Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 390)
Detail práce
   Přihlásit přes CAS
Contemporary Challenges of Space Debris Removal: Overview and Outlook
Název práce v češtině: Současné výzvy odstraňování vesmírného odpadu: souhrn a perspektiva
Název v anglickém jazyce: Contemporary Challenges of Space Debris Removal: Overview and Outlook
Klíčová slova: Vesmírný odpad; Orbitální úlomky; Vesmírná bezpečnost; Zabezpečení kosmického prostoru Aktivní odstraňování vesmírného odpadu; Udržitelnost; Kosmické právo; Průzkum vesmíru
Klíčová slova anglicky: Space debris; Orbital debris; Space security; Active debris removal; Sustainability; International space law; Space exploration
Akademický rok vypsání: 2018/2019
Typ práce: diplomová práce
Jazyk práce: angličtina
Ústav: Katedra politologie (23-KP)
Vedoucí / školitel: doc. Mgr. Bohumil Doboš, Ph.D.
Řešitel: skrytý - zadáno vedoucím/školitelem
Datum přihlášení: 09.03.2020
Datum zadání: 09.03.2020
Datum a čas obhajoby: 24.06.2021 08:00
Místo konání obhajoby: Pekařská 16, JPEK313, 313, Malá učebna, 3.patro
Datum odevzdání elektronické podoby:10.02.2021
Datum proběhlé obhajoby: 24.06.2021
Oponenti: Mgr. et Mgr. Jakub Pražák, Ph.D.
 
 
 
Kontrola URKUND:
Seznam odborné literatury
Adimurthy, V. & Ganeshan, A. S. (2006). Space debris mitigation measures in India. Acta Astronautica, 58(3), 168-174. https://doi.org/10.1016/j.actaastro.2005.09.002.
Aglietti, G. S., Taylor, B., Fellowes, S., Salmon, T., Retat, I., Hall, A., Chabot, T., Pisseloup, A., Cox, C., Zarkesh, A., Mafficini, A., Vinkoff, N., Bashford, K., Bernal, C., Chaumette, F., Pollini, A., & Steyn, W. H.. (2020). The active space debris removal mission RemoveDebris. Part 2: In orbit operations. Acta Astronautica, 168, 310–322. https://doi.org/10.1016/j.actaastr o.2019.09.001.
Andrenucci, M., Pergola, P., Ruggiero, A. & Olympio, J. (2011). Active Removal of Space Debris - Expanding foam application for active debris removal. ESA Final report. Retrieved January 27, 2021, from https://www.esa.int/gsp/ACT/doc/ARI/ARI%20Study%20Report/ACT-RPT-MAD-ARI-10-6411-Pisa-Active_Removal_of_Space_Debris-Foam.pdf.
Aslanov, V. S. & Ledkov, A. S. (2017). Attitude Motion of Cylindrical Space Debris during Its Removal by Ion Beam. Mathematical Problems in Engineering. https://doi.org/10.1155/2017/1986374.
Astromaterials Research and Exploration Science. (n.d.). Debris Remediation. Astromaterials Research and Exploration Science. Retrieved January 18, 2021, from https://orbitaldebris.jsc.nasa.gov/remediation/.

Astroscale. (2020a). Astroscale Announces March 2021 Launch Date for World’s First Commercial Active Debris Removal Demonstration Mission. Astroscale. Retrieved February 2, 2021, from https://astroscale.com/astroscale-announces-march-2021-launch-date-for-worlds-first-commercial-active-debris-removal-demonstration-mission/.
Astroscale. (2020b). Astroscale U.S. Enters the GEO Satellite Life Extension Market. Astroscale. Retrieved February 2, 2021, from https://astroscale.com/astroscale-u-s-enters-the-geo-satellite-life-extension-market/.
Astroscale. (2020c). SpaceNews: Astroscale wins first half of JAXA debris-removal mission. Astroscale. Retrieved February 2, 2021, from https://astroscale.com/spacenews-astroscale-wins-first-half-of-jaxa-debris-removal-mission/.
Astroscale. (2020d). Astroscale Selected as Commercial Partner for JAXA’s Commercial Removal of Debris Demonstration Project. Astroscale. Retrieved February 2, 2021, from https://astroscale.com/astroscale-selected-as-commercial-partner-for-jaxas-commercial-removal-of-debris-demonstration-project/.
Benvenuto, R., Salvi, S., & Lavagna, M. (2015). Dynamics analysis and GNC design of flexible systems for space debris active removal. Acta Astronautica, 110, 247-265. https://doi.org/10.1016/j.actaastro.2015.01.014.
Bombardelli, C. & Pelaez, J. (2012). Ion Beam Shepherd for Contactless Space Debris Removal. Journal of Guidange, Control, and Dynamics, 34(3), 916-920, https://doi.org/10.2514/1.51832.
Bowen, B. E. (2014). Cascading Crises: Orbital Debris and the Widening of Space Security. Astropolitics, 12(1), 46-68. https://doi.org/10.1080/14777622.2014.890489.
Castronuovo, M. M. (2011). Active space debris removal—A preliminary mission analysis and design. Acta Astronautica, 69(9–10), 848-859. https://doi.org/10.1016/j.actaastro.2011.04.017.
Chopra, C. & Chandra, R. (2018). Small Satellite Deorbital System using Magnetic Field Controlled Plasma. 2018 SpaceOps Conference, 28 May - 1 June 2018, Marseille, France. https://doi.org/10.2514/6.2018-2705.
Cichocki, F., Merino, M., & Ahedo, E. (2018). Spacecraft-plasma-debris interaction in an ion beam shepherd mission. Acta Astronautica, 146, 216-227. https://doi.org/10.1016/j.actaastro.2018.02.030.
Cichocki, F., Merino, M., Ahedo, E., Smirnova, M., Mingo, A., & Dobkevicius, M. (2016). Electric Propulsion Subsystem Optimization for “Ion Beam Shepherd” Missions. Journal of Propulsion and Power, 33(2), 370-378. https://doi.org/10.2514/1.B36105.
ClearSpace SA. (n.d.). Clearspace today. ClearSpace SA. Retrieved November 14, 2020, from https://clearspace.today/.
Das, B. (2020). NASA vs SpaceX – How Different They Are?. RankRed Media Private Limited. Retrieved February 4, 2021, from https://www.rankred.com/nasa-vs-spacex/.
Davalos, J. (2016). International Standards in Regulating Space Travel: Clarifying Ambiguities in the Commercial Era of Outer Space. Emory International Law Review, 30(4), 597-622. Retrieved February 4, 2021, from https://law.emory.edu/eilr/content/volume-30/issue-4/comments/standards-regulating-space-travel-ambiguities-outer-space.html.
Defense Intelligence Agency. (2019). Challenges to Security in Space. Defense Intelligence Agency. Retrieved March 30, 2020, from https://www.dia.mil/Portals/27/Documents/News/Military%20Power%20Publications/Space_Threat_V14_020119_sm.pdf.
DISCOS. (n.d.). Database and Information System Characterising Objects in Space for ESA’s Space Debris Office. DISCOS. Retrieved November 14, 2020, from https://discosweb.esoc.esa.int/.
Dobos, B., & Prazak, J. (2019). To Clear or to Eliminate? Active Debris Removal Systems as Anti-satellite Weapons. SPACE POLICY, 47, 217–223. https://doi.org/10.1016/j.spacepol.2019.01.007.
Dubanchet, V., Saussié, D., Alazard, D., Bérard, C., & Le Peuvédic, C. (2015). Modeling and control of a space robot for active debris removal. CEAS Space Journal, 7, 203–218. https://doi.org/10.1007/s12567-015-0082-4.
Dunstan, J. E. & Werb, B. (2009). Legal and Economic Implications of Orbital Debris Removal: Comments of the Space Frontier Foundation In Response to: DARPA Orbital Debris Removal (ODR) Request for Information for Tactical Technology Office (TTO), Defense Advanced Research Projects Agency (DARPA). Solicitation Number: DARPA-SN-09-68. Retrieved January 14, 2021, from https://www.scribd.com/document/23379988/Legal-and-Economics-Implications-of-Orbital-Debris-Removal.
Edelstein, K. S. (1995). Orbital impacts and the Space Shuttle windshield. NASA Technical Memorandum Document ID 19950019959. Retrieved November 14, 2020, from https://ntrs.nasa.gov/citations/19950019959.
European Space Agency (ESA), Italian space agency (ASI), British National Space Centre (BNSC), French space agency (CNES), German space agency (DLR). (2004). European Code of Conduct for Space Debris Mitigation. 28 June 2004. Issue 1.0. Retrieved February 9, 2021, from https://www.unoosa.org/documents/pdf/spacelaw/sd/2004-B5-10.pdf.
European Space Agency (ESA). (2005). Space debris mitigation: the case for a code of conduct. ESA. Retrieved February 9, 2021, from https://www.esa.int/Enabling_Support/Operations/Space_debris_mitigation_the_case_for_a_code_of_conduct.
European Space Agency (ESA). (2014). Space Debris Mitigation Policy for Agency Projects. ESA/ADMIN/IPOL(2014)2. Paris, 28 March 2014.
European Space Agency (ESA). (2019a). ESA ministers commit to biggest ever budget. ESA. Retrieved January 17, 2021, from http://www.esa.int/About_Us/Corporate_news/ESA_ministers_commit_to_biggest_ever_budget.
European Space Agency (ESA). (2019b). N° 23–2019: ESA commissions world’s first space debris removal. ESA. Retrieved January 17, 2021, from http://www.esa.int/Newsroom/Press_Releases/ESA_commissions_world_s_first_space_debris_removal.
European Space Agency (ESA). (2021). Space debris by the numbers. ESA. Retrieved January 7, 2021, from https://www.esa.int/Safety_Security/Space_Debris/Space_debris_by_the_numbers.
European Space Agency (ESA). (n.d.). Mitigating space debris generation. ESA. Retrieved February 2, 2021, from https://www.esa.int/Safety_Security/Space_Debris/Mitigating_space_debris_generation.
Fernandez, J. M., Visagie, L., Schenk, M., Stohlman, O. R., Aglietti, G. A., Lappas, J. P., & Erbb, S. (2014). Design and development of a gossamer sail system for deorbiting in low earth orbit. Acta Astronautica, 103, 204-225. https://doi.org/10.1016/j.actaastro.2014.06.018.
Flury, W. (1993). European Activities on Space Debris. Mission Analysis Section, ESA/ESOC. Proceedings of the First European Conference on Space Debris, Darmstadt, Germany, 5-7 April 1993 (ESA SD-01). Retrieved November 14, 2020, from https://conference.sdo.esoc.esa.int/proceedings/sdc1/paper/4/SDC1-paper4.pdf.
Force, M. K. (2016). Active Space Removal: When Consent Is Not an Option. Air and Space Lawyer, 29(3), 9–13.
Forshaw, J. L., Aglietti, G. S., Fellowes, S., Salmon, T., Retat, I., Hall, A., Chabot, T., Pisseloup, A., Tye, D., Bernal, C., Chaumette, F., Pollini, A., & Steyn, W. H.. (2020). The active space debris removal mission RemoveDebris. Part 1: From concept to launch. Acta Astronautica, 168, 293–309. https://doi.org/10.1016/j.actaastro.2019.09.002.
Francillout, L. (2020). The Inter-Agency Space Debris Coordination Committee (IADC) an overview of IADC’s annual activities. 57th Session of the Scientific and Technical Subcommittee United Nations Committee on the Peaceful Uses of Outer Space. 3-14 February 2020. Retrieved November 14, 2020, from https://www.unoosa.org/documents/pdf/copuos/stsc/2020/tech-22E.pdf.
Gambi, J. M. & García del Pino, M. L. (2017). Autonomous shooting at middle size space debris objects from space-based APT laser systems. Acta Astronautica, 131, 83-91. https://doi.org/10.1016/j.actaastro.2016.11.026.
Ganguli, G. (2011). Active elimination of small-scale orbital debris. 2011 XXXth URSI General Assembly and Scientific Symposium, General Assembly and Scientific Symposium, 2011 XXXth URSI, 1. https://doi.org/10.1109/URSIGASS.2011.6051098.
Ghelani, J. (2018). An essential resource to human survival and progress after clean water, land and air. European Space Agency. Retrieved February 9, 2021, from https://blogs.esa.int/cleanspace/2018/05/24/adding-earth-orbits-to-the-list-of-limited-natural-resources/.
Gomes, J. R., Devezas, T. C., Belderrain, M. C., Salgado, M. C. V., & de Melo, F. C. L. (2013). The Road to Privatization of Space Exploration: What is missing?. Institute for Aeronautics and Space. 64th International Astronautical Congress, Beijing, China. Retrieved February 9, 2021, from https://www.researchgate.net/publication/289635460_The_road_to_privatization_of_space_exploration_What_is_missing.
Guang, Z. & Jing-rui, Z. (2012). Space Tether Net System for Debris Capture and Removal. 4th International Conference on Intelligent Human-Machine Systems and Cybernetics, NanChang, China, August 26-27, 2012, 257-261. https://doi.org/10.1109/IHMSC.2012.71.
Guerra, G., Muresan, A. C., Nordqvist, K. G., Brissaud, A., Naciri, N., & Luo, L. (2017). Active Space Debris Removal System. INCAS Bulletin, 9(2), 97–116. https://doi.org/10.13111/2066-8201.2017.9.2.8.
Hakima, H. & Emami, M. R. (2018). Assessment of active methods for removal of LEO debris. Acta Astronautica, 144, 225-243. https://doi.org/10.1016/j.actaastro.2017.12.036.
Henry, C. (2020). Amazon’s Kuiper constellation gets FCC approval. SpaceNews.com. Retrieved February 4, 2021, from https://spacenews.com/amazons-kuiper-constellation-gets-fcc-approval/.
Hovi, J., Skodvin, T., & Aakre, S. (2013). Can Climate Change Negotiations Succeed?. Politics and Governance, 1(2), 138-150. https://doi.org/10.12924/pag2013.01020138.
Huang, S., Colombo, C., Gonzalo, J. L., Masserini, A., Nugnes, M., Vallini, L., & Petit, M. (2020). Preliminary Mission Analysis of Active Debris Removal Service for Large Constellations. 71st International Astronautical Congress, the CyberSpace Edition. IAC-20, A6, VP, 14, x60342. Retrieved February 4, 2021, from https://re.public.polimi.it/retrieve/handle/11311/1149719/549901/HUANS02-20.pdf.
Ikpaya, I. O., Onuh, S. O., Achem, C. U., Madalla, F. Y. (2016). Quest of Nigeria into Space for Sustainable Development. SpaceOps Conference: 14th International Conference on Space Operations. 16-20 May 2016, Daejeon, Korea. https://doi.org/10.2514/6.2016-2345.
Iliopoulos, N., & Estebanb, M. (2020). Sustainable space exploration and its relevance to the privatization of space ventures. Acta Astronautica, 167, 85-92. ISSN 0094-5765. https://doi.org/10.1016/j.actaastro.2019.09.037.
Inter-Agency Space Debris Coordination Committee (IADC). (2005). Report of the Inter-Agency Space Debris Coordination Committee Activities on IADC Space Debris Mitigation Guidelines & Supporting Document. Presented to the 42nd Session of the Scientific and Technical Subcommittee United Nations Committee on the Peaceful Uses of Outer Space. Retrieved January 8, 2021, from https://www.iadc-home.org/documents_public/file_down/id/4112.
Inter-Agency Space Debris Coordination Committee (IADC). (2007). IADC Space Debris Mitigation Guidelines. Issued by Steering Group and Working Group 4. IADC Action Item number 22.4. IADC-02-01. Retrieved January 8, 2021, from https://www.unoosa.org/documents/pdf/spacelaw/sd/IADC-2002-01-IADC-Space_Debris-Guidelines-Revision1.pdf.
International Organization for Standardization (ISO). (2019). ISO 24113:2019 Space systems — Space debris mitigation requirements. Retrieved January 8, 2021, from https://www.iso.org/standard/72383.html.
International Telecommunication Union (ITU). (2010). S.1003-2 (12/2010) Environmental protection of the geostationary-satellite orbit. Retrieved January 8, 2021, from https://www.itu.int/rec/R-REC-S.1003/en.
Jacklin, S. A. (2019). Small-Satellite Mission Failure Rates. Document ID 20190002705. NASA Ames Research Center. Retrieved January 8, 2021, from https://ntrs.nasa.gov/citations/20190002705.
Jakhu, R. S., Nyampong, Y. O. M., & Sgobba, T. (2017). Regulatory framework and organization for space debris removal and on orbit servicing of satellites. Journal of Space Safety Engineering, 4(3–4), 129–137. https://doi.org/10.1016/j.jsse.2017.10.002.
Kelly, P. W., Bevilacqua, R., Mazal, L., & Erwin, R. S. (2018). TugSat: Removing Space Debris from Geostationary Orbits Using Solar Sails. Journal of Spacecraft and Rockets, 55(2). https://doi.org/10.2514/1.A33872.
Kessler, D. J. & Cour-Palais, B. G. (1978). Collision frequency of artificial satellites: The creation of a debris belt. Journal of Geophysical Research: Space Physics, 83(A6). https://doi.org/10.1029/JA083iA06p02637.
Kitamura, S., Hayakawam, Y., & Kawamoto, S. (2014). A reorbiter for large GEO debris objects using ion beam irradiation. Acta Astronautica, 94(2), 725-735. https://doi.org/10.1016/j.actaastro.2013.07.037.
Klima, R., Bloembergen, D., Savani, R., Tuyls, K., Wittig, A., Sapera, A., & Izzo, D. (2018). Space Debris Removal: Learning to Cooperate and the Price of Anarchy. Frontiers in Robotics and A.I., 5. https://doi.org/10.3389/frobt.2018.00054.
Ledkov, A. S. & Aslanov, V. S. (2018). Attitude motion of space debris during its removal by ion beam taking into account atmospheric disturbance. Journal of Physics: Conference Series, 1050(1). https://doi.org/10.1088/1742-6596/1050/1/012041.
Liou, J. C. & Johnson, N. L. (2006). Risks in Space from Orbiting Debris. Science, 311(5759), 340-341. https://doi.org/10.1126/science.1121337.
Liou, J. C., Johnson, N. L. & Hill, N. M. (2010). Controlling the growth of future LEO debris populations with active debris removal. Acta Astronautica, 66(5-6), 648-653. https://doi.org/10.1016/j.actaastro.2009.08.005.
Long, J. (2017). Ideas for Development of Long-Term Sustainability of Outer Space Activities: From the Perspective of Active Space Debris Removal. IISL Proceedings, 145.
Mark, C. P., & Kamath, S. (2019). Review of Active Space Debris Removal Methods. Space Policy, 47, 194–206. https://doi.org/10.1016/j.spacepol.2018.12.005.
McFall-Johnsen, M. (2020). A dead Soviet satellite and a discarded Chinese rocket body just avoided colliding in space and exploding into dangerous debris. Insider Inc. Retrieved February 4, 2021, from https://www.businessinsider.com/soviet-satellite-chinese-rocket-might-crash-in-space-2020-10.
Merino, M., Ahedo, E., Bombardelli, C., Urrutxua, H., & Pelaez, J. (2013). Ion beam shepherd satellite for space debris removal. Progress in Propulsion Physics, 4, 789-802. https://doi.org/10.1051/eucass/201304789.
Microsoft Schweiz. (2020). Swiss startup ClearSpace gets support from Microsoft to clean up space. Microsoft Schweiz. Retrieved November 14, 2020, from https://news.microsoft.com/de-ch/2020/06/22/clearspace/.
Moorhead, A. V. & Matney, M. (2021). The ratio of hazardous meteoroids to orbital debris in near-Earth space. Advances in Space Research, 67(1), 384-392. https://doi.org/10.1016/j.asr.2020.09.015.
Murtaza, A., Pirzada, S. J. H., Xu, T., & Jianwei, A. L. (2020). Orbital Debris Threat for Space Sustainability and Way Forward (Review Article). IEEE Access, 8, 61000-61019. https://doi.org/10.1109/ACCESS.2020.2979505.
National Aeronautics and Space Administration (NASA). (2009). The Collision of Iridium 33 and Cosmos 2251: The Shape of Things to Come. Document ID 20100002023. Publication Date, October 16, 2009. 60th International Astronautical Congress. Retrieved January 7, 2021, from https://ntrs.nasa.gov/citations/20100002023.
National Aeronautics and Space Administration (NASA). (n.d.). Evolutionary Models LEGEND. NASA. Retrieved January 14, 2021, from https://www.orbitaldebris.jsc.nasa.gov/modeling/evolmodeling.html.
Nishida, S., Kawamoto, S., Okawa, Y., Terui, F., & Kitamura, S. (2009). Space debris removal system using a small satellite. Acta Astronautica, 65(1–2), 95-102. https://doi.org/10.1016/j.actaastro.2009.01.041.
Obama, B. H. (2010). National Space Policy of the United States of America. Retrieved January 14, 2021, from https://history.nasa.gov/national_space_policy_6-28-10.pdf.
OneWeb. (n.d.). Our Vision & Values. ONEWEB.WORLD. Retrieved February 4, 2021, from https://www.oneweb.world/our-vision-values.
Paikowsky, D. (2017). What Is New Space? The Changing Ecosystem of Global Space Activity. New Space 5(2), 84-88. https://doi.org/10.1089/space.2016.0027.
Phipps, C. (2012). Clearing space debris with lasers. SPIE Newsroom. https://doi.org/10.1117/2.1201112.004076.
Rao, A., Burgess, M. G., & Kaffine, D. (2020). Orbital-use fees could more than quadruple the value of the space industry. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 117(23), 12756–12762. https://doi.org/10.1073/pnas.1921260117.
Rovira, L. (2020). SpaceX Starship as a trash collector in Earth orbit?. EarthSky Communications Inc. Retrieved February 4, 2021, from https://earthsky.org/space/spacex-starship-clean-up-space-junk.
Ruggiero, A., Pergola, P., & Andrenucci, M. (2015). Small Electric Propulsion Platform for Active Space Debris Removal. IEEE Transactions on Plasma Science, 43(12), 4200-4209. https://doi.org/10.1109/TPS.2015.2491649.
Sanmartin, J. R., Martinez-Sanchez, M., & Ahedo, E. (1993). Bare wire anodes for electrodynamic tethers. Journal of Propulsion and Power, 9(3), 353-360, https://doi.org/10.2514/3.23629.
Schaub, H. & Sternovsky, Z. (2014). Active space debris charging for contactless electrostatic disposal maneuvers. Advances in Space Research, 53(1), 110-118. https://doi.org/10.1016/j.asr.2013.10.003.
Schmitz, M., Fasoulas, S., & Utzmann, J. (2015). Performance model for space-based laser debris sweepers. Acta Astronautica, 115, 376-383. https://doi.org/10.1016/j.actaastro.2015.05.032.
Shan, M., Guo, J., & Gill, E. (2016). Review and comparison of active space debris capturing and removal methods. Progress in Aerospace Sciences, 80, 18–32. https://doi.org/10.1016/j.paerosci.2015.11.001.
Shan, M., Guo, J., & Gill, E. (2017). Deployment dynamics of tethered-net for space debris removal. Acta Astronautica, 132, 293-302. https://doi.org/10.1016/j.actaastro.2017.01.001.
Sharf, I., Thomsen, B., Botta, E. M., & Misra, A. K. (2017). Experiments and simulation of a net closing mechanism for tether-net capture of space debris. Acta Astronautica, 139, 332-343. https://doi.org/10.1016/j.actaastro.2017.07.026.
Shuangyan, S., Xing, J., & Hao, C. (2014). Cleaning space debris with a space-based laser system. Chinese Journal of Aeronautics, 27(4), 805-811. https://doi.org/10.1016/j.cja.2014.05.002.
Shuvalov, V. A., Gorev, N. B., Tokmak, N. A., & Kochubei, G. S. (2017). Physical simulation of the long-term dynamic action of a plasma beam on a space debris object. Acta Austronautica, 132, 97-102. https://doi.org/10.1016/j.actaastro.2016.11.039.
Smith, M. S. (2011). President Obama’s National Space Policy: A change in tone and a focus on space sustainability. Space Policy, 27(1), 20-23. https://doi.org/10.1016/j.spacepol.2010.12.010.
Soulard, R., Quinn, M. N., Tajima, T., & Mourou, G. (2014). ICAN: A novel laser architecture for space debris removal. Acta Astronautica, 105(1), 192-200. https://doi.org/10.1016/j.actaastro.2014.09.004.
South Asia Monitor. (2020). India and Nigeria to have space cooperation. South Asia Monitor. Retrieved January 24, 2021, from https://southasiamonitor.org/india/india-and-nigeria-have-space-cooperation.
Starlink. (n.d.). High Speed Internet Access Across the Globe. SpaceX. Retrieved January 24, 2021, from https://www.starlink.com/.
Trump, D. J. (2020). National Space Policy of the United States of America. Retrieved January 14, 2021, from https://www.whitehouse.gov/wp-content/uploads/2020/12/National-Space-Policy.pdf.
UN COPUOS. (n.d.). Treaty on Principles Governing the Activities of States in the Exploration and Use of Outer Space, including the Moon and Other Celestial Bodies. UN COPOUS. Retrieved December 5, 2020, from https://www.unoosa.org/oosa/en/ourwork/spacelaw/treaties/introouterspacetreaty.html.
UN COPUOS. (2018a). Guidelines for the Long-term Sustainability of Outer Space Activities. Conference room paper by the Chair of the Working Group on the Long-term Sustainability of Outer Space Activities. Vienna, 20–29 June 2018. A/AC.105/2018/CRP.20. Retrieved November 14, 2020, from https://www.unoosa.org/res/oosadoc/data/documents/2018/aac_1052018crp/aac_1052018crp_20_0_html/AC105_2018_CRP20E.pdf.
UN COPUOS. (2018b). Compendium on Space Debris Mitigation Standards Adopted by States and International Organizations. Retrieved January 8, 2021, from https://www.unoosa.org/documents/pdf/spacelaw/sd/Space_Debris_Compendium_COPUOS_26-Jan-2018.pdf.
UN COPUOS. (2019). Compendium of Space Debris Mitigation Standards Adopted by States and International Organizations. Retrieved November 14, 2020, from https://www.unoosa.org/documents/pdf/spacelaw/sd/Space_Debris_Compendium_COPUOS_25_Feb_2019p.pdf.
United Nations (UN). (1999). Technical Report on Space Debris. Text of the Report adopted by the Scientific and Technical Subcommittee of the United Nations Committee on the Peaceful uses of Outer Space. Sales No. E.99.I.17. ISBN 92-1-100813-1. Retrieved January 8, 2021, from https://www.orbitaldebris.jsc.nasa.gov/library/un_report_on_space_debris99.pdf.
United Nations (UN). (n.d.). Outer Space Objects Index. UN. Retrieved January 7, 2021, from https://www.unoosa.org/oosa/osoindex/search-ng.jspx?lf_id=.
United Nations Office for Outer Space Affairs (UN OOSA). (2010). Space Debris Mitigation Guidelines of the Committee on the Peaceful Uses of Outer Space. UN OOSA. Retrieved January 8, 2021, from https://www.unoosa.org/pdf/publications/st_space_49E.pdf.
United Nations Office for Outer Space Affairs (UN OOSA). (n.d.) Space Law Treaties and Principles. UN OOSA. Retrieved January 8, 2021, from https://www.unoosa.org/oosa/en/ourwork/spacelaw/treaties.html.
University of Surrey. (n.d.a). About our Centre. The University of Surrey. Retrieved February 2, 2021, from https://www.surrey.ac.uk/surrey-space-centre/about.
University of Surrey. (n.d.b). DEORBITSAIL. The University of Surrey. Retrieved February 2, 2021, from https://www.surrey.ac.uk/surrey-space-centre/missions/deorbitsail.
University of Surrey. (n.d.c). INFLATESAIL. The University of Surrey. Retrieved February 2, 2021, from https://www.surrey.ac.uk/surrey-space-centre/missions/inflatesail#deploytech.
University of Surrey. (n.d.d). REMOVEDEBRIS. The University of Surrey. Retrieved February 2, 2021, from https://www.surrey.ac.uk/surrey-space-centre/missions/removedebris.
Visagie, L., Lappas, V., & Erb, S. (2015). Drag sails for space debris mitigation. Acta Astronautica, 109, 65-75. https://doi.org/10.1016/j.actaastro.2014.12.013.
Wall, M. (2015). Wow! SpaceX Lands Orbital Rocket Successfully in Historic First. Future US, Inc. Retrieved February 2, 2021, from https://www.space.com/31420-spacex-rocket-landing-success.html.
Wall, M. (2020). SpaceX rocket returns to shore after historic astronaut launch (photos). Future US, Inc. Retrieved February 2, 2021, from https://www.space.com/spacex-falcon-9-rocket-returns-shore-after-astronaut-launch.html.
Wen, Q., Yang, L., Shanghong, Z., Fang, Y., & Wang, Y. (2017). Removing small scale space debris by using a hybrid ground and space based laser system. Optik, 141, 105-113. https://doi.org/10.1016/j.ijleo.2017.05.075.
World Economic Forum. (n.d.). Space Sustainability Rating. World Economic Forum. Retrieved February 2, 2021, from https://www.weforum.org/projects/space-sustainability-rating.
Yang, F. Y., Nelson, B., Azizc, J., Carlinod, R., Perez A. D., Faber, N., Foster, C., Frost, C., Henze, C., Karacalıoğlu, A. G., Levit, C., Marshall, W., Mason, J., O’Toole, C., Swenson, J., Worden, S. P., & Stuple, J. (2016). LightForce photon-pressure collision avoidance: Efficiency analysis in the current debris environment and long-term simulation perspective. Acta Astronautica, 126, 411-423. https://doi.org/10.1016/j.actaastro.2016.04.032.
Předběžná náplň práce
Udržitelnost vesmíru je nezbytná k tomu, aby současní i budoucí vesmírní aktéři mohli bezpečně provádět všechny potřebné vesmírné operace. I přesto, že negativní důsledky nekontrolovatelně rostoucí populace kosmického odpadu jsou dlouhodobě známé, iniciativy vládních agentur a mezivládních organizací, které by měly vést ke snížení objemu kosmického odpadu a tím i k poklesu nesnází jím způsobených, jsou i nadále nedostatečné. Vědecké výzkumy a simulační modely ukazují, že pouhá preventivní opatření nemohou zastavit pokračující degradaci vesmírného prostředí, znečištěného již dávno vypuštěnými vesmírnými objekty. Výzkumní pracovníci se stále více věnují zkoumání vesmírných projektů, jejichž primárním cílem je odstranění orbitálních úlomků z vesmíru. Národní správy se pokouší spolupracovat na mezinárodní úrovni a formulovat jednotné standardy, které by zmírnily tvorbu nových orbitálních úlomků a stanovily by vzájemnou odpovědnost za zhoršení situace vesmírného odpadu, avšak uskutečnění společných mezinárodních misí za účelem aktivního odstraňování úlomků se nedaří. Privatizace vesmírných projektů a operací nadále otevírá dveře komercializaci vesmíru a také díky tomu dochází k poklesu relevance států jako primárních aktérů dominujících pro tuto oblast, což přidává řešení problému další rozměr. Tato diplomová práce shrnuje potenciál dosud nerealizovaných operačních misí pro odstranění vesmírné tříště a zároveň zkoumá jejich všudypřítomné technické, právní a politické překážky. Tato práce vede k závěru, že budoucí stabilita vesmíru závisí na aspiracích a úspěších soukromých subjektů při vývoji a realizaci aktivních misí pro odstraňování vesmírného odpadu a na ochotě mezinárodního společenství ustoupit soukromým subjektům, aby se staly soběstačnými vesmírnými aktéry.
Předběžná náplň práce v anglickém jazyce
The sustainability of the outer space environment is necessary for all actors to execute all existing and future human space operations safely. While the severe negative consequences of the uncontrolled space debris population are not new, government agencies and intergovernmental organizations' initiatives to lessen the predicament continue to be insufficient. Scientific research and simulation models show that mere mitigation measures cannot stop the ongoing degradation of the outer space environment polluted from the past space missions. Instead, research supports the development of space projects designed with a primary objective to remove debris from space. National administrations attempt to cooperate at the international level to formulate uniform debris mitigation standards and hold each other mutually accountable for worsening the space debris situation. However, joint public international missions to actively remove debris remain unthinkable. The privatization of space projects and operations continues to open the door to the commercialization of space and reduces the relevance of states as the primary players dominating the outer space domain, adding another dimension to solving the issue of space debris. This thesis examines the unrealized potential of operational debris missions while also investigating their ever-present technical and legal obstacles. The thesis contends that outer space's future stability depends on private entities’ aspirations and accomplishments to develop and execute active space debris removal missions and the international community's willingness to give way to private entities to become self-sufficient space actors.
 
Univerzita Karlova | Informační systém UK