Quantum vacua, curved spacetime and singularities
Název práce v češtině: | Kvantová vakua, zakřivený prostoročas a singularity |
---|---|
Název v anglickém jazyce: | Quantum vacua, curved spacetime and singularities |
Klíčová slova: | Weylova symmetrie|Weylova anomálie|Singularity|Geometrie and Topologie|Kanonická a Bogoliubova transformace|Kvantová neekvivalence |
Klíčová slova anglicky: | Weyl symmetry|Weyl anomaly|Singularities|Geometry and Topology|Canonical and Bogoliubov transformation|Quantum inequivalence |
Akademický rok vypsání: | 2019/2020 |
Typ práce: | diplomová práce |
Jazyk práce: | angličtina |
Ústav: | Ústav částicové a jaderné fyziky (32-UCJF) |
Vedoucí / školitel: | prof. Alfredo Iorio, Ph.D. |
Řešitel: | skrytý![]() |
Datum přihlášení: | 11.10.2019 |
Datum zadání: | 11.10.2019 |
Datum potvrzení stud. oddělením: | 05.04.2021 |
Datum a čas obhajoby: | 23.06.2021 10:30 |
Datum odevzdání elektronické podoby: | 21.05.2021 |
Datum odevzdání tištěné podoby: | 21.05.2021 |
Datum proběhlé obhajoby: | 23.06.2021 |
Oponenti: | Vít Jakubský |
Zásady pro vypracování |
The candidate will have knowledge of differential geometry and topology necessary to undertake studies of various spacetimes, with particular emphasis on three and two dimensional cases. She\He will also manage the basic formalism of Bogoliubov transformations and inequivalent quantization schemes. On the physics side, knowledge of spontaneous symmetry breaking, especially in its quantum version is welcome. Furthermore, during the work, knowledge of the defect-based gravity models will be built, along with simplified analog models of low-dimensional quantum fields in curved contexts. |
Seznam odborné literatury |
R. d'Inverno, Introducing Einstein's Relativity, Clarendon Press (1990)
M.O. Katanaev, I.V. Volovich, Ann. Phys. 216 (1992) 1 N. Birrell, P. Davies, Quantum Fields in Curved Space, Cambridge University Press (1984) M. Nakahara, Geometry, Topology and Physics, Graduate Student Series in Physics, CRC Press (2003) L. P. Eisenhart, A treatise on the differential geometry of curves and surfaces, Princeton Univ. Press (1909) A. Ovchinnikov, in Nonlinearity and Geometry, D. Wojcik and J. Cieslinnski, Polish Scientific Publishers PWN (Warsaw) (1998) 41 Y. Takahashi, H. Umezawa, Thermofield Dynamics, Coll. Phen. 2 (1975) 55 H. Umezawa, Advanced Field Theory: Micro, Macro, and Thermal Physics, Amer. Inst. Phys. (1995) H.A. Kastrup, Fortsch. Phys. 51 (2003) 975 (quant-ph/0307069) A. Iorio, Alternative Symmetries in Quantum Field Theory and Gravity, arXiv:1102.5221 [hep-th] A. Iorio, Ann. Phys. 326 (2011) 1334-1353 A. Iorio, P. Pais, Phys. Rev. D 92 (2015) 125005 |
Předběžná náplň práce |
The candidate will explore the relation among curvature of the spacetime, and the inequivalent quantizations/Hilbert spaces. In particular the focus will be on models that are, on the one hand simple (making the calculations potentially very explicit), on the other hand related to a topological-defect-based theory of gravity (making the emergence of topological inequivalence and singularities very explicit). One road that will be investigated is related to lower-dimensional cases, where conformal and Weyl symmetries play a crucial role. |