Témata prací (Výběr práce)Témata prací (Výběr práce)(verze: 368)
Detail práce
   Přihlásit přes CAS
Numerical approximation of the time-ordered exponential for spin dynamic simulation
Název práce v češtině: Numerická aproximace time-ordered exponenciály pro dynamické simulace spinu
Název v anglickém jazyce: Numerical approximation of the time-ordered exponential for spin dynamic simulation
Klíčová slova: Time-ordered exponential|$\star$ - product|Magnus expansion|Geometrical numerical integrators|MAS NMR
Klíčová slova anglicky: Time-ordered exponential|$\star$ - product|Magnus expansion|Geometrical numerical integrators|MAS NMR
Akademický rok vypsání: 2021/2022
Typ práce: diplomová práce
Jazyk práce: angličtina
Ústav: Katedra numerické matematiky (32-KNM)
Vedoucí / školitel: Stefano Pozza, Dr., Ph.D.
Řešitel: skrytý - zadáno a potvrzeno stud. odd.
Datum přihlášení: 30.01.2022
Datum zadání: 31.01.2022
Datum potvrzení stud. oddělením: 16.05.2023
Datum a čas obhajoby: 09.06.2023 09:00
Datum odevzdání elektronické podoby:04.05.2023
Datum odevzdání tištěné podoby:09.05.2023
Datum proběhlé obhajoby: 09.06.2023
Oponenti: Scott Congreve, Ph.D.
 
 
 
Zásady pro vypracování
The work will require testing and adapting codes for spin dynamics simulation. The project aims to understand which methods reach a good accuracy in the fastest way on the data provided by the Laboratoire de Chimie de la matière condensée de Paris (Sorbonne University). The main programming languages will be Julia and MatLab. The work also requires to do a review of the literature on this topic.

The project offers the possibility to collaborate with the international members of the *-Lanczos (www.starlanczos.cz) and the MAGICA project (https://anr.fr/Project-ANR-20-CE29-0007).
Seznam odborné literatury
- Bak, M., Rasmussen, J. T., & Nielsen, N. C. (2011). SIMPSON: a general simulation program for solid-state NMR spectroscopy. Journal of magnetic resonance, 213(2), 366-400.
- Blanes, S., Casas, F.: A Concise Introduction to Geometric Numerical Integration. CRC Press, Bocan Raton, FL (2017)
- Blanes, S., Casas, F., & Thalhammer, M. (2017). High-order commutator-free quasi-Magnus exponential integrators for non-autonomous linear evolution equations. Computer Physics Communications, 220, 243-262.
- Giscard, P. L., & Bonhomme, C. (2020). Dynamics of quantum systems driven by time-varying Hamiltonians: Solution for the Bloch-Siegert Hamiltonian and applications to NMR. Physical Review Research, 2(2), 023081.
- Giscard, P. L., & Pozza, S. (2021). Tridiagonalization of systems of coupled linear differential equations with variable coefficients by a Lanczos-like method. Linear Algebra and its Applications, 624, 153-173.
- Gomez Pueyo, A., Marques, M. A., Rubio, A., & Castro, A. (2018). Propagators for the time-dependent Kohn–Sham equations: Multistep, Runge–Kutta, exponential Runge–Kutta, and commutator free Magnus methods. Journal of chemical theory and computation, 14(6), 3040-3052.
- Gomez Pueyo, A., Blanes, S., & Castro, A. (2020). Propagators for quantum-classical models: Commutator-free Magnus methods. Journal of chemical theory and computation, 16(3), 1420-1430.
Předběžná náplň práce
Solving systems of linear ordinary differential equations with variable coefficients remains a challenge that can be expressed using the so-called time-ordered exponential (TOE). Many numerical methods for TOE approximation are found in literature based on different approaches such as exponential propagators, Magnus expansion, integration schemes. Recently, new approaches based on the so-called *-products have been tested successfully.
This project aims to test and compare state-of-the-art methods for TOE approximation on problems coming from the simulation of spin dynamics provided by the Laboratoire de Chimie de la matière condensée de Paris, Sorbonne University. If possible, a particular focus will be given to test the *-Lanczos algorithm.
Předběžná náplň práce v anglickém jazyce
Solving systems of linear ordinary differential equations with variable coefficients remains a challenge that can be expressed using the so-called time-ordered exponential (TOE). Many numerical methods for TOE approximation are found in literature based on different approaches such as exponential propagators, Magnus expansion, integration schemes. Recently, new approaches based on the so-called *-products have been tested successfully.
This project aims to test and compare state-of-the-art methods for TOE approximation on problems coming from the simulation of spin dynamics provided by the Laboratoire de Chimie de la matière condensée de Paris, Sorbonne University. If possible, a particular focus will be given to test the *-Lanczos algorithm.
 
Univerzita Karlova | Informační systém UK