Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 390)
Detail práce
   Přihlásit přes CAS
The role of Nucleoporin TPR in cell functioning and differentiation
Název práce v češtině: Role nukleoporinu TPR v buněčném fungování a diferenciaci
Název v anglickém jazyce: The role of Nucleoporin TPR in cell functioning and differentiation
Klíčová slova: Nukleoporiny, genová exprese, transkokated promotor region, TPR, LSD1, svalová diferenciace, Myh4, Olfr
Klíčová slova anglicky: Nucleoporins; gene expression; translocated promoter region; TPR; LSD1; myogenic differentiation; Myh4; Olfr
Akademický rok vypsání: 2016/2017
Typ práce: disertační práce
Jazyk práce: angličtina
Ústav: Akademie věd ČR (11-00048)
Vedoucí / školitel: Mgr. Jindřiška Fišerová, Ph.D.
Řešitel: skrytý - zadáno a potvrzeno stud. odd.
Datum přihlášení: 12.10.2016
Datum zadání: 12.10.2016
Datum potvrzení stud. oddělením: 12.10.2016
Datum a čas obhajoby: 17.01.2024 13:00
Místo konání obhajoby: Viničná 7, Praha 2, budova PřF
Datum odevzdání elektronické podoby:11.09.2023
Datum proběhlé obhajoby: 17.01.2024
Předmět: Obhajoba dizertační práce (B90002)
Oponenti: MUDr. Libor Macůrek, Ph.D.
  Mgr. Zuzana Líčeníková Hořejší, Ph.D.
 
 
Seznam odborné literatury
Acakpo-Satchivi, L.J., Edelmann, W., Sartorius, C., Lu, B.D., Wahr, P.A., Watkins, S.C., Metzger, J.M., Leinwand, L., Kucherlapati, R., 1997. Growth and muscle defects in mice lacking adult myosin heavy chain genes. J. Cell Biol. 139, 1219–1229. https://doi.org/10.1083/jcb.139.5.1219
Agarwal, S., Yadav, S.K., Dixit, A., 2011. Heterologous expression of Translocated promoter region protein, Tpr, identified as a transcription factor from Rattus norvegicus. Protein Expr. Purif. 77, 112–117. https://doi.org/10.1016/j.pep.2011.01.001
Ahmed, S., Brickner, D.G., Light, W.H., Cajigas, I., McDonough, M., Froyshteter, A.B., Volpe, T., Brickner, J.H., 2010. DNA zip codes control an ancient mechanism for gene targeting to the nuclear periphery. Nat. Cell Biol. 12, 111–118. https://doi.org/10.1038/ncb2011
Aisenberg, W.H., Huang, J., Zhu, W., Rajkumar, P., Cruz, R., Santhanam, L., Natarajan, N., Yong, H.M., De Santiago, B., Oh, J.J., Yoon, A.-R., Panettieri, R.A., Homann, O., Sullivan, J.K., Liggett, S.B., Pluznick, J.L., An, S.S., 2016. Defining an olfactory receptor function in airway smooth muscle cells. Sci. Rep. 6. https://doi.org/10.1038/srep38231
Aksenova, V., Lee, H.N., Smith, A., Chen, S., Bhat, P., Iben, J., Echeverria, C., Fontoura, B., Arnaoutov, A., Dasso, M., 2019. Distinct Basket Nucleoporins roles in Nuclear Pore Function and Gene Expression: Tpr is an integral component of the TREX-2 mRNA export pathway. bioRxiv 685263. https://doi.org/10.1101/685263
Alazami, A.M., Patel, N., Shamseldin, H.E., Anazi, S., Al-Dosari, M.S., Alzahrani, F., Hijazi, H., Alshammari, M., Aldahmesh, M.A., Salih, M.A., Faqeih, E., Alhashem, A., Bashiri, F.A., Al-Owain, M., Kentab, A.Y., Sogaty, S., Al Tala, S., Temsah, M.-H., Tulbah, M., Aljelaify, R.F., Alshahwan, S.A., Seidahmed, M.Z., Alhadid, A.A., Aldhalaan, H., AlQallaf, F., Kurdi, W., Alfadhel, M., Babay, Z., Alsogheer, M., Kaya, N., Al-Hassnan, Z.N., Abdel-Salam, G.M.H., Al-Sannaa, N., Al Mutairi, F., El Khashab, H.Y., Bohlega, S., Jia, X., Nguyen, H.C., Hammami, R., Adly, N., Mohamed, J.Y., Abdulwahab, F., Ibrahim, N., Naim, E.A., Al-Younes, B., Meyer, B.F., Hashem, M., Shaheen, R., Xiong, Y., Abouelhoda, M., Aldeeri, A.A., Monies, D.M., Alkuraya, F.S., 2015. Accelerating novel candidate gene discovery in neurogenetic disorders via whole-exome sequencing of prescreened multiplex consanguineous families. Cell Rep. 10, 148–161. https://doi.org/10.1016/j.celrep.2014.12.015
Alber, F., Dokudovskaya, S., Veenhoff, L.M., Zhang, W., Kipper, J., Devos, D., Suprapto, A., Karni-Schmidt, O., Williams, R., Chait, B.T., Sali, A., Rout, M.P., 2007. The molecular architecture of the nuclear pore complex. Nature 450, 695–701. https://doi.org/10.1038/nature06405
Alcázar-Román, A.R., Bolger, T.A., Wente, S.R., 2010. Control of mRNA export and translation termination by inositol hexakisphosphate requires specific interaction with Gle1. J. Biol. Chem. 285, 16683–16692. https://doi.org/10.1074/jbc.M109.082370
Amlacher, S., Sarges, P., Flemming, D., van Noort, V., Kunze, R., Devos, D.P., Arumugam, M., Bork, P., Hurt, E., 2011. Insight into Structure and Assembly of the Nuclear Pore Complex by Utilizing the Genome of a Eukaryotic Thermophile. Cell 146, 277–289. https://doi.org/10.1016/j.cell.2011.06.039
Anan, K., Hino, S., Shimizu, N., Sakamoto, A., Nagaoka, K., Takase, R., Kohrogi, K., Araki, H., Hino, Y., Usuki, S., Oki, S., Tanaka, H., Nakamura, K., Endo, F., Nakao, M., 2018. LSD1 mediates metabolic reprogramming by glucocorticoids during myogenic differentiation. Nucleic Acids Res. 46, 5441–5454. https://doi.org/10.1093/nar/gky234
Anders, S., Huber, W., 2010. Differential expression analysis for sequence count data. Genome Biol. 11, R106. https://doi.org/10.1186/gb-2010-11-10-r106
Asp, P., Blum, R., Vethantham, V., Parisi, F., Micsinai, M., Cheng, J., Bowman, C., Kluger, Y., Dynlacht, B.D., 2011. Genome-wide remodeling of the epigenetic landscape during myogenic differentiation. Proc. Natl. Acad. Sci. U. S. A. 108, E149–E158. https://doi.org/10.1073/pnas.1102223108
Aze, A., Fragkos, M., Bocquet, S., Cau, J., Méchali, M., 2017. RNAs coordinate nuclear envelope assembly and DNA replication through ELYS recruitment to chromatin. Nat. Commun. 8, 2130. https://doi.org/10.1038/s41467-017-02180-1
Bangs, P., Burke, B., Powers, C., Craig, R., Purohit, A., Doxsey, S., 1998. Functional analysis of Tpr: identification of nuclear pore complex association and nuclear localization domains and a role in mRNA export. J. Cell Biol. 143, 1801–1812. https://doi.org/10.1083/jcb.143.7.1801
Bantignies, F., Roure, V., Comet, I., Leblanc, B., Schuettengruber, B., Bonnet, J., Tixier, V., Mas, A., Cavalli, G., 2011. Polycomb-Dependent Regulatory Contacts between Distant Hox Loci in Drosophila. Cell 144, 214–226. https://doi.org/10.1016/j.cell.2010.12.026
Bayliss, R., Leung, S.W., Baker, R.P., Quimby, B.B., Corbett, A.H., Stewart, M., 2002. Structural basis for the interaction between NTF2 and nucleoporin FxFG repeats. EMBO J. 21, 2843–2853. https://doi.org/10.1093/emboj/cdf305
Beck, M., Hurt, E., 2017. The nuclear pore complex: understanding its function through structural insight. Nat. Rev. Mol. Cell Biol. 18, 73–89. https://doi.org/10.1038/nrm.2016.147
Belmont, A.S., Zhai, Y., Thilenius, A., 1993. Lamin B distribution and association with peripheral chromatin revealed by optical sectioning and electron microscopy tomography. J. Cell Biol. 123, 1671–1685. https://doi.org/10.1083/jcb.123.6.1671
Ben-Efraim, I., Frosst, P.D., Gerace, L., 2009. Karyopherin binding interactions and nuclear import mechanism of nuclear pore complex protein Tpr. BMC Cell Biol. 10, 74. https://doi.org/10.1186/1471-2121-10-74
Blobel, G., 1985. Gene gating: a hypothesis. Proc. Natl. Acad. Sci. U. S. A. 82, 8527–8529.
Boumendil, C., Hari, P., Olsen, K.C.F., Acosta, J.C., Bickmore, W.A., 2019. Nuclear pore density controls heterochromatin reorganization during senescence. Genes Dev. 33, 144–149. https://doi.org/10.1101/gad.321117.118
Breuer, M., Ohkura, H., 2015. A negative loop within the nuclear pore complex controls global chromatin organization. Genes Dev. 29, 1789–1794. https://doi.org/10.1101/gad.264341.115
Brickner, D.G., Cajigas, I., Fondufe-Mittendorf, Y., Ahmed, S., Lee, P.-C., Widom, J., Brickner, J.H., 2007. H2A.Z-Mediated Localization of Genes at the Nuclear Periphery Confers Epigenetic Memory of Previous Transcriptional State. PLOS Biol. 5, e81. https://doi.org/10.1371/journal.pbio.0050081
Brickner, D.G., Coukos, R., Brickner, J.H., n.d. INO1 transcriptional memory leads to DNA zip code-dependent interchromosomal clustering. Microb. Cell 2, 481–490. https://doi.org/10.15698/mic2015.12.242
Brickner, D.G., Randise-Hinchliff, C., Corbin, M.L., Liang, J.M., Kim, S., Sump, B., D’Urso, A., Kim, S.H., Satomura, A., Schmit, H., Coukos, R., Hwang, S., Watson, R., Brickner, J.H., 2019. The role of transcription factors and nuclear pore proteins in controlling the spatial organization of the yeast genome. Dev. Cell 49, 936-947.e4. https://doi.org/10.1016/j.devcel.2019.05.023
Buchwalter, A.L., Liang, Y., Hetzer, M.W., 2014. Nup50 is required for cell differentiation and exhibits transcription-dependent dynamics. Mol. Biol. Cell 25, 2472–2484. https://doi.org/10.1091/mbc.E14-04-0865
Busayavalasa, K., Chen, X., Farrants, A.-K.Ö., Wagner, N., Sabri, N., 2012. The Nup155-mediated organisation of inner nuclear membrane proteins is independent of Nup155 anchoring to the metazoan nuclear pore complex. J. Cell Sci. 125, 4214–4218. https://doi.org/10.1242/jcs.105809
Capelson, M., Liang, Y., Schulte, R., Mair, W., Wagner, U., Hetzer, M.W., 2010. Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell 140, 372. https://doi.org/10.1016/j.cell.2009.12.054
Chal, J., Pourquié, O., 2017. Making muscle: skeletal myogenesis in vivo and in vitro. Development 144, 2104–2122. https://doi.org/10.1242/dev.151035
Chen, B., You, W., Wang, Y., Shan, T., 2020. The regulatory role of Myomaker and Myomixer-Myomerger-Minion in muscle development and regeneration. Cell. Mol. Life Sci. CMLS 77, 1551–1569. https://doi.org/10.1007/s00018-019-03341-9
Chi, Y., Welcker, M., Hizli, A.A., Posakony, J.J., Aebersold, R., Clurman, B.E., 2008. Identification of CDK2 substrates in human cell lysates. Genome Biol. 9, R149. https://doi.org/10.1186/gb-2008-9-10-r149
Choi, J., Jang, H., Kim, H., Kim, S.-T., Cho, E.-J., Youn, H.-D., 2010. Histone demethylase LSD1 is required to induce skeletal muscle differentiation by regulating myogenic factors. Biochem. Biophys. Res. Commun. 401, 327–332. https://doi.org/10.1016/j.bbrc.2010.09.014
Choi, J., Jang, H., Kim, H., Lee, J.-H., Kim, S.-T., Cho, E.-J., Youn, H.-D., 2014. Modulation of lysine methylation in myocyte enhancer factor 2 during skeletal muscle cell differentiation. Nucleic Acids Res. 42, 224–234. https://doi.org/10.1093/nar/gkt873
Cohen, M., Feinstein, N., Wilson, K.L., Gruenbaum, Y., 2003. Nuclear Pore Protein gp210 Is Essential for Viability in HeLa Cells and Caenorhabditis elegans. Mol. Biol. Cell 14, 4230–4237. https://doi.org/10.1091/mbc.E03-04-0260
Cordes, V.C., Reidenbach, S., Rackwitz, H.R., Franke, W.W., 1997. Identification of protein p270/Tpr as a constitutive component of the nuclear pore complex-attached intranuclear filaments. J. Cell Biol. 136, 515–529. https://doi.org/10.1083/jcb.136.3.515
Cox, J., Mann, M., 2012. 1D and 2D annotation enrichment: a statistical method integrating quantitative proteomics with complementary high-throughput data. BMC Bioinformatics 13, S12. https://doi.org/10.1186/1471-2105-13-S16-S12
Coyle, J.H., Bor, Y.-C., Rekosh, D., Hammarskjold, M.-L., 2011. The Tpr protein regulates export of mRNAs with retained introns that traffic through the Nxf1 pathway. RNA N. Y. N 17, 1344–1356. https://doi.org/10.1261/rna.2616111
Cronshaw, J.M., Krutchinsky, A.N., Zhang, W., Chait, B.T., Matunis, M.J., 2002. Proteomic analysis of the mammalian nuclear pore complex. J. Cell Biol. 158, 915–927. https://doi.org/10.1083/jcb.200206106
Dalesio, N.M., Barreto Ortiz, S.F., Pluznick, J.L., Berkowitz, D.E., 2018. Olfactory, Taste, and Photo Sensory Receptors in Non-sensory Organs: It Just Makes Sense. Front. Physiol. 9. https://doi.org/10.3389/fphys.2018.01673
D’Angelo, M.A., Gomez-Cavazos, J.S., Mei, A., Lackner, D.H., Hetzer, M.W., 2012. A change in nuclear pore complex composition regulates cell differentiation. Dev. Cell 22, 446–458. https://doi.org/10.1016/j.devcel.2011.11.021
D’Angelo, M.A., Raices, M., Panowski, S.H., Hetzer, M.W., 2009. Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell 136, 284–295. https://doi.org/10.1016/j.cell.2008.11.037
David-Watine, B., 2011. Silencing Nuclear Pore Protein Tpr Elicits a Senescent-Like Phenotype in Cancer Cells. PLOS ONE 6, e22423. https://doi.org/10.1371/journal.pone.0022423
DeGrasse, J.A., DuBois, K.N., Devos, D., Siegel, T.N., Sali, A., Field, M.C., Rout, M.P., Chait, B.T., 2009. Evidence for a Shared Nuclear Pore Complex Architecture That Is Conserved from the Last Common Eukaryotic Ancestor *. Mol. Cell. Proteomics 8, 2119–2130. https://doi.org/10.1074/mcp.M900038-MCP200
Dekker, J., 2008. Mapping in vivo chromatin interactions in yeast suggests an extended chromatin fiber with regional variation in compaction. J. Biol. Chem. 283, 34532–34540. https://doi.org/10.1074/jbc.M806479200
Denning, D.P., Patel, S.S., Uversky, V., Fink, A.L., Rexach, M., 2003. Disorder in the nuclear pore complex: The FG repeat regions of nucleoporins are natively unfolded. Proc. Natl. Acad. Sci. 100, 2450–2455. https://doi.org/10.1073/pnas.0437902100
Devos, D., Dokudovskaya, S., Williams, R., Alber, F., Eswar, N., Chait, B.T., Rout, M.P., Sali, A., 2006. Simple fold composition and modular architecture of the nuclear pore complex. Proc. Natl. Acad. Sci. 103, 2172–2177. https://doi.org/10.1073/pnas.0506345103
Dewi, F.R.P., Domoto, T., Hazawa, M., Kobayashi, A., Douwaki, T., Minamoto, T., Wong, R.W., 2018. Colorectal cancer cells require glycogen synthase kinase-3β for sustaining mitosis via translocated promoter region (TPR)-dynein interaction. Oncotarget 9, 13337–13352. https://doi.org/10.18632/oncotarget.24344
Dewi, F.R.P., Jiapaer, S., Kobayashi, A., Hazawa, M., Ikliptikawati, D.K., Hartono, Sabit, H., Nakada, M., Wong, R.W., 2020. Nucleoporin TPR (translocated promoter region, nuclear basket protein) upregulation alters MTOR-HSF1 trails and suppresses autophagy induction in ependymoma. Autophagy 0, 1–12. https://doi.org/10.1080/15548627.2020.1741318
Dölker, N., Zachariae, U., Grubmüller, H., 2010. Hydrophilic Linkers and Polar Contacts Affect Aggregation of FG Repeat Peptides. Biophys. J. 98, 2653–2661. https://doi.org/10.1016/j.bpj.2010.02.049
Duheron, V., Nilles, N., Pecenko, S., Martinelli, V., Fahrenkrog, B., 2017. Localisation of Nup153 and SENP1 to nuclear pore complexes is required for 53BP1-mediated DNA double-strand break repair. J. Cell Sci. 130, 2306–2316. https://doi.org/10.1242/jcs.198390
Dultz, E., Zanin, E., Wurzenberger, C., Braun, M., Rabut, G., Sironi, L., Ellenberg, J., 2008. Systematic kinetic analysis of mitotic dis- and reassembly of the nuclear pore in living cells. J. Cell Biol. 180, 857–865. https://doi.org/10.1083/jcb.200707026
D’Urso, A., Takahashi, Y., Xiong, B., Marone, J., Coukos, R., Randise-Hinchliff, C., Wang, J.-P., Shilatifard, A., Brickner, J.H., 2016. Set1/COMPASS and Mediator are repurposed to promote epigenetic transcriptional memory. eLife 5, e16691. https://doi.org/10.7554/eLife.16691
Dworetzky, S.I., Lanford, R.E., Feldherr, C.M., 1988. The effects of variations in the number and sequence of targeting signals on nuclear uptake. J. Cell Biol. 107, 1279–1287. https://doi.org/10.1083/jcb.107.4.1279
Eblen, S.T., Kumar, N.V., Shah, K., Henderson, M.J., Watts, C.K.W., Shokat, K.M., Weber, M.J., 2003. Identification of novel ERK2 substrates through use of an engineered kinase and ATP analogs. J. Biol. Chem. 278, 14926–14935. https://doi.org/10.1074/jbc.M300485200
Fakhro, K.A., Choi, M., Ware, S.M., Belmont, J.W., Towbin, J.A., Lifton, R.P., Khokha, M.K., Brueckner, M., 2011. Rare copy number variations in congenital heart disease patients identify unique genes in left-right patterning. Proc. Natl. Acad. Sci. U. S. A. 108, 2915–2920. https://doi.org/10.1073/pnas.1019645108
Fernandez-Martinez, J., Rout, M.P., 2021. One Ring to Rule them All? Structural and Functional Diversity in the Nuclear Pore Complex. Trends Biochem. Sci. 46, 595–607. https://doi.org/10.1016/j.tibs.2021.01.003
Fischer, J., Teimer, R., Amlacher, S., Kunze, R., Hurt, E., 2015. Linker Nups connect the nuclear pore complex inner ring with the outer ring and transport channel. Nat. Struct. Mol. Biol. 22, 774–781. https://doi.org/10.1038/nsmb.3084
Fišerová, J., Efenberková, M., Sieger, T., Maninová, M., Uhlířová, J., Hozák, P., 2017. Chromatin organization at the nuclear periphery as revealed by image analysis of structured illumination microscopy data. J. Cell Sci. 130, 2066–2077. https://doi.org/10.1242/jcs.198424
Fišerová, J., Maninová, M., Sieger, T., Uhlířová, J., Šebestová, L., Efenberková, M., Čapek, M., Fišer, K., Hozák, P., 2019. Nuclear pore protein TPR associates with lamin B1 and affects nuclear lamina organization and nuclear pore distribution. Cell. Mol. Life Sci. CMLS. https://doi.org/10.1007/s00018-019-03037-0
Fontoura, B.M., Dales, S., Blobel, G., Zhong, H., 2001. The nucleoporin Nup98 associates with the intranuclear filamentous protein network of TPR. Proc. Natl. Acad. Sci. U. S. A. 98, 3208–3213. https://doi.org/10.1073/pnas.061014698
Fornerod, M., van Deursen, J., van Baal, S., Reynolds, A., Davis, D., Murti, K.G., Fransen, J., Grosveld, G., 1997. The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88. EMBO J. 16, 807–816. https://doi.org/10.1093/emboj/16.4.807
Frank, S.R., Schroeder, M., Fernandez, P., Taubert, S., Amati, B., 2001. Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev. 15, 2069–2082. https://doi.org/10.1101/gad.906601
Franks, T.M., McCloskey, A., Shokhirev, M.N., Benner, C., Rathore, A., Hetzer, M.W., 2017. Nup98 recruits the Wdr82–Set1A/COMPASS complex to promoters to regulate H3K4 trimethylation in hematopoietic progenitor cells. Genes Dev. 31, 2222–2234. https://doi.org/10.1101/gad.306753.117
Frey, S., Görlich, D., 2007. A Saturated FG-Repeat Hydrogel Can Reproduce the Permeability Properties of Nuclear Pore Complexes. Cell 130, 512–523. https://doi.org/10.1016/j.cell.2007.06.024
Frosst, P., Guan, T., Subauste, C., Hahn, K., Gerace, L., 2002. Tpr is localized within the nuclear basket of the pore complex and has a role in nuclear protein export. J. Cell Biol. 156, 617–630. https://doi.org/10.1083/jcb.200106046
Funasaka, T., Tsuka, E., Wong, R.W., 2012. Regulation of autophagy by nucleoporin Tpr. Sci. Rep. 2, 878. https://doi.org/10.1038/srep00878
Ganassi, M., Badodi, S., Ortuste Quiroga, H.P., Zammit, P.S., Hinits, Y., Hughes, S.M., 2018. Myogenin promotes myocyte fusion to balance fibre number and size. Nat. Commun. 9, 4232. https://doi.org/10.1038/s41467-018-06583-6
García-Alcalde, F., Okonechnikov, K., Carbonell, J., Cruz, L.M., Götz, S., Tarazona, S., Dopazo, J., Meyer, T.F., Conesa, A., 2012. Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics 28, 2678–2679. https://doi.org/10.1093/bioinformatics/bts503
Gough, J., Karplus, K., Hughey, R., Chothia, C., 2001. Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure11Edited by G. Von Heijne. J. Mol. Biol. 313, 903–919. https://doi.org/10.1006/jmbi.2001.5080
Gozalo, A., Duke, A., Lan, Y., Pascual-Garcia, P., Talamas, J.A., Nguyen, S.C., Shah, P.P., Jain, R., Joyce, E.F., Capelson, M., 2020. Core Components of the Nuclear Pore Bind Distinct States of Chromatin and Contribute to Polycomb Repression. Mol. Cell 77, 67-81.e7. https://doi.org/10.1016/j.molcel.2019.10.017
Grandi, P., Doye, V., Hurt, E.C., 1993. Purification of NSP1 reveals complex formation with “GLFG” nucleoporins and a novel nuclear pore protein NIC96. EMBO J. 12, 3061–3071.
Guan, Q., Haroon, S., Bravo, D.G., Will, J.L., Gasch, A.P., 2012. Cellular Memory of Acquired Stress Resistance in Saccharomyces cerevisiae. Genetics 192, 495–505. https://doi.org/10.1534/genetics.112.143016
Gui, H., Schriemer, D., Cheng, W.W., Chauhan, R.K., Antiňolo, G., Berrios, C., Bleda, M., Brooks, A.S., Brouwer, R.W.W., Burns, A.J., Cherny, S.S., Dopazo, J., Eggen, B.J.L., Griseri, P., Jalloh, B., Le, T.-L., Lui, V.C.H., Luzón-Toro, B., Matera, I., Ngan, E.S.W., Pelet, A., Ruiz-Ferrer, M., Sham, P.C., Shepherd, I.T., So, M.-T., Sribudiani, Y., Tang, C.S.M., van den Hout, M.C.G.N., van der Linde, H.C., van Ham, T.J., van IJcken, W.F.J., Verheij, J.B.G.M., Amiel, J., Borrego, S., Ceccherini, I., Chakravarti, A., Lyonnet, S., Tam, P.K.H., Garcia-Barceló, M.-M., Hofstra, R.M.W., 2017. Whole exome sequencing coupled with unbiased functional analysis reveals new Hirschsprung disease genes. Genome Biol. 18, 48. https://doi.org/10.1186/s13059-017-1174-6
Hase, M.E., Cordes, V.C., 2003. Direct Interaction with Nup153 Mediates Binding of Tpr to the Periphery of the Nuclear Pore Complex. Mol. Biol. Cell 14, 1923–1940. https://doi.org/10.1091/mbc.E02-09-0620
Hase, M.E., Kuznetsov, N.V., Cordes, V.C., 2001. Amino Acid Substitutions of Coiled-Coil Protein Tpr Abrogate Anchorage to the Nuclear Pore Complex but Not Parallel, In-Register Homodimerization. Mol. Biol. Cell 12, 2433–2452.
Hnisz, D., Abraham, B.J., Lee, T.I., Lau, A., Saint-André, V., Sigova, A.A., Hoke, H.A., Young, R.A., 2013. Super-Enhancers in the Control of Cell Identity and Disease. Cell 155, 934–947. https://doi.org/10.1016/j.cell.2013.09.053
Holzer, K., Ori, A., Cooke, A., Dauch, D., Drucker, E., Riemenschneider, P., Andres-Pons, A., DiGuilio, A.L., Mackmull, M.-T., Baßler, J., Roessler, S., Breuhahn, K., Zender, L., Glavy, J.S., Dombrowski, F., Hurt, E., Schirmacher, P., Beck, M., Singer, S., 2019. Nucleoporin Nup155 is part of the p53 network in liver cancer. Nat. Commun. 10, 2147. https://doi.org/10.1038/s41467-019-10133-z
Hutten, S., Wälde, S., Spillner, C., Hauber, J., Kehlenbach, R.H., 2009. The nuclear pore component Nup358 promotes transportin-dependent nuclear import. J. Cell Sci. 122, 1100–1110. https://doi.org/10.1242/jcs.040154
Ibarra, A., Benner, C., Tyagi, S., Cool, J., Hetzer, M.W., 2016. Nucleoporin-mediated regulation of cell identity genes. Genes Dev. 30, 2253–2258. https://doi.org/10.1101/gad.287417.116
Ibarra, A., Hetzer, M.W., 2015. Nuclear pore proteins and the control of genome functions. Genes Dev. 29, 337–349. https://doi.org/10.1101/gad.256495.114
Iglesias, N., Paulo, J.A., Tatarakis, A., Wang, X., Edwards, A.L., Bhanu, N.V., Garcia, B.A., Haas, W., Gygi, S.P., Moazed, D., 2020. Native Chromatin Proteomics Reveals Role for Specific Nucleoporins in Heterochromatin Organization and Maintenance. Mol. Cell 77, 51-66.e8. https://doi.org/10.1016/j.molcel.2019.10.018
Isgro, T.A., Schulten, K., 2007a. Cse1p-binding dynamics reveal a binding pattern for FG-repeat nucleoporins on transport receptors. Struct. Lond. Engl. 1993 15, 977–991. https://doi.org/10.1016/j.str.2007.06.011
Isgro, T.A., Schulten, K., 2007b. Association of nuclear pore FG-repeat domains to NTF2 import and export complexes. J. Mol. Biol. 366, 330–345. https://doi.org/10.1016/j.jmb.2006.11.048
Jacinto, F.V., Benner, C., Hetzer, M.W., 2015. The nucleoporin Nup153 regulates embryonic stem cell pluripotency through gene silencing. Genes Dev. 29, 1224–1238. https://doi.org/10.1101/gad.260919.115
Joshi, A.A., Struhl, K., 2005. Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol. Cell 20, 971–978. https://doi.org/10.1016/j.molcel.2005.11.021
Kadota, S., Ou, J., Shi, Y., Lee, J.T., Sun, J., Yildirim, E., 2020. Nucleoporin 153 links nuclear pore complex to chromatin architecture by mediating CTCF and cohesin binding. Nat. Commun. 11, 2606. https://doi.org/10.1038/s41467-020-16394-3
Kalverda, B., Pickersgill, H., Shloma, V.V., Fornerod, M., 2010. Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell 140, 360–371. https://doi.org/10.1016/j.cell.2010.01.011
Kampmann, M., Blobel, G., 2009. Three-dimensional structure and flexibility of a membrane-coating module of the nuclear pore complex. Nat. Struct. Mol. Biol. 16, 782–788. https://doi.org/10.1038/nsmb.1618
Kanehisa, M., Goto, S., 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30. https://doi.org/10.1093/nar/28.1.27
Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K., Tanabe, M., 2019. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 47, D590–D595. https://doi.org/10.1093/nar/gky962
Kehat, I., Accornero, F., Aronow, B.J., Molkentin, J.D., 2011. Modulation of chromatin position and gene expression by HDAC4 interaction with nucleoporins. J. Cell Biol. 193, 21–29. https://doi.org/10.1083/jcb.201101046
Kittisopikul, M., Shimi, T., Tatli, M., Tran, J.R., Zheng, Y., Medalia, O., Jaqaman, K., Adam, S.A., Goldman, R.D., 2021. Computational analyses reveal spatial relationships between nuclear pore complexes and specific lamins. J. Cell Biol. 220, e202007082. https://doi.org/10.1083/jcb.202007082
Kobayashi, A., Hashizume, C., Dowaki, T., Wong, R.W., 2015. Therapeutic potential of mitotic interaction between the nucleoporin Tpr and aurora kinase A. Cell Cycle 14, 1447–1458. https://doi.org/10.1080/15384101.2015.1021518
Kosar, M., Giannattasio, M., Piccini, D., Maya-Mendoza, A., García-Benítez, F., Bartkova, J., Barroso, S.I., Gaillard, H., Martini, E., Restuccia, U., Ramirez-Otero, M.A., Garre, M., Verga, E., Andújar-Sánchez, M., Maynard, S., Hodny, Z., Costanzo, V., Kumar, A., Bachi, A., Aguilera, A., Bartek, J., Foiani, M., 2021. The human nucleoporin Tpr protects cells from RNA-mediated replication stress. Nat. Commun. 12, 3937. https://doi.org/10.1038/s41467-021-24224-3
Krull, S., Dörries, J., Boysen, B., Reidenbach, S., Magnius, L., Norder, H., Thyberg, J., Cordes, V.C., 2010. Protein Tpr is required for establishing nuclear pore-associated zones of heterochromatin exclusion. EMBO J. 29, 1659–1673. https://doi.org/10.1038/emboj.2010.54
Krull, S., Thyberg, J., Björkroth, B., Rackwitz, H.-R., Cordes, V.C., 2004. Nucleoporins as Components of the Nuclear Pore Complex Core Structure and Tpr as the Architectural Element of the Nuclear Basket. Mol. Biol. Cell 15, 4261–4277. https://doi.org/10.1091/mbc.E04-03-0165
Kuhn, T.M., Pascual-Garcia, P., Gozalo, A., Little, S.C., Capelson, M., 2019. Chromatin targeting of nuclear pore proteins induces chromatin decondensation. J. Cell Biol. 218, 2945–2961. https://doi.org/10.1083/jcb.201807139
Labade, A.S., Karmodiya, K., Sengupta, K., 2016. HOXA repression is mediated by nucleoporin Nup93 assisted by its interactors Nup188 and Nup205. Epigenetics Chromatin 9, 54. https://doi.org/10.1186/s13072-016-0106-0
Lamorte, L., Park, M., 2001. The receptor tyrosine kinases: role in cancer progression. Surg. Oncol. Clin. N. Am. 10, 271–288, viii.
Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359. https://doi.org/10.1038/nmeth.1923
Lapetina, D.L., Ptak, C., Roesner, U.K., Wozniak, R.W., 2017. Yeast silencing factor Sir4 and a subset of nucleoporins form a complex distinct from nuclear pore complexes. J. Cell Biol. 216, 3145–3159. https://doi.org/10.1083/jcb.201609049
Lee, E.S., Wolf, E.J., Ihn, S.S.J., Smith, H.W., Emili, A., Palazzo, A.F., 2020. TPR is required for the efficient nuclear export of mRNAs and lncRNAs from short and intron-poor genes. Nucleic Acids Res. 48, 11645–11663. https://doi.org/10.1093/nar/gkaa919
Lee, S.H., Sterling, H., Burlingame, A., McCormick, F., 2008. Tpr directly binds to Mad1 and Mad2 and is important for the Mad1-Mad2-mediated mitotic spindle checkpoint. Genes Dev. 22, 2926–2931. https://doi.org/10.1101/gad.1677208
Leonard, R.J., Preston, C.C., Gucwa, M.E., Afeworki, Y., Selya, A.S., Faustino, R.S., 2020. Protein Subdomain Enrichment of NUP155 Variants Identify a Novel Predicted Pathogenic Hotspot. Front. Cardiovasc. Med. 7, 8. https://doi.org/10.3389/fcvm.2020.00008
Liang, Y., Franks, T.M., Marchetto, M.C., Gage, F.H., Hetzer, M.W., 2013. Dynamic association of NUP98 with the human genome. PLoS Genet. 9, e1003308. https://doi.org/10.1371/journal.pgen.1003308
Light, W.H., Freaney, J., Sood, V., Thompson, A., D’Urso, A., Horvath, C.M., Brickner, J.H., 2013. A Conserved Role for Human Nup98 in Altering Chromatin Structure and Promoting Epigenetic Transcriptional Memory. PLOS Biol. 11, e1001524. https://doi.org/10.1371/journal.pbio.1001524
Lin, D.H., Stuwe, T., Schilbach, S., Rundlet, E.J., Perriches, T., Mobbs, G., Fan, Y., Thierbach, K., Huber, F.M., Collins, L.N., Davenport, A.M., Jeon, Y.E., Hoelz, A., 2016. Architecture of the nuclear pore complex symmetric core. Science 352, aaf1015. https://doi.org/10.1126/science.aaf1015
Lince-Faria, M., Maffini, S., Orr, B., Ding, Y., Cláudia Florindo, null, Sunkel, C.E., Tavares, A., Johansen, J., Johansen, K.M., Maiato, H., 2009. Spatiotemporal control of mitosis by the conserved spindle matrix protein Megator. J. Cell Biol. 184, 647–657. https://doi.org/10.1083/jcb.200811012
Liu, Z., Yan, M., Liang, Y., Liu, M., Zhang, Kun, Shao, D., Jiang, R., Li, L., Wang, C., Nussenzveig, D.R., Zhang, Kunkun, Chen, S., Zhong, C., Mo, W., Fontoura, B.M.A., Zhang, L., 2019. Nucleoporin Seh1 Interacts with Olig2/Brd7 to Promote Oligodendrocyte Differentiation and Myelination. Neuron 102, 587-601.e7. https://doi.org/10.1016/j.neuron.2019.02.018
Lo, K.-Y., Johnson, A.W., 2009. Reengineering ribosome export. Mol. Biol. Cell 20, 1545–1554. https://doi.org/10.1091/mbc.e08-10-1000
López-Soop, G., Rønningen, T., Rogala, A., Richartz, N., Blomhoff, H.K., Thiede, B., Collas, P., Küntziger, T., 2017. AKAP95 interacts with nucleoporin TPR in mitosis and is important for the spindle assembly checkpoint. Cell Cycle Georget. Tex 16, 947–956. https://doi.org/10.1080/15384101.2017.1310350
Love, M.I., Anders, S., Kim, V., Huber, W., 2015. RNA-Seq workflow: gene-level exploratory analysis and differential expression. https://doi.org/10.12688/f1000research.7035.1
Lutzmann, M., Kunze, R., Buerer, A., Aebi, U., Hurt, E., 2002. Modular self-assembly of a Y-shaped multiprotein complex from seven nucleoporins. EMBO J. 21, 387–397. https://doi.org/10.1093/emboj/21.3.387
Mahajan, R., Delphin, C., Guan, T., Gerace, L., Melchior, F., 1997. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97–107. https://doi.org/10.1016/s0092-8674(00)81862-0
Makio, T., Stanton, L.H., Lin, C.-C., Goldfarb, D.S., Weis, K., Wozniak, R.W., 2009. The nucleoporins Nup170p and Nup157p are essential for nuclear pore complex assembly. J. Cell Biol. 185, 459–473. https://doi.org/10.1083/jcb.200810029
Marelli, M., Aitchison, J.D., Wozniak, R.W., 1998. Specific binding of the karyopherin Kap121p to a subunit of the nuclear pore complex containing Nup53p, Nup59p, and Nup170p. J. Cell Biol. 143, 1813–1830. https://doi.org/10.1083/jcb.143.7.1813
Matsuura, Y., Lange, A., Harreman, M.T., Corbett, A.H., Stewart, M., 2003. Structural basis for Nup2p function in cargo release and karyopherin recycling in nuclear import. EMBO J. 22, 5358–5369. https://doi.org/10.1093/emboj/cdg538
Mattout, A., Cabianca, D.S., Gasser, S.M., 2015. Chromatin states and nuclear organization in development — a view from the nuclear lamina. Genome Biol. 16. https://doi.org/10.1186/s13059-015-0747-5
Maul, G., Deaven, L., 1977. Quantitative determination of nuclear pore complexes in cycling cells with differing DNA content. J. Cell Biol. 73, 748–760.
McCloskey, A., Ibarra, A., Hetzer, M.W., 2018. Tpr regulates the total number of nuclear pore complexes per cell nucleus. Genes Dev. 32, 1321–1331. https://doi.org/10.1101/gad.315523.118
Mészáros, N., Cibulka, J., Mendiburo, M.J., Romanauska, A., Schneider, M., Köhler, A., 2015. Nuclear pore basket proteins are tethered to the nuclear envelope and can regulate membrane curvature. Dev. Cell 33, 285–298. https://doi.org/10.1016/j.devcel.2015.02.017
Metzger, E., Wissmann, M., Yin, N., Müller, J.M., Schneider, R., Peters, A.H.F.M., Günther, T., Buettner, R., Schüle, R., 2005. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437, 436–439. https://doi.org/10.1038/nature04020
Milano-Foster, J., Ray, S., Home, P., Ganguly, A., Bhattacharya, B., Bajpai, S., Pal, A., Mason, C.W., Paul, S., 2019. Regulation of human trophoblast syncytialization by histone demethylase LSD1. J. Biol. Chem. 294, 17301–17313. https://doi.org/10.1074/jbc.RA119.010518
Mitchell, J.M., Mansfeld, J., Capitanio, J., Kutay, U., Wozniak, R.W., 2010. Pom121 links two essential subcomplexes of the nuclear pore complex core to the membrane. J. Cell Biol. 191, 505–521. https://doi.org/10.1083/jcb.201007098
Miyake, N., Tsukaguchi, H., Koshimizu, E., Shono, A., Matsunaga, S., Shiina, M., Mimura, Y., Imamura, S., Hirose, T., Okudela, K., Nozu, K., Akioka, Y., Hattori, M., Yoshikawa, N., Kitamura, A., Cheong, H.I., Kagami, S., Yamashita, M., Fujita, A., Miyatake, S., Tsurusaki, Y., Nakashima, M., Saitsu, H., Ohashi, K., Imamoto, N., Ryo, A., Ogata, K., Iijima, K., Matsumoto, N., 2015. Biallelic Mutations in Nuclear Pore Complex Subunit NUP107 Cause Early-Childhood-Onset Steroid-Resistant Nephrotic Syndrome. Am. J. Hum. Genet. 97, 555–566. https://doi.org/10.1016/j.ajhg.2015.08.013
Monahan, K., Lomvardas, S., 2015. Monoallelic Expression of Olfactory Receptors. Annu. Rev. Cell Dev. Biol. 31, 721–740. https://doi.org/10.1146/annurev-cellbio-100814-125308
Munehira, Y., Yang, Z., Gozani, O., 2017. Systematic Analysis of Known and Candidate Lysine Demethylases in the Regulation of Myoblast Differentiation. J. Mol. Biol., Deciphering Histone Modifications in Development and Disease 429, 2055–2065. https://doi.org/10.1016/j.jmb.2016.10.004
Nakano, H., Funasaka, T., Hashizume, C., Wong, R.W., 2010. Nucleoporin translocated promoter region (Tpr) associates with dynein complex, preventing chromosome lagging formation during mitosis. J. Biol. Chem. 285, 10841–10849. https://doi.org/10.1074/jbc.M110.105890
Nanni, S., Re, A., Ripoli, C., Gowran, A., Nigro, P., D’Amario, D., Amodeo, A., Crea, F., Grassi, C., Pontecorvi, A., Farsetti, A., Colussi, C., 2016. The nuclear pore protein Nup153 associates with chromatin and regulates cardiac gene expression in dystrophic mdx hearts. Cardiovasc. Res. 112, 555–567. https://doi.org/10.1093/cvr/cvw204
Neumann, N., Lundin, D., Poole, A.M., 2010. Comparative Genomic Evidence for a Complete Nuclear Pore Complex in the Last Eukaryotic Common Ancestor. PLOS ONE 5, e13241. https://doi.org/10.1371/journal.pone.0013241
Niu, X., Hong, J., Zheng, X., Melville, D.B., Knapik, E.W., Meng, A., Peng, J., 2014. The nuclear pore complex function of Sec13 protein is required for cell survival during retinal development. J. Biol. Chem. 289, 11971–11985. https://doi.org/10.1074/jbc.M114.547190
Otsuka, S., Tempkin, J.O.B., Politi, A.Z., Rybina, A., Hossain, M.J., Kueblbeck, M., Callegari, A., Koch, B., Sali, A., Ellenberg, J., 2021. A quantitative map of nuclear pore assembly reveals two distinct mechanisms. https://doi.org/10.1101/2021.05.17.444137
Pal, K., Bandyopadhyay, A., Zhou, X.E., Xu, Q., Marciano, D.P., Brunzelle, J.S., Yerrum, S., Griffin, P.R., Woude, G.V., Melcher, K., Xu, H.E., 2017. Structural basis of TPR mediated oligomerization and activation of oncogenic fusion kinases. Struct. Lond. Engl. 1993 25, 867-877.e3. https://doi.org/10.1016/j.str.2017.04.015
Panté, N., Kann, M., 2002. Nuclear Pore Complex Is Able to Transport Macromolecules with Diameters of ∼39 nm. Mol. Biol. Cell 13, 425–434. https://doi.org/10.1091/mbc.01-06-0308
Pascual-Garcia, P., Debo, B., Aleman, J.R., Talamas, J.A., Lan, Y., Nguyen, N.H., Won, K.J., Capelson, M., 2017. Metazoan Nuclear Pores Provide a Scaffold for Poised Genes and Mediate Induced Enhancer-Promoter Contacts. Mol. Cell 66, 63-76.e6. https://doi.org/10.1016/j.molcel.2017.02.020
Pascual-Garcia, P., Jeong, J., Capelson, M., 2014. Nucleoporin Nup98 Associates with Trx/MLL and NSL Histone-Modifying Complexes and Regulates Hox Gene Expression. Cell Rep. 9, 433–442. https://doi.org/10.1016/j.celrep.2014.09.002
Patil, S., Sengupta, K., 2021. Role of A- and B-type lamins in nuclear structure–function relationships. Biol. Cell 113, 295–310. https://doi.org/10.1111/boc.202000160
Pavlath, G.K., 2010. A new function for odorant receptors. Cell Adhes. Migr. 4, 502–506. https://doi.org/10.4161/cam.4.4.12291
Prestel, M., Feller, C., Straub, T., Mitlöhner, H., Becker, P.B., 2010. The activation potential of MOF is constrained for dosage compensation. Mol. Cell 38, 815–826. https://doi.org/10.1016/j.molcel.2010.05.022
Preston, C.C., Storm, E.C., Burdine, R.D., Bradley, T.A., Uttecht, A.D., Faustino, R.S., 2019. Nucleoporin insufficiency disrupts a pluripotent regulatory circuit in a pro-arrhythmogenic stem cell line. Sci. Rep. 9, 12691. https://doi.org/10.1038/s41598-019-49147-4
Rabut, G., Doye, V., Ellenberg, J., 2004. Mapping the dynamic organization of the nuclear pore complex inside single living cells. Nat. Cell Biol. 6, 1114–1121. https://doi.org/10.1038/ncb1184
Raices, M., Bukata, L., Sakuma, S., Borlido, J., Hernandez, L.S., Hart, D.O., D’Angelo, M.A., 2017. Nuclear Pores Regulate Muscle Development and Maintenance by Assembling a Localized Mef2C Complex. Dev. Cell 41, 540-554.e7. https://doi.org/10.1016/j.devcel.2017.05.007
Rajanala, K., Nandicoori, V.K., 2012. Localization of Nucleoporin Tpr to the Nuclear Pore Complex Is Essential for Tpr Mediated Regulation of the Export of Unspliced RNA. PLOS ONE 7, e29921. https://doi.org/10.1371/journal.pone.0029921
Rajanala, K., Sarkar, A., Jhingan, G.D., Priyadarshini, R., Jalan, M., Sengupta, S., Nandicoori, V.K., 2014. Phosphorylation of nucleoporin Tpr governs its differential localization and is required for its mitotic function. J. Cell Sci. 127, 3505–3520. https://doi.org/10.1242/jcs.149112
Ramírez, F., Bhardwaj, V., Arrigoni, L., Lam, K.C., Grüning, B.A., Villaveces, J., Habermann, B., Akhtar, A., Manke, T., 2018. High-resolution TADs reveal DNA sequences underlying genome organization in flies. Nat. Commun. 9, 189. https://doi.org/10.1038/s41467-017-02525-w
Reichelt, R., Holzenburg, A., Buhle, E.L., Jarnik, M., Engel, A., Aebi, U., 1990. Correlation between structure and mass distribution of the nuclear pore complex and of distinct pore complex components. J. Cell Biol. 110, 883–894. https://doi.org/10.1083/jcb.110.4.883
Rohner, S., Kalck, V., Wang, X., Ikegami, K., Lieb, J.D., Gasser, S.M., Meister, P., 2013. Promoter- and RNA polymerase II–dependent hsp-16 gene association with nuclear pores in Caenorhabditis elegans. J. Cell Biol. 200, 589–604. https://doi.org/10.1083/jcb.201207024
Sabri, N., Roth, P., Xylourgidis, N., Sadeghifar, F., Adler, J., Samakovlis, C., 2007. Distinct functions of the Drosophila Nup153 and Nup214 FG domains in nuclear protein transport. J. Cell Biol. 178, 557–565. https://doi.org/10.1083/jcb.200612135
Sachdev, R., Sieverding, C., Floetenmeyer, M., Antonin, W., 2011. The C-terminal domain of Nup93 is essential for assembly of the structural backbone of nuclear pore complexes. Mol. Biol. Cell 23, 740–9. https://doi.org/10.1091/mbc.E11-09-0761
Schermelleh, L., Carlton, P.M., Haase, S., Shao, L., Winoto, L., Kner, P., Burke, B., Cardoso, M.C., Agard, D.A., Gustafsson, M.G.L., Leonhardt, H., Sedat, J.W., 2008. Subdiffraction Multicolor Imaging of the Nuclear Periphery with 3D Structured Illumination Microscopy. Science 320, 1332–1336. https://doi.org/10.1126/science.1156947
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P., Cardona, A., 2012. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019
Schmid, M., Arib, G., Laemmli, C., Nishikawa, J., Durussel, T., Laemmli, U.K., 2006. Nup-PI: The Nucleopore-Promoter Interaction of Genes in Yeast. Mol. Cell 21, 379–391. https://doi.org/10.1016/j.molcel.2005.12.012
Scholz, B.A., Sumida, N., de Lima, C.D.M., Chachoua, I., Martino, M., Tzelepis, I., Nikoshkov, A., Zhao, H., Mehmood, R., Sifakis, E.G., Bhartiya, D., Göndör, A., Ohlsson, R., 2019. WNT signaling and AHCTF1 promote oncogenic MYC expression through super-enhancer-mediated gene gating. Nat. Genet. 51, 1723–1731. https://doi.org/10.1038/s41588-019-0535-3
Schweizer, N., Ferrás, C., Kern, D.M., Logarinho, E., Cheeseman, I.M., Maiato, H., 2013. Spindle assembly checkpoint robustness requires Tpr-mediated regulation of Mad1/Mad2 proteostasis. J. Cell Biol. 203, 883–893. https://doi.org/10.1083/jcb.201309076
Scionti, I., Hayashi, S., Mouradian, S., Girard, E., Esteves de Lima, J., Morel, V., Simonet, T., Wurmser, M., Maire, P., Ancelin, K., Metzger, E., Schüle, R., Goillot, E., Relaix, F., Schaeffer, L., 2017. LSD1 Controls Timely MyoD Expression via MyoD Core Enhancer Transcription. Cell Rep. 18, 1996–2006. https://doi.org/10.1016/j.celrep.2017.01.078
Shanle, E.K., Shinsky, S.A., Bridgers, J.B., Bae, N., Sagum, C., Krajewski, K., Rothbart, S.B., Bedford, M.T., Strahl, B.D., 2017. Histone peptide microarray screen of chromo and Tudor domains defines new histone lysine methylation interactions. Epigenetics Chromatin 10, 12. https://doi.org/10.1186/s13072-017-0117-5
Shi, Yujiang, Lan, F., Matson, C., Mulligan, P., Whetstine, J.R., Cole, P.A., Casero, R.A., Shi, Yang, 2004. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953. https://doi.org/10.1016/j.cell.2004.12.012
Shibata, S., Matsuoka, Y., Yoneda, Y., 2002. Nucleocytoplasmic transport of proteins and poly(A)+ RNA in reconstituted Tpr-less nuclei in living mammalian cells. Genes Cells Devoted Mol. Cell. Mech. 7, 421–434. https://doi.org/10.1046/j.1365-2443.2002.00525.x
Siniossoglou, S., Lutzmann, M., Santos-Rosa, H., Leonard, K., Mueller, S., Aebi, U., Hurt, E., 2000. Structure and Assembly of the Nup84p Complex. J. Cell Biol. 149, 41–54.
Skaggs, H.S., Xing, H., Wilkerson, D.C., Murphy, L.A., Hong, Y., Mayhew, C.N., Sarge, K.D., 2007. HSF1-TPR interaction facilitates export of stress-induced HSP70 mRNA. J. Biol. Chem. 282, 33902–33907. https://doi.org/10.1074/jbc.M704054200
Snow, C.J., Paschal, B.M., 2014. Roles of the nucleoporin Tpr in cancer and aging. Adv. Exp. Med. Biol. 773, 309–322. https://doi.org/10.1007/978-1-4899-8032-8_14
Solovei, I., Wang, A.S., Thanisch, K., Schmidt, C.S., Krebs, S., Zwerger, M., Cohen, T.V., Devys, D., Foisner, R., Peichl, L., Herrmann, H., Blum, H., Engelkamp, D., Stewart, C.L., Leonhardt, H., Joffe, B., 2013. LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152, 584–598. https://doi.org/10.1016/j.cell.2013.01.009
Solsbacher, J., Maurer, P., Vogel, F., Schlenstedt, G., 2000. Nup2p, a yeast nucleoporin, functions in bidirectional transport of importin alpha. Mol. Cell. Biol. 20, 8468–8479. https://doi.org/10.1128/MCB.20.22.8468-8479.2000
Stavru, F., Nautrup-Pedersen, G., Cordes, V.C., Görlich, D., 2006. Nuclear pore complex assembly and maintenance in POM121- and gp210-deficient cells. J. Cell Biol. 173, 477–483. https://doi.org/10.1083/jcb.200601002
Su, Y., Pelz, C., Huang, T., Torkenczy, K., Wang, X., Cherry, A., Daniel, C.J., Liang, J., Nan, X., Dai, M.-S., Adey, A., Impey, S., Sears, R.C., 2018. Post-translational modification localizes MYC to the nuclear pore basket to regulate a subset of target genes involved in cellular responses to environmental signals. Genes Dev. 32, 1398–1419. https://doi.org/10.1101/gad.314377.118
Taddei, A., Van Houwe, G., Hediger, F., Kalck, V., Cubizolles, F., Schober, H., Gasser, S.M., 2006. Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 441, 774–778. https://doi.org/10.1038/nature04845
Tan-Wong, S.M., Wijayatilake, H.D., Proudfoot, N.J., 2009. Gene loops function to maintain transcriptional memory through interaction with the nuclear pore complex. Genes Dev. 23, 2610–2624. https://doi.org/10.1101/gad.1823209
Toda, T., Hsu, J.Y., Linker, S.B., Hu, L., Schafer, S.T., Mertens, J., Jacinto, F.V., Hetzer, M.W., Gage, F.H., 2017. Nup153 Interacts with Sox2 to Enable Bimodal Gene Regulation and Maintenance of Neural Progenitor Cells. Cell Stem Cell 21, 618-634.e7. https://doi.org/10.1016/j.stem.2017.08.012
Tosic, M., Allen, A., Willmann, D., Lepper, C., Kim, J., Duteil, D., Schüle, R., 2018. Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells. Nat. Commun. 9, 366. https://doi.org/10.1038/s41467-017-02740-5
Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M.Y., Geiger, T., Mann, M., Cox, J., 2016. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740. https://doi.org/10.1038/nmeth.3901
Uhlířová, J., Šebestová, L., Fišer, K., Sieger, T., Fišerová, J., Hozák, P., 2021. Nucleoporin TPR Affects C2C12 Myogenic Differentiation via Regulation of Myh4 Expression. Cells 10, 1271. https://doi.org/10.3390/cells10061271
Van Bergen, N.J., Bell, K.M., Carey, K., Gear, R., Massey, S., Murrell, E.K., Gallacher, L., Pope, K., Lockhart, P.J., Kornberg, A., Pais, L., Walkiewicz, M., Simons, C., MCRI Rare Diseases Flagship, Wickramasinghe, V.O., White, S.M., Christodoulou, J., 2021. Pathogenic variants in nucleoporin TPR (translocated promoter region, nuclear basket protein) cause severe intellectual disability in humans. Hum. Mol. Genet. https://doi.org/10.1093/hmg/ddab248
Van de Vosse, D.W., Wan, Y., Lapetina, D.L., Chen, W.-M., Chiang, J.-H., Aitchison, J.D., Wozniak, R.W., 2013. A Role for the Nucleoporin Nup170p in Chromatin Structure and Gene Silencing. Cell 152, 969–983. https://doi.org/10.1016/j.cell.2013.01.049
Vandamme, J., Sidoli, S., Mariani, L., Friis, C., Christensen, J., Helin, K., Jensen, O.N., Salcini, A.E., 2015. H3K23me2 is a new heterochromatic mark in Caenorhabditis elegans. Nucleic Acids Res. 43, 9694–9710. https://doi.org/10.1093/nar/gkv1063
Vaquerizas, J.M., Suyama, R., Kind, J., Miura, K., Luscombe, N.M., Akhtar, A., 2010. Nuclear pore proteins nup153 and megator define transcriptionally active regions in the Drosophila genome. PLoS Genet. 6, e1000846. https://doi.org/10.1371/journal.pgen.1000846
Vinciguerra, P., Iglesias, N., Camblong, J., Zenklusen, D., Stutz, F., 2005. Perinuclear Mlp proteins downregulate gene expression in response to a defect in mRNA export. EMBO J. 24, 813–823. https://doi.org/10.1038/sj.emboj.7600527
Vomastek, T., Iwanicki, M.P., Burack, W.R., Tiwari, D., Kumar, D., Parsons, J.T., Weber, M.J., Nandicoori, V.K., 2008. Extracellular Signal-Regulated Kinase 2 (ERK2) Phosphorylation Sites and Docking Domain on the Nuclear Pore Complex Protein Tpr Cooperatively Regulate ERK2-Tpr Interaction. Mol. Cell. Biol. 28, 6954–6966. https://doi.org/10.1128/MCB.00925-08
Wang, J., Telese, F., Tan, Y., Li, W., Jin, C., He, X., Basnet, H., Ma, Q., Merkurjev, D., Zhu, X., Liu, Z., Zhang, J., Ohgi, K., Taylor, H., White, R.R., Tazearslan, C., Suh, Y., Macfarlan, T.S., Pfaff, S.L., Rosenfeld, M.G., 2015. LSD1n is an H4K20 demethylase regulating memory formation via transcriptional elongation control. Nat. Neurosci. 18, 1256–1264. https://doi.org/10.1038/nn.4069
Weinberg-Shukron, A., Renbaum, P., Kalifa, R., Zeligson, S., Ben-Neriah, Z., Dreifuss, A., Abu-Rayyan, A., Maatuk, N., Fardian, N., Rekler, D., Kanaan, M., Samson, A.O., Levy-Lahad, E., Gerlitz, O., Zangen, D., 2015. A mutation in the nucleoporin-107 gene causes XX gonadal dysgenesis. J. Clin. Invest. 125, 4295–4304. https://doi.org/10.1172/JCI83553
Weirich, C.S., Erzberger, J.P., Flick, J.S., Berger, J.M., Thorner, J., Weis, K., 2006. Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Nat. Cell Biol. 8, 668–676. https://doi.org/10.1038/ncb1424
Wente, S.R., Rout, M.P., 2010. The Nuclear Pore Complex and Nuclear Transport. Cold Spring Harb. Perspect. Biol. 2, a000562. https://doi.org/10.1101/cshperspect.a000562
Willcockson, M.A., Healton, S.E., Weiss, C.N., Bartholdy, B.A., Botbol, Y., Mishra, L.N., Sidhwani, D.S., Wilson, T.J., Pinto, H.B., Maron, M.I., Skalina, K.A., Toro, L.N., Zhao, J., Lee, C.-H., Hou, H., Yusufova, N., Meydan, C., Osunsade, A., David, Y., Cesarman, E., Melnick, A.M., Sidoli, S., Garcia, B.A., Edelmann, W., Macian, F., Skoultchi, A.I., 2021. H1 histones control the epigenetic landscape by local chromatin compaction. Nature 589, 293–298. https://doi.org/10.1038/s41586-020-3032-z
Wilson, W.D., Tanious, F.A., Barton, H.J., Jones, R.L., Fox, K., Wydra, R.L., Strekowski, L., 1990. DNA sequence dependent binding modes of 4’,6-diamidino-2-phenylindole (DAPI). Biochemistry 29, 8452–8461. https://doi.org/10.1021/bi00488a036
Wu, F., Yao, J., 2017. Identifying Novel Transcriptional and Epigenetic Features of Nuclear Lamina-associated Genes. Sci. Rep. 7, 100. https://doi.org/10.1038/s41598-017-00176-x
Xie, W., Chojnowski, A., Boudier, T., Lim, J.S.Y., Ahmed, S., Ser, Z., Stewart, C., Burke, B., 2016. A-type Lamins Form Distinct Filamentous Networks with Differential Nuclear Pore Complex Associations. Curr. Biol. 26, 2651–2658. https://doi.org/10.1016/j.cub.2016.07.049
Yokoyama, N., Hayashi, N., Seki, T., Panté, N., Ohba, T., Nishii, K., Kuma, K., Hayashida, T., Miyata, T., Aebi, U., 1995. A giant nucleopore protein that binds Ran/TC4. Nature 376, 184–188. https://doi.org/10.1038/376184a0
Zammit, P.S., 2017. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin. Cell Dev. Biol. 72, 19–32. https://doi.org/10.1016/j.semcdb.2017.11.011
Zeng, W., Ball, A.R., Yokomori, K., 2010. HP1: Heterochromatin binding proteins working the genome. Epigenetics Off. J. DNA Methylation Soc. 5, 287–292.
Zhang, H., Wen, J., Bigot, A., Chen, J., Shang, R., Mouly, V., Bi, P., n.d. Human myotube formation is determined by MyoD–Myomixer/Myomaker axis. Sci. Adv. 6, eabc4062. https://doi.org/10.1126/sciadv.abc4062
Zhang, P., Wong, C., Liu, D., Finegold, M., Harper, J.W., Elledge, S.J., 1999. p21CIP1 and p57KIP2 control muscle differentiation at the myogenin step. Genes Dev. 13, 213–224.
Zhang, X., Chen, S., Yoo, S., Chakrabarti, S., Zhang, T., Ke, T., Oberti, C., Yong, S.L., Fang, F., Li, L., de la Fuente, R., Wang, L., Chen, Q., Wang, Q.K., 2008. Mutation in nuclear pore component NUP155 leads to atrial fibrillation and early sudden cardiac death. Cell 135, 1017–1027. https://doi.org/10.1016/j.cell.2008.10.022
Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers, R.M., Brown, M., Li, W., Liu, X.S., 2008. Model-based Analysis of ChIP-Seq (MACS). Genome Biol. 9, R137. https://doi.org/10.1186/gb-2008-9-9-r137
Zimowska, G., Aris, J.P., Paddy, M.R., 1997. A Drosophila Tpr protein homolog is localized both in the extrachromosomal channel network and to nuclear pore complexes. J. Cell Sci. 110 ( Pt 8), 927–944.
Zimowska, G., Paddy, M.R., 2002. Structures and dynamics of Drosophila Tpr inconsistent with a static, filamentous structure. Exp. Cell Res. 276, 223–232. https://doi.org/10.1006/excr.2002.5525
Předběžná náplň práce
TPR je velký nukleoporin, který tvoří košík jaderného póru, a který byl předchozím výzkumem spjat s tvorbou nukleoskeletu. Interaguje s exportovanými molekulami, jadernou laminou i s vnitřkem jádra a má tak strategickou pozici propojovat všemožné buněčně procesy. Naše data poskytují podrobné informace o distribuci TPR uvnitř jádra a o povaze TPR nukleoskeletálních vláken. Dále pak rozšiřují i naše ponětí o funkci TPR v kontextu jaderných pórů jako centrálních uzlů pro transkripční regulaci.
Skrze ChIP-seq analýzu odhalujeme vazbu TPR k doménám chromatinu asociovanými s laminem (LADs). Zároveň ale ukazujeme, že na rozdíl od Laminu, má TPR na expresi asociovaných myogenních genů pozitivní vliv. Ukazujeme, že TPR tvoří komplex s LSD1 a přispívá k regulaci exprese alespoň některých z asociovaných genů skrze tuto interakci. Deplece TPR pak ovlivňuje svalovou diferenciaci, což opět zdůrazňuje klíčovou roli TPR v buněčných procesech.
Předběžná náplň práce v anglickém jazyce
TPR is a large nucleoporin located in the nuclear basket of the nuclear pore that was proposed to form nucleoskeleton. It interacts with exported molecules, components of the nuclear lamina, and the nuclear interior, positioning itself strategically to facilitate connections between various cellular processes. Our findings offer detailed insights into the distribution of TPR within the nucleus and the nature of TPR nucleoskeletal fibers. Furthermore, we enhance our understanding of TPR's function in the context of nuclear pore complexes (NPCs) as central hubs for transcriptional regulation.
Through ChIP-seq analysis, we uncover TPR's association with lamina-associated domains within chromatin. Intriguingly, we demonstrate that unlike lamin, TPR exerts a positive influence on genes involved in myogenesis. We further report that LSD1 forms a complex with TPR and takes a part in the regulation of the TPR associated genes. Finally, our data demonstrate that depletion of TPR adversely affects myogenic differentiation, underscoring its crucial involvement in essential cellular processes.
 
Univerzita Karlova | Informační systém UK