Cohen-Macaulay modules over simple singularities
Název práce v češtině: | Cohen-Macaulayovy moduly nad jednoduchými singularitami |
---|---|
Název v anglickém jazyce: | Cohen-Macaulay modules over simple singularities |
Klíčová slova: | Cohen-Macaulayův modul|jednoduchá singularita |
Klíčová slova anglicky: | Cohen-Macaulay module|simple singularity |
Akademický rok vypsání: | 2020/2021 |
Typ práce: | diplomová práce |
Jazyk práce: | angličtina |
Ústav: | Katedra algebry (32-KA) |
Vedoucí / školitel: | doc. RNDr. Jan Šťovíček, Ph.D. |
Řešitel: | Mgr. Yifan Zhang - zadáno a potvrzeno stud. odd. |
Datum přihlášení: | 16.03.2021 |
Datum zadání: | 21.04.2021 |
Datum potvrzení stud. oddělením: | 18.05.2021 |
Datum a čas obhajoby: | 03.02.2022 09:30 |
Datum odevzdání elektronické podoby: | 05.01.2022 |
Datum odevzdání tištěné podoby: | 10.01.2022 |
Datum proběhlé obhajoby: | 03.02.2022 |
Oponenti: | Isaac Bird, Ph.D. |
Zásady pro vypracování |
The student will aim at understanding the classification of indecomposable maximal Cohen-Macaulay modules over simple singularities. This result, originating from [3,4], is the main topic of the monograph [2]. It is put into the context of modern representation theory and homological algebra in [5], and this point of view also plays a major role in the survey [1]. References for the background in commutative algebra include [6,7,8]. The goal of the thesis will be a presentation of this classification in a suitable form. This may involve filling in details in proofs, describing the relation to modern representation theoretic and homological techniques, or outlining other possible classification results of this type. |
Seznam odborné literatury |
[1] O. Iyama, Tilting Cohen-Macaulay representations, Proc. of the ICM in Rio de Janeiro 2018, Vol. II. Invited lectures, 125-162, World Sci. Publ., Hackensack, NJ, 2018.
[2] Y. Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, LMS LNS 146, Cambridge University Press, Cambridge, 1990. [3] H. Knörrer, Cohen-Macaulay modules on hypersurface singularities I, Invent. Math. 88(1987), no. 1, 153-164. [4] R. O. Buchweitz, G. M. Greuel, F. O. Schreyer, Cohen-Macaulay modules on hypersurface singularities II, Invent. Math. 88 (1987), no. 1, 165-182. [5] H. Kajiura, K. Saito, A. Takahashi, Matrix factorization and representations of quivers II, type ADE case, Adv. Math. 211 (2007), no. 1, 327-362. [6] W. Bruns, J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge, 1993. [7] H. Matsumura, Commutative ring theory, 2nd edition, Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, Cambridge, 1989. [8] D. Eisenbud, Commutative algebra, with a view toward algebraic geometry, Graduate Texts in Mathematics 150, Springer-Verlag, New York, 1995. |