Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 368)
Detail práce
   Přihlásit přes CAS
Thermodynamic modeling of rolling fluid turbine
Název práce v češtině: Termodynamické modelování Sedláčkovy turbíny
Název v anglickém jazyce: Thermodynamic modeling of rolling fluid turbine
Klíčová slova: Nerovnovážná termodynamika, Sedláčkova turbína, stabilita, vířivost, simulace
Klíčová slova anglicky: Non-equilibrium thermodynamics, Rolling fluid turbine, stability, vorticity, simulation
Akademický rok vypsání: 2018/2019
Typ práce: diplomová práce
Jazyk práce: angličtina
Ústav: Matematický ústav UK (32-MUUK)
Vedoucí / školitel: doc. RNDr. Michal Pavelka, Ph.D.
Řešitel: skrytý - zadáno a potvrzeno stud. odd.
Datum přihlášení: 12.12.2018
Datum zadání: 14.02.2019
Datum potvrzení stud. oddělením: 21.04.2020
Datum a čas obhajoby: 09.07.2020 08:30
Datum odevzdání elektronické podoby:22.05.2020
Datum odevzdání tištěné podoby:28.05.2020
Datum proběhlé obhajoby: 09.07.2020
Oponenti: RNDr. Jaroslav Hron, Ph.D.
 
 
 
Konzultanti: prof. Ing. František Maršík, DrSc.
Zásady pro vypracování
The goal of the thesis is to develop a non-equilibrium-thermodynamic model of a rolling turbine according to these steps:
1) Balance equations of fluid mechanics and the evolution equation of vorticity adapted to the geometry of a particular turbine design [1, 2].
2) Linear stability analysis of the vorticity equation shows creation of vortices, and circulation is generated.
3) Numerical simulation of an simplified geometrical configuration and estimation of power generation.
4) If possible, the obtained results should be compared with experimental data.
Seznam odborné literatury
[1] Landau L.D., Lifschitz E.M.: Fluid mechanics, Pergamon Press, Oxford, 1987
[2] Maršík, F., Tomek, R. and Vondruška, M., Performance and efficiency of rolling turbines and its application. Submitted (2017)
Předběžná náplň práce v anglickém jazyce
Rolling turbines are fluid motors, which are capable of utilizing very small sources with small elevation of water levels and slow horizontal flows (from 0.8 m/s). They operate on the basis of hydrodynamic stability of vortices. Solid body vortex transforms due to viscosity into a more stable potential vortex. Circulation generated in the core of the vortex is then transmitted to the rolling rotating rotor, which is axially symmetric, e.g. a sphere or truncated cone. The theoretical efficiency of such a device reaches 66% while approximately 50% efficiency is observed in practice.
 
Univerzita Karlova | Informační systém UK