Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 368)
Detail práce
   Přihlásit přes CAS
Chemické a fyzikální vlastnosti povrchů perovskitů
Název práce v češtině: Chemické a fyzikální vlastnosti povrchů perovskitů
Název v anglickém jazyce: Physical and Chemical properties of perovskite surfaces
Akademický rok vypsání: 2021/2022
Typ práce: disertační práce
Jazyk práce: čeština
Ústav: Katedra fyziky povrchů a plazmatu (32-KFPP)
Vedoucí / školitel: doc. Mgr. Martin Setvín, Ph.D.
Řešitel: skrytý - zadáno a potvrzeno stud. odd.
Datum přihlášení: 10.02.2022
Datum zadání: 10.02.2022
Datum potvrzení stud. oddělením: 21.02.2022
Zásady pro vypracování
Perovskites (chemical formula ABO3 [1]) are currently at the forefront of interest in materials research because of their wide applicability in catalysis [2], photocatalysis [3], electronics [4] or spintronics. The class of perovskites contains hundreds of stable materials thanks to the wide choice of A and B cations and further possibilities of doping at all three sites. The surface science of perovskites represents a major challenge mainly due to the ternary composition of the bulk material and consequent complex behaviour of their surfaces.

The focus of this PhD thesis are bulk-terminated surfaces of perovskites from the class of titanates and tantalates (for example KTaO3, KNbO3, SrTiO3 and BaTiO3). A successful preparation of this surface termination has been reported just recently [5,6] and the combined atomic force microcopy/scanning tunnelling microscopy has proven as an invaluable tool for characterization of these surfaces at the atomic scale. The AFM/STM will be supplemented by area-averaging analysis spectroscopic techniques, such as LEED, XPS, and LEIS. A major aspect of the research will be ferroelectricity (spontaneous electric polarization), often present in these materials, and the opportunities that ferroelectricity offers for production of renewable fuels (photocatalytic and pyrocatalytic effect). Another target of the Thesis will be the stability and evolution of the surface structure at ambient pressures and in liquids.
The candidate will be encouraged to spend at least 6 months abroad with one of our collaborators in Austria, Germany or Japan.
Seznam odborné literatury
[2] S. Royer, D. Duprez, F. Can, X. Courtois, C. Batiot-Dupeyrat, S. Laassiri, and H. Alamdari, Chem. Rev. 114, 10292−10368 (2014)
[3] E. Grabowska, Appl. Cat. B: Environmental 186, 97 (2016)
[4] A. F. Santander-Syro et al., Nature 469, 189 (2011)
[5] M. Setvin, M. Reticcioli, F. Poelzleitner, J. Hulva, M. Schmid, L. A. Boatner, C. Franchini, and U. Diebold, Science 359, 572 (2018)
[6] I. Sokolovic, M. Schmid, U. Diebold, and M. Setvin, Phys. Rev. Mater. 3, 034407 (2019)
Předběžná náplň práce
In case of interest, please contact Martin Setvin (martin.setvin@mff.cuni.cz), preferably before November 15, 2021

For more info about us, see https://physics.mff.cuni.cz/kfpp/vrstvy/01_News.html
The topic is listed also at https://physics.mff.cuni.cz/kfpp/phdweb/topic/420
Předběžná náplň práce v anglickém jazyce
Perovskites (chemical formula ABO3 [1]) are currently at the forefront of interest in materials research because of their wide applicability in catalysis [2], photocatalysis [3], electronics [4] or spintronics. The class of perovskites contains hundreds of stable materials thanks to the wide choice of A and B cations and further possibilities of doping at all three sites. The surface science of perovskites represents a major challenge mainly due to the ternary composition of the bulk material and consequent complex behaviour of their surfaces.

The focus of this PhD thesis are bulk-terminated surfaces of perovskites from the class of titanates and tantalates (for example KTaO3, KNbO3, SrTiO3 and BaTiO3). A successful preparation of this surface termination has been reported just recently [5,6] and the combined atomic force microcopy/scanning tunnelling microscopy has proven as an invaluable tool for characterization of these surfaces at the atomic scale. The AFM/STM will be supplemented by area-averaging analysis spectroscopic techniques, such as LEED, XPS, and LEIS. A major aspect of the research will be ferroelectricity (spontaneous electric polarization), often present in these materials, and the opportunities that ferroelectricity offers for production of renewable fuels (photocatalytic and pyrocatalytic effect). Another target of the Thesis will be the stability and evolution of the surface structure at ambient pressures and in liquids.
The candidate will be encouraged to spend at least 6 months abroad with one of our collaborators in Austria, Germany or Japan.

In case of interest, please contact Martin Setvin (martin.setvin@mff.cuni.cz), preferably before November 15, 2021

For more info about us, see https://physics.mff.cuni.cz/kfpp/vrstvy/01_News.html
The topic is listed also at https://physics.mff.cuni.cz/kfpp/phdweb/topic/420
 
Univerzita Karlova | Informační systém UK