Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 368)
Detail práce
   Přihlásit přes CAS
Patogenetické mechanismy podmiňující vznik a rozvoj hemolyticko-uremického syndromu u dětí
Název práce v češtině: Patogenetické mechanismy podmiňující vznik a rozvoj hemolyticko-uremického syndromu u dětí
Název v anglickém jazyce: Pathogenetic mechanisms determining the origin and development of a hemolytic-uremic syndrome in children
Klíčová slova: Hemolyticko-uremický syndrom (HUS), Shiga toxin-produkující E. coli (STEC), STEC-HUS, shiga toxin (Stx), enterohemoragická E. coli O26 (EHEC), alternativní cesta komplementu, eculizumab
Klíčová slova anglicky: Hemolytic-uremic syndrome (HUS), Shiga toxin-producing E. coli (STEC), STEC-HUS, shiga toxin (Stx),, enterohemorrhagic E.coli O26 (EHEC), alternative complement pathway, eculizumab
Akademický rok vypsání: 2013/2014
Typ práce: disertační práce
Jazyk práce: čeština
Ústav: Pediatrická klinika (13-350)
Vedoucí / školitel: doc. MUDr. Květa Bláhová, CSc.
Řešitel: skrytý - zadáno a potvrzeno stud. odd.
Datum přihlášení: 28.08.2014
Datum zadání: 28.08.2014
Datum potvrzení stud. oddělením: 28.08.2014
Datum a čas obhajoby: 16.09.2021 10:00
Datum odevzdání elektronické podoby:29.03.2021
Datum odevzdání tištěné podoby:07.04.2021
Datum proběhlé obhajoby: 16.09.2021
Oponenti: doc. MUDr. Sylva Skálová, Ph.D.
  prof. MUDr. Ľudmila Podracká, CSc.
 
 
Konzultanti: doc. MUDr. Filip Fencl, Ph.D.
Seznam odborné literatury
1) Akcan-Arikan A. et al., 2007. Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney International; 71(10): 1028–1035.
2) Allerberger F. et al., 2003. Hemolytic-uremic syndrome associated with enterohemorrhagic Escherichia coli O26:H infection and consumption of unpasteurized cow's milk. Int J Infect Dis; 7(1):42–5.
3) Ardissino G. et al., 2016. Early Volume Expansion and Outcomes of Hemolytic Uremic Syndrome. Pediatrics; 137(1): e20152153-.
4) Arvidsson I. et al., 2015. Shiga Toxin–Induced Complement-Mediated Hemolysis and Release of Complement-Coated Red Blood Cell–Derived Microvesicles in Hemolytic Uremic Syndrome. The Journal of Immunology; 194(5): 2309–2318.
5) Balestracci A. et al., 2014. Laboratory predictors of acute dialysis in hemolytic uremic syndrome. Pediatrics International; 56(2): 234–239.
6) Balestracci A. et al., 2017. Blood urea nitrogen to serum creatinine ratio as a prognostic factor in diarrhea-associated hemolytic uremic syndrome: a validation study. European Journal of Pediatrics; 177(1): 63–68.
7) Bell B. P. et al., 1994. A Multistate Outbreak of Escherichia coli O157:H7—Associated Bloody Diarrhea and Hemolytic Uremic Syndrome From Hamburgers: The Washington Experience. JAMA: The Journal of the American Medical Association; 272(17): 1349–1353.
8) Besser R. E., 1993. An Outbreak of Diarrhea and Hemolytic Uremic Syndrome From Escherichia coli O157:H7 in Fresh-Pressed Apple Cider. JAMA: The Journal of the American Medical Association; 269(17): 2217–2220.
9) Bibbal D. et al., 2015. Prevalence of carriage of Shiga toxin-producing Escherichia coli serotypes O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28 among slaughtered adult cattle in France. Appl Environ Microbiol;81(4):1397-405.
10) Bielaszewska M. et al., 2013. Enterohemorrhagic escherichia coli O26:H11/H-: A New virulent clone emerges in Europe. Clinical Infectious Diseases; 56(10): 1373–1381.
11) Bielaszewska M. et al., 2011. Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: A microbiological study. The Lancet Infectious Diseases; 11(9): 671–676.
74
12) Bielaszewská M., Janda J., 1989. Microbiological aspects of infection with verotoxin-producing E.coli strains in children with the hemolytic-uremicsyndrome. Cesk Epidemiol Mikrobiol Imunol; 38(4): 237–244.16. 13) Bielaszewska M. et al., 1996. Verocytotoxin-producing Escherichia coli in children with hemolytic uremic syndrome in the Czech Republic. Clin Nephrol; 46(1):42-44.
14) Bielaszewska M. et al., 1997. Human Escherichia coliO157:H7 infection associated with the consumption of unpasteurizedgoat‘s milk. Epidemiol Infect; 119 (3): 299–305.19.
15) Bitzan M. et al., 2009. Safety and pharmacokinetics of chimeric anti-shiga toxin 1 and anti-shiga toxin 2 monoclonal antibodies in healthy volunteers. Antimicrobial Agents and Chemotherapy; 53(7): 3081–3087.
16) Bitzan M. et al., 2010. Treatment of typical (enteropathic) hemolytic uremic syndrome. Seminars in Thrombosis and Hemostasis; 36(06): 594–610.
17) Bláhová K. et al., 2002. Long-term follow-up of Czech children with D+ hemolytic-uremic syndrome. Pediatric Nephrology; 17(6): 400–403.
18) Bletz S. et al., 2013. Evolution of Enterohemorrhagic Escherichia coli O26 based on single-nucleotide polymorphisms. Genome Biology and Evolution; 5 (10): 1807–1816.
19) Brigotti M. et al., 2011. Clinical Relevance of Shiga Toxin Concentrations in the Blood of Patients With Hemolytic Uremic Syndrome. The pediatric Infectious Disease Journal; 30(6): 486–490. 20) Bruyand M. et al., 2019. Réseau français hospitalier de surveillance du SHU pédiatrique. Paediatric haemolytic uraemic syndrome related to Shiga toxin-producing Escherichia coli, an overview of 10 years of surveillance in France, 2007 to 2016. Euro Surveill.;24(8):pii=1800068
21) Byrne L. et al., 2015. The epidemiology, microbiology and clinical impact of Shiga toxin-producing Escherichia coli in England, 2009-2012. Epidemiology and Infection; 143(16): 3475–3487.
22) Clayton F. et al., 2005. Lipopolysaccharide upregulates renal Shiga toxin receptors in a primate model of hemolytic uremic syndrome. American Journal of Nephrology; 25(6): 536–540. 23) Conway E.M., 2015. HUS and the case for complement. Blood;126(18):2085-90.
24) Delannoy S. et al., 2015. Characteristics of emerging human-pathogenic escherichia coli
75
O26: H11 strains isolated in France between 2010 and 2013 and carrying the stx2d gene only. Journal of Clinical Microbiology; 53(2): 486–492.
25) Delannoy S. et al., 2015. Draft Genome Sequences of Human-Pathogenic Escherichia coli O26 : H11 Strains Carrying the stx 2 Gene Only and Circulating in France. Genome announcements; 3(4): 3–4.
26) Delannoy S. et al., 2017. The mobilome; A major contributor to Escherichia coli stx2-Positive O26: H11 strains intra-serotype diversity. Frontiers in Microbiology; 8: 1–17.
27) Dettmar A. K. et al., 2014. Protection of human podocytes from shiga toxin 2-induced phosphorylation of mitogen-activated protein kinases and apoptosis by human serum amyloid P component. Infection and Immunity; 82(5): 1872–1879.
28) Dundas S. et al., 1999. Effectiveness of therapeutic plasma exchange in the 1996 Lanarkshire Escherichia cell O157:H7 outbreak. Lancet; 354(9187): 1327–1330.
29) Ehrlenbach S. et al., 2013. Shiga Toxin 2 Reduces Complement Inhibitor CD59 Expression on Human Renal Tubular Epithelial and Glomerular Endothelial Cells. Infect Immun; 81(8): 2678–2685.
30) Elliott E. J., 2001. Nationwide study of haemolytic uraemic syndrome: Clinical, microbiological, and epidemiological features. Archives of Disease in Childhood.; 85(2): 125–131.
31) Endo Y. et al., 1988. Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes: RNA N‐glycosidase activity of the toxins. European Journal of Biochemisty; 171(1-2): 45–50.
32) Fakhouri F. et al., 2017. Haemolytic uraemic syndrome. The Lancet; 390(10095): 681–696.
33) Fagerquist C. K., Sultan O., 2010. Top-down proteomic identification of furin-cleaved α-subunit of Shiga toxin 2 from Escherichia coli O157:H7 using MALDI-TOFTOF-MS/MS. J Biomed Biotechnol;2010:123460
34) Ferraris J. R. et al., 2015. Activation of the alternative pathway of complement during the acute phase of typical haemolytic uraemic syndrome. Clinical and Experimental Immunology; 181(1): 118–125.
35) Flynn J. T., Falkner B. E., 2017. New clinical practice guideline for the management of high blood pressure in children and adolescents. Hypertension; 70(4): 683–686.
36) Frank C. et al., 2011. Epidemic Profile of Shiga-Toxin–Producing Escherichiae coli
76
O104:H4 outbreak in Germany. New England Journal of Medicine; 365(19): 1771–1780.
37) Frankel G., Phillips A. D., 2008. Attaching effacing Escherichia coli and paradigms of Tir-triggered actin polymerization: Getting off the pedestal. Cellular Microbiology; 10(3): 549–556.
38) Garg A. X. et al., 2003. Long-term Renal Prognosis of. Jama; 290(10): 1360–1370.
39) Garred O. et al., 1995. Furin-induced cleavage and activation of Shiga toxin. J Biol Chem;270(18):10817–21.
40) Gasser C. et al., 1955. Hemolytic-uremic syndrome: bilateral necrosis of the renal cortex in acute acquired hemolytic anemia [in German]. Schweiz Med Wochenschr.;85(38-39):905-909.
41) Gerber A. et al., 2002. Clinical course and the role of Shiga toxin-producing Escherichia coli infection in the hemolytic-uremic syndrome in pediatric patients, 1997-2000, in Germany and Austria: A prospective study. J. Infect. Dis; 186(4): 493–500.
42) Gitiaux C. et al., 2013. Brain magnetic resonance imaging pattern and outcome in children with haemolytic-uraemic syndrome and neurological impairment treated with eculizumab. Dev Med Child Neurol; 55: 758–765.
43) Gould L.H. et al., 2009. Hemolytic uremic syndrome and death in persons with Escherichia coli O157:H7 infection, foodborne diseases active srveillance network sites, 2000-2006. Clin Infect Dis; 49:1480-1485. 44) Hattori R. et al., 1989. Complement proteins C5b-9 induce secretion of high molecular weight multimers of endothelial von Willebrand factor and translocation of granule membrane protein GMP-140 to the cell surface. J Biol Chem; 264(15):9053-9060.
45) Hickey C. A. et al., 2011. Early volume expansion during diarrhea and relative nephroprotection during subsequent hemolytic uremic syndrome. Archives of Pediatrics and Adolescent Medicine; 165: 884–889.
46) Ishijima N. et al., 2017. Identification of a new virulent clade in enterohemorrhagic escherichia coli O26:H11/H- Sequence Type 29. Scientific Reports; 7(1): 1–10.
47) Johnson K. E. et al., 2006. The Emerging Clinical Importance of Non-0157 Shiga Toxin-Produing Escherichia coli. Clinical Infectious Disease; 43(12): 1587–1595.
48) Karch H. et al., 2005. Enterohaemorrhagic Escherichia coli in human medicine. International Journal of Medical Microbiology.; 295(6-7): 405–418.
77
49) Karmali M.A. et al., 1983. Sporadic Cases of Haemolytic-Uraemic Syndrome Associated With Faecal Cytotoxin and Cytotoxin-Producing Escherichia Coli in Stools. The Lancet; 321(8325): 619–620.
50) Karpman D., 2002. Haemolytic uraemic syndrome and thrombotic thrombocytopenic purpura. Current Paediatrics; 12(7): 569–574.
51) Kearse M. et al., 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics; 28(12): 1647–1649.
52) Kemper M. J., 2011. Outbreak of hemolytic uremic syndrome caused by E. coli O104:H4 in Germany: A pediatric perspective. Pediatric Nephrology; 27(2):161-164.
53) Kielstein J. T. et al., 2012. Best supportive care and therapeutic plasma exchange with or without eculizumab in Shiga-toxin-producing E. coli O104:H4 induced haemolytic-uraemic syndrome: an analysis of the German STEC-HUS registry. Nephrol Dial Transplant; 27(10): 3807–3815.
54) Kim D.D., Song W.C., 2006. Membrane complement regulatory proteins. Clin Immunol;118(2-3): 127-136. 55) Koster F.T. et al., 1984. Renal histopathology in the hemolytic-uremic syndrome following shigellosis. Clin Nephrol;21(2):126-133.
56) Lapeyraque A. et al., 2011. Eculizumab in Severe Shiga-Toxin – Associated HUS. The New England Journal of Medicine; 364(26):2561–2563.
57) Legendre C. M. et al., 2013. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. New England Journal of Medicine; 368(23): 2169–2181.
58) Lo N. C. et al., 2013. Interaction of shiga toxin with the a-domains and multimers of von Willebrand Factor. Journal of Biological Chemistry; 288(46): 33118–33123.
59) Locatelli M. et al., 2014. Shiga Toxin Promotes Podocyte Injury in Experimental Hemolytic Uremic Syndrome via Activation of the Alternative Pathway of Complement. Journal of the American Society of Nephrology; 25(8): 1786–1798.
60) Loirat C. et al., 2015. An international consensus approach to the management of atypical hemolytic uremic syndrome in children. Pediatric nephrology.; 31(1): 15–39.
61) Loos S. et al., 2012. An outbreak of shiga toxin-producing escherichia coli O104:H4 hemolytic uremic syndrome in Germany: Presentation and short-term outcome in children.
78
Clinical Infectious Diseases; 55(6): 753–759.
62) López E. L. et al., 2010. Safety and pharmacokinetics of urtoxazumab, a humanized monoclonal antibody, against Shiga-like toxin 2 in healthy adults and in pediatric patients infected with Shiga-like toxin-producing Escherichia coli.Antimicrobial Agents and Chemotherapy; 54(1): 239–243.
63) Luna-Gierke R. E. et al., 2014. Outbreaks of non-O157 Shiga toxin-producing Escherichia coli infection: USA. Epidemiology and Infection; 142(11): 2270–2280.
64) Mannucci P. M., Cugno M., 2015. The complex differential diagnosis between thrombotic thrombocytopenic purpura and the atypical hemolytic uremic syndrome: Laboratory weapons and their impact on treatment choice and monitoring. Thrombosis Research; 136(5): 851–854.
65) Marejková M. et al., 2013. Enterohemorrhagic Escherichiacoli as causes of Hemolytic Uremic Syndrome in the Czech Republic. PLoS ONE; 8 (9): e73927.
66) Marejková M., Petráš P., 2014. Enterohemoragické Escherichia coli jako původci průjmu v České republice, 1965–2013. Epidemiol Mikrobiol Imunol; 63 (3): 173–183
67) Mele C. et al., 2014. Hemolytic uremic syndrome. Seminars in Immunopathology; 36(4):399-420.
68) Mellmann A. et al., 2008. Analysis of collection of hemolytic uremic syndrome-associated enterohemorrhagic Escherichia coli. Emerging Infectious Diseases; 14(8): 1287–1290.
69) Mellmann A. et al., 2011. Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLoS One;6(7):e22751.
70) Mellmann A. et al., 2016. Real-time genome sequencing of resistant bacteria provides precision infection control in an institutional setting. Journal of Clinical Microbiology; 54(12): 2874–2881.
71) Melton-Celsa A.R., 2014. Shiga Toxin (Stx) classification, structure, and function. Microbiol Spectr.; 2(2). 72) Monnens L. et al., 1980. The complement system in hemolytic-uremic syndrome in childhood. Clin Nephrol;13(4):168-171.
73) Monsinjon T. et al., 2003. Regulation by complement C3a and C5a anaphylatoxins of cytokine production in human umbilical vein endothelial cells. The FASEB Journal; 17(9):
79
1003–1014.
74) Morigi M. et al., 2011. Alternative Pathway Activation of Complement by Shiga Toxin Promotes Exuberant C3a Formation That Triggers Microvascular Thrombosis. The Journal of Immunology; 187(1): 172–180.
75) Morigi M. et al., 2001. Verotoxin-1-induced up-regulation of adhesive molecules renders microvascular endothelial cells thrombogenic at high shear stress. Blood; 98(6): 1828–1835.
76) Noris M. et al., 2012. STEC-HUS, atypical HUS and TTP are all diseases of complement activation. Nature Reviews Nephrology; 8(11): 622–633.
77) Noris M. et al., 2001. Thrombotic microangiopathy, hemolytic uremic syndrome, and thrombotic thrombocytopenic purpura. Kidney int; 60(3): 831–846.
78) O’Brien A. D. et al., 1982. Production of shigella dysenteriae type j-llke cytotoxin by escherichia coli. Journal of Infectious Diseases; 146(6): 763–769.
79) Oakes R. S., 2006. Predictors of Fatality in Postdiarrheal Hemolytic Uremic Syndrome. PEDIATRICS; 117(5): 1656–1662.
80) Oakes R. S. et al., 2008. Duration of oliguria and anuria as predictors of chronic renal-related sequelae in post-diarrheal hemolytic uremic syndrome. Pediatric Nephrology; 23(8): 1303–1308.
81) Obrig T. G., Karpman D., 2012. Shiga Toxin Pathogenesis: Kidney Complications and Renal Failure. Curr Top Microbiol Immunol; 357: 105–136.
82) Ogura Y. et al., 2017. Population structure of Escherichia coli O26:H11 with recent and repeated stx2 acquisition in multiple lineages. Microb Genom;3(11)
83) Ogura Y. et al., 2009. Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli. Proc Natl Acad Sci U S A;106(42):17939–44.
84) Orth D. et al., 2010. EspP, a serine protease of enterohemorrhagic Escherichia coli, impairs complement activation by cleaving complement factors C3/C3b and C5. Infection and Immunity; 78(10): 4294–4301.
85) Orth D. et al., 2009. Shiga Toxin Activates Complement and Binds Factor H : Evidence for an Active Role of Complement in Hemolytic Uremic Syndrome. J Immunol; 182(10):6394-6400.
80
86) Orth D., Würzner R., 2010. Complement in typical hemolytic uremic syndrome. Seminars in Thrombosis and Hemostasis; 36(06):620-624.
87) Pape L. et al., 2015. Eculizumab in Typical Hemolytic Uremic Syndrome (HUS) With Neurological Involvement. Medicine; 94(24): e1000-.
88) Pennington H., 2010. Escherichia coli O157. The Lancet; 376(9750): 1428–1435.
89) De Petris L. et al., 2006. Urinary podocyte mRNA excretion in children with D+HUS: A potential marker of long-term outcome. Renal Failure.; 28(6): 475–482.
90) Picard C. et al., 2015. Pathophysiology and treatment of typical and atypical hemolytic uremic syndrome. Pathologie Biologie; 63(3):136-143.
91) Poolpol K. et al., 2014. Interaction of Shiga toxin 2 with complement regulators of the factor H protein family. Molecular Immunology; 58(1): 77–84.Price M. N. , Dehal P. S. , Arkin A. P.: FastTree 2--approximately maximumlikelihood trees for large alignments. PLoS One. 2010;5(3):e9490.
92) Richard H. T., Foster J.W., 2003. Acid resistance in Escherichia coli. Advances in Applied Microbiology; 52: 167–186.
93) Ricklin D., Lambris J.D., 2007. Complement-targeted therapeutics. Nat Biotechnol;25(11): 1265-1275.
94) Riley L.W., 1987. The epidemiologic, clinical, and microbiologic features of hemorrhagis colitis. Annual rev of Microbiol; 41:383-407.
95) Riley L.W. et al., 1983. Hemorrhagic colitis associatedwith a rare Escherichia coli serotype. N Engl J Med; 308:681–685.
96) Robson W. L. et al., 1992. Hypocomplementemia and leukocytosis in diarrhea-associated hemolytic uremic syndrome. Nephron; 62: 296–9.
97) Robinson C.M. et al., 2006. Shiga toxin of enterohemorrhagic Escherichia coli type O157:H7 promotes intestinal colonization. Proc Natl Acad Sci USA , 103:9667–9672.
98) Rother R. P. et al., 2007. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nature Biotechnology; 25(11): 1256–1264. 99) Ruggenenti P. et al., 2001. Thrombotic microangiopathy, hemolytic uremic syndrome, and thrombotic thrombocytopenic purpura. Kidney International; 60(3), 831–846.
81
100) Rutjes N. W. et al., 2002. Differential tissue targeting and pathogenesis of verotoxins 1 and 2 in the mouse animal model. Kidney International; 62(3): 832–845.
101) Sandvig K. et al., 1992. Retrograde transport of endocytosed Shiga toxin to the endoplasmatic reticulum. Nature; 359(6386):510–512.
102) Scheutz F. et al., 2012. Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. Journal of Clinical Microbiology;50(9): 2951–2963.
103) Schmid-Hempel P., Frank S. A., 2007. Pathogenesis, virulence, and infective dose. PLoS Pathogens; 3(10): 1372–1373.
104) Schwartz G. J. et al., 2009. New Equations to Estimate GFR in Children with CKD. J Am Soc Nephrol; 20(3): 629–637.
105) Scotland S. M. et al., 1987. Properties of strains of Escherichia coli belonging to serogroup O 157 with special reference to production of Vero cytotoxins VTl and VT2. Epidemiology and Infection; 99(3): 613–624.
106) Scully M., Goodship T., 2014. How I treat thrombotic thrombocytopenic purpura and atypical haemolytic uraemic syndrome. British Journal of Haematology; 164(6): 759–766.
107) Siegler R. L., 1994. Spectrum of extrarenal involvement in postdiarrheal hemolytic-uremic syndrome. J Pediatr; 125(4): 511–518.
108) Spinale J. M. et al., 2012. Long-term outcomes of Shiga toxin hemolytic uremic syndrome. Pediatr Nephrol; 28(11):2097-2105.
109) Srámková L. et al., 1990. Vero cytotoxin-produ-cing strains of Escherichia coli in children with haemolytic uraemic syn-drome and diarrhoea in Czechoslovakia. Infection; 18 (4):204–209.
110) Tarr P. I. et al., 2005. Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet ; 365(9464): 1073–1086.
111) Thurman J. M. et al., 2009. Alternative pathway of complement in children with diarrhea-associated hemolytic uremic syndrome. Clin J Am Soc Nephrol; 4(12): 1920–1924.
112) Tozzi A. E. et al., 2003. Shiga toxin-producing Escherichia coli infections associated with hemolytic uremic syndrome, Italy, 1988-2000. Emerging Infectious Diseases; 9(1):106–108.
82
113) Ullrich S. et al., 2013. Symptoms and Clinical Course of EHEC O104 Infection in Hospitalized Patients: A Prospective Single Center Study. PLoS ONE ; 8(2):e55278-.
114) Villysson A. et al., 2017. Microvesicle involvement in Shiga toxin-associated infection. Toxins; 9(11):376-. 115) Walport M. J., 2001. Complement. First of two parts. N Engl J Med;344(14):1058-1066. 116) Walport M. J., 2001. Complement. Second of two parts. N Engl J Med;344(15):1140-1144.
117) Watanabe M. et al., 2004. Oral Therapeutic Agents with Highly Clustered Globotriose for Treatment of Shiga Toxigenic Escherichia coli Infections. Journal of Infectious Diseases; 189(3):360–368.
118) Wong C. S. et al., 2012. Risk factors for the hemolytic uremic syndrome in children infected with escherichia coli O157:H7: A multivariable analysis. Clinical Infectious Diseases; 55(1):33-41.
119) Wurzner R. et al., 2014. Treatment of enterohemorrhagic Escherichia coli-induced hemolytic uremic syndrome (eHUS). Semin Thromb Hemost; 40(04):508–516.
120) Zimmerhackl L. et al., 2010. Enterohemorrhagic Escherichia coli O26:H11-associated hemolytic uremic syndrome: Bacteriology and clinical presentation. Seminars in Thrombosis and Hemostasis; 36(06):586–593.
121) Zhang W.L. et al., 2000. Molecular characteristics and epidemiological significance of Shiga toxinproducing Escherichia coli O26 strains. J Clin Microbiol;38(6):2134–40.
122) Zoja C. et al., 2002. Shiga toxin-2 triggers endothelial leukocyte adhesion and transmigration via NF-КB dependent up-regulation of IL-8 and MCP-1. Kidney International.; 62(3):846–856.
123) Zoja C. et al., 2019. Shiga toxin triggers endothelial and podocyte injury: the role of complement activation. Pediatric Nephrology; 34: 379–388.
124) Zweifel C. et al., 2013. Detection of the emerging Shiga toxin producing Escherichia coli O26:H11/H- sequence type 29 (ST29) clone in human patients and healthy cattle in Switzerland. Appl Environ Microbiol.;79(17):5411–3.
Předběžná náplň práce
Hemolyticko-uremický syndrom (HUS) vyvolaný Shiga-toxin produkujícími E. coli (STEC) je jednou z nejčastějších příčin akutního poškození ledvin v dětském věku. Terapie daného onemocnění je symptomatická a hlavní patofyziologické faktory vedoucí k rozvoji těžkého průběhu STEC-HUS jsou stále neznámé. Cílem této disertační práce byla analýza faktorů vedoucích k rozvoji těžkého průběhu STEC-HUS jak na straně hostitele, tak na straně STEC. Retrospektivní analýzou průběhů STEC-HUS u dětí v České republice jsme zjistili, že nejčastějším původcem STEC-HUS byl sérotyp O26 a HUS nejvíc postihoval děti do 3 let, u 63,8 % s nutností dialýzy, smrtnost byla 8,62 %. Na straně hostitele jsme se dále zaměřili na vztah mezi aktivací alternativní cesty komplementu a závažností průběhu HUS. Nalezli jsme signifikatní rozdíl v koncentraci C3 složky komplementu u pacientů, kteří potřebovali dialýzu a u kterých dialýza nebyla nutná. Stanovili jsme mezní hodnotu cut-off pro C3 složku komplementu a její snížení pod 0,825 g/l bylo spojeno s nutností dialyzační léčby a vyšším výskytem extrarenálních komplikací. Na základě nejen našich výsledků lze předpokládat, že by terapeutické ovlivnění komplementu mohlo mít vliv na závažnost onemocnění. Dalším cílem bylo porozumět vlastnostem STEC O26. Hlavní metodou bylo celogenomové sekvenování (WGS) 32 kmenů a genomová analýza celkem 159 kmenů. Analýza nám umožnila sledovat evoluci i geografické šíření nového evropského klonu STEC O26 (nEC), který se rozdělil na dva klony- Early (EnEC) a námi nově identifikovaný Late New Clone (LnEC). U 4 kmenů LnEC byla dosud nepopsaná mutace v A podjednotce Stx2a, která však nebyla vice patogenní. Navrhli jsme PCR metodu cílenou na mutaci v sen/ent genu charakteristickou pro LnEC, která představuje jednoduchou metodu k rozlišení EnEC a LnEC v klinických mikrobiologických laboratořích. Věříme, že naše výsledky přispěly k poznání patogeneze STEC-HUS, a že se jejích poselství uplatní v klinické péči o děti s tímto onemocněním.
Předběžná náplň práce v anglickém jazyce
Hemolytic uremic syndrome (HUS) induced by Shiga toxin-producing E. coli (STEC) is the most common causes of acute kidney injury in children. The therapy of the disease is symptomatic and the main factors leading to the development of severe course of a STEC-HUS are still unknown. In our study, we dealt with factors leading to development of a severe course of STEC-HUS in pediatric patients on both the host and pathogen side. Using retrospective analysis of the courses in children in the Czech Republic, we found that the most common cause of STEC-HUS was serotype O26 and HUS most often affected children under 3 years of age. 63,8 % required dialysis and mortality was 8.62 %. On the host side we focused on the relationship between the activation of the alternative complement pathway and the severity of the course of HUS. We found a significant difference in the level of the C3 part of complement in patients who required dialysis and patients for whom dialysis was not necessary. We also a cut-off value for the C3 part of complement and its reduction below 0.825 g / l was associated with the need for dialysis treatment and a higher incidence of extrarenal complications. Based not only on our results, it can be assumed that the therapeutic effect of complement could affect the severity of the disease. Further aim of our work was to understand STEC O26. The main method was whole genome sequencing (WGS) of 32 strains and genomic analysis of a total of 159 strains. The analysis allowed us to monitor the evolution and geographical spread of the new European clone STEC O26 (nEC), which was divided into two clones - Early (EnEC) and newly identified Late New Clone (LnEC). In 4 strains LnEC we discover yet undescribed mutation in the A subunit of Stx2a. The PCR method proposed in our study targeting a mutation in the sen/ent gene, which is characteristic of Late nEC, represents a fast and simple method for distinguishing Early and Late nEC in clinical microbiological laboratories. We believe that our results have contributed to the understanding of pathogenesis of the STEC-HUS and its message will be applied in the clinical care of children with this disease.
 
Univerzita Karlova | Informační systém UK