Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 368)
Detail práce
   Přihlásit přes CAS
Kortewegovy tekutiny - modelování, analýza a počítačové simulace
Název práce v češtině: Kortewegovy tekutiny - modelování, analýza a počítačové simulace
Název v anglickém jazyce: Korteweg fluids - modeling, analysis and computer simulations
Klíčová slova: Navier-Stokes-Kortewegova (NSK) tekutina, termodynamicky konsistentní model, termodynamicky konsistentní okrajové podmínky, existenční teorie, numerická diskretizace, počítačové simulace
Klíčová slova anglicky: Navier-Stokes-Korteweg (NSK) fluids, thermodynamically consistent model, thermodynamically consistent boundary conditions, existence theory, discretization, computer simulations
Akademický rok vypsání: 2011/2012
Typ práce: diplomová práce
Jazyk práce: čeština
Ústav: Matematický ústav UK (32-MUUK)
Vedoucí / školitel: prof. RNDr. Josef Málek, CSc., DSc.
Řešitel: skrytý - zadáno a potvrzeno stud. odd.
Datum přihlášení: 06.11.2011
Datum zadání: 08.11.2011
Datum potvrzení stud. oddělením: 02.12.2011
Datum a čas obhajoby: 28.01.2015 00:00
Datum odevzdání elektronické podoby:18.12.2014
Datum odevzdání tištěné podoby:05.12.2014
Datum proběhlé obhajoby: 28.01.2015
Oponenti: Mgr. Martin Řehoř, Ph.D.
 
 
 
Konzultanti: RNDr. Jaroslav Hron, Ph.D.
doc. RNDr. Miroslav Bulíček, Ph.D.
Zásady pro vypracování
1. Seznámit se základními pracemi o modelování Kortewegových tekutin a matematické analýze počátečních a okrajových úloh. Seznámit se stručně i s historií modelu.
2. Matematickou teorii zaměřenou na existeční teorii slabých řešení nastudovat podrobně.
3. Sepsat podrobně a přehledně odvození Kortewegova modelu a existenci slabých řešení.
4. Paralelně pomocí softwaru Fenics modifikovat testovací program pro Cahn-Hilliardovu tekutinu na Kortewegovu tekutiny a provést základní simulace.
5. Zaměřit se na návrh takové diskretizace, aby zachovávala apriorní odhady.
6. Rozvíjet některou z částí - matematickou teorii, testování více příkladů, atd.
Seznam odborné literatury
Rowlinson, J.S., Widom, B.: Molecular Theory of Capillarity. Dover Pubns, New York (2002).

Heida, M., Málek, J.: On compressible Korteweg fluid-like materials. Internat. J. Engrg. Sci. 48 (2010) 1313–1324.

Málek, J., Rajagopal, K.R.: On the modeling of inhomogeneous incompressible fluid-like bodies. Mechanics of Materials 38 (2006) 233–242.

Haspot, B.: Existence of global weak solution for compressible fluid models of Korteweg type. J. Math. Fluid Mech. 13 (2011) 223–249.

Gomez, H., Hughes, T., Nogueira, X., Calo, Victor M.: Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations. Comput. Methods Appl. Mech. Engrg. 199 (2010) 1828–1840.
Předběžná náplň práce
Navier-Stokes-Kortewegův model, navržený Kortewegem v roce 1901 k zachycení kapilárních jevů, je systém nelineárních parciálních diferenciálních rovnic pro hustotu a rychlostní pole. Systém je zajímavým způsobem provázán - rovnice pro rychlost obsahuje parciální diferenciální operátor vyššího řádu (divergence Kortewegova napětí), který činí studovaný systém atraktivní a také obtížný.

Cílem práce je shrnout do kompatního tvaru nedávné výsledky zaměřené na (i) pozorování, že je Kortewegův systém termodynamicky konsistentní, (ii) identifikaci okrajových podmínek, (iii) matematickou a numerickou analýzu počátečních a okrajových úloh v jedné a dvou prostorových proměnných a (iv) počítačové simulace ilustrující vhodnost navržených algoritmů.
Předběžná náplň práce v anglickém jazyce
Navier-Stokes-Korteweg model, proposed by Korteweg to capture capillarity, represents a system of nonlinear partial differential equations for the density and the velocity field. Both quantities are coupled in an interesting manner - the equation for the velocity includes higher order partial differential operator (divergence of the Korteweg stress) that makes the whole system challenging and difficult.

The aim of the thesis is to summarize in a compact way recent results focused on: (i) an observation that the Korteweg system is thermodynamically consistent, (ii) the identification of boundary conditions, (iii) the mathematical analysis of one and two dimensional initial and boundary value problems and (iv) computer simulations that confirm suitability of proposed algorithms.
 
Univerzita Karlova | Informační systém UK