Advanced machine learning methods and their application in games
Název práce v češtině: | |
---|---|
Název v anglickém jazyce: | Advanced machine learning methods and their application in games |
Klíčová slova: | Strojové učení, Hry, Umělá inteligence |
Klíčová slova anglicky: | Machine learning, Games, Artificial intelligence |
Akademický rok vypsání: | 2013/2014 |
Typ práce: | disertační práce |
Jazyk práce: | angličtina |
Ústav: | Katedra teoretické informatiky a matematické logiky (32-KTIML) |
Vedoucí / školitel: | Mgr. Roman Neruda, CSc. |
Řešitel: | skrytý![]() |
Datum přihlášení: | 26.09.2014 |
Datum zadání: | 26.09.2014 |
Datum potvrzení stud. oddělením: | 26.01.2015 |
Zásady pro vypracování |
Games with large branching factors, such as Go or Arimaa, pose a challenging test-ground for the AI research. The techniques developed for solving such hard problems have often been found widely applicable outside the AI. The goal of this work will be to study and create machine learning algorithms with multiple possible goals: improving the performance of AI solvers for such games, improving the user experience when playing the AI bots, or helping the user himself to improve.
Part of the work will focus on researching the current trends and state of the art methods. Expected results include design and implementation of algorithms based on hybrid machine learning methods, including meta-learning approaches. The student will present the findings at international conferences and in peer-reviewed journals. |
Seznam odborné literatury |
[1] Stuart J. Russell, Peter Norvig: Artificial Intelligence - A Modern Approach (3. internat. ed.), Pearson Education, 2010.
[2] Christopher M. Bishop, Nasser M. Nasrabadi: Pattern Recognition and Machine Learning. J. Electronic Imaging 16(4), 2007. [3] Pavel Brazdil, Christophe G. Giraud-Carrier, Carlos Soares, Ricardo Vilalta: Metalearning - Applications to Data Mining. Cognitive Technologies, Springer, 2009. |