Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 379)
Detail práce
   Přihlásit přes CAS
V sobotu dne 19. 10. 2024 dojde k odstávce některých součástí informačního systému. Nedostupná bude zejména práce se soubory v modulech závěrečných prací. Svoje požadavky, prosím, odložte na pozdější dobu.
Histologická analýza vybraných markerů u kardiometabolických onemocnění 2
Název práce v češtině: Histologická analýza vybraných markerů u kardiometabolických onemocnění 2
Název v anglickém jazyce: Histological analysis of selected markers in cardiometabolic diseases 2
Akademický rok vypsání: 2021/2022
Typ práce: bakalářská práce
Jazyk práce: čeština
Ústav: Katedra biologických a lékařských věd (16-16150)
Vedoucí / školitel: PharmDr. Barbora Vitverová, Ph.D.
Řešitel: skrytý - zadáno vedoucím/školitelem
Datum přihlášení: 28.11.2021
Datum zadání: 28.11.2021
Datum a čas obhajoby: 30.05.2023 08:00
Datum odevzdání elektronické podoby:15.05.2023
Datum proběhlé obhajoby: 30.05.2023
Oponenti: RNDr. Ivana Němečková, Ph.D.
 
 
 
Zásady pro vypracování
1. Literární rešerše
2. Metodická část zaměřená zejména na histologické a imunohistochemické postupy
3. Výsledková část
4. Diskuze získaných dat
5. Závěrečné výstupy
Seznam odborné literatury
1. Bot PT, Hoefer IE, Sluijter JP, van Vliet P, Smits AM, Lebrin F, Moll F, de Vries JP, Doevendans P, Piek JJ, Pasterkamp G and Goumans MJ. Increased expression of the transforming growth factor-beta signaling pathway, endoglin, and early growth response-1 in stable plaques. Stroke. 2009;40:439-47.
2. St-Jacques S, Cymerman U, Pece N and Letarte M. Molecular characterization and in situ localization of murine endoglin reveal that it is a transforming growth factor-beta binding protein of endothelial and stromal cells. Endocrinology. 1994;134:2645-57.
3. Meurer S, Wimmer AE, Leur EV and Weiskirchen R. Endoglin Trafficking/Exosomal Targeting in Liver Cells Depends on N-Glycosylation. Cells. 2019;8.
4. Lastres P, Bellon T, Cabanas C, Sanchez-Madrid F, Acevedo A, Gougos A, Letarte M and Bernabeu C. Regulated expression on human macrophages of endoglin, an Arg-Gly-Asp-containing surface antigen. Eur J Immunol. 1992;22:393-7.
5. Gonzalez-Nunez M, Munoz-Felix JM and Lopez-Novoa JM. The ALK-1/Smad1 pathway in cardiovascular physiopathology. A new target for therapy? Biochim Biophys Acta. 2013;1832:1492-510.
6. Zhao Y, Vanhoutte PM and Leung SW. Vascular nitric oxide: Beyond eNOS. J Pharmacol Sci. 2015;129:83-94.
7. Palmer RM, Ashton DS and Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988;333:664-6.
8. Moncada S and Higgs EA. Nitric oxide and the vascular endothelium. Handb Exp Pharmacol. 2006:213-54.
9. Lloyd-Jones DM and Bloch KD. The vascular biology of nitric oxide and its role in atherogenesis. Annu Rev Med. 1996;47:365-75.
10. Nachtigal P, Zemankova Vecerova L, Rathouska J and Strasky Z. The role of endoglin in atherosclerosis.Atherosclerosis. 2012;224:4-11.
11. Vicen M, Igreja Sa IC, Tripska K, Vitverova B, Najmanova I, Eissazadeh S, Micuda S and Nachtigal P. Membrane and soluble endoglin role in cardiovascular and metabolic disorders related to metabolic syndrome. Cell Mol Life Sci. 2021;78:2405-2418.
12. Vitverova B, Blazickova K, Najmanova I, Vicen M, Hyspler R, Dolezelova E, Nemeckova I, Tebbens JD, Bernabeu C, Pericacho M and Nachtigal P. Soluble endoglin and hypercholesterolemia aggravate endothelial and vessel wall dysfunction in mouse aorta. Atherosclerosis. 2018;271:15-25.
13. Blazquez-Medela AM, Garcia-Ortiz L, Gomez-Marcos MA, Recio-Rodriguez JI, Sanchez-Rodriguez A, Lopez-Novoa JM and Martinez-Salgado C. Increased plasma soluble endoglin levels as an indicator of cardiovascular alterations in hypertensive and diabetic patients. BMC Med. 2010;8:86.
14. Gallardo-Vara E, Gamella-Pozuelo L, Perez-Roque L, Bartha JL, Garcia-Palmero I, Casal JI, Lopez-Novoa JM, Pericacho M and Bernabeu C. Potential Role of Circulating Endoglin in Hypertension via the Upregulated Expression of BMP4. Cells. 2020;9.
15. Guo WT and Dong DL. Bone morphogenetic protein-4: a novel therapeutic target for pathological cardiac hypertrophy/heart failure. Heart Fail Rev. 2014;19:781-8.
16. Nemeckova I, Serwadczak A, Oujo B, Jezkova K, Rathouska J, Fikrova P, Varejckova M, Bernabeu C, Lopez-Novoa JM, Chlopicki S and Nachtigal P. High soluble endoglin levels do not induce endothelial dysfunction in mouse aorta. PloS one. 2015;10:e0119665.
17. Jezkova K, Rathouska J, Nemeckova I, Fikrova P, Dolezelova E, Varejckova M, Vitverova B, Tysonova K, Serwadczak A, Buczek E, Bernabeu C, Lopez-Novoa JM, Chlopicki S and Nachtigal P. High Levels of Soluble Endoglin Induce a Proinflammatory and Oxidative-Stress Phenotype Associated with Preserved NO-Dependent Vasodilatation in Aortas from Mice Fed a High-Fat Diet. J Vasc Res. 2016;53:149-162.
18. Valbuena-Diez AC, Blanco FJ, Oujo B, Langa C, Gonzalez-Nunez M, Llano E, Pendas AM, Diaz M, Castrillo A, Lopez-Novoa JM and Bernabeu C. Oxysterol-induced soluble endoglin release and its involvement in hypertension. Circulation. 2012;126:2612-24.
19. Ratz PH, Berg KM, Urban NH and Miner AS. Regulation of smooth muscle calcium sensitivity: KCl as a calcium-sensitizing stimulus. Am J Physiol Cell Physiol. 2005;288:C769-83.
20. Himpens B, Missiaen L and Casteels R. Ca2+ homeostasis in vascular smooth muscle. J Vasc Res. 1995;32:207-19.
21. Morimoto S, Koh E, Kim S, Morita R, Fukuo K and Ogihara T. Effects of prostaglandin F2 alpha on the mobilization of cytosolic free calcium in vascular smooth muscle cells and on the tension of aortic strips from rats. Am J Hypertens. 1990;3:241S-244S.
22. Eglen RM and Whiting RL. Heterogeneity of vascular muscarinic receptors. J Auton Pharmacol. 1990;10:233-45.
23. Tangsucharit P, Takatori S, Zamami Y, Goda M, Pakdeechote P, Kawasaki H and Takayama F. Muscarinic acetylcholine receptor M1 and M3 subtypes mediate acetylcholine-induced endothelium-independent vasodilatation in rat mesenteric arteries. J Pharmacol Sci. 2016;130:24-32.
24. Vanhoutte PM and De Mey J. Control of vascular smooth muscle function by the endothelial cells. Gen Pharmacol. 1983;14:39-41.
25. Perez-Vizcaino F, Cogolludo AL, Zaragoza-Arnaez F, Fajardo S, Ibarra M, Lopez-Lopez JG and Tamargo J. Vasodilator effects of sodium nitroprusside, levcromakalim and their combination in isolated rat aorta. Br J Pharmacol. 1999;128:1419-26.
26. Galkina E and Ley K. Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol. 2007;27:2292-301.
27. Sumagin R, Lomakina E and Sarelius IH. Leukocyte-endothelial cell interactions are linked to vascular permeability via ICAM-1-mediated signaling. Am J Physiol Heart Circ Physiol. 2008;295:H969-H977.
28. Habas K and Shang L. Alterations in intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) in human endothelial cells. Tissue Cell. 2018;54:139-143.
29. Liao JK. Linking endothelial dysfunction with endothelial cell activation. J Clin Invest. 2013;123:540-1.
30. Brouet A, Sonveaux P, Dessy C, Balligand JL and Feron O. Hsp90 ensures the transition from the early Ca2+-dependent to the late phosphorylation-dependent activation of the endothelial nitric-oxide synthase in vascular endothelial growth factor-exposed endothelial cells. J Biol Chem. 2001;276:32663-9.
31. Pohl U, De Wit C and Gloe T. Large arterioles in the control of blood flow: role of endothelium-dependent dilation. Acta Physiol Scand. 2000;168:505-10.
32. Chen CA, Druhan LJ, Varadharaj S, Chen YR and Zweier JL. Phosphorylation of endothelial nitric-oxide synthase regulates superoxide generation from the enzyme. J Biol Chem. 2008;283:27038-47.
33. Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P and ten Dijke P. Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J. 2002;21:1743-53.
34. Kishi H, Ye LH, Nakamura A, Okagaki T, Iwata A, Tanaka T and Kohama K. Structure and function of smooth muscle myosin light chain kinase. Adv Exp Med Biol. 1998;453:229-34.
35. Stull JT, Tansey MG, Tang DC, Word RA and Kamm KE. Phosphorylation of myosin light chain kinase: a cellular mechanism for Ca2+ desensitization. Mol Cell Biochem. 1993;127-128:229-37.
36. Vicen M, Igreja Sa IC, Tripska K, Vitverova B, Najmanova I, Eissazadeh S, Micuda S and Nachtigal P. Membrane and soluble endoglin role in cardiovascular and metabolic disorders related to metabolic syndrome. Cell Mol Life Sci. 2020.
37. Dolezelova E, Sa ICI, Prasnicka A, Hroch M, Hyspler R, Ticha A, Lastuvkova H, Cermanova J, Pericacho M, Visek J, Lasticova M, Micuda S and Nachtigal P. High soluble endoglin levels regulate cholesterol homeostasis and bile acids turnover in the liver of transgenic mice. Life Sci. 2019;232:116643.
38. Igreja Sa IC, Tripska K, Hroch M, Hyspler R, Ticha A, Lastuvkova H, Schreiberova J, Dolezelova E, Eissazadeh S, Vitverova B, Najmanova I, Vasinova M, Pericacho M, Micuda S and Nachtigal P. Soluble Endoglin as a Potential Biomarker of Nonalcoholic Steatohepatitis (NASH) Development, Participating in Aggravation of NASH-Related Changes in Mouse Liver. Int J Mol Sci. 2020;21.
39. Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM, Bdolah Y, Lim KH, Yuan HT, Libermann TA, Stillman IE, Roberts D, D'Amore PA, Epstein FH, Sellke FW, Romero R, Sukhatme VP, Letarte M and Karumanchi SA. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med. 2006;12:642-9.
40. Varejckova M, Gallardo-Vara E, Vicen M, Vitverova B, Fikrova P, Dolezelova E, Rathouska J, Prasnicka A, Blazickova K, Micuda S, Bernabeu C, Nemeckova I and Nachtigal P. Soluble endoglin modulates the pro-inflammatory mediators NF-kappaB and IL-6 in cultured human endothelial cells. Life Sci. 2017;175:52-60.
 
Univerzita Karlova | Informační systém UK