Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 368)
Detail práce
   Přihlásit přes CAS
Vliv konkrétních druhů potravin a pohybové aktivity na vznik a rozvoj karcinomu prsu u žen
Název práce v češtině: Vliv konkrétních druhů potravin a pohybové aktivity na vznik a rozvoj karcinomu prsu u žen
Název v anglickém jazyce: The impact of specific food types and physical activity on breast cancer incidence and development in women
Klíčová slova: rakovina prsu, modifikovatelné rizikové faktory, výživa, fyzická aktivita, program ONKO-FIT, intervence životního stylu
Klíčová slova anglicky: breast cancer, modifiable risk factors, nutrition, physical activity, ONKO-FIT program, lifestyle modification, lifestyle intervention
Akademický rok vypsání: 2020/2021
Typ práce: bakalářská práce
Jazyk práce: čeština
Ústav: III. interní klinika – klinika endokrinologie a metabolismu 1. LF UK a VFN (11-00530)
Vedoucí / školitel: prof. MUDr. Martin Matoulek, Ph.D.
Řešitel: skrytý - zadáno vedoucím/školitelem
Datum přihlášení: 21.09.2021
Datum zadání: 21.09.2021
Datum a čas obhajoby: 11.01.2024 08:00
Datum odevzdání elektronické podoby:29.11.2023
Datum proběhlé obhajoby: 11.01.2024
Předmět: Obhajoba bakalářské práce (B02367)
Oponenti: MUDr. Katarína Šuta Kimle
 
 
 
Seznam odborné literatury
Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70. https://doi.org/10.1016/s0092-8674(00)81683-9 


Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013 


Hanahan, D. (2022)Hallmarks of Cancer: New Dimensions, Cancer Discovery, 12(1): 31-46. https://doi.org/10.1158/2159-8290.CD-21-1059 


Franovic, A., Holterman, C. E., Payette, J., & Lee, S. (2009). Human cancers converge at the HIF-2alpha oncogenic axis. Proceedings of the National Academy of Sciences of the United States of America, 106(50), 21306–21311. https://doi.org/10.1073/pnas.0906432106 


Stengel, K. R. et al. (2009). Retinoblastoma/p107/p130 pocket proteins: protein dynamics and interactions with target gene promoters.” The Journal of biological chemistry vol. 284,29 (2009): 19265-71. doi:10.1074/jbc.M808740200 


Müller, H., Helin, K. (2000). The E2F transcription factors: key regulators of cell proliferation. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. ISSN 0304-419X, doi.org/10.1016/S0304-419X(99)00030-X. 


O'Brien, M. A., Kirby, R. (2018). Apoptosis: A review of pro‐apoptotic and anti‐apoptotic pathways and dysregulation in disease. Journal of Veterinary Emergency and Critical Care. 18(6):572–585. doi:10.1111/j.1476-4431.2008.00363.x Strasser, A. et al. (2000) Apoptosis Signaling, Annu. Rev. Biochem.. 69:217–45, DOI: 10.1146/annurev.biochem.69.1.217 


Sharma, A. et al. (2019). Cancer Metabolism and the Evasion of Apoptotic Cell Death. Cancers, 11(8), 1144. https://doi.org/10.3390/cancers11081144

Kucka, K., & Wajant, H. (2021). Receptor Oligomerization and Its Relevance for Signaling by Receptors of the Tumor Necrosis Factor Receptor Superfamily. Frontiers in cell and developmental biology, 8, 615141. https://doi.org/10.3389/fcell.2020.615141

Wajant, H., Pfizenmaier, K., & Scheurich, P. (2003). Tumor necrosis factor signaling. Cell death and differentiation, 10(1), 45–65. https://doi.org/10.1038/sj.cdd.4401189

Rakash S. Role of proteases in cancer: A review, Biotechnology and Molecular Biology Review , 7(4), 90-101, DOI:10.5897/BMBR11.027

Boutelle, A. M., Attardi, L. D. (2021). p53 and Tumor Suppression: It Takes a Network. Trends in cell biology, 31(4), 298–310. https://doi.org/10.1016/j.tcb.2020.12.011

Ozaki, T., Nakagawara, A. (2011). Role of p53 in Cell Death and Human Cancers. Cancers, 3(1), 994–1013. https://doi.org/10.3390/cancers3010994

Hayashi, M. T., Cesare, A. J., Rivera, T., & Karlseder, J. (2015). Cell death during crisis is mediated by mitotic telomere deprotection. Nature, 522(7557), 492–496. https://doi.org/10.1038/nature14513

Shay, J. W., Wright, W. E. (2011). Role of telomeres and telomerase in cancer. Seminars in cancer biology, 21(6), 349–353. https://doi.org/10.1016/j.semcancer.2011.10.001

Nishida, N., Yano, H., Nishida, T., Kamura, T., & Kojiro, M. (2006). Angiogenesis in cancer. Vascular health and risk management, 2(3), 213–219. https://doi.org/10.2147/vhrm.2006.2.3.213

Zheng, Q. et al. (2017). miR-200b inhibits proliferation and metastasis of breast cancer by targeting fucosyltransferase IV and α1,3-fucosylated glycans. Oncogenesis, 6(7), e358. https://doi.org/10.1038/oncsis.2017.58

Dillekås, H. et al. (2019). Are 90% of deaths from cancer caused by metastases?. Cancer medicine, 8(12), 5574–5576. https://doi.org/10.1002/cam4.2474

Vleminckx, K.(2014).CellAdhesionMolecules.In:Schwab,M.(Encyclopediaof Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46875-3_989

Jiang, W. G. et al. (2015). Tissue invasion and metastasis: Molecular, biological and clinical perspectives. Seminars in cancer biology, 35 Suppl, S244–S275. https://doi.org/10.1016/j.semcancer.2015.03.008

Špaček, P. (2017) Stanovení markerů epiteliálně mezenchymální tranzice (EMT) u buněk in vitro. Diplomová práce, Univerzita Karlova, Farmaceutická fakulta v Hradci Králové, Katedra biochemických věd. https://dspace.cuni.cz/bitstream/handle/20.500.11956/85295/120267983.pdf?sequ ence=1&isAllowed=y

Vander H. et al. (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (New York, N.Y.), 324(5930), 1029–1033. https://doi.org/10.1126/science.1160809

Vesely, M. D., & Schreiber, R. D. (2013). Cancer immunoediting: antigens, mechanisms, and implications to cancer immunotherapy. Annals of the New York Academy of Sciences, 1284(1), 1–5. https://doi.org/10.1111/nyas.12105

Vinay,D.S. et al. (2015). Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Seminars in cancer biology, 35 Suppl, S185–S198. https://doi.org/10.1016/j.semcancer.2015.03.004

Salemme, V., Centonze, G., Cavallo, F., Defilippi, P., & Conti, L. (2021). The Crosstalk Between Tumor Cells and the Immune Microenvironment in Breast Cancer: Implications for Immunotherapy. Frontiers in oncology, 11, 610303. https://doi.org/10.3389/fonc.2021.610303

Li, J., & Stanger, B. Z. (2020). How Tumor Cell Dedifferentiation Drives Immune Evasion and Resistance to Immunotherapy. Cancer research, 80(19), 4037–4041. https://doi.org/10.1158/0008-5472.CAN-20-1420

Lukong K. E. (2017). Understanding breast cancer - The long and winding road. BBA clinical, 7, 64–77. https://doi.org/10.1016/j.bbacli.2017.01.001

Petrucelli, N., Daly, M. B., & Pal, T. (1998). BRCA1- and BRCA2-Associated Hereditary Breast and Ovarian Cancer. In M. P. Adam (Eds.) et. al., GeneReviews®. University of Washington, Seattle. https://www.ncbi.nlm.nih.gov/books/NBK1247/

Feng, Y., et al. (2018). Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes & diseases, 5(2), 77–106. https://doi.org/10.1016/j.gendis.2018.05.001

Miah, S., Bagu, E., Goel, R., Ogunbolude, Y., Dai, C., Ward, A., Vizeacoumar, F. S., Davies, G., Vizeacoumar, F. J., Anderson, D., & Lukong, K. E. (2019). Estrogen receptor signaling regulates the expression of the breast tumor kinase in breast cancer cells. BMC cancer, 19(1), 78. https://doi.org/10.1186/s12885-018-5186-8

Nicolini, A., Ferrari, P., Duffy, M. J. (2018) Prognostic and predictive biomarkers in breast cancer: Past, present and future, Seminars in Cancer Biology, 52, 56-73, ISSN 1044-579X, doi.org/10.1016/j.semcancer.2017.08.010

Iqbal, N., & Iqbal, N. (2014). Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications. Molecular biology international, 2014, 852748. https://doi.org/10.1155/2014/852748

Vuong,D.,Simpson,P.T.,Green,B.,Cummings,M.C.,&Lakhani,S.R.(2014). Molecular classification of breast cancer. Virchows Archiv : an international journal of pathology, 465(1), 1–14. https://doi.org/10.1007/s00428-014-1593-7

Reisenbichler, E. S., Balmer, N. N., Adams, A. L., Pfeifer, J. D., & Hameed, O. (2011). Luminal cytokeratin expression profiles of breast papillomas and papillary carcinomas and the utility of a cytokeratin 5/p63/cytokeratin 8/18 antibody cocktail in their distinction. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc, 24(2), 185–193. https://doi.org/10.1038/modpathol.2010.197

Bustreo, S., Osella-Abate, S., Cassoni, P., Donadio, M., Airoldi, M., Pedani, F., Papotti, M., Sapino, A., & Castellano, I. (2016). Optimal Ki67 cut-off for luminal breast cancer prognostic evaluation: a large case series study with a long-term follow-up. Breast cancer research and treatment, 157(2), 363–371. https://doi.org/10.1007/s10549-016-3817-9

Novotný, J. (2017) Novinky v hormonální léčbě karcinomu prsu. Onkologie, 11(5): 257–262, https://www.onkologiecs.cz/pdfs/xon/2017/05/09.pdf

Tang, P., & Tse, G. M. (2016). Immunohistochemical Surrogates for Molecular Classification of Breast Carcinoma: A 2015 Update. Archives of pathology & laboratory medicine, 140(8), 806–814. https://doi.org/10.5858/arpa.2015-0133-RA

Inic, Z., Zegarac, M., Inic, M., Markovic, I., Kozomara, Z., Djurisic, I., Inic, I., Pupic, G., & Jancic, S. (2014). Difference between Luminal A and Luminal B Subtypes According to Ki-67, Tumor Size, and Progesterone Receptor Negativity Providing Prognostic Information. Clinical Medicine Insights. Oncology, 8, 107–111. https://doi.org/10.4137/CMO.S18006

Feeley, L. P., Mulligan, A. M., Pinnaduwage, D., Bull, S. B., & Andrulis, I. L. (2014). Distinguishing luminal breast cancer subtypes by Ki67, progesterone receptor or TP53 status provides prognostic information. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc, 27(4), 554–561. https://doi.org/10.1038/modpathol.2013.153

Ahn,H.J.,Jung,S.J.,Kim,T.H.,Oh,M.K.,&Yoon,H.K.(2015).Differencesin Clinical Outcomes between Luminal A and B Type Breast Cancers according to the St. Gallen Consensus 2013. Journal of breast cancer, 18(2), 149–159. https://doi.org/10.4048/jbc.2015.18.2.149

Loibl, S., & Gianni, L. (2017). HER2-positive breast cancer. Lancet (London, England), 389 (10087), 2415–2429. https://doi.org/10.1016/S0140-6736(16)32417-5

Orrantia-Borunda, E., Anchondo-Nuñez, P., Acuña-Aguilar, L. E., Gómez-Valles, F. O., & Ramírez-Valdespino, C. A. (2022). Subtypes of Breast Cancer. In H. N. Mayrovitz (Ed.), Breast Cancer. Exon Publications.

Xiao, W., Zheng, S., Yang, A., Zhang, X., Zou, Y., Tang, H., & Xie, X. (2018). Breast cancer subtypes and the risk of distant metastasis at initial diagnosis: a population-based study. Cancer management and research, 10, 5329–5338. https://doi.org/10.2147/CMAR.S176763

Ensenyat-Mendez, M., Llinàs-Arias, P., Orozco, J. I. J., Íñiguez-Muñoz, S., Salomon, M. P., Sesé, B., DiNome, M. L., & Marzese, D. M. (2021). Current Triple-Negative Breast Cancer Subtypes: Dissecting the Most Aggressive Form of Breast Cancer. Frontiers in oncology, 11, 681476. https://doi.org/10.3389/fonc.2021.681476

Tan, P. H., Ellis, I., Allison, K., Brogi, E., Fox, S. B., Lakhani, S., Lazar, A. J., Morris, E. A., Sahin, A., Salgado, R., Sapino, A., Sasano, H., Schnitt, S., Sotiriou, C., van Diest, P., White, V. A., Lokuhetty, D., Cree, I. A., & WHO Classification of Tumours Editorial Board (2020). The 2019 World Health Organization classification of tumours of the breast. Histopathology, 77(2), 181–185. https://doi.org/10.1111/his.14091

Ferlay,J.,Colombet,M.,Soerjomataram,I.,Parkin,D.M.,Piñeros,M.,Znaor,A., & Bray, F. (2021). Cancer statistics for the year 2020: An overview. International journal of cancer, 10.1002/ijc.33588. Advance online publication. https://doi.org/10.1002/ijc.33588

Lortet-Tieulent, J., Georges, D., Bray, F., & Vaccarella, S. (2020). Profiling global cancer incidence and mortality by socioeconomic development. International journal of cancer, 147(11), 3029–3036. https://doi.org/10.1002/ijc.33114

Łukasiewicz, S., Czeczelewski, M., Forma, A., Baj, J., Sitarz, R., & Stanisławek, A. (2021). Breast Cancer-Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies-An Updated Review. Cancers, 13(17), 4287. https://doi.org/10.3390/cancers13174287

Sung,H.,Ferlay,J.,Siegel,R.L.,Laversanne,M.,Soerjomataram,I.,Jemal,A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a cancer journal for clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660

UICC. GLOBOCAN 2020: New Global Cancer Data. https://www.uicc.org/news/globocan-2020-new-global-cancer-data

Torre, L. A., Islami, F., Siegel, R. L., Ward, E. M., & Jemal, A. (2017). Global Cancer in Women: Burden and Trends. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 26(4), 444–457. https://doi.org/10.1158/1055-9965.EPI-16-0858

Vinogradova, Y., Coupland, C., & Hippisley-Cox, J. (2020). Use of hormone replacement therapy and risk of breast cancer: nested case-control studies using the QResearch and CPRD databases. BMJ (Clinical research ed.), 371, m3873. https://doi.org/10.1136/bmj.m3873

Glass, A. G., Lacey, J. V., Jr, Carreon, J. D., & Hoover, R. N. (2007). Breast cancer incidence, 1980-2006: combined roles of menopausal hormone therapy, screening mammography, and estrogen receptor status. Journal of the National Cancer Institute, 99(15), 1152–1161. https://doi.org/10.1093/jnci/djm059

Munsell, M. F., Sprague, B. L., Berry, D. A., Chisholm, G., & Trentham-Dietz, A. (2014). Body mass index and breast cancer risk according to postmenopausal estrogen-progestin use and hormone receptor status. Epidemiologic reviews, 36(1), 114–136. https://doi.org/10.1093/epirev/mxt010

Henderson, J. A., Duffee, D., & Ferguson, T. (2023). Breast Examination Techniques. In StatPearls. StatPearls Publishing.

Christiansen, S. R., Autier, P., & Støvring, H. (2022). Change in effectiveness of mammography screening with decreasing breast cancer mortality: a population-based study. European journal of public health, 32(4), 630–635. https://doi.org/10.1093/eurpub/ckac047

Chiarelli, A. M., Blackmore, K. M., Muradali, D., Done, S. J., Majpruz, V., Weerasinghe, A., Mirea, L., Eisen, A., Rabeneck, L., & Warner, E. (2020). Performance Measures of Magnetic Resonance Imaging Plus Mammography in the High Risk Ontario Breast Screening Program. Journal of the National Cancer Institute, 112(2), 136–144. https://doi.org/10.1093/jnci/djz079

Gao, Y., Reig, B., Heacock, L., Bennett, D. L., Heller, S. L., & Moy, L. (2021). Magnetic Resonance Imaging in Screening of Breast Cancer. Radiologic clinics of North America, 59(1), 85–98. https://doi.org/10.1016/j.rcl.2020.09.004

Saadatmand, S. et al. (2019). MRI versus mammography for breast cancer screening in women with familial risk (FaMRIsc): a multicentre, randomised, controlled trial. The Lancet. Oncology, 20(8), 1136–1147. https://doi.org/10.1016/S1470-2045(19)30275-X

Brandt,K.R. et al. (2016). Comparison of Clinical and Automated Breast Density Measurements: Implications for Risk Prediction and Supplemental Screening. Radiology, 279(3), 710–719. https://doi.org/10.1148/radiol.2015151261

Boyd, N. F., Martin, L. J., Yaffe, M. J., & Minkin, S. (2011). Mammographic density and breast cancer risk: current understanding and future prospects. Breast cancer research : BCR, 13(6), 223. https://doi.org/10.1186/bcr2942

Kelly, K. M., & Richwald, G. A. (2011). Automated whole-breast ultrasound: advancing the performance of breast cancer screening. Seminars in ultrasound, CT, and MR, 32(4), 273–280. https://doi.org/10.1053/j.sult.2011.02.004

Versaggi, S. L., & De Leucio, A. (2022). Breast Biopsy. In StatPearls. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK559147/

Erickson,B.J.,Korfiatis,P.,Akkus,Z.,&Kline,T.L.(2017).MachineLearningfor Medical Imaging. Radiographics : a review publication of the Radiological Society of North America, Inc, 37(2), 505–515. https://doi.org/10.1148/rg.2017160130

Tran, W. T. et al. (2021). Computational Radiology in Breast Cancer Screening and Diagnosis Using Artificial Intelligence. Canadian Association of Radiologists journal = Journal l'Association canadienne des radiologistes, 72(1), 98–108. https://doi.org/10.1177/0846537120949974

Giordano, L. et al. (2012). Mammographic screening programmes in Europe: organization, coverage and participation. Journal of medical screening, 19 Suppl 1, 72–82. https://doi.org/10.1258/jms.2012.012085

Momenimovahed, Z., & Salehiniya, H. (2019). Epidemiological characteristics of and risk factors for breast cancer in the world. Breast cancer (Dove Medical Press), 11, 151–164. https://doi.org/10.2147/BCTT.S176070

Giordano S. H. (2018). Breast Cancer in Men. The New England journal of medicine, 378(24), 2311–2320. https://doi.org/10.1056/NEJMra1707939

National Cancer Institute. Recent Trends in SEER Age-Adjusted Incidence Rates, 2000-2019 National Cancer Institute. Cancer Stat Facts: Female Breast Cancer


Chalasani, P. (2023) Breast Cancer. Medscape. https://emedicine.medscape.com/article/1947145-overview?reg=1#a6

Ahern, T. P. et al.(2017). Family History of Breast Cancer, Breast Density, and Breast Cancer Risk in a U.S. Breast Cancer Screening Population. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 26(6), 938–944. https://doi.org/10.1158/1055-9965.EPI-16-0801

Kazerouni, N. et al. (2006). Family history of breast cancer as a risk factor for ovarian cancer in a prospective study. Cancer, 107(5), 1075–1083. https://doi.org/10.1002/cncr.22082

Pal, T. et al. (2005). BRCA1 and BRCA2 mutations account for a large proportion of ovarian carcinoma cases. Cancer, 104(12), 2807–2816. https://doi.org/10.1002/cncr.21536

Lizarraga,I.M. et al.(2013).Review of risk factors for the development of contralateral breast cancer. American journal of surgery, 206(5), 704–708. https://doi.org/10.1016/j.amjsurg.2013.08.002

Ramin, C., Withrow, D. R., Davis Lynn, B. C., Gierach, G. L., & Berrington de González, A. (2021). Risk of contralateral breast cancer according to first breast cancer characteristics among women in the USA, 1992-2016. Breast cancer research : BCR, 23(1), 24. https://doi.org/10.1186/s13058-021-01400-3

Lovett,J.L. et al. (2017). Oral contraceptives cause evolutionarily novel increases in hormone exposure: A risk factor for breast cancer. Evolution, medicine, and public health, 2017(1), 97–108. https://doi.org/10.1093/emph/eox009

NarodS.A.(2011).Hormonereplacementtherapyandtheriskofbreastcancer. Nature reviews. Clinical oncology, 8(11), 669–676. https://doi.org/10.1038/nrclinonc.2011.110

Lynch, B. M., Neilson, H. K., & Friedenreich, C. M. (2011). Physical activity and breast cancer prevention. Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer, 186, 13–42. https://doi.org/10.1007/978-3-642-04231-7_2

Neilson, H. K., Conroy, S. M., & Friedenreich, C. M. (2013). The Influence of Energetic Factors on Biomarkers of Postmenopausal Breast Cancer Risk. Current nutrition reports, 3(1), 22–34. https://doi.org/10.1007/s13668-013-0069-8

Vrieling,A.,Buck,K.,Kaaks,R.,&Chang-Claude,J.(2010).Adultweightgainin relation to breast cancer risk by estrogen and progesterone receptor status: a meta-analysis. Breast cancer research and treatment, 123(3), 641–649. https://doi.org/10.1007/s10549-010-1116-4

Eliassen, A. H. et al. (2006). Adult weight change and risk of postmenopausal breast cancer. JAMA, 296(2), 193–201. https://doi.org/10.1001/jama.296.2.193

De Cicco, P. et al. (2019). Nutrition and Breast Cancer: A Literature Review on Prevention, Treatment and Recurrence. Nutrients, 11(7), 1514. https://doi.org/10.3390/nu11071514

NikiKontouRD,PhD,TheMediterraneanDietinCancerPrevention,Chapter36, The Mediterranean Diet, An Evidence-Based Approach, 2015, Pages 393-406, doi.org/10.1016/B978-0-12-407849-9.00036-1

Fung, T. T. et al.(2013). Intake of specific fruits and vegetables in relation to risk of estrogen receptor-negative breast cancer among postmenopausal women. Breast cancer research and treatment, 138(3), 925–930. https://doi.org/10.1007/s10549-013-2484-3

Cipolletti, M. et al. (2018). Beyond the Antioxidant Activity of Dietary Polyphenols in Cancer: the Modulation of Estrogen Receptors (ERs) Signaling. International journal of molecular sciences, 19(9), 2624. https://doi.org/10.3390/ijms19092624

Zengul, A. G. et al. (2021). Associations between Dietary Fiber, the Fecal Microbiota and Estrogen Metabolism in Postmenopausal Women with Breast Cancer. Nutrition and cancer, 73(7), 1108–1117. https://doi.org/10.1080/01635581.2020.1784444

Aune,D. et al. (2012). Fruits, vegetables and breast cancer risk: a systematic review and meta-analysis of prospective studies. Breast cancer research and treatment, 134(2), 479–493. https://doi.org/10.1007/s10549-012-2118-1

Masala, G. et al. (2012). Fruit and vegetables consumption and breast cancer risk: the EPIC Italy study. Breast cancer research and treatment, 132(3), 1127–1136. https://doi.org/10.1007/s10549-011-1939-7

Chang, V. C., Cotterchio, M., & Khoo, E. (2019). Iron intake, body iron status, and risk of breast cancer: a systematic review and meta-analysis. BMC cancer, 19(1), 543. https://doi.org/10.1186/s12885-019-5642-0

Kabat, G. C., & Rohan, T. E. (2007). Does excess iron play a role in breast carcinogenesis? An unresolved hypothesis. Cancer causes & control : CCC, 18(10), 1047–1053. https://doi.org/10.1007/s10552-007-9058-9

World Cancer Research Fund International. Breast Cancer. https://www.wcrf.org/diet-activity-and-cancer/cancer-types/breast-cancer/

Farvid, M. S. et al. (2018). Consumption of red and processed meat and breast cancer incidence: A systematic review and meta-analysis of prospective studies. International journal of cancer, 143(11), 2787–2799. https://doi.org/10.1002/ijc.31848

Hong,C.C. et al. (2007). Genetic variability in iron-related oxidative stress pathways (Nrf2, NQ01, NOS3, and HO-1), iron intake, and risk of postmenopausal breast cancer. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 16(9), 1784–1794. https://doi.org/10.1158/1055-9965.EPI-07-0247

Torti, S. V., & Torti, F. M. (2013). Cellular iron metabolism in prognosis and therapy of breast cancer. Critical reviews in oncogenesis, 18(5), 435–448. https://doi.org/10.1615/critrevoncog.2013007784

Huang (2008).Does iron have a role in breast cancer?.TheLancet.Oncology, 9(8), 803–807. https://doi.org/10.1016/S1470-2045(08)70200-6

Kabat,G.C.,Miller,A.B.,Jain,M.,&Rohan,T.E.(2007).Dietary iron and heme iron intake and risk of breast cancer: a prospective cohort study. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 16(6), 1306–1308. https://doi.org/10.1158/1055-9965.EPI-07-0086

Inoue-Choi et al.(2016). Red and processed meat, nitrite, and heme iron intakes and postmenopausal breast cancer risk in the NIH-AARP Diet and Health Study. International journal of cancer, 138(7), 1609–1618. https://doi.org/10.1002/ijc.29901

Lu, F., Kuhnle, G.K., Cheng, Q. (2018) The effect of common spices and meat type on the formation of heterocyclic amines and polycyclic aromatic hydrocarbons in deep-fried meatballs. Food Control. 92, 399-411 https://doi.org/10.1016/j.foodcont.2018.05.018

Lo, J. J., et al. (2020). Association between meat consumption and risk of breast cancer: Findings from the Sister Study. International journal of cancer, 146(8), 2156–2165. https://doi.org/10.1002/ijc.32547

Rajendran,P. et al. (2022). Consumption of reused vegetable oil intensifies BRCA1 mutations. Critical reviews in food science and nutrition, 62(5), 1222–1229. https://doi.org/10.1080/10408398.2020.1837725

Thapa, M. J. et al. (2022). Analyses of mutational patterns induced by formaldehyde and acetaldehyde reveal similarity to a common mutational signature. G3 (Bethesda, Md.), 12(11), jkac238. https://doi.org/10.1093/g3journal/jkac238

Samani, A. A. et al. (2007). The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocrine reviews, 28(1), 20–47. https://doi.org/10.1210/er.2006-0001

Murphy, N. et al.(2020). Insulin-like growth factor-1, insulin-like growth factor-binding protein-3, and breast cancer risk: observational and Mendelian randomization analyses with ∼430 000 women. Annals of oncology : official journal of the European Society for Medical Oncology, 31(5), 641–649. https://doi.org/10.1016/j.annonc.2020.01.066

Fraser, G. E. et al. (2020). Dairy, soy, and risk of breast cancer: those confounded milks. International journal of epidemiology, 49(5), 1526–1537. https://doi.org/10.1093/ije/dyaa007

Peaker M. (2020). Oestrogens in milk and breast cancer: a cause for concern...or not?. The Journal of dairy research, 87(2), 266–269. https://doi.org/10.1017/S0022029920000370

Blücher, C., & Stadler, S. C. (2017). Obesity and Breast Cancer: Current Insights on the Role of Fatty Acids and Lipid Metabolism in Promoting Breast Cancer Growth and Progression. Frontiers in endocrinology, 8, 293. https://doi.org/10.3389/fendo.2017.00293

de Moreno de Leblanc, A. et al. (2007). Study of immune cells involved in the antitumor effect of kefir in a murine breast cancer model. Journal of dairy science, 90(4), 1920–1928. https://doi.org/10.3168/jds.2006-079

Merenstein, D. J. et al. (2010). The study to investigate the potential benefits of probiotics in yogurt, a patient-oriented, double-blind, cluster-randomised, placebo-controlled, clinical trial. European journal of clinical nutrition, 64(7), 685–691. https://doi.org/10.1038/ejcn.2010.30

Boyne, D. J. et al. (2018). Physical Activity, Global DNA Methylation, and Breast Cancer Risk: A Systematic Literature Review and Meta-analysis. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 27(11), 1320–1331. https://doi.org/10.1158/1055-9965.EPI-18-0175

Castelló, A. et al. EpiGEICAM Researchers (2015). Lower Breast Cancer Risk among Women following the World Cancer Research Fund and American Institute for Cancer Research Lifestyle Recommendations: EpiGEICAM Case-Control Study. PloS one, 10(5), e0126096. https://doi.org/10.1371/journal.pone.0126096

Le Guennec, D., & Rossary, A. (2020). The interrelationship between physical activity and metabolic regulation of breast cancer progression in obesity via cytokine control. Cytokine & growth factor reviews, 52, 76–87. https://doi.org/10.1016/j.cytogfr.2020.02.001

Romieu, I. I., Amadou, A., & Chajes, V. (2017). The Role of Diet, Physical Activity, Body Fatness, and Breastfeeding in Breast Cancer in Young Women: Epidemiological Evidence. Revista de investigacion clinica; organo del Hospital de Enfermedades de la Nutricion, 69(4), 193–203. https://doi.org/10.24875/ric.17002263

Ibrahim, E. M., & Al-Homaidh, A. (2011). Physical activity and survival after breast cancer diagnosis: meta-analysis of published studies. Medical oncology (Northwood, London, England), 28(3), 753–765. https://doi.org/10.1007/s12032-010-9536-x

Kyu, H. H., et al.(2016). Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. BMJ (Clinical research ed.), 354, i3857. https://doi.org/10.1136/bmj.i3857

Eliassen, A. H. et al. (2006). Endogenous steroid hormone concentrations and risk of breast cancer among premenopausal women. Journal of the National Cancer Institute, 98(19), 1406–1415. https://doi.org/10.1093/jnci/djj376

Fortunati, N. et al. (2010). Sex Hormone-Binding Globulin (SHBG), estradiol and breast cancer. Molecular and cellular endocrinology, 316(1), 86–92. https://doi.org/10.1016/j.mce.2009.09.012

Duggan, C. et al. (2014). Effect of a 12-month exercise intervention on serum biomarkers of angiogenesis in postmenopausal women: a randomized controlled trial. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 23(4), 648–657. https://doi.org/10.1158/1055-9965.EPI-13-1155

Koelwyn, G. J. et al. (2015). Exercise in Regulation of Inflammation-Immune Axis Function in Cancer Initiation and Progression. Oncology (Williston Park, N.Y.), 29(12), 908–922.

Raulet, D. H., & Guerra, N. (2009). Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nature reviews. Immunology, 9(8), 568–580. https://doi.org/10.1038/nri2604

Mittal, D. et al. (2014). New insights into cancer immunoediting and its three component phases--elimination, equilibrium and escape. Current opinion in immunology, 27, 16–25. https://doi.org/10.1016/j.coi.2014.01.004

Lauby-Secretan, B., Scoccianti, C., Loomis, D., Grosse, Y., Bianchini, F., Straif, K., & International Agency for Research on Cancer Handbook Working Group (2016). Body Fatness and Cancer--Viewpoint of the IARC Working Group. The New England journal of medicine, 375(8), 794–798. https://doi.org/10.1056/NEJMsr1606602

Torres-de la Roche, L. A. et al. (2020). The Association between Obesity and Premenopausal Breast Cancer According to Intrinsic Subtypes - a Systematic Review. Geburtshilfe und Frauenheilkunde, 80(6), 601–610. https://doi.org/10.1055/a-1170-5004

Larson, E. A., Dalamaga, M., & Magkos, F. (2023). The role of exercise in obesity-related cancers: Current evidence and biological mechanisms. Seminars in cancer biology, 91, 16–26. https://doi.org/10.1016/j.semcancer.2023.02.008
Předběžná náplň práce
Rakovina prsu je jedním z nejrozšířenějších nádorových onemocnění u žen na celém světě. Při vývoji preventivních strategií a intervencí hrají významnou roli modifikovatelné rizikové faktory, jako je strava a fyzická aktivita. Vliv stravy a fyzické aktivity na výskyt a rozvoj rakoviny prsu je předmětem probíhajícího výzkumu. Zdravý životní styl, který se vyznačuje vyváženou stravou a pravidelnou fyzickou aktivitou, má pozitivní vliv na prevenci vzniku rakoviny prsu.
Tato bakalářská práce využívá ve své praktické části data 15 pacientek, které se zúčastnily tříměsíčního intervenčního programu ONKO-FIT a tento program dokončily. Cílem programu bylo zhodnotit účinky cílené výživové a pohybové terapie na fyzickou kondici pacientek s rakovinou prsu. Výsledky sice neprokázaly statisticky významné zlepšení vzhledem k relativně malému vzorku, nicméně byl zaznamenán nenulový pozitivní efekt, což naznačuje možný vliv terapie na fyzickou kondici pacientek. Tato první zjištění podtrhují potenciální přínos takových intervencí v oblasti životního stylu, které by mohly významně ovlivnit proces léčby a zotavování pacientek s rakovinou prsu.
Tyto výsledky však také zdůrazňují potřebu dalších studií s většími vzorky, které by potvrdily potenciální přínosy intervencí v oblasti stravování a fyzické aktivity pro pacientky s rakovinou prsu.
Předběžná náplň práce v anglickém jazyce
Breast cancer is one of the most prevalent cancers among women globally. Modifiable risk factors such as diet and physical activity play a significant role in developing prevention strategies and interventions. The influence of diet and physical activity on the incidence and development of breast cancer is a subject of ongoing research. Healthy lifestyle patterns, characterized by balanced nutrition and regular physical activity, have shown positive implications in preventing the onset of breast cancer.
The practical part of this paper uses data from 15 patients who participated in and completed the three-month ONKO-FIT intervention program. The program aimed to evaluate the effects of targeted nutritional and exercise therapy on the physical condition of breast cancer patients. While the results did not show a statistically significant improvement due to the relatively small sample size, there was a non-zero positive effect, suggesting a possible influence of the therapy on the patients' physical condition. These initial findings underline the potential benefits of such lifestyle interventions, which could significantly impact the treatment and recovery process for breast cancer patients.
However, these results also highlight the need for further studies with larger sample sizes to confirm the potential benefits of dietary and physical activity interventions for breast cancer patients.
 
Univerzita Karlova | Informační systém UK