Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 379)
Detail práce
   Přihlásit přes CAS
V sobotu dne 19. 10. 2024 dojde k odstávce některých součástí informačního systému. Nedostupná bude zejména práce se soubory v modulech závěrečných prací. Svoje požadavky, prosím, odložte na pozdější dobu.
Přínos jednotlivých intraoperačních elektrofyziologických metod u dětských epileptochirurgických pacientů
Název práce v češtině: Přínos jednotlivých intraoperačních elektrofyziologických metod u dětských epileptochirurgických pacientů
Název v anglickém jazyce: A practical value of different intraoperative electrophysiological methods in pediatric epilepsy surgery patients
Klíčová slova: intraoperační elektrofyziologické metody, elektrokortikografie (ECoG), elektrického stimulačního mapování (ESM), motorické evokované potenciály (MEP), farmakorezistentní epilepsie (FRE), resekční epileptochirurgie, dětská epileptochirurgie, malformace kortikálního vývoje (MCD) vývoje,
Klíčová slova anglicky: intraoperative electrophysiology, electrocorticography (ECoG), electrical stimulation mapping (ESM), motor-evoked potential (MEP), intractable epilepsy, resective epilepsy surgery, pediatric epilepsy surgery, malformations of cortical development (MCD) development, Cognitive outcome, Long-term epilepsy-associated tumours
Akademický rok vypsání: 2011/2012
Typ práce: disertační práce
Jazyk práce: čeština
Ústav: Klinika dětské neurologie (13-441)
Vedoucí / školitel: prof. MUDr. Pavel Kršek, Ph.D.
Řešitel: skrytý - zadáno a potvrzeno stud. odd.
Datum přihlášení: 30.09.2014
Datum zadání: 30.09.2014
Datum potvrzení stud. oddělením: 30.09.2014
Datum a čas obhajoby: 31.08.2020 15:30
Datum odevzdání elektronické podoby:28.05.2020
Datum odevzdání tištěné podoby:29.05.2020
Datum proběhlé obhajoby: 31.08.2020
Oponenti: prof. MUDr. David Netuka, Ph.D.
  doc. MUDr. Irena Doležalová, Ph.D.
 
 
Konzultanti: doc. MUDr. Michal Tichý, CSc.
Seznam odborné literatury
Asarnow, R.F., LoPresti, C., Guthrie, D., Elliott, et al., 1997. Developmental outcomes in children receiving resection surgery for medically intractable infantile spasms. Dev. Med. Child Neurol. 39, 430–440.
Bansal, S., Kim, A.J., Berg, A.T., Koh, S., et al., 2017. Seizure Outcomes in Children Following Electrocorticography-Guided Single-Stage Surgical Resection. Pediatr. Neurol. 71, 35–42.
Barba, C., Specchio, N., Guerrini, R., Tassi, et al., 2018. Corrigendum to “Increasing volume and complexity of pediatric epilepsy surgery with stable seizure outcome between 2008 and 2014: A nationwide multicenter study” [Epilepsy Behav. Oct 2017; 75C:151-157]. Epilepsy Behav. 80, 380.
Baud, M.O., Perneger, T., Rácz, A., Pensel, et al., 2018. European trends in epilepsy surgery. Neurology 91, e96–e106.
Belohlavkova, A., Jezdik, P., Jahodova, A., Kudr, M., et al., 2019. Evolution of pediatric epilepsy surgery program over 2000–2017: Improvement of care? Eur. J. Paediatr. Neurol. 23, 456–465.
Berg, A.T., Berkovic, S.F., Brodie, M.J., Buchhalter, J., et al., 2010. Revised terminology and concepts for organization of seizures and epilepsies: Report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 51, 676–685.
Bjellvi, J., Flink, R., Rydenhag, B., Malmgren, K., 2015. Complications of epilepsy surgery in Sweden 1996–2010: a prospective, population-based study. J. Neurosurg. 122, 519–525.
Blumcke, I., Spreafico, R., Haaker, G., Coras, R., et al., 2017. Histopathological Findings in Brain Tissue Obtained during Epilepsy Surgery. N. Engl. J. Med. 377, 1648–1656.
Boshuisen, K., Arzimanoglou, A., Cross, J.H., Uiterwaal, C.S., et al., 2012. Timing of antiepileptic drug withdrawal and long-term seizure outcome after paediatric epilepsy surgery (TimeToStop): a retrospective observational study. Lancet Neurol. 11, 784–791.
Bulteau, C., Otsuki, T., Delalande, O., 2013. Epilepsy surgery for hemispheric syndromes in infants: Hemimegalencepahly and hemispheric cortical dysplasia. Brain Dev., Surgery for Catastrophic Epilepsy in Infants 35, 742–747.
Cascino, G.D., Trenerry, M.R., Jack, C.R., Dodick, D., et al., 1995. Electrocorticography and Temporal Lobe Epilepsy: Relationship to Quantitative MRI and Operative Outcome. Epilepsia 36, 692–696.
Chang, E.F., Wang, D.D., Barkovich, A.J., Tihan, T., et al., 2011. Predictors of seizure freedom after surgery for malformations of cortical development. Ann. Neurol. 70, 151–162.
Chidambaran, V., Costandi, A., D’Mello, A., 2015. Propofol: A Review of its Role in Pediatric Anesthesia and Sedation. CNS Drugs 29, 543–563.
Cross, J.H., Jayakar, P., Nordli, D., Delalande, O., et al., 2006. Proposed Criteria for Referral and Evaluation of Children for Epilepsy Surgery: Recommendations of the Subcommission for Pediatric Epilepsy Surgery. Epilepsia 47, 952–959.
Duchowny, M., Jayakar, P., Resnick, T., Harvey, A.S., et al., 1998. Epilepsy Surgery in the First Three Years of Life. Epilepsia 39, 737–743.
Dwivedi, R., Ramanujam, B., Chandra, P.S., Sapra, S., et al., 2017. Surgery for Drug-Resistant Epilepsy in Children. N. Engl. J. Med. 377, 1639–1647.
Engel, J., McDermott, M.P., Wiebe, S., Langfitt, J.T., et al., 2012. Early surgical therapy for drug-resistant temporal lobe epilepsy: a randomized trial. JAMA 307, 922–930.
Fauser, S., Schulze-Bonhage, A., Honegger, J., Carmona, H., et al., 2004. Focal cortical dysplasias: surgical outcome in 67 patients in relation to histological subtypes and dual pathology. Brain J. Neurol. 127, 2406–2418.
Fernández, I.S., Loddenkemper, T., 2013. Electrocorticography for Seizure Foci Mapping in Epilepsy Surgery: J. Clin. Neurophysiol. 30, 554–570.
Fisher, R.S., Acevedo, C., Arzimanoglou, A., Bogacz, et al., 2014. ILAE Official Report: A practical clinical definition of epilepsy. Epilepsia 55, 475–482.
Fisher, R.S., Cross, J.H., French, J.A., Higurashi, N., et al., 2017. Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia 58, 522–530.
Freitag, H., Tuxhorn, I., 2005. Cognitive Function in Preschool Children after Epilepsy Surgery: Rationale for Early Intervention. Epilepsia 46, 561–567.
Gallentine, W.B., Mikati, M.A., 2009. Intraoperative Electrocorticography and Cortical Stimulation in Children: J. Clin. Neurophysiol. 26, 95–108.
Gelinas, J.N., Battison, A.W., Smith, S., Connolly, M.B., Steinbok, P., 2011. Electrocorticography and seizure outcomes in children with lesional epilepsy. Childs Nerv. Syst. 27, 381–390.
Greiner, H.M., Horn, P.S., Tenney, J.R., Arya, R., et al., 2016. Preresection intraoperative electrocorticography (ECoG) abnormalities predict seizure-onset zone and outcome in pediatric epilepsy surgery. Epilepsia 57, 582–589.
Gröppel, G., Dorfer, C., Samueli, S., Dressler, A., et al., 2019. Single stage epilepsy surgery in children and adolescents with focal cortical dysplasia type II – Prognostic value of the intraoperative electrocorticogram. Clin. Neurophysiol. 130, 20–24.
Hader, W.J., Tellez‐Zenteno, J., Metcalfe, A., Hernandez‐Ronquillo, L., et al., 2013. Complications of epilepsy surgery—A systematic review of focal surgical resections and invasive EEG monitoring. Epilepsia 54, 840–847.
Harvey, A.S., Cross, J.H., Shinnar, S., Mathern, et al., 2008. Defining the spectrum of international practice in pediatric epilepsy surgery patients. Epilepsia 49, 146–155.
Haseeb, A., Asano, E., Juhász, C., Shah, A., et al., 2007. Young patients with focal seizures may have the primary motor area for the hand in the postcentral gyrus. Epilepsy Res. 76, 131–139.
Hemb, M., Velasco, T.R., Parnes, M.S., Wu, J.Y., et al., 2010. Improved outcomes in pediatric epilepsy surgery. Neurology 74, 1768–1775.
Holthausen, H., Pieper, T., Kudernatsch, M., 2013. Towards early diagnosis and treatment to save children from catastrophic epilepsy – Focus on epilepsy surgery. Brain Dev., Surgery for Catastrophic Epilepsy in Infants 35, 730–741.
Honda, R., Kaido, T., Sugai, K., Takahashi, A., et al., 2013. Long-term developmental outcome after early hemispherotomy for hemimegalencephaly in infants with epileptic encephalopathy. Epilepsy Behav. 29, 30–35.
Isnard, J., Taussig, D., Bartolomei, F., Bourdillon, P., et al., 2018. French guidelines on stereoelectroencephalography (SEEG). Neurophysiol. Clin. Clin. Neurophysiol. 48, 5–13.
Jayakar, P., 2018. Cortical Electrical Stimulation Mapping: Special Considerations in Children. J. Clin. Neurophysiol. 35, 106–109.
Jayakar, P., Alvarez, L.A., Duchowny, M.S., Resnick, T.J., 1992. A safe and effective paradigm to functionally map the cortex in childhood. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 9, 288–293.
Jayakar, P., Dunoyer, C., Dean, P., Ragheb, J., et al., 2008. Epilepsy surgery in patients with normal or nonfocal MRI scans: Integrative strategies offer long-term seizure relief. Epilepsia 49, 758–764.
Jayakar, P., Gotman, J., Harvey, A.S., Palmini, A., et al., 2016. Diagnostic utility of invasive EEG for epilepsy surgery: Indications, modalities, and techniques. Epilepsia 57, 1735–1747.
Jayakar, P., Jayakar, A., Libenson, M., Arzimanoglou, A., et al., the Pediatric Epilepsy Surgery Task Force, International League Against Epilepsy, 2018. Epilepsy surgery near or in eloquent cortex in children-Practice patterns and recommendations for minimizing and reporting deficits. Epilepsia 59, 1484–1491.
Kanazawa, O., Blume, W.T., Girvin, J.P., 1996. Significance of Spikes at Temporal Lobe Electrocorticography. Epilepsia 37, 50–55.
Keene, D.L., Whiting, S., Ventureyra, E.C.G., 2000. Electrocorticography. Epileptic. Disord. 2, 57–63.
Kim, Y.H., Kang, H.-C., Kim, D.-S., Kim, et al., 2011. Neuroimaging in identifying focal cortical dysplasia and prognostic factors in pediatric and adolescent epilepsy surgery: Cortical Dysplasia in Epilepsy Surgery. Epilepsia 52, 722–727.
Knerlich-Lukoschus, F., Connolly, M.B., Hendson, G., Steinbok, P., Dunham, C., 2017. Clinical, imaging, and immunohistochemical characteristics of focal cortical dysplasia Type II extratemporal epilepsies in children: analyses of an institutional case series. J. Neurosurg. Pediatr. 19, 182–195.
Krsek, P., Maton, B., Jayakar, P., Dean, P., et al., 2009. Incomplete resection of focal cortical dysplasia is the main predictor of poor postsurgical outcome. Neurology 72, 217–223.
Krsek, P., Maton, B., Korman, B., Pacheco-Jacome, E., et al., 2008. Different features of histopathological subtypes of pediatric focal cortical dysplasia. Ann. Neurol. 63, 758–769.
Kwan, P., Arzimanoglou, A., Berg, A.T., Brodie, M.J., et al., 2010. Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 51, 1069–1077.
Lamberink, H.J., Boshuisen, K., van Rijen, P.C., Gosselaar, P.H., Braun, K.P.J., the Dutch Collaborative Epilepsy Surgery Program (DCESP), 2015. Changing profiles of pediatric epilepsy surgery candidates over time: A nationwide single-center experience from 1990 to 2011. Epilepsia 56, 717–725.
Malmgren, K., Edelvik, A., 2017. Long-term outcomes of surgical treatment for epilepsy in adults with regard to seizures, antiepileptic drug treatment and employment. Seizure, 25th Anniversary Issue 44, 217–224.
Maton, B., Jayakar, P., Resnick, T., Morrison, G., et al., 2008. Surgery for medically intractable temporal lobe epilepsy during early life. Epilepsia 49, 80–87.
Moosa, A.N.V., Wyllie, E., 2017. Cognitive Outcome After Epilepsy Surgery in Children. Semin. Pediatr. Neurol. 24, 331–339.
Neuloh, G., Bien, C.G., Clusmann, H., von Lehe, M., Schramm, J., 2010. Continuous motor monitoring enhances functional preservation and seizure-free outcome in surgery for intractable focal epilepsy. Acta Neurochir. (Wien) 152, 1307–1314.
Park, S.Y., Kwon, H.E., Kang, H.-C., Lee, J.S., et al., 2013. Epilepsy surgery in pediatric intractable epilepsy with destructive encephalopathy. J. Epilepsy Res. 3, 48–53.
Perucca, E., French, J., Bialer, M., 2007. Development of new antiepileptic drugs: challenges, incentives, and recent advances. Lancet Neurol. 6, 793–804.
Puka, K., Tavares, T.P., Smith, M.L., 2017. Development of intelligence 4 to 11 years after paediatric epilepsy surgery. J. Neuropsychol. 11, 161–173.
Rosenow, F., Lüders, H., 2001. Presurgical evaluation of epilepsy. Brain J. Neurol. 124, 1683–1700.
Ryvlin, P., Cross, J.H., Rheims, S., 2014. Epilepsy surgery in children and adults. Lancet Neurol. 13, 1114–1126.
Ryvlin, P., Rheims, S., 2016. Predicting epilepsy surgery outcome. Curr. Opin. Neurol. 29, 182–188.
Sala, F., Manganotti, P., Grossauer, S., Tramontanto, V., et al., 2010. Intraoperative neurophysiology of the motor system in children: a tailored approach. Childs Nerv. Syst. 26, 473–490.
San-juan, D., Claudia, A.T., Maricarmen, G.-A.F., Adriana, M.M., et al., 2011. The prognostic role of electrocorticography in tailored temporal lobe surgery. Seizure 20, 564–569.
Schooneveld, M.M.J. van, van Erp, N., Boshuisen, K., Meekes, J., Braun, K.P.J., 2013. Withdrawal of antiepileptic drugs improves psychomotor speed after childhood epilepsy surgery. Epilepsy Res. 107, 200–203.
Shetty, A., Pardeshi, S., Shah, V.M., Kulkarni, A., 2016. Anesthesia considerations in epilepsy surgery. Int. J. Surg., Epilepsy surgery for pharmacoresistant epilepsy 36, 454–459.
Skirrow, C., Cross, J.H., Cormack, F., Harkness, W., et al., 2011. Long-term intellectual outcome after temporal lobe surgery in childhood. Neurology 76, 1330–1337.
Skirrow, C., Cross, J.H., Harrison, S., Cormack, F., et al., 2015. Temporal lobe surgery in childhood and neuroanatomical predictors of long-term declarative memory outcome. Brain 138, 80–93.
Spencer, S., Huh, L., 2008. Outcomes of epilepsy surgery in adults and children. Lancet Neurol. 7, 525–537.
Stefan, H., Hopfengärtner, R., Kreiselmeyer, G., Weigel, et al., 2008. Interictal triple ECoG characteristics of temporal lobe epilepsies: An intraoperative ECoG analysis correlated with surgical outcome. Clin. Neurophysiol. 119, 642–652.
Sugano, H., Shimizu, H., Sunaga, S., 2007. Efficacy of intraoperative electrocorticography for assessing seizure outcomes in intractable epilepsy patients with temporal-lobe-mass lesions. Seizure 16, 120–127.
Tanriverdi, T., Kemerdere, R., Baran, O., Sayyahmelli, S., et al., 2016. Long-term surgical and seizure outcomes of frontal low-grade gliomas. Int. J. Surg. 33, 60–64.
Taussig, D., Dorfmüller, G., Fohlen, M., Jalin, C., et al., 2012. Invasive explorations in children younger than 3 years. Seizure 21, 631–638.
Tomson, T., Nashef, L., Ryvlin, P., 2008. Sudden unexpected death in epilepsy: current knowledge and future directions. Lancet Neurol. 7, 1021–1031.
Tripathi, M., Garg, A., Gaikwad, S., Bal, C.S., et al., 2010. Intra-operative electrocorticography in lesional epilepsy. Epilepsy Res. 89, 133–141.
Vachhrajani, S., de Ribaupierre, S., Otsubo, H., Ochi, A., et al., 2012. Neurosurgical management of frontal lobe epilepsy in children. J. Neurosurg. Pediatr. 10, 206–216.
van ’t Klooster, M.A., van Klink, N.E.C., Zweiphenning, W.J.E.M., Leijten, F.S.S., et al., 2017. Tailoring epilepsy surgery with fast ripples in the intraoperative electrocorticogram: Tailoring Epilepsy Surgery With Fast Ripples. Ann. Neurol. 81, 664–676.
Vendrame, M., Zarowski, M., Alexopoulos, A.V., Wyllie, E., Kothare, S.V., Loddenkemper, T., 2011. Localization of pediatric seizure semiology. Clin. Neurophysiol. 122, 1924–1928.
Viggedal, G., Olsson, I., Carlsson, G., Rydenhag, B., Uvebrant, P., 2013. Intelligence two years after epilepsy surgery in children. Epilepsy Behav. 29, 565–570.
Wellmer, J., Quesada, C.M., Rothe, L., Elger, C.E., et al., 2013. Proposal for a magnetic resonance imaging protocol for the detection of epileptogenic lesions at early outpatient stages. Epilepsia 54, 1977–1987.
Wiebe, S., 2001. A Randomized, Controlled Trial of Surgery for Temporal-Lobe Epilepsy. N. Engl. J. Med. 8.
Wirrell, E., Wong‐Kisiel, L., Mandrekar, J., Nickels, K., 2012. Predictors and course of medically intractable epilepsy in young children presenting before 36 months of age: A retrospective, population-based study. Epilepsia 53, 1563–1569.
Wong, J.M., Panchmatia, J.R., Ziewacz, J.E., Bader, A.M., et al., 2012. Patterns in neurosurgical adverse events: intracranial neoplasm surgery. Neurosurg. Focus 33, E16.
Wray, C.D., McDaniel, S.S., Saneto, R.P., Novotny, E.J., Ojemann, J.G., 2012. Is postresective intraoperative electrocorticography predictive of seizure outcomes in children? J. Neurosurg. Pediatr. 9, 546–551.
Yang, T.-F., Chen, H.-H., Liang, M.-L., Chen, C., et al., 2014. Intraoperative brain mapping to identify corticospinal projections during resective epilepsy surgery in children with congenital hemiparesis. Childs Nerv. Syst. 30, 1559–1564.
Předběžná náplň práce
ABSTRAKT
Epilepsie, jako nejčastější chronické neurologické onemocnění, postihuje významnou část populace (0,5–1 %). Farmakorezistentní epilepsie má u dětí významně negativní vliv na kvalitu života, rozvoj psychiatrických komorbidit, neurokognitivní výkonnost a přináší i riziko náhlého úmrtí. Resekční epileptochirurgie, která představuje jedinou kurativní léčbu tohoto onemocnění, může zásadně zvrátit nepříznivou životní prognózu pacientů. Předpokladem dobrého pooperačního výsledku je kompletní odstranění epileptogenní zóny (EZ) a zachování funkčně významných elokventních oblastí (EC).
Cílem této postgraduální práce je posoudit přínos jednotlivých intraoperačních elektrofyziologických (iEF) metod u dětských epileptochirurgických pacientů.
V první studii jsme zhodnotili význam intraoperační elektrokortikografie (iECoG) při určení rozsahu resekce i predikci výsledků operace. Současně jsme prokázali, že modifikace operačního plánu na základě iECoG nepředstavuje zvýšené riziko významných komplikací.
Druhá studie hodnotí přínos intraoperačního elektrického stimulačního mapování (ESM) a monitorace motorických evokovaných potenciálů (MEP) při lokalizaci a následném sledování funkce motorického elokventního kortexu a pyramidové dráhy. Studie prokázala, že nový ESM protokol, vypracovaný v našem centru, představuje spolehlivou metodu, která se osvědčila v celém věkovém i etiologickém spektru dětských epileptochirurgických pacientů v prevenci vzniku a predikci výskytu pooperačních motorických deficitů.
Ve třetí studii jsme posoudili význam iEF technik v kontextu současných trendů chirurgické léčby epilepsie u dětí. Zjistili jsme, že význam těchto metod roste. Je to dáno měnícím se spektrem pacientů, jakož i optimalizací iEF protokolů. Ty nám umožňují úspěšně operovat i mnohem složitější pacienty se stabilními výsledky a to jak z pohledu kontroly záchvatů a výskytu pooperačních komplikací, tak i z pohledu neurokognitivní výkonnosti (studie č. 4).
Závěrem lze říct, že metody iEF monitorování představují účinné a bezpečné techniky umožňující intraoperační identifikaci a ohraničení epileptogenní zóny a motorických elokventních oblastí (kůry a dráhy). To zvyšuje pravděpodobnost kompletní resekce epileptogenní zóny a významně snižuje riziko pooperačních deficitů. Přitom ovšem nelze opomenout, že představují pouze část komplexní diagnostiky a péče o epileptochirurgické pacienty.
Předběžná náplň práce v anglickém jazyce
ABSTRACT
Epilepsy, as the most common chronic neurological disease, affects a significant part of population (0.5–1%). Drug resistant epilepsy has a significant negative effect on the quality of life, psychiatric comorbidities, neurocognitive performance and the risk of SUDEP in children. Therefore, resective epilepsy surgery, the only curative treatment of this condition, can fundamentally reverse this unfavorable prognosis. An inevitable prerequisite for a good postoperative result is complete removal of the epileptogenic zone (EC) and preservation of eloquent areas (EC). At present, even with improving and new preoperative non-invasive methods, we don't have an exclusive diagnostic method for theirs delineation.
The aim of this PhD study is to assess benefit of individual intraoperative electrophysiological (iEF) methods in pediatric patients with focal intractable epilepsy.
The first study evaluates the importance of intraoperative electrocorticography (iECoG) in the localization of EZ. The study proved that iECoG serves as a reliable tool to guide surgical resection and may predict results of epilepsy surgery. iECoG-based modification of surgical plan is not associated with increased risk of significant complications.
The second presented study analyzed the contribution of intraoperative electrical stimulation mapping (ESM) and motor evoked potential (MEP) monitoring in the localization and subsequent monitoring of motor eloquent cortex and pyramidal pathway. The study showed that new ESM protocol developed at our center represents a reliable method for preventing and predicting postoperative motor deficits in entire age and etiological spectrum of children undergoing resective epilepsy surgery proximal to eloquent motor regions.
In the third study, we assessed value of iEF techniques in the context of current trends of epilepsy surgery in children. The importance of these methods is growing. This is due to the changing spectrum of patients, as well as the optimization of iEF protocols. They represent an important factor that allow us to successfully cure more complex patients with stable long term results in terms of seizure control, postoperative complications and neurocognitive performance (4th study).
In conclusion, iEF monitoring methods represent effective and safe techniques leading to intraoperative identification and delineation of the epileptogenic zone and motor eloquent areas (cortex and pyramidal tract). This increases chance of achieving complete resection of the epileptogenic zone and significantly reduces the risk of postoperative neurological deficits. However, they are only a part of a complex diagnostic and treatment protocol of candidates of epilepsy surgery in childhood.
 
Univerzita Karlova | Informační systém UK