Real-Time Light Transport in Analytically Integrable Participating Media
Název práce v češtině: | Výpočet transportu světla pro analyticky integrovatelná média v reálném čase |
---|---|
Název v anglickém jazyce: | Real-Time Light Transport in Analytically Integrable Participating Media |
Klíčová slova: | syntéza obrazu v reálném čase, transport světla, opticky aktivní média |
Klíčová slova anglicky: | real-time rendering, light transport, participating media |
Akademický rok vypsání: | 2016/2017 |
Typ práce: | bakalářská práce |
Jazyk práce: | angličtina |
Ústav: | Katedra softwaru a výuky informatiky (32-KSVI) |
Vedoucí / školitel: | Mgr. Oskár Elek, Ph.D. |
Řešitel: | skrytý![]() |
Datum přihlášení: | 30.03.2017 |
Datum zadání: | 06.04.2017 |
Datum potvrzení stud. oddělením: | 11.04.2017 |
Datum a čas obhajoby: | 20.06.2017 00:00 |
Datum odevzdání elektronické podoby: | 18.05.2017 |
Datum odevzdání tištěné podoby: | 18.05.2017 |
Datum proběhlé obhajoby: | 20.06.2017 |
Oponenti: | RNDr. Jan Horáček, Ph.D. |
Zásady pro vypracování |
Light scattering is an optical phenomenon occurring when light travels through participating media, including air and water. Significant light scattering can be observed in real life for example during foggy weather: objects and lights around us are blurred and our vision gets highly limited. Real-time software such as games, military and driving simulations could benefit from an ability to quickly render these scattering effects in dynamic environments.
While real-time single scattering approximations are already commonplace in such software, accurately solving for multiple scattering effects is still a big challenge, even in non-interactive applications. Current real-time software typically uses purely empirical solutions, such as simple color blending, static billboards, or other ad-hoc methods manually prepared by artists in advance. A better solution is, however, required for more complex scenes with non-homogeneous environments (e.g. real fog or mist) and intense emissive sources (e.g. street lights, lanterns). The goals of the thesis are: ** to briefly examine the physical and mathematical basis of light transport and some of the current approaches for real-time rendering of the phenomenon, ** together with the supervisor, choosing one of the methods as a baseline, then suggesting an improved real-time method that supports quasi-heterogeneous analytically integrable media (such as fog with an exponential variation of density wrt. altitude) and intensely emissive materials, ** preparing a 3D scene containing these conditions and implement a 3D application that can render the scene and allows free navigation and a sufficient freedom in modifying the participating medium, ** implementing the method from step 2) in the demo application and analyzing the advantages and shortcomings (e.g. speed, artifacts) of the proposed method, also evaluating the work in the context of other, competing methods. |
Seznam odborné literatury |
Oskar Elek, Tobias Ritschel, Hans-Peter Seidel: Real-time Screen-space Scattering in Homogeneous Environments. IEEE Computer Graphics & Applications, 2013.
http://people.mpi-inf.mpg.de/~oelek/Papers/ScreenSpaceScattering/CGA_2013_ElekRitschelSeidel.pdf Oskar Elek: Efficient Methods for Physically-based Rendering of Participating Media. PhD Thesis, Max Planck Institute for Computer Science, 2016. https://diglib.eg.org/handle/10.2312/2631098 Kenny Mitchell: Volumetric Light Scattering as a Post-process. In GPU Gems 3, 2007. http://http.developer.nvidia.com/GPUGems3/gpugems3_ch13.html Inigo Quilez: Exponential Fog. Self-published. http://iquilezles.org/www/articles/fog/fog.htm Bartlomiej Wronski: Light Scattering Solutions and Volumetric Fog. Gamasutra server, 2014. http://www.gamasutra.com/blogs/BartlomiejWronski/20141208/226295/Atmospheric_scattering_and_volumetric_fog_algorithm__part_1.php |