardu na profil lipidů a dále posoudit vliv ischemické choroby na jejich složení. K dosažení cílů v práci bude použito pokročilých analytických metod, jako je vysokoúčinná kapalinová chromatografie a hmotnostní spektrometrie v rámci necílené lipidomiky, což umožní sledovat a zhodnotit vliv širokého profilu látek.
 
Univerzita Karlova | Informační systém UK