Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 368)
Detail práce
   Přihlásit přes CAS
V úterý 2.7.2024 v době mezi 20:00 a 22:00 proběhne odstávka Studijního informačního systému z důvodu údržby databázového serveru.
Functional and Pathophysiological-morphological Correlates of Neurodegenerative Diseases
Název práce v češtině: Funkční a patofyziologicko-morfologické koreláty neurodegenerativních onemocnění
Název v anglickém jazyce: Functional and Pathophysiological-morphological Correlates of Neurodegenerative Diseases
Klíčová slova: akumulace železa, barevná diskriminace, huntingtin, Huntingtonova nemoc, komplex dýchacího řetězce, kontrastní senzitivita, mutace C19orf12, neurodegenerace, neurodegenerace asociovaná s mitochondriálním membránovým proteinem, optická koherenční tomografie, parkinsonismus, tloušťka vrstvy nervových vláken sítnice, víceúrovňový proces
Klíčová slova anglicky: C19orf12 mutation, color discrimination, contrast sensitivity, huntingtin, Huntington's disease, iron accumulation, mitochondrial membrane-protein associated neurodegeneration, multilevel process, neurodegeneration, optical coherence tomography, parkinsonism, respiratory chain complex, retinal nerve fiber layer thickness
Akademický rok vypsání: 2014/2015
Typ práce: disertační práce
Jazyk práce: angličtina
Ústav: Neurologická klinika 1. LF UK a VFN (11-00600)
Vedoucí / školitel: prof. MUDr. Jan Roth, CSc.
Řešitel: skrytý - zadáno a potvrzeno stud. odd.
Datum přihlášení: 07.10.2014
Datum zadání: 07.10.2014
Datum potvrzení stud. oddělením: 07.10.2014
Datum a čas obhajoby: 04.09.2023 13:00
Místo konání obhajoby: Kateřinská 30, Praha 2, budova D5, NEURS1, P.30, Neurologická klinika, přízemí, seminární místnost
Datum odevzdání elektronické podoby:31.05.2023
Datum proběhlé obhajoby: 04.09.2023
Předmět: Obhajoba dizertační práce (B90002)
Oponenti: doc. MUDr. Marek Baláž, Ph.D.
  doc. MUDr. Kateřina Menšíková, Ph.D.
 
 
Seznam odborné literatury
2022 Alzheimer’s disease facts and figures. (2022). Alzheimer’s & Dementia, 18 (4), 700– 789. https://doi.org/https://doi.org/10.1002/alz.12638
Adhi, M., Aziz, S., Muhammad, K., & Adhi, M. I. (2012). Macular thickness by age and gender in healthy eyes using spectral domain optical coherence tomography. PLoS One, 7 (5), e37638. https://doi.org/10.1371/journal.pone.0037638
Al Macki, N., & Al Rashdi, I. (2017). A novel deletion mutation of exon 2 of the c19orf12 gene in an Omani family with mitochondrial membrane protein-associated neurodegeneration (MPAN). Oman Medical Journal, 32 (1), 66. https://doi.org/10. 5001/omj.2017.12
Alavi, A., Nejad, M. M., Shahidi, G., & Elahi, E. (2017). Mutations in c19orf12 and intronic repeat expansions in c9orf72 not observed in Iranian Parkinson’s disease patients. Neurobiology of Aging, 54, 214–e11. https://doi.org/10.1016/j. neurobiolaging.2017.03.020
Ali, S., & Garcia, J. M. (2014). Sarcopenia, cachexia and aging: Diagnosis, mechanisms and therapeutic options-a mini-review. Gerontology, 60 (4), 294–305. https://doi. org/10.1159/000356760
Amorim, J. A., Coppotelli, G., Rolo, A. P., Palmeira, C. M., Ross, J. M., & Sinclair, D. A. (2022). Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nature Reviews Endocrinology, 18 (4), 243–258.
Andrade, C., Beato, J., Monteiro, A., Costa, A., Penas, S., Guimaraes, J., Reis, F. F., & Garrett, C. (2016). Spectral domain optical coherence tomography as a potential biomarker in Huntington’s disease. Movement Disorders, 31 (3), 377–383.
Babulal, G. M., Chen, L., Doherty, J. M., Murphy, S. A., Johnson, A. M., & Roe, C. M. (2022). Longitudinal changes in anger, anxiety, and fatigue are associated with cerebrospinal fluid biomarkers of Alzheimer’s disease. Journal of Alzheimer’s Disease, (Preprint), 1–8.
Bahadorani, S., Cho, J., Lo, T., Contreras, H., Lawal, H. O., Krantz, D. E., Bradley, T. J., & Walker, D. W. (2010). Neuronal expression of a single-subunit yeast NADH–ubiquinone oxidoreductase (NDI1) extends drosophila lifespan. Aging cell, 9 (2), 191–202.
Barone, P., Erro, R., & Picillo, M. (2017). Quality of life and nonmotor symptoms in Parkinson’s disease. International review of neurobiology, 133, 499–516.
Bartolone, S. N., Sharma, P., Chancellor, M. B., & Lamb, L. E. (2021). Urinary incontinence and Alzheimer’s disease: Insights from patients and preclinical models. Frontiers in Aging Neuroscience, 13, 909. https://doi.org/10.3389/fnagi.2021. 777819
Baschieri, F., Vitiello, M., Cortelli, P., Calandra-Buonaura, G., & Morgante, F. (2023). Autonomic dysfunction in progressive supranuclear palsy. Journal of Neurology, 270 (1), 109–129. https://doi.org/10.1007/s00415-022-11347-w
Ben-Shachar, M. S., Lüdecke, D., & Makowski, D. (2020). Effectsize: Estimation of effect size indices and standardized parameters. Journal of Open Source Software, 5 (56), 2815.
Berkovic, S., Carpenter, S., Evans, A., Karpati, G., Shoubridge, E., Andermann, F., Meyer, E., Tyler, J., Diksic, M., Arnold, D., et al. (1989). Myoclonus epilepsy and ragged-red fibres (MERRF) 1. a clinical, pathological, biochemical, magnetic resonance spectrographic and positron emission tomographic study. Brain, 112 (5), 1231–1260.
Bezdicek, O., Nikolai, T., Nepozitek, J., Perinova, P., Kemlink, D., Dusek, P., Prihodova, I., Dostalova, S., Ibarburu, V., Trnka, J., et al. (2018). Prospective memory impairment in idiopathic rem sleep behavior disorder. The Clinical Neuropsychologist, 32 (5), 1019–1037.
Bezdicek, O., Ruzicka, F., Mazancova, A. F., Roth, J., Dusek, P., Mueller, K., Ruzicka, E., & Jech, R. (2017). Frontal assessment battery in Parkinson’s disease: Validity and morphological correlates. Journal of the International Neuropsychological Society, 23 (8), 675–684.
Bhatia-Dey, N., & Heinbockel, T. (2021). The olfactory system as marker of neurodegeneration in aging, neurological and neuropsychiatric disorders. International Journal of Environmental Research and Public Health, 18 (13), 6976.
Bjorklund, G., Pivina, L., Dadar, M., Semenova, Y., Rahman, M. M., Chirumbolo, S., & Aaseth, J. (2020). Depleted uranium and gulf war illness: Updates and comments on possible mechanisms behind the syndrome. Environmental research, 181, 108927. https://doi.org/10.1016/j.envres.2019.108927
Bohm, M., Papezova, H., Hansikova, H., Wenchich, L., & Zeman, J. (2007). Activities of respiratory chain complexes in isolated platelets in females with anorexia nervosa. International Journal of Eating Disorders, 40 (7), 659–663.
Brennan Jr, W. A., Bird, E. D., & Aprille, J. R. (1985). Regional mitochondrial respiratory activity in Huntington’s disease brain. Journal of neurochemistry, 44 (6), 1948–1950.
Brouillet, E., Conde, F., Beal, M., & Hantraye, P. (1999). Replicating Huntington’s disease phenotype in experimental animals. Progress in neurobiology, 59 (5), 427– 468.
Brown, A.-L., Wilkins, O. G., Keuss, M. J., Hill, S. E., Zanovello, M., Lee, W. C., Lee, F. C., Masino, L., Qi, Y. A., Bryce-Smith, S., et al. (2021). Common ALS/FTD risk variants in unc13a exacerbate its cryptic splicing and loss upon tdp-43 mislocalization. Biorxiv, 2021–04.
Browne, S. E., Bowling, A. C., Macgarvey, U., Baik, M. J., Berger, S. C., Muquit, M. M., Bird, E. D., & Beal, M. F. (1997). Oxidative damage and metabolic dysfunction in Huntington’s disease: Selective vulnerability of the basal ganglia. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 41 (5), 646–653.
Buée, L., Bussiere, T., Buée-Scherrer, V., Delacourte, A., & Hof, P. R. (2000). Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Research Reviews, 33 (1), 95–130.
Burrell, J., Foxe, D., Hodges, J., Irish, M., Piguet, O., & Salimi, S. (2018). Can visuospatial measures improve the diagnosis of Alzheimer’s disease? Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring. https://doi.org/10. 1016/j.dadm.2017.10.004
Büttner, T., Schulz, S., Kuhn, W., Blumenschein, A., & Przuntek, H. (1994). Impaired colour discrimination in Huntington’s disease. European journal of Neurology, 1 (2), 153–157.
Cai, Y., Feng, F., Wei, Q., Jiang, Z., Ou, R., & Shang, H. (2021). Sarcopenia in patients with Parkinson’s disease: A systematic review and meta-analysis. Frontiers in neurology, 111. https://doi.org/10.3389/fneur.2021.598035
Cardoso, F. (2017). Nonmotor symptoms in Huntington disease. International review of neurobiology, 134, 1397–1408.
Cardoso, F., Seppi, K., Mair, K. J., Wenning, G. K., & Poewe, W. (2006). Seminar on choreas. The Lancet Neurology, 5 (7), 589–602.
Casley, C., Canevari, L., Land, J., Clark, J., & Sharpe, M. (2002). β-amyloid inhibits integrated mitochondrial respiration and key enzyme activities. Journal of neurochemistry, 80 (1), 91–100.
Chen, P., Miah, M. R., & Aschner, M. (2016). Metals and neurodegeneration. F1000Research, 5. https://doi.org/10.12688/f1000research.7431.1
Chen, P.-C., Chung, C.-C., Cheng, Y.-Y., Chen, W.-T., Hong, C.-T., Chan, L., & Chien, L.-N. (2021). Retinal diseases and Parkinson disease: A population-based study. Frontiers in Neuroscience, 15, 679092. https://doi.org/10. 3389/fnins. 2021. 679092
Cleland, N. R., Al-Juboori, S. I., Dobrinskikh, E., & Bruce, K. D. (2021). Altered substrate metabolism in neurodegenerative disease: New insights from metabolic imaging. Journal of Neuroinflammation, 18, 1–18.
Cui, L., Jeong, H., Borovecki, F., Parkhurst, C. N., Tanese, N., & Krainc, D. (2006). Transcriptional repression of pgc-1α by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell, 127 (1), 59–69.
Dall’Antonia, I., Dusek, P., Tesar, A., Nepozitek, J., Dostalova, S., Losada, V., Ibarburu Lorenzo, Y., Prihodova, I., Bezdicek, O., Nikolai, T., et al. (2019). Olfactory dysfunction in a cohort of Czech patients with idiopathic REM sleep behaviour disorder. CESKA A SLOVENSKA NEUROLOGIE A NEUROCHIRURGIE, 82 (4), 415–419.
Damiano, M., Diguet, E., Malgorn, C., d’Aurelio, M., Galvan, L., Petit, F., Benhaim, L., Guillermier, M., Houitte, D., Dufour, N., et al. (2013). A role of mitochondrial complex ii defects in genetic models of Huntington’s disease expressing n-terminal fragments of mutant huntingtin. Human molecular genetics, 22 (19), 3869–3882.
Damiano, M., Galvan, L., Déglon, N., & Brouillet, E. (2010). Mitochondria in Huntington’s disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1802 (1), 52–61.
Das, R., & Chinnathambi, S. (2019). Microglial priming of antigen presentation and adaptive stimulation in Alzheimer’s disease. Cellular and Molecular Life Sciences, 76, 3681–3694.
David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V., Devlin, A., Varma, Y., Fischbach, M. A., Biddinger, S. B., Dutton, R. J., & Turnbaugh, P. J. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505 (7484), 559–563. https://doi.org/10. 1038/nature12820
Dawson, B., McConvey, K., & Gofton, T. E. (2022). When to initiate palliative care in neurology. In Handbook of clinical neurology (pp. 105–125). Elsevier.
De Tommaso, M., Arendt-Nielsen, L., Defrin, R., Kunz, M., Pickering, G., & Valeriani, M. (2016). Pain in neurodegenerative disease: Current knowledge and future perspectives. Behavioural neurology, 2016. https://doi.org/10 . 1155/2016/7576292
den Dunnen, J. T. (2016). Sequence variant descriptions: Hgvs nomenclature and mutalyzer. Current Protocols in Human Genetics, 90 (1), 7–13. Desai, V., & Kaler, S. G. (2008). Role of copper in human neurological disorders. The American journal of clinical nutrition, 88 (3), 855S–858S. https://doi.org/10.1093/ajcn/88.3.855S
Deschauer, M., Gaul, C., Behrmann, C., Prokisch, H., Zierz, S., & Haack, T. (2012). C19orf12 mutations in neurodegeneration with brain iron accumulation mimicking juvenile amyotrophic lateral sclerosis. Journal of neurology, 259, 2434–2439.
Deutschlander, A., Konno, T., & Ross, O. A. (2017). Mitochondrial membrane protein-associated neurodegeneration. Parkinsonism & Related Disorders, 39, 1–3. https://doi.org/10.1016/j.parkreldis.2017.03.014
Dezfouli, M. A., Alavi, A., Rohani, M., Rezvani, M., Nekuie, T., Klotzle, B., Tonekaboni, S. H., Shahidi, G. A., & Elahi, E. (2013). Pank2 and c19orf12 mutations are common causes of neurodegeneration with brain iron accumulation. Movement Disorders, 28 (2), 228–231. https://doi.org/10.1002/mds.25271
Di Maio, L. G., Montorio, D., Peluso, S., Dolce, P., Salvatore, E., De Michele, G., & Cennamo, G. (2021). Optical coherence tomography angiography findings in Huntington’s disease. Neurological Sciences, 42 (3), 995–1001.
Dogu, O., Krebs, C., Kaleagasi, H., Demirtas, Z., Oksuz, N., Walker, R., & Paisan-Ruiz, C. (2013). Rapid disease progression in adult-onset mitochondrial membrane protein-associated neurodegeneration. Clinical Genetics, 84 (4), 350–355. https://doi.org/10.1111/cge.12079
Dusek, P., Rodinova, M., Liskova, I., Klempir, J., Zeman, J., Roth, J., & Hansikova, H. (2018). Buccal respiratory chain complexes I and IV quantities in Huntington’s disease patients. Folia Biologica, 64 (1), 31–34.
Dusek, P. (2020). Péče o symptomy. In R. Buzgova, R. Kozakova et al. (Eds.), Základy paliativní péče v neurologii. Galén.
Dusek, P. (2021). Neurologická paliativní péče. In E. Ruzicka (Ed.), Neurologie. Triton.
Dusek, P., Kopal, A., Brichova, M., Roth, J., Ulmanova, O., Klempir, J., & Preiningerova, J. L. (2023). Is retina affected in Huntington’s disease? Is optical coherence tomography a good biomarker? PLoS one, 18 (2), e0282175.
Dusek, P., Skoloudik, D., Roth, J., & Dusek, P. (2018). Mitochondrial membrane protein-associated neurodegeneration: A case report and literature review. Neurocase, 24 (3), 161–165.
Dusek, P., Hofer, T., Alexander, J., Roos, P. M., & Aaseth, J. O. (2022). Cerebral iron deposition in neurodegeneration. Biomolecules, 12 (5), 714. https://doi.org/10. 3390/biom12050714
Dusek, P., Schneider, S. A., & Aaseth, J. (2016). Iron chelation in the treatment of neurodegenerative diseases. Journal of Trace Elements in Medicine and Biology, 38, 81–92.
Eide, P. K., Vinje, V., Pripp, A. H., Mardal, K.-A., & Ringstad, G. (2021). Sleep deprivation impairs molecular clearance from the human brain. Brain, 144 (3), 863– 874.
Falsetti, L., Viticchi, G., Zaccone, V., Tarquinio, N., Nobili, L., Nitti, C., Salvi, A., Moroncini, G., & Silvestrini, M. (2021). Chronic respiratory diseases and neurodegenerative disorders: A primer for the practicing clinician. Medical Principles and Practice, 30 (6), 501–507. https://doi.org/10.1159/000518261
Gagliardi, M., Annesi, G., Lesca, G., Broussolle, E., Iannello, G., Vaiti, V., Gambardella, A., & Quattrone, A. (2015). C19orf12 gene mutations in patients with neurodegeneration with brain iron accumulation. Parkinsonism & Related Disorders, 21 (7), 813–816. https://doi.org/10.1016/j.parkreldis.2015.04.009
Gatto, E., Parisi, V., Persi, G., Fernandez Rey, E., Cesarini, M., Luis Etcheverry, J., Rivera, P., & Squitieri, F. (2018). Optical coherence tomography (oct) study in Argentinean Huntington’s disease patients. International Journal of Neuroscience, 128 (12), 1157–1162.
Gehrke, S., Wu, Z., Klinkenberg, M., Sun, Y., Auburger, G., Guo, S., & Lu, B. (2015). Pink1 and parkin control localized translation of respiratory chain component mRNAs on mitochondria outer membrane. Cell metabolism, 21 (1), 95–108.
Giachin, G., Bouverot, R., Acajjaoui, S., Pantalone, S., & Soler-Lopez, M. (2016). Dynamics of human mitochondrial complex I assembly: Implications for neurodegenerative diseases. Frontiers in molecular biosciences, 3, 43. https://doi.org/10.3389/fmolb.2016.00043
Gibson, J. S., & Springer, K. (2022). Social withdrawal in Huntington’s disease: A scoping review. Journal of Huntington’s Disease, (Preprint), 1–8.
Giordano, A., De Panfilis, L., Perin, M., Servidio, L., Cascioli, M., Grasso, M. G., Lugaresi, A., Pucci, E., Veronese, S., & Solari, A. (2022). Advance care planning in neurodegenerative disorders: A scoping review. International Journal of Environmental Research and Public Health, 19 (2), 803.
Glidden, A. M., Luebbe, E. A., Elson, M. J., Goldenthal, S. B., Snyder, C. W., Zizzi, C. E., Dorsey, E. R., & Heatwole, C. R. (2020). Patient-reported impact of symptoms in Huntington disease: Prism-hd. Neurology, 94 (19), e2045–e2053.
Golbe, L. I., & Leyton, C. E. (2018). Life expectancy in Parkinson disease.
Goldenthal, M. J., Damle, S., Sheth, S., Shah, N., Melvin, J., Jethva, R., Hardison, H., Marks, H., & Legido, A. (2015). Mitochondrial enzyme dysfunction in autism spectrum disorders; a novel biomarker revealed from buccal swab analysis. Biomarkers in medicine, 9 (10), 957–965.
Goldman, J. G., Eichenseer, S. R., Berry-Kravis, E., Zimnowodzki, S., Gregory, A., Hogarth, P., & Hayflick, S. J. (2013). Clinical features of neurodegeneration with brain iron accumulation due to a C19orf12 gene mutation. Movement Disorders, 28 (10), 1462–1463.
Gore, E., Appleby, B. S., Cohen, M. L., DeBrosse, S. D., Leverenz, J. B., Miller, B. L., Siedlak, S. L., Zhu, X., & Lerner, A. J. (2016). Clinical and imaging characteristics of late onset mitochondrial membrane protein-associated neurodegeneration (MPAN). Neurocase, 22 (5), 476–483.
Gorman, G. S., Chinnery, P. F., DiMauro, S., Hirano, M., Koga, Y., McFarland, R., Suomalainen, A., Thorburn, D. R., Zeviani, M., & Turnbull, D. M. (2016). Mitochondrial diseases. Nature reviews Disease primers, 2 (1), 1–22.
Greenberg, S. M., Bacskai, B. J., Hernandez-Guillamon, M., Pruzin, J., Sperling, R., & van Veluw, S. J. (2020). Cerebral amyloid angiopathy and Alzheimer disease—one peptide, two pathways. Nature Reviews Neurology, 16 (1), 30–42.
Gregory, A., & Hayflick, S. J. (2005). Neurodegeneration with brain iron accumulation. Folia Neuropathologica, 43 (4), 286–296. https://doi.org/10.1016/B978-0-444- 63233-3.00019-1
Gregory, A., Klopstock, T., Kmiec, T., Hogarth, P., & Hayflick, S. J. (2014). Mitochondrial membrane protein-associated neurodegeneration. GeneReviews. http://www.ncbi.nlm.nih.gov/pubmed/24575447
Gu, M., Gash, M., Mann, V., Javoy-Agid, F., Cooper, J., & Schapira, A. (1996). Mitochondrial defect in Huntington’s disease caudate nucleus. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 39 (3), 385–389.
Gu, M., JM, C., JW, T., & AH, S. (1998). Mitochondrial DNA transmission of the mitochondrial defect in Parkinson’s disease. Annals of Neurology, 44, 177–186. https://doi.org/ana.410440207
Gultekin, M., Tufekcioglu, Z., & Baydemir, R. (2022). Novel frameshift CTSF mutation causing KUFS disease type B mimicking frontotemporal dementia-parkinsonism. Neurocase, 28 (1), 107–109.
Ha, A. D., & Jankovic, J. (2012). Pain in Parkinson’s disease. Movement Disorders, 27 (4), 485–491. https://doi.org/10.1002/mds.22716
Haider, S., Raftopoulos, R., Kapoor, R., & Tabrizi, S. (2014). E29 macular volume loss in Huntington’s disease on optical coherence tomography-a pilot biomarker study.
Han, R., Liang, J., & Zhou, B. (2021). Glucose metabolic dysfunction in neurodegenerative diseases—new mechanistic insights and the potential of hypoxia as a prospective therapy targeting metabolic reprogramming. International journal of molecular sciences, 22 (11), 5887.
Hannaway, N., Zarkali, A., Leyland, L.-A., Bremner, F., Nicholas, J. M., Wagner, S. K., Roig, M., Keane, P. A., Toosy, A., Chataway, J., et al. (2023). Visual dysfunction is a better predictor than retinal thickness for dementia in Parkinson’s disease. Journal of Neurology, Neurosurgery & Psychiatry. https://doi.org/10.1136/jnnp2023-331083
Hanscom, M., Loane, D. J., Shea-Donohue, T., et al. (2021). Brain-gut axis dysfunction in the pathogenesis of traumatic brain injury. The Journal of clinical investigation, 131 (12). https://doi.org/10.1172/JCI143777
Harrington, M. E. (2012). Neurobiological studies of fatigue. Progress in neurobiology, 99 (2), 93–105. Harris, P. A., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., & Conde, J. G. (2009). Research electronic data capture (redcap)—a metadata-driven methodology and workflow process for providing translational research informatics support. Journal of biomedical informatics, 42 (2), 377–381.
Hartig, M. B., Iuso, A., Haack, T., Kmiec, T., Jurkiewicz, E., Heim, K., Roeber, S., Tarabin, V., Dusi, S., Krajewska-Walasek, M., et al. (2011). Absence of an orphan mitochondrial protein, C19orf12, causes a distinct clinical subtype of neurodegeneration with brain iron accumulation. The American Journal of Human Genetics, 89 (4), 543–550.
Helmlinger, D., Yvert, G., Picaud, S., Merienne, K., Sahel, J., Mandel, J.-L., & Devys, D. (2002). Progressive retinal degeneration and dysfunction in R6 Huntington’s disease mice. Human molecular genetics, 11 (26), 3351–3359. https://doi.org/10. 1093/hmg/11.26.3351
Hirschberg, S., Gisevius, B., Duscha, A., & Haghikia, A. (2019). Implications of diet and the gut microbiome in neuroinflammatory and neurodegenerative diseases. International journal of molecular sciences, 20 (12), 3109. https://doi.org/10. 3390/ijms20123109
Hogarth, P., Gregory, A., Kruer, M. C., Sanford, L., Wagoner, W., Natowicz, M. R., Egel, R. T., Subramony, S., Goldman, J. G., Berry-Kravis, E., et al. (2013). New NBIA subtype: Genetic, clinical, pathologic, and radiographic features of MPAN. Neurology, 80 (3), 268–275.
Holland, P. W. (1986). Statistics and causal inference. Journal of the American statistical Association, 81 (396), 945–960.
Hoogeveen, A. T., Willemsen, R., Meyer, N., Roolj, K. E. d., Roos, R. A., Ommen, G.-J. B. v., & Galjaard, H. (1993). Characterization and localization of the Huntington disease gene product. Human molecular genetics, 2 (12), 2069–2073.
Horvath, R., Holinski-Feder, E., Neeve, V. C., Pyle, A., Griffin, H., Ashok, D., Foley, C., Hudson, G., Rautenstrauss PhD, B., Nurnberg, G., et al. (2012). A new phenotype of brain iron accumulation with dystonia, optic atrophy, and peripheral neuropathy. Movement disorders, 27 (6), 789–793. https://doi.org/10.1002/mds. 24980
Hur, J. H., Bahadorani, S., Graniel, J., Koehler, C. L., Ulgherait, M., Rera, M., Jones, D. L., & Walker, D. W. (2013). Increased longevity mediated by yeast ndi1 expression in drosophila intestinal stem and progenitor cells. Aging (Albany NY), 5 (9), 662.
Husain, M. (2021). Sleep and neurodegenerative diseases.
Iliff, J., Wang, M., Liao, Y., Plogg, B., Peng, W., Gundersen, G., Benveniste, H., Vates, G., Deane, R., Goldman, S. A., Nagelhus, E. A. & Nedergaard, M. (2012). A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Science Translational Medicine, 4 (147), 147ra111. https://doi.org/10.1126/scitranslmed.3003748
Incecik, F., Herguner, O. M., Besen, S., Ceylaner, S., et al. (2016). Mitochondrial mem brane protein-associated neurodegeneration in a turkish patient. Journal of Pediatric Neurosciences, 11 (3), 288. https://doi.org/10.4103/1817-1745.193381
Jakubikova, M., Tyblova, M., Tesar, A., Horakova, M., Vlazna, D., Rysankova, I., Novakova, I., Doleckova, K., Dusek, P., Pitha, J., et al. (2021). Predictive factors for a severe course of covid-19 infection in myasthenia gravis patients with an overall impact on myasthenic outcome status and survival. European journal of neurology, 28 (10), 3418–3425.
Jakubikova, M., Tyblova, M., Tesar, A., Horakova, M., Vlazna, D., Rysankova, I., Novakova, I., Doleckova, K., Dusek, P., Pitha, J., Vohanka, S. & Bednarik, J. (2022). Predictive factors for a severe course of covid-19 infection in myasthenia gravis patients with an overall impact on myasthenic outcome status and survival. European Journal of Neurology, 29 (1), e7–e8. https://doi.org/10.1111/ene.15158
Johnson, M. A., Gelderblom, H., Rüther, K., Priller, J., & Bernstein, S. L. (2014). Evidence that Huntington’s disease affects retinal structure and function. Investigative Ophthalmology & Visual Science, 55 (13), 1644–1644.
Johri, A. (2021). Disentangling mitochondria in Alzheimer’s disease. International Journal of Molecular Sciences, 22 (21), 11520.
Jones, U., Busse, M., Enright, S., & Rosser, A. E. (2016). Respiratory decline is integral to disease progression in Huntington’s disease. European Respiratory Journal, 48 (2), 585–588. https://doi.org/10.1183/13993003.02215-2015
Jung, H.-K., Kim, D.-Y., & Moon, I.-H. (2003). Effects of gender and menstrual cycle on colonic transit time in healthy subjects. The Korean journal of internal medicine, 18 (3), 181. https://doi.org/10.1111/j.1572-0241.1998.00338.x
Keeney, P. M., Xie, J., Capaldi, R. A., & Bennett, J. P. (2006). Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. Journal of Neuroscience, 26 (19), 5256–5264.
Kersten, H. M., Danesh-Meyer, H. V., Kilfoyle, D. H., & Roxburgh, R. H. (2015). Optical coherence tomography findings in Huntington’s disease: A potential biomarker of disease progression. Journal of neurology, 262 (11), 2457–2465.
Khalil, M., Pirpamer, L., Hofer, E., Voortman, M. M., Barro, C., Leppert, D., Benkert, P., Ropele, S., Enzinger, C., Fazekas, F., et al. (2020). Serum neurofilament light levels in normal aging and their association with morphologic brain changes. Nature communications, 11 (1), 812.
Kim, J., Moody, J. P., Edgerly, C. K., Bordiuk, O. L., Cormier, K., Smith, K., Beal, M. F., & Ferrante, R. J. (2010). Mitochondrial loss, dysfunction and altered dynamics in Huntington’s disease. Human molecular genetics, 19 (20), 3919–3935.
Kim, J., Liao, Y.-H., Ionita, C., Bale, A. E., Darras, B., & Acsadi, G. (2016). Mitochondrial membrane protein–associated neurodegeneration mimicking juvenile amyotrophic lateral sclerosis. Pediatric Neurology, 64, 83–86. https://doi.org/10.1016/j.pediatrneurol.2016.08.013
Kim, S.-E., Mori, R., Komatsu, T., Chiba, T., Hayashi, H., Park, S., Sugawa, M. D., Dencher, N. A., & Shimokawa, I. (2015). Upregulation of cytochrome C oxidase subunit 6b1 (cox6b1) and formation of mitochondrial supercomplexes: Implication of cox6b1 in the effect of calorie restriction. Age, 37, 1–17.
Kim, S. H., Vlkolinsky, R., Cairns, N., Fountoulakis, M., & Lubec, G. (2001). The reduction of nadh: Ubiquinone oxidoreductase 24-and 75-kda subunits in brains of patients with down syndrome and Alzheimer’s disease. Life sciences, 68 (24), 2741–2750. https://doi.org/10.1016/s0024-3205(01)01074-8
Kiviniemi, V., Wang, X., Korhonen, V., Kein¨anen, T., Tuovinen, T., Autio, J., LeVan, P., Keilholz, S., Zang, Y.-F., Hennig, J., et al. (2016). Ultra-fast magnetic resonance encephalography of physiological brain activity–glymphatic pulsation mechanisms? Journal of Cerebral Blood Flow & Metabolism, 36 (6), 1033–1045. https://doi.org/10.1177/0271678X15622047
Kleffner, I., Wessling, C., Gess, B., Korsukewitz, C., Allkemper, T., Schirmacher, A., Young, P., Senderek, J., & Husstedt, I. W. (2015). Behr syndrome with homozygous c19orf12 mutation. Journal of the Neurological Sciences, 357 (1-2), 115–118.
Klempir, J., Hansikova, H., Roth, J., Zidovska, J., Bohm, M., & Zeman, J. (2005). Aktivity komplexů dýchacího řetězce v izolovaných trombocytech u 18 pacientů s Huntingtonovou nemocí. CESKA A SLOVENSKA NEUROLOGIE A NEUROCHIRURGIE, 101 (68), 169–174.
Kluger, B. M., Krupp, L. B., & Enoka, R. M. (2013). Fatigue and fatigability in neurologic illnesses: Proposal for a unified taxonomy. Neurology, 80 (4), 409–416.
Klysz, B., Skowronska, M., & Kmiec, T. (2014). Mitochondrial protein associated neurodegeneration–case report. Neurologia i neurochirurgia polska, 48 (1), 81–84.
Kobal, J., Matej, K., Kozelj, M., & Podnar, S. (2018). Anorectal dysfunction in presymptomatic mutation carriers and patients with Huntington’s disease. Journal of Huntington’s Disease, 7 (3), 259–267. https://doi.org/10.3233/JHD-170280
Kopal, A., Mejzlikova, E., Preiningerova, J. L., Brebera, D., Ulmanova, O., Ehler, E., & Roth, J. (2015). Changes of retina are not involved in the genesis of visual hallucinations in Parkinson’s disease. Parkinson’s disease, 2015. https://doi.org/10.1155/2015/709191
Kruer, M. C., & Boddaert, N. (2012). Neurodegeneration with brain iron accumulation: A diagnostic algorithm. Seminars in pediatric neurology, 19 (2), 67–74. Kruer, M. C., Salih, M. A., Mooney, C., Alzahrani, J., Elmalik, S. A., Kabiraj, M. M., Khan, A. O., Paudel, R., Houlden, H., Azzedine, H., et al. (2014). C19orf12 mutation leads to a pallido-pyramidal syndrome. Gene, 537 (2), 352–356.
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. (2017). Lmertest package: Tests in linear mixed effects models. Journal of statistical software, 82, 1–26.
Labuschagne, I., Cassidy, A. M., Scahill, R. I., Johnson, E. B., Rees, E., O’Regan, A., Queller, S., Frost, C., Leavitt, B. R., Dürr, A., et al. (2016). Visuospatial processing deficits linked to posterior brain regions in premanifest and early stage Huntington’s disease. Journal of the International Neuropsychological Society, 22 (6), 595–608.
Landoure, G., Zhu, P.-P., Lourenco, C. M., Johnson, J. O., Toro, C., Bricceno, K. V., Rinaldi, C., Meilleur, K. G., Sangare, M., Diallo, O., et al. (2013). Hereditary spastic paraplegia type 43 (SPG 43) is caused by mutation in C19orf12. Human mutation, 34 (10), 1357–1360.
Langston, J. W. (2017). The MPTP story. Journal of Parkinson’s disease, 7 (s1), S11–S19.
Langwinska-Wosko, E., Skowronska, M., Kmiec, T., & Czlonkowska, A. (2016). Retinal and optic nerve abnormalities in neurodegeneration associated with mutations in c19orf12 (MPAN). Journal of the Neurological Sciences, 370, 237–240.
Lennaerts, H., Steppe, M., Munneke, M., Meinders, M. J., van der Steen, J. T., Van den Brand, M., van Amelsvoort, D., Vissers, K., Bloem, B. R., & Groot, M. (2019). Palliative care for persons with parkinson’s disease: A qualitative study on the experiences of health care professionals. BMC palliative care, 18, 1–9.
Lesort, M., Chun, W., Tucholski, J., & Johnson, G. V. (2002). Does tissue transglutaminase play a role in Huntington’s disease? Neurochemistry international, 40 (1), 37–52.
Li, X.-Y., Bao, Y.-F., Xie, J.-J., Gao, B., Qian, S.-X., Dong, Y., & Wu, Z.-Y. (n.d.). Application value of serum neurofilament light protein for disease staging in Huntington’s disease. Movement Disorders, 38 (5). https://doi.org/10.1002/mds.29430
Limphaibool, N., Iwanowski, P., Holstad, M. J. V., Kobylarek, D., & Kozubski, W. (2019). Infectious etiologies of parkinsonism: Pathomechanisms and clinical implications. Frontiers in Neurology, 10, 652.
Lin, M. T., & Beal, M. F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443 (7113), 787–795.
Lin, M. T., Simon, D. K., Ahn, C. H., Kim, L. M., & Beal, M. F. (2002). High aggregate burden of somatic mtDNA point mutations in aging and Alzheimer’s disease brain. Human molecular genetics, 11 (2), 133–145.
Lízrová Preiningerová, J. (2020). Optická koherenční tomografie v neurologii. Maxdorf.
Löbel, U., Schweser, F., Nickel, M., Deistung, A., Grosse, R., Hagel, C., Fiehler, J., Schulz, A., Hartig, M., Reichenbach, J. R., et al. (2014). Brain iron quantification by MRI in mitochondrial membrane protein-associated neurodegeneration under iron-chelating therapy. Annals of clinical and translational neurology, 1 (12), 1041–1046.
Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153 (6), 1194–1217.
Lowry, O., Rosebrough, N., Farr, A., & Randall, R. (1951). Protein measurement with the folin phenol reagent. J biol Chem, 193 (1), 265–75. https://doi.org/10.1016/ S0021-9258(19)52451-6
Lutters, B., Foley, P., & Koehler, P. J. (2018). The centennial lesson of encephalitis lethargica. Neurology, 90 (12), 563–567.
Manczak, M., Anekonda, T., Henson, E., Park, B., Quinn, J., & Reddy, P. (2006). Mitochondria are a direct site of aβ accumulation in Alzheimer’s disease neurons: Implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet, 15, 1437–1449. https://doi.org/10.1093/hmg/ddl066
Mander, B. A., Winer, J. R., Jagust, W. J., & Walker, M. P. (2016). Sleep: A novel mechanistic pathway, biomarker, and treatment target in the pathology of Alzheimer’s disease? Trends in neurosciences, 39 (8), 552–566.
Manor, Y., Oestreicher-Kedem, Y., Gad, A., Zitser, J., Faust-Socher, A., Shpunt, D., Naor, S., Inbar, N., Kestenbaum, M., Giladi, N., et al. (2019). Dysphagia characteristics in Huntington’s disease patients: Insights from the fiberoptic endoscopic evaluation of swallowing and the swallowing disturbances questionnaire. CNS Spectrums, 24 (4), 413–418. https://doi.org/10.1017/S1092852918001037
Marti-Masso, J. F., Bergareche, A., Makarov, V., Ruiz-Martinez, J., Gorostidi, A., De Munain, A. L., Poza, J. J., Striano, P., Buxbaum, J. D., & Paisan-Ruiz, C. (2013). The ACMSD gene, involved in tryptophan metabolism, is mutated in a family with cortical myoclonus, epilepsy, and parkinsonism. Journal of molecular medicine, 91, 1399–1406.
Mattson, M. P. (2000). Apoptosis in neurodegenerative disorders. Nature reviews Molecular cell biology, 1 (2), 120–130.
McGrattan, A. M., McGuinness, B., McKinley, M. C., Kee, F., Passmore, P., Woodside, J. V., & McEvoy, C. T. (2019). Diet and inflammation in cognitive ageing and Alzheimer’s disease. Current nutrition reports, 8, 53–65. https://doi.org/10.1007/s13668-019-0271-4
McKenzie, E. D., Bruno, V. A., Fong, A., Cai, P., Earp, M., Camicioli, R. M., de Kock, I., Buttenschoen, D., Sinnarajah, A., & Miyasaki, J. (2022). Health care utilization in the last year of life in Parkinson disease and other neurodegenerative movement disorders. Neurology: Clinical Practice, 12 (6), 388–396.
Mehra, S., Sahay, S., & Maji, S. K. (2019). α-synuclein misfolding and aggregation: Implications in Parkinson’s disease pathogenesis. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1867 (10), 890–908.
Meza-Valderrama, D., Marco, E., Davalos-Yerovi, V., Muns, M. D., Tejero-Sanchez, M., Duarte, E., & Sanchez-Rodriguez, D. (2021). Sarcopenia, malnutrition, and cachexia: Adapting definitions and terminology of nutritional disorders in older people with cancer. Nutrients, 13 (3), 761.
Mielcarek, M., Bondulich, M. K., Inuabasi, L., Franklin, S. A., Muller, T., & Bates, G. P. (2014). The huntington’s disease-related cardiomyopathy prevents a hypertrophic response in the r6/2 mouse model. PLoS One, 9 (9), e108961.
Mielcarek, M., & Isalan, M. (2015). A shared mechanism of muscle wasting in cancer and Huntington’s disease. Clinical and translational medicine, 4, 1–4. https://doi.org/10.1186/s40169-015-0076-z
Minaglia, C., Giannotti, C., Boccardi, V., Mecocci, P., Serafini, G., Odetti, P., & Mona celli, F. (2019). Cachexia and advanced dementia. Journal of cachexia, sarcopenia and muscle, 10 (2), 263–277.
Minato, T., Maeda, T., Fujisawa, Y., Tsuji, H., Nomoto, K., Ohno, K., & Hirayama, M. (2017). Progression of Parkinson’s disease is associated with gut dysbiosis: Two-year follow-up study. PloS one, 12 (11), e0187307. https://doi.org/10.1371/journal.pone.0187307
Miyasaki, J. M., Lim, S.-Y., Chaudhuri, K. R., Antonini, A., Piemonte, M., Richfield, E., Alburquerque Gonzalez, D., Lorenzl, S., Walker, R., Bhidayasiri, R., et al. (2022). Access and attitudes toward palliative care among movement disorders clinicians. Movement Disorders, 37 (1), 182–189.
Mlcochova, D., Dusek, P., Brozova, H., Rusinova, K., et al. (2020). Nutriční dilema: Gastrostomie u pacienta s parkinsonovou nemocí. Spolupráce paliatra a neurologa. Neurologie pro praxi, 21 (2), 97–99.
Moffitt, H., McPhail, G. D., Woodman, B., Hobbs, C., & Bates, G. P. (2009). Formation of polyglutamine inclusions in a wide range of non-CNS tissues in the hdh q150 knock-in mouse model of Huntington’s disease. PloS one, 4 (11), e8025. https://doi.org/10.1371/journal.pone.0008025
Molnar, M. J., & Kovacs, G. G. (2018). Chapter 10 - mitochondrial diseases. In G. G. Kovacs & I. Alafuzoff (Eds.), Neuropathology (pp. 147–155). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-802395-2.00010-9
Morgenstern, M., Peikert, C. D., Lübbert, P., Suppanz, I., Klemm, C., Alka, O., Steiert, C., Naumenko, N., Schendzielorz, A., Melchionda, L., et al. (2021). Quantitative high-confidence human mitochondrial proteome and its dynamics in cellular context. Cell metabolism, 33 (12), 2464–2483.
Mueller, K., Ruzicka, F., Slovak, M., Forejtova, Z., Dusek, P., Dusek, P., Jech, R., & Serranova, T. (2022). Symptom-severity-related brain connectivity alterations in functional movement disorders. NeuroImage: Clinical, 34, 102981.
Nakase, T., Tatewaki, Y., Thyreau, B., Mutoh, T., Tomita, N., Yamamoto, S., Takano, Y., Muranaka, M., & Taki, Y. (2022). Impact of constipation on progression of Alzheimer’s disease: A retrospective study. CNS Neuroscience & Therapeutics, 28 (12), 1964–1973. https://doi.org/10.1111/cns.13940
Natale, G., Pasquali, L., Paparelli, A., & Fornai, F. (2011). Parallel manifestations of neuropathologies in the enteric and central nervous systems. Neurogastroenterology & Motility, 23 (12), 1056–1065. https://doi.org/10.1111/j.1365-2982.2011.01794.x
Nepozitek, J., Dostalova, S., Dusek, P., Kemlink, D., Prihodova, I., Ibarburu Lorenzo y Losada, V., Friedrich, L., Bezdicek, O., Nikolai, T., Perinova, P., et al. (2019). Simultaneous tonic and phasic rem sleep without atonia best predicts early phenoconversion to neurodegenerative disease in idiopathic rem sleep behavior disorder. Sleep, 42 (9), zsz132.
Nepozitek, J., Dostalova, S., Kemlink, D., Friedrich, L., Prihodova, I., Ibarburu Lorenzo y Losada, V., Dusek, P., Bezdicek, O., Nikolai, T., Perinova, P., et al. (2019). Fragmentary myoclonus in idiopathic rapid eye movement sleep behaviour disorder. Journal of Sleep Research, 28 (4), e12819.
Nguyen, T. N., Qureshi, M. M., Klein, P., Yamagami, H., Abdalkader, M., Mikulik, R., Sathya, A., Mansour, O. Y., Czlonkowska, A., Lo, H., et al. (2022). Global impact of the covid-19 pandemic on cerebral venous thrombosis and mortality. Journal of stroke, 24 (2), 256–265.
Niesler, B., Kuerten, S., Demir, I. E., & Schäfer, K.-H. (2021). Disorders of the enteric nervous system—a holistic view. Nature reviews Gastroenterology & hepatology, 18 (6), 393–410. https://doi.org/10.1038/s41575-020-00385-2
Norton, J. A., Ott, L. G., McClain, C., Adams, L., Dempsey, R. J., Haack, D., Tibbs, P. A., & Young, A. B. (1988). Intolerance to enteral feeding in the brain-injured patient. Journal of neurosurgery, 68 (1), 62–66. https://doi.org/10.3171/jns. 1988.68.1.0062
O’donnell, B. F., Blekher, T. M., Weaver, M., White, K. M., Marshall, J., Beristain, X., Stout, J. C., Gray, J., Wojcieszek, J. M., & Foroud, T. M. (2008). Visual perception in prediagnostic and early stage Huntington’s disease. Journal of the International Neuropsychological Society, 14 (3), 446–453.
Oepen, G., Doerr, M., & Thoden, U. (1981). Visual (vep) and somatosensory (ssep) evoked potentials in Huntington’s chorea. Electroencephalography and clinical neurophysiology, 51 (6), 666–670.
Oldfors, A., Fyhr, I.-M., Holme, E., Larsson, N.-G., & Tulinius, M. (1990). Neuropathology in Kearns Sayre syndrome. Acta neuropathologica, 80 (5), 541–546.
Olgiati, S., Dogu, O., Tufekcioglu, Z., Diler, Y., Saka, E., Gultekin, M., Kaleagasi, H., Kuipers, D., Graafland, J., Breedveld, G. J., et al. (2017). The p. thr11met mutation in c19orf12 is frequent among adult Turkish patients with MPAN. Parkinsonism & Related Disorders, 39, 64–70.
Oliphant, T. E. (2007). Python for scientific computing. Computing in science & engineering, 9 (3), 10–20. https://doi.org/10.1109/MCSE.2007.58
Pajares, M., I. Rojo, A., Manda, G., Bosc´a, L., & Cuadrado, A. (2020). Inflammation in Parkinson’s disease: Mechanisms and therapeutic implications. Cells, 9 (7). https://doi.org/10.3390/cells9071687
Panebianco, M., Marchese-Ragona, R., Masiero, S., & Restivo, D. (2020). Dysphagia in neurological diseases: A literature review. Neurological Sciences, 41, 3067–3073. https://doi.org/10.1007/s10072-020-04495-2
Panegyres, P. (2004). The contribution of the study of neurodegenerative disorders to the understanding of human memory. Qjm, 97 (9), 555–567. https://doi.org/10. 1093/qjmed/hch096
Panov, A. V., Gutekunst, C.-A., Leavitt, B. R., Hayden, M. R., Burke, J. R., Strittmatter, W. J., & Greenamyre, J. T. (2002). Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nature neuroscience, 5 (8), 731–736.
Panteghini, C., Zorzi, G., Venco, P., Dusi, S., Reale, C., Brunetti, D., Chiapparini, L., Zibordi, F., Siegel, B., Garavaglia, B., et al. (2012). C19orf12 and fa2h mutations are rare in Italian patients with neurodegeneration with brain iron accumulation. Seminars in Pediatric Neurology, 19 (2), 75–81. https://doi.org/10.1016/j.spen. 2012.03.006
Parker, W. D., Filley, C. M., & Parks, J. K. (1990). Cytochrome oxidase deficiency in Alzheimer’s disease. Neurology, 40 (8), 1302–1302.
Parker Jr, W. D., & Parks, J. K. (
Předběžná náplň práce
Tato dizertační práce vykresluje neurodegenerativní onemocnění jako víceúrovňový proces, popisuje různé koreláty na jednotlivých patofyziologických úrovních a prezentuje vybrané koreláty na příkladu Huntingtonovy nemoci a neurodegenerace asociované s mitochondriálním membránovým proteinem (MPAN). Pro tyto účely používá různé metodologické přístupy jako základní laboratorní výzkum, klinickou práci, zobrazování a vytvoření databáze s databázovými výstupy. Popisuje změny množství komplexu I a komplexu IV dýchacího řetězce v buňkách bukálního epitelu pacientů s Huntingtonovou nemocí. Demonstruje nedostatečnou diagnostickou sílu optické koherenční tomografie při použití jako biomarkeru u Huntingtonovy nemoci. Shrnuje různé fenotypy MPAN a potvrzuje asociaci mutace genu pro C19orf12 a poruchy zraku. Dále prezentuje dobře dokumentovaný připad pacienta s MPAN.
Předběžná náplň práce v anglickém jazyce
This doctoral thesis pictures neurodegenerative diseases as a multilevel process, describes various correlates on each pathophysiological level, and presents selected correlates in Huntington’s disease and mitochondrial membrane protein-associated neurodegeneration (MPAN). It uses various methodological approaches such as basic laboratory research, clinical work, imaging, database formation, and database summary. Changes in the amount of respiratory chain complex I and respiratory chain complex IV in buccal epithelial cells of Huntington’s disease patients are described. The insufficient power of optical coherence tomography as a biomarker in Huntington’s disease is demonstrated. Various phenotypes of MPAN are summarized, and an association between C19orf12 mutation and visual impairment is confirmed. A phenotype of a well-documented case of MPAN is presented.
 
Univerzita Karlova | Informační systém UK