Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 368)
Detail práce
   Přihlásit přes CAS
Krylov Subspace Methods - Analysis and Application
Název práce v češtině: Metody krylovovských podprostorů - Analýza a aplikace
Název v anglickém jazyce: Krylov Subspace Methods - Analysis and Application
Klíčová slova: parciální diferenciální rovnice, diskretizovaná úloha, předpodmínění, spektrální informace, Krylovovské metody, konvergence, zaokrouhlovací chyby
Klíčová slova anglicky: partial differential equations, discretised problem, preconditioning, spectral information, Krylov subspace methods, convergence, rounding errors
Akademický rok vypsání: 2012/2013
Typ práce: disertační práce
Jazyk práce: angličtina
Ústav: Katedra numerické matematiky (32-KNM)
Vedoucí / školitel: prof. Ing. Zdeněk Strakoš, DrSc.
Řešitel: skrytý - zadáno a potvrzeno stud. odd.
Datum přihlášení: 27.09.2013
Datum zadání: 27.09.2013
Datum potvrzení stud. oddělením: 27.01.2014
Datum a čas obhajoby: 21.09.2020 10:00
Datum odevzdání elektronické podoby:02.06.2020
Datum odevzdání tištěné podoby:22.06.2020
Datum proběhlé obhajoby: 21.09.2020
Oponenti: Patrick Farrell
  Roland Herzog
 
 
Konzultanti: prof. Ing. Miroslav Tůma, CSc.
Zásady pro vypracování
Krylov subspace methods are being used for decades in problems coming from numerical approximation of partial differential equations but also from other scientific and engineering disciplines like, e.g., image or signal processing. This variety of applications has naturally led to the explosive development of many different algorithms. The tools and strategies used to analyze their behaviour are also often very different. Consequently, because of lack of communication among the various disciplines, the individual approaches are often studied separately which is accompanied by possible loss of useful relationships and which results in quite scattered knowledge.
It is suggested to combine several views of the analysis. In particular, the operator view natural for problem arising in partial differential equations and a matrix view typical for many other applications. We believe this combined view to be very useful and needed for instance in designing efficient preconditioners or in reduction of the studied mathematical model. It is assumed that the analysis will be driven by particular applications.
Seznam odborné literatury
Benzi, M.: Preconditioning techniques for large linear systems: A survey. Journal of Computational Physics 182 (2002), 418–477.

Mardal, K.-A., and Winther, R. Preconditioning discretizations of systems of partial differential equations. Numer. Linear Algebra Appl. 18 (2011), 1–40.

Günnel, A., Herzog, R. and Sachs, E. A Note on Preconditioners and Scalar Products for Krylov Methods in Hilbert Space. (preprint).

Antoulas, A.: Approximations of Large-Scale Dynamical Systems, SIAM, Philadelhia (2005).

Elman, H., Silvester, D. and Wathen, A.: Finite elements and fast iterative solvers with applications in incompressible fluid dynamics. Oxford University Press. New York (2005)

Liesen, J. and Strakoš, Z.: Krylov Subspace Methods: Principles and Analysis. Oxford University Press. Oxford (2012)

Strakoš, Z.: Theory of convegence and effects of finite precision arithmetic in Krylov Subspace Methods. DrSc. Thesis, CAS (2001).

Kuijlaars, A.: Convergence analysis of Krylov subspace iterations with methods from potential theory, SIAM Review 48, 3-40 (1996).

M. Vohralík: A posteriori error estimates, stopping criteria and inexpensive implementations, Habilitation Thesis, Universite Pierre et Marie Curie - Paris 6, 2010.
 
Univerzita Karlova | Informační systém UK