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Chapter 1

Introduction: Tilting theory of
commutative rings

The core of this thesis consists of the following three papers, two of them
published:
[i] Michal Hrbek, One-tilting classes and modules over commutative rings,

Journal of Algebra, 462:1-22, 2016.

DOI: 10.1016/j.jalgebra.2016.05.014

[ii] Lidia Angeleri Hügel and Michal Hrbek, Silting modules over commutative
rings, International Mathematics Research Notices, 2016.

DOI: 10.1093/imrn/rnw147

[iii] Michal Hrbek and Jan Šťov́ıček, Tilting classes over commutative rings,
preprint, arXiv:1701.05534, 2017.

Tilting theory originated in the work of Brenner-Butler and Happel-Ringel in the
early 1980’s. Since then, it crawled out of its original habitat of the category
of finite-dimensional representations of finite-dimensional algebras, and was gen-
eralized in various directions. In this thesis we are concerned with the setting
of modules over an arbitrary commutative ring. Paper [i] extends the classifi-
cation of 1-tilting classes, at the time known for commutative noetherian ring,
and for Prüfer and almost perfect domains, to an arbitrary commutative ring.
Also, the associated tilting modules are constructed explicitly. In [ii], we extend
these results further to the rather new setting of silting modules, introduced by
Angeleri-Marks-Vitória in 2014. Finally, in the preprint [iii], we classify all n-
tilting classes over a commutative ring. The general theme is that the classes,
be it n-tilting or silting, are parametrized by data of geometrical flavor - finite
filtrations of subsets of the Zariski spectrum of the ring (or rather, its “Hochster”
dual). Also, we show how the n-tilting classes can expressed alternatively as

classes of modules vanishing in certain degrees of local, or Čech homology theory.
Before presenting these three papers, the rest of this chapter will gather rel-

evant aspects of tilting theory and commutative algebra, as well as attempt to
put our results into a wider context. Also, in the last section, we prove some new
results on flat cover closure of tilting classes.

A short disclaimer concerning the structure of the thesis:

3



• Each of the four chapters, be it this introductory one, or the three chapters
containing the papers [i]-[iii], has its own bibliography at its end. Therefore,
any citation in square brackets is to be located at the reference list at the
end of the chapter the citation is situated in. The only exceptions are the
references [i]-[iii].

• Although the thesis is a compilation of standalone papers, it has a contin-
uous numbering of chapters, sections, and theorems.

1.1 Cotorsion pairs and approximations

We start by recalling the fundaments of the theory of cotorsion pairs and approx-
imations, and on the way, we introduce the notation used in this chapter. Let R
be an associative and unital ring. By Mod-R we denote the category of right R-
modules. Whenever we talk about a module without specifying the hand and/or
the ring, we always mean right R-modules. Sometimes, the duality will also take
us to the category of left R-modules, which we denote by R-Mod. Whenever F
is an additive functor (possibly contravariant), we denote by KerF the class of
all objects X from the domain category such that F (X) = 0. Given a class C of
right R-modules, we define the following subclasses of Mod-R.

C⊥0 = Ker Hom R(C,−) :=
⋂

C∈C

Ker Hom R(C,−),

C⊥1 = Ker Ext1
R(C,−),

C⊥∞ = Ker Ext>0
R (C,−) :=

⋂

i>0

Ker ExtiR(C,−).

Similarly, we define the following subclasses of R-Mod:

C⊺1 = Ker TorR1 (C,−),

C⊺∞ = Ker TorR>0(C,−).

The version for C being a class of left modules will be used too and is defined
analogously. If C = {M} is a singleton, we write just M⊥1 , and analogically for
the other symbols.

Remark 1.1.1. In papers [i], [ii], and [iii] we use the indexless symbol ⊥. We warn
the reader that in papers [i] and [ii], we use the convention ⊥ := ⊥1 , but in the
paper [iii] we use ⊥ := ⊥∞ .

Definition 1.1.2. A cotorsion pair in Mod-R is a pair (A,B) of classes of R-
modules, such that B = A⊥1 and A = ⊥1B. If S is a subclass of Mod-R, we define
the cotorsion pair (A,B) generated by S by setting B = S⊥1 and A = ⊥1B.

Next we recall the right and left module approximations - the preenvelopes
and precovers, and their minimal versions - envelopes and covers.

Definition 1.1.3. Let C be a class of modules. A map f : M → C in Mod-R is
a C-preenvelope of M if C ∈ C, and for any map f ′ : M → C ′ with C ′ ∈ C there
is a (not necessarily unique) map g : C → C ′ such that f ′ = gf . A C-preenvelope
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is a C-envelope, if, moreover, any endomorphism h of C such that f = hf is
necessarily an automorphism.

A monic map f : M → C is a special C-preenvelope, if Coker(f) ∈ ⊥1C (and
this is easily seen to be a C-preenvelope).

A class of modules C is said to be preenveloping (enveloping, special preen-
veloping) if any module M has a C-preenvelope (envelope, special preenvelope).

The notions of C-precover, C-cover, and special C-precover are defined dually.

The following lemma due to Wakamatsu shows that the minimal approxima-
tions are usually special.

Lemma 1.1.4. [23, Lemma 5.13] Let C be a class of modules closed under exten-
sions. Then:

(i) a monic C-envelope is a special C-preenvelope, and dually

(ii) a surjective C-cover is a special C-precover.

We will mostly consider approximations by left or right classes of a cotorsion
pair. The following result was proven by Salce.

Lemma 1.1.5. [23, Lemma 5.20] Let (A,B) be a cotorsion pair in Mod-R. Then
the following are equivalent:

(i) A is a special precovering class,

(ii) B is a special preenveloping class.

Cotorsion pairs satisfying the equivalent conditions of the Salce Lemma are
called complete. The following very important result shows that any cotorsion
pair generated by a set is complete. Also, the left class of such cotorsion pairs
can be described in terms of the generating set. Recall that given a class S of
modules and a module M , we say that M is S-filtered provided that there is a
continuous and increasing chain of submodules (Mα, α < λ) such that M0 = 0,
⋃

α<λMα = M and Mα+1/Mα ≃ S for some S ∈ S for any α < λ.

Theorem 1.1.6. [23, Theorem 6.11 and Corollary 6.14] Let S be a set of modules.
Then the cotorsion pair (A,B) generated by S is complete. Moreover, the class
A coincides with the class of all direct summands of all S ∪{R}-filtered modules.

1.2 Tilting and cotilting theory essentials

1.2.1 Tilting modules and finite type

If M is a module, denote by Add(M) the class of all direct summands of arbitrary
direct sums of copies of M . The following definition of a tilting module is due to
Colpi-Trlifaj [20] in case of pd ≤ 1 and to Angeleri-Coelho [10] in general:

Definition 1.2.1. Let R be a ring and n ≥ 0. A right R-module T is (n−)tilting
provided that the following three conditions hold:

(T1) pdT ≤ n,
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(T2) ExtiR(T, T (κ)) = 0 for any i > 0 and any cardinal κ,

(T3) there is an exact sequence

0→ R→ T0 → T1 → · · · → Tn → 0,

where Ti ∈ Add(T ) for each i = 0, 1, . . . , n.

Definition 1.2.2. Given a tilting module T , the induced cotorsion pair (A, T ),
with

T = T⊥∞ ,A = ⊥1T
is called a tilting cotorsion pair. The class A is the left tilting class and T the
right tilting class (or just the tilting class) associated to T .

Two tilting modules T and T ′ are said to be equivalent if they induce the same
tilting class.

Tilting modules and their equivalences can be characterized nicely:

Lemma 1.2.3. [23, Lemma 13.16], [13, Theorem 3.11]

• Two tilting modules T and T ′ are equivalent if and only if Add(T ) =
Add(T ′) if and only if Add(T ) ⊆ Add(T ′).

• A module T is n-tilting if and only if

T⊥∞ = Genn(T ),

where Genn(T ) is the class of all modules M possessing an exact sequence
of form

T (κn) → T (κn−1) → · · · → T (κ1) →M → 0

for some cardinals κ1, . . . ,κn.

Even in the case of large tilting modules, any tilting class is of finite type
- that is, it is an Ext-orthogonal class to a set of modules, which are finite in
the strong sense, as defined below. This was proved first by Bazzoni-Herbera for
the case of 1-tilting, and then by Bazzoni-Šťov́ıček in general. Before stating the
Finite type theorem for tilting classes, we need some terminology first.

Definition 1.2.4. A module M is said to be strongly finitely presented if it
admits a projective resolution consisting of finitely generated projectives. We fix
the following notation:

• By mod-R we denote the full subcategory of Mod-R consisting of strongly
finitely presented modules.

• For any n ≥ 0, we denote by modn-R the full subcategory of mod-R con-
sisting of modules of projective dimension at most n.

Definition 1.2.5. Let M ∈ Mod-R and let

· · · −→ Pn
fn−→ Pn+1

fn−→ · · · f2−→ P0
f1−→M → 0

6



be a projective resolution of M . An n-th syzygy of M , denoted ΩnM , is defined
as the kernel of the map fn for any n > 0. Instead of Ω1M we often write
just ΩM , and we use the convention Ω0M = M . We immediately remark that
the syzygies of M are not well-defined as R-modules, indeed, they depend on
the choice of the projective resolution of M . However, ΩnM is well-defined up
to projective equivalence, that is, up to adding or removing a projective direct
summand. Usually, the arguments will not depend on the choice of representative
of the projective equivalence class, and in such cases, if not specified otherwise,
we assume that ΩnM is some fixed choice of the representative module.

Let now
0→M

g1−→ E0
g2−→ · · · gn−1−−→ En

gn−→ En+1 → · · ·
be a minimal injective coresolution of M . For any n > 0, we let Ω−n = Coker(gn)
denote the n-th minimal cosyzygy of M . This time, Ω−nM is uniquely determined
up to isomorphism.

The following definition goes back to Auslander-Bridger ([9]).

Definition 1.2.6. Let A be an abelian category with enough projectives. We
say that a full subcategory S of mod-R is a resolving subcategory if the following
conditions hold:

(i) S contains all projectives,

(ii) S is closed under extensions and direct summands,

(iii) S is closed under taking syzygies, i.e. A ∈ S whenever there is an exact
sequence 0→ A→ P → C → 0 in A with C ∈ S and P projective.

We will mostly be interested in resolving subcategories of modn-R for some
n ≥ 0. In this case, the condition (i) in the above definition translates as: S
contains all finitely generated projective R-modules. Also, note that condition
(iii) can be equivalently replaced by the following condition: if 0 → A → B →
C → 0 is an exact sequence such that B,C ∈ S, then A ∈ S.

Theorem 1.2.7. ([15], [17]) Let R be a ring. There is a 1-1 correspondence

{resolving subcategories S of modn-R} ←→ {n-tilting classes T in Mod-R}

given by S 7→ S⊥1 = S⊥∞ and T 7→ (⊥1T ) ∩mod-R.

As a consequence, all tilting classes are definable in a sense we explain now.
A formula in the first-order language of right R-modules is called a pp-formula if
it is of form

∃x̄ ∈ Rn : ȳA = x̄B

for some ȳ ∈ Rm and some R-matrices A and B of appropriate size. For example,
one can express divisibility of a module by a finitely generated ideal 〈r1, . . . , rn〉
by setting ȳ = y ∈ R, x̄ ∈ Rn, A = 1, and

B =













r1

r2
...
rn













.

7



Theorem 1.2.8. [27, §2.3], [28, Theorem 3.4.7] Let C be a class of right R-
modules, with R being an arbitrary ring. Then the following are equivalent:

1. C is a class of all modules satisfying some prescribed set of pp-formulas, or
implications between pp-formulas,

2. C is a class of all modules M such that HomR(f,M) is surjective for any f
from a prescribed set of homomorphisms between finitely generated projective
R-modules,

3. C is a class closed under products, direct limits, and pure submodules.

Definition 1.2.9. A subclass C of Mod-R is said to be definable if it satisfies the
equivalent conditions of Theorem 1.2.8.

For convenience, let us state explicitly how the definability of tilting classes
follows from them being of finite type. Let T be a tilting class and S a resolving
subcategory of modn-R for some n ≥ 0 such that T = S⊥1 . Fixing a projective

presentation P S
1

fS−→ P S
0 → S → 0 with P S

0 , P
S
1 finitely generated projectives for

every S ∈ S, we infer that T consists precisely of those modules M , for which
HomR(fS,M) is surjective for any S ∈ S.

Theorem 1.2.10. [17] Any tilting class is definable.

1.2.2 Cotilting modules and duality

The cotilting classes and modules are defined completely dually to their tilting
counterparts. If M is a module, we let Prod(M) denote the class of all direct
summands of arbitrary direct products of copies of M .

Definition 1.2.11. A left R-module C is (n-)cotilting if the following three
conditions are satisfied:

(C1) idC ≤ n,

(C2) ExtiR(Cκ, C) = 0 for each i > 0 and any cardinal κ,

(C3) there is an exact sequence

0→ Cn → Cn−1 → · · · → C1 → C0 → W → 0,

where W is an injective cogenerator of R-Mod, and Ci ∈ Prod(C) for each
i ≤ n.

Definition 1.2.12. Given a cotilting module C in R-Mod, the (co)induced co-
torsion pair (C,W), where

C = ⊥∞C,W = C⊥1 ,

is called a cotilting cotorsion pair. The class C is the (left) cotilting class and W
the right cotilting class associated to C.

Two cotilting modules C,C ′ are said to be equivalent if they induce the same
cotilting classes. This happen precisely when Prod(C) = Prod(C ′) ([23, Remark
15.6]).
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As their tilting cousins, the cotilting classes turn out to be definable. Alas,
in general this does not follow from the finite type of tilting classes directly by
a duality argument, but as a consequence of the fact that any cotilting module
is pure-injective. Recall that a module U is pure-injective, if HomR(f,M) is
surjective for any pure embedding f . The pure-injectivity of cotilting modules
was proved first for the case of injective dimension 1 by Bazzoni [18], and the

general case is due to Šťov́ıček.

Theorem 1.2.13. [37] Any cotilting module is pure-injective. In particular, any
cotilting class is definable.

Here we remark the approximation properties of tilting and cotilting classes.

Lemma 1.2.14. Any tilting class is special preenveloping. Any cotilting class is
covering.

Proof. The first statement is a direct consequence of Theorem 1.1.6. The second
statement needs a different deduction, we refer the reader to [23, Theorem 15.9].

Cotilting classes can be characterized by their closure properties among the
definable classes in the following, useful way.

Theorem 1.2.15. [3, Proposition 3.14] Let n ≥ 0 and let C be a class of left mod-
ules over any ring R. Then C is n-cotilting if and only if the following conditions
hold:

1. C is definable,

2. C is a resolving subcategory of R-Mod,

3. any n-th syzygy of any R-module belongs to C.

In particular, 1-cotilting classes are precisely the torsion-free classes closed under
direct limits and containing R.

Proof. For convenience, we prove how the final claim follows from [3, Proposition
3.14]. Let C be a 1-cotilting class, and we need to show that C is closed under
submodules. Let M ∈ C and choose a submodule A of M , inducing an exact
sequence

0→ A→M
π−→ C → 0.

Consider the pullback X of π with some surjective P → C map with P projective.
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This induces the standard pullback diagram:

0 0
x







x







0 −−−→ A −−−→ M
π−−−→ C −−−→ 0

∥

∥

∥

∥

x







x







0 −−−→ A −−−→ X −−−→ P −−−→ 0
x







x







ΩC ΩC
x







x







0 0

Since C contains all (first) syzygies, we infer that ΩC ∈ C. As C is extension-
closed, also X ∈ C. Since P is projective, the middle row short exact sequence
splits, and therefore A is a direct summand of X. Since C is definable, and thus
closed under direct summands, we infer that A ∈ C, as desired.

Cotilting modules not are not only defined dually to tilting modules, there is
also an explicit duality in the game. Suppose that R is an S-algebra, where S is
a commutative ring. This is not a special setting in any sense - we can choose
S = Z for any ring R, but it allows for a more comfortable choices in special cases
(if R is commutative, we often choose R = S, while for an k-algebra over a field
k, we are likely to put S = k). Choosing an injective cogenerator W of Mod-S,
we define the elementary duality functor (−)+ = HomS(−,W ). This duality will
take any tilting module to a cotilting module, and makes the associated tilting
and cotilting class dual definable (in the sense of [28, §3.4.2]):

Proposition 1.2.16. ([23, Theorem 15.18], Lemma 4.4) Let T be an n-tilting
right R-module. Then its dual T+ is an n-cotilting left R-module.

Furthermore, let us denote the associated tilting and cotilting class by T and
C, respectively. Then for any right R-module M and any left R-module N we
have:

• M ∈ T if and only if M+ ∈ C,

• N ∈ C if and only if N+ ∈ T .

In the situation of Proposition 1.2.16, let us say that the cotilting class C is
dual to the tilting class T . However, not every cotilting class fits in this picture
- there are cotilting classes not dual to any tilting class (see §4.9). The finite
type of tilting classes gives a nice characterization of those cotilting classes which
come from the dual side:

Proposition 1.2.17. There is a 1-1 correspondence

{resolving subcategories S of modn-R} ←→
{n-cotilting classes C in R-Mod dual to some tilting class in Mod-R}

given by S 7→ S⊺1 and C 7→ (⊺1C) ∩mod-R.
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We say that a class C of left R-modules is of cofinite type if there is a resolv-
ing subcategory S of modn-R for some n ≥ 0 such that C = S⊺1 . By Proposi-
tion 1.2.17, any class of cofinite type is cotilting, and cotilting classes of cofinite
type are precisely those cotilting classes, which are dual to some tilting class. A
cotilting module C is said to be of cofinite type if the induced cotilting class is of
cofinite type.

Theorem 1.2.18. The assignment T 7→ T+ induces a bijection between the
equivalence classes of right n-tilting and left n-cotilting R-modules of cofinite
type. Hence, it also induces a bijection between n-tilting classes in Mod-R and
n-cotilting classes of cofinite type in R-Mod.

1.2.3 Cofinite type in the commutative case

In our approach, the first step towards the classification results over a commuta-
tive ring was noticing that the cotilting classes of cofinite type are closed under
injective envelopes, which is the point where hereditary torsion pairs enter the
game. At this point, some remarks are due. First, such a claim is specific to the
commutative setting (see Example 1.4.9). Secondly, this seems to be the reason,
why working in the dual setting of cotilting classes proved to be a good strategy
- there is no apparent dual closure property for the tilting classes. The most
obvious analog - the statement “tilting classes over commutative rings are closed
under flat covers” - is seldom true, as we discuss in §1.6.

The closure under injective envelopes can even be used to characterize the
cofinite type classes amongst the cotilting classes.

Definition 1.2.19. Let C be a cotilting class induced by a cotilting module C,
i.e. C = ⊥∞C. For any i ≥ 0, we define the class

C(i) = ⊥∞(Ω−iC).

Note that C(i) = {M ∈ R-Mod | ΩiM ∈ C}, and that by [3, Lemma 3.5], C(i) is
an (n− i)-cotilting class for any i = 0, 1, . . . , n.

Theorem 1.2.20. (Proposition 4.5.5, Theorem 4.9.1) Let R be a commutative
ring and C a cotilting class in Mod-R. Then the following are equivalent:

1. C is of cofinite type,

2. C(i) is closed under taking injective envelopes for all i = 0, 1, . . . , n− 1.

In particular, a 1−cotilting class is of cofinite type if and only if it is closed under
injective envelopes.

In [3], the authors proved that over a noetherian commutative ring, all cotilt-
ing classes are actually of cofinite type. The first example of a cotilting class not
of cofinite type was showed by Bazzoni in [11]. We refer the reader to section
§4.9 for a substantial generalization of Bazzoni’s construction. In particular, we
construct for any n > 1 a cotilting class C over a certain commutative ring such
that C(i) is closed under injective envelopes for all i = 0, 1, 2, . . . , n−2, but so that
C is not of cofinite type, showing that condition (ii) of Theorem 1.2.20 cannot be
weakened.
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1.3 Silting and cosilting modules

Silting modules were introduced by Angeleri, Marks, and Vitória in [2] as a
module-theoretic counterpart of the 2-term silting complexes. The definition
generalizes 1-tilting modules (the common framework encompassing both silting
and n-tilting modules would be the n-term silting complexes, which we do not
discuss in this thesis). In this section, we quickly gather the relevant facts about
silting and cosilting theory, which are analogous to the (1-)tilting setting (but
the proofs are necessarily not).

Definition 1.3.1. [2] A right R-module T is silting (with respect to σ), provided
that there is a projective presentation

P−1
σ−→ P0 → T → 0,

such that Dσ = Gen(T ), where

Dσ = {M ∈ Mod-R | Hom R(σ,M) is surjective}.

In this case we call Dσ a silting class. Two silting modules T, T ′ are equivalent if
they induce the same silting class in this way.

Remark 1.3.2. Any 1−tilting module is a silting module with respect to any of
its monic projective presentations. Indeed, if σ is such presentation, Dσ = T⊥1 ,
which is equal to Gen(T ) by Lemma 1.2.3.

Example 1.3.3. The choice of the projective presentation σ matters. As a simple
example, consider a ring with nontrivial decomposition R = R1 × R2. Then R1

is a silting module with respect to the projective presentation

R2
σ−→ R1

≃−→ R1 → 0,

where σ = 0, but not with respect to projective presentation

0
σ′−→ R1

≃−→ R1 → 0.

Indeed, Dσ = Mod-R1 = Gen(R1), but Dσ′ = Mod-R.

Let σ : P−1 → P0 be a homomorphism of two projective modules. We say that
σ is of finite type provided that there is a set I and homomorphisms σi between
finitely generated projective modules for each i ∈ I, such that Dσ =

⋂

i∈I Dσi
.

The following finite type theorem for silting modules is analogous to the tilting
case:

Theorem 1.3.4. ([4, Theorem 6.3], Theorem 3.2.3) Let σ be a map between
projective modules. Then the following are equivalent:

1. σ is of finite type,

2. Dσ is definable,

3. Dσ is a silting class.1

1This does not in general imply that Coker σ is a silting module!
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The dual version of silting modules was introduced in [19].

Definition 1.3.5. A left R-module C is cosilting if it admits an injective copre-
sentation

0→ C → E0
λ−→ E1

such that Cλ = Cogen(C), where

Cλ = {M ∈ R-Mod | Hom R(M,λ) = 0}.

Definition 1.3.6. Let λ be a map between left injective R-modules. We say that
λ (or Cλ) is of cofinite type, if there is a set {σi, i ∈ I} of maps between finitely
generating projectives such that Cλ =

⋂

i∈I Tσi
, where

Tσ = {M ∈ R-Mod | σi ⊗RM is injective},

for any map σ of right R-modules.

Theorem 1.3.7. (Lemma 3.3.3, Proposition 3.3.4)

1. If T is a silting right R-module with respect to a projective presentation σ,
then T+ is cosilting left R-module with respect to the injective copresentation
σ+. In this situation, σ+ is of cofinite type, and Cσ+ = Tσ.

2. In the same situation as in (1), the classes Dσ and Cσ+ are dual definable.
That is, both those classes are definable, and given M ∈ Mod-R and N ∈
R-Mod, we have:

M ∈ Dσ ⇔M+ ∈ Cσ+ ,

N ∈ Cσ+ ⇔ N+ ∈ Dσ.

3. A map λ of left injective R-modules is of cofinite type if and only if there
is a map σ of right projective R-modules of finite type such that Cλ = Cσ+.
In particular, in this situation Cλ is a cosilting class.

Generalizing the 1-tilting case from [23, Theorem 15.31], over a left noetherian
ring, this duality is “onto”.

Theorem 1.3.8. (Theorem 3.3.7) Let R be a left noetherian ring. Then every
cosilting class in R-Mod is of cofinite type. In this case, silting classes in Mod-R
are precisely the definable torsion classes.

The cosilting classes on the other hand are precisely the definable torsion-free
classes over any ring. This was proved independently by Wei-Zhang ([34]) and

Breaz-Žemlička ([30]). As in the case of cotilting classes, we can now character-
ize the cofinite type classes amongst the cosilting classes as those closed under
injective envelopes.

Theorem 1.3.9. Let R be a commutative ring and C a cosilting class in Mod-R.
Then C is of cofinite type if and only if it is closed under injective envelopes (i.e.,
it is a torsion-free class of a hereditary torsion pair, see §1.4).
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Proof. If C is of cofinite type, then it is closed under injective envelopes by Lemma
3.4.2. To prove the converse, let C be a cosilting class closed under injective
envelopes. By the preceding paragraph, C is a definable torsion-free class, and
thus C is a torsion-free class in a hereditary torsion pair (T , C) of finite type. With
respect to Theorem 1.4.6, there is a set I of finitely generated ideals such that
C =

⋂

I∈I(R/I)⊥0 . For each I ∈ I, there is nI ≥ 0 and a projective presentation

RnI
σI−→ R→ R/I → 0.

Then HomR(R/I,M) = 0 if and only if HomR(σI ,M) is injective. By [1, Propo-
sition 20.10], we have a natural isomorphism

Hom R(σI ,M) ≃ Hom R(σI , R)⊗RM.

Denoting σ∗
I = HomR(σI , R), we see that C =

⋂

I∈I Tσ∗
I
, where σ∗

I : R → Rn is a
map between finitely generated projectives. Hence, C is of cofinite type.

Corollary 1.3.10. Over a commutative ring, cosilting classes of cofinite type are
precisely the torsion-free classes of hereditary torsion pairs of finite type.

Proof. By [30, Theorem 3.5], cosilting classes over an arbitrary ring are precisely
the torsion-free classes closed under direct limits. Theorem 1.3.9 shows that the
cofinite-type classes amongst these are precisely the ones closed under injective
envelopes. This concludes the proof.

1.4 Hereditary torsion pairs, Gabriel topologies,

Thomason sets

The aim of this section is to briefly recall the theory of hereditary torsion pairs
in the category of modules over a commutative ring. Large portion of the results
is known, but be the results may be too fragmented in the literature to be easily
referenced.

Definition 1.4.1. Let R be a ring. By a torsion pair we mean a pair (T ,F) of
subclasses of Mod-R such that HomR(T, F ) = 0 for any T ∈ T and F ∈ F , and
such that for any right R-module there is a short exact sequence

0→ T (M)→M → F (M)→ 0

with T (M) ∈ T and F (M) ∈ F . Such an exact sequence is uniquely determined
(up to a unique isomorphism of exact sequences), and the assignment M 7→ T (M)
is a subfunctor called the torsion subfunctor with respect to the torsion pair
(T ,F). The class T is called the torsion class of this torsion pair, and F the
torsion-free class of this torsion pair.

A class C of modules is called simply a torsion class (torsion-free class) if it
fits as a torsion (torsion-free) class of some torsion pair.

These classes are well-known to be characterized by the following closure
properties:

• Class T is torsion if and only if it is closed under extensions, direct sums,
and epimorphic images.

• Class F is torsion-free if and only if it is closed under extensions, direct
products, and submodules.
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1.4.1 Hereditary torsion pairs and Gabriel topologies

Definition 1.4.2. A torsion pair (T ,F) is hereditary if T is closed under sub-
modules (equivalently, if F is closed under injective envelopes).

A theorem due to Gabriel shows that hereditary torsion pairs are determined
precisely by those cyclic modules belonging to the torsion class. In order to make
this precise, we need to introduce the notion of Gabriel topology of ideals. We
will use the following notation: If I is a right ideal of a ring R, and t ∈ R an
element, we set (I : t) = {r ∈ R | tr ∈ I}. It is easily seen that (I : t) is always a
right ideal.

Definition 1.4.3. Let R be a ring. A (right) Gabriel topology (or a Gabriel
filter2) of R is a filter G on the set of all right ideals of R satisfying the following
conditions:

1. if I ∈ G and t ∈ R, then (I : t) ∈ G, and

2. if J is a right ideal of R, and I ∈ G such that (J : t) ∈ G for any t ∈ I,
then necessarily J ∈ G.

Theorem 1.4.4. [31, §VI Proposition 4.2 and Theorem 5.1] There is a 1-1 cor-
respondence

{hereditary torsion pairs (T ,F) in Mod-R} ↔ {right Gabriel topologies G of R}

given by the assignments

G 7→ ({M ∈ Mod-R | Ann(m) ∈ G ∀m ∈M}, (
⊕

I∈G

R/I)⊥0)

(T ,F) 7→ {I right ideal of R | R/I ∈ T }.

In this correspondence, the hereditary torsion pairs with torsion-free classes
definable are easily detected.

Definition 1.4.5. A hereditary torsion pair (T ,F) is said to be of finite type if
F is closed under taking direct limits.3

A right Gabriel topology is called finitely generated, if it has a filter basis
consisting of finitely generating right ideals.

Theorem 1.4.6. The correspondence from Theorem 1.4.4 restricts to bijective
correspondence

{hereditary torsion pairs (T ,F) of finite type in Mod-R} ↔

{right finitely generated Gabriel topologies G of R}.
2We preferred this alternative terminology in paper [ii].
3In paper [i] we imposed this definition also on possibly non-hereditary torsion pairs. Al-

though this is not unseen in literature, it is not standard. To avoid confusion, in this chapter
we speak of finite type only in the hereditary case.
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Proof. This can be deduced from [31, §XIII Proposition 1.2], where it is proved
that G is finitely generated if and only if the torsion functor T (−) associated
to the hereditary torsion pair (T ,F) corresponding to G commutes with direct
limits. If T (−) commutes with direct limits, then F is clearly closed under direct
limits. To prove the converse, let M = lim−→i∈I

Mi be a direct limits of some direct
system. For each i ∈ I let

0→ T (Mi)→Mi → F (Mi)→ 0

be the exact sequence induced by the torsion pair (T ,F). Consider the direct
limit map ψ : lim−→i∈I

T (Mi)→M . Since the direct limit functor is exact, we have
that ψ is monic. Also, as torsion classes are always closed under direct limits, ψ
factors through the inclusion T (M) ⊆ M , and therefore ψ corestricts to a map
ϕ : lim−→i∈I

T (Mi) → T (M). Then we have Coker(ψ) ≃ lim−→i∈I
F (Mi). By the

hypothesis, the latter module belongs to F . Therefore, the map ϕ has to be onto
T (M), proving finally that ϕ is an isomorphism.

Alternatively, this follows from the (proof of) Lemma 2.2.4.

In the commutative case, the definition of a finitely generated Gabriel topology
simplifies considerably.

Lemma 1.4.7. (Lemma 2.2.3) Let R be a commutative ring. Suppose that G is a
filter of ideals of R with a filter basis consisting of finitely generated ideals. Then
G is a (finitely generated) Gabriel topology if and only if it is closed under ideal
product.

Theorem 1.4.6 says in particular that torsion-free classes of hereditary torsion
pairs of finite type are right Hom-orthogonals to sets of finitely presented modules.
The following results shows that, over a commutative ring, the converse is also
true. That is, any class given as a right Hom-orthogonal to a set of finitely
presented modules fits as a torsion-free class into some hereditary torsion pair.
This is the principle behind the close connection of cofinite-type cotilting classes
with hereditary torsion pairs (cf. Corollary 2.3.6).

Lemma 1.4.8. (Proposition 4.2.6) Let R be a commutative ring, and F a class
such that F = S⊥0 for a set S of finitely presented modules. Then F is a torsion-
free class of some hereditary torsion pair of finite type.

Proof. The proof of this is completely dual to that of Lemma 3.4.2. For conve-
nience however, we write the proof here in detail. Clearly, F is a torsion-free
class closed under direct limits. It remains to prove that F is closed under taking
injective envelopes. Fix S ∈ S and a presentation

P−1
σ−→ P0 → S → 0

with P−1, P0 being finitely generated projectives. Let M ∈ F and consider its
injective envelope

0→M
ι−→ E(M).
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Applying HomR(σ,−) onto ι, we obtain the following diagram:

0 0






y







y

HomR(P−1,M)
HomR(σ,M)←−−−−−−− HomR(P0,M) ←−−− 0







y

HomR(P0,ι)







y

HomR(P−1, E(M))
HomR(σ,E(M))←−−−−−−−−− HomR(P0, E(M))

The diagram has the following properties:

• It is a commutative diagram of R-modules, not just abelian groups. This
point is subtle, but it is precisely where we use (and need) the commutativity
of R!

• All drawn columns and rows are exact. This follows from P−1, P0 being
projective, and from the assumption of HomR(S,M) = 0.

• Ker HomR(σ,E(M)) = HomR(S,E(M)).

It is enough to show that the map HomR(σ,E(M)) is injective. Indeed, then
HomR(S,E(M)) = 0, which is the goal. Without loss of generality, we can
assume both σ and M non-zero. First, note that HomR(P0, ι) is an injective
envelope of the R-module HomR(P0,M). This can be observed as follows: If
P0 ≃ Rn for some n > 0, then HomR(Rn, ι) is isomorphic to the direct sum map
ιn : Mn → E(M)n, which is clearly an injective envelope of Mn, as E(M)n is
injective and ιn is essential (see [1, Proposition 6.17]). If P0 is not free, then the
claim follows from the decomposition P0 ⊕ P ′ ≃ Rn for some finitely generated
projective module P ′.

Towards a contradiction, suppose now that Ker HomR(σ,E(M)) is non-zero.
By the established essentiality of the map HomR(P0, ι), there is a non-zero el-
ement x ∈ HomR(P0,M) such that HomR(σ,E(M)) ◦ HomR(P0, ι)(x) = 0. By
commutativity of the square, and the monicity of the left vertical map of the
square, this yields that HomR(σ,M)(x) = 0. But HomR(σ,M) is monic, a con-
tradiction.

Example 1.4.9. Lemma 1.4.7 is in general not true if R is not commutative. For
example, consider any right semihereditary and left perfect ring R, that is not
left self-injective. A class of such rings is easy to obtain - if R = KQ is a quiver
algebra of an acyclic quiver Q with at least one arrow, then R is semihereditary
and artinian from both sides, and it is not self-injective on either side. Let C be the
class of all projective left R-modules. Then C is a 1-cotilting class of cofinite type.
Indeed, since R is left perfect, C coincides with the class of all flat left R-modules.
Therefore, C = S⊺1 , where S = {R/I | I a finitely generated right ideal of R}.
Since R is right hereditary, S ⊆ mod1-R, and thus C is a 1-cotilting class of
cofinite type by Proposition 1.2.17. Also, by Corollary 2.3.6, we can express this
class as C = {S† | S ∈ S}⊥0 , where S† = Ext1

R(S,R), a finitely presented left
R-module.

We claim that C is not closed under injective envelopes. Indeed, if that was
the case, then E(R) ∈ C would be a left projective R-module. By injectivity, we
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can extend the identity on R to a split epimorphism E(R) → R. But then R is
a left injective R-module, a contradiction with R not being left self-injective.

1.4.2 Hochster duality and Thomason sets

Both of our main classification results, that is for silting and n-tilting classes
over a commutative ring, parametrize the classes by certain subsets of the Zariski
spectrum of the ring. These subsets are in general neither closed or open in the
Zariski topology; they are unions of certain Zariski-closed subsets. However, it
turns out that they are precisely the open sets of the so-called Hochster dual of
the Zariski spectrum. As is customary in algebraic geometry, we use the term
quasi-compact instead of compact to emphasize that the spaces we deal with are
usually not Hausdorff.

Definition 1.4.10. A quasi-compact topological space X is spectral if the fol-
lowing two conditions hold:

• the set of quasi-compact open subsets of X is closed under finite intersec-
tions and forms an open basis for the topology of X, and

• X is sober, that is, every irreducible closed set is the closer of a unique point
of X.

A continuous map between two spectral spaces is called spectral if the full inverse
image of any quasi-compact open set is quasi-compact.

The spectrum of any commutative ring with the Zariski topology is spectral.
On the other hand, Hochster laboriously constructed to any spectral space X a
commutative ring R such that X is homeomorphic to Spec(R). In other words:

Theorem 1.4.11. ([35]) Up to homeomorphism, spectral spaces are precisely the
Zariski spectra of commutative rings.

Now we discuss the Hochster duality. One short survey on this topic (of
course, from the point of view of our application) is contained in paper [iii] -
Section §4.2.1. Here we sum up the approach following the recent paper [5] by
Kock and Pitsch - in the language of frames from the area of pointless topology.
Apart from closely following [5], our basic reference for the theory of frames (and
their dual counterparts locales) is [7, II].

Definition 1.4.12. A frame is a joint-complete lattice in which finite meets
distribute over arbitrary joins. A lattice homomorphism between frames is a
frame map if it preserves arbitrary joints. This defines the category of frames.

In this paragraph, we follow [7, II.1]. Given any topological space X, the
lattice Ω(X) of all open sets of X forms a frame. The assignment X 7→ Ω(X)
induces a contravariant functor from the category of topological spaces to the
category of frames. This functor admits a right adjoint functor which assigns to
a frame F the topological space (called the point space)

Pt(F ) = {ϕ : F → {0, 1} | ϕ is a frame map},
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with topology having as open sets precisely the sets of form

{ϕ : F → {0, 1} | ϕ(a) = 1}

for some element a of the frame F . It turns out that the topological spaces
homeomorphic to Pt(F ) are precisely the sober spaces. A frame F is called spatial
if for any elements a, b ∈ F such that a 6≤ b there is a frame map ϕ : F → {0, 1}
(a “point”) such that ϕ(a) = 1 and ϕ(b) = 0 (intuitively, frame F is spatial if “it
has enough points”).

Theorem 1.4.13. [7, II 1.7] There is a contravariant equivalence between the
category of sober topological spaces and the category of spatial frames.

An element c in a frame F is finite if whenever c ≤ ∨

a∈A a for some subset
A ⊆ F , then c ≤ ∨a∈B a for some finite subset B of A. Frame F is called coherent
if the finite elements form a sublattice, and every element is expressible as a joint
of finite elements (in particular, by definition this means that the maximal element
of F is finite). By [7, II 3.4], any coherent frame is spatial.

A frame map between coherent frames is a coherent frame map, if it sends
finite elements to finite elements. By restricting the functor X 7→ Ω(X) to
spectral spaces and spectral maps, we obtain:

Theorem 1.4.14. [7, II 3.4] The category of spectral spaces and spectral maps is
contravariantly equivalent to the category of coherent frames and coherent frame
maps.

The final ingredient is the relation of distributive lattices and coherent frames.
Given a coherent frame F , the sublattice K of all finite elements of F is a dis-
tributive lattice. On the other hand, if K is a distributive lattice, then the lattice
Idl(K) of all ideals of F is a frame ([7, II 3.3]). It is not hard to see that any
coherent frame is uniquely determined by the lattice of its finite elements, and
that these two assignments are mutually inverse equivalences of the corresponding
categories.

Theorem 1.4.15. [7, II 3.3] The assignment K 7→ Idl(K) induces an equiva-
lence from the category of distributive lattices and lattice maps to the category of
coherent frames and coherent frame maps. The inverse equivalence assigns to a
coherent frame the sublattice of all finite elements.

Now we are ready to describe the Hochster duality. We start with a spectral
space X, and its frame of open sets Ω(X). Denote by K(X) the distributive
sublattice of Ω(X) consisting of all finite elements, that is, of quasi-compact open
sets of X. By the previous discussion, the frame Ω(X) is precisely the complete
lattice of all ideals of K(X); in symbols, Ω(X) = Idl(K(X)). Now we can form
the dual lattice K(X)op of K(X) - this is again a distributive lattice. Then the
lattice F ∗ := Idl(K(X)op) is a coherent frame. The spectral space X∗ = Pt(F ∗)
associated to this frame is called the Hochster dual of X.

Since F ∗ is a coherent frame, the Hochster dual X∗ of a spectral space X is
again a spectral space. Moreover, the underlying set of X∗ is naturally identified
with the original space X (but the topology is different!). Indeed, the points of
X∗ correspond to prime ideals of K(X)op (see [7, II 3.4 Paragraph and Lemma]).
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These are precisely the prime filters in K(X), which correspond by taking com-
plements to prime ideals in K(X) - the points of Pt(Ω(X)) ≃ X. One of the
benefits of this frame-theoretic approach is that now just from the simple fact
that (Dop)op = D for any distributive lattice D, we can infer that Hochster du-
ality is an honest duality: (X∗)∗ is homeomorphic to X for any spectral space
X.

Starting with X = Spec(R) for some commutative ring R, the Hochster dual
Spec(R)∗ of the spectrum is (homeomorphic to) a topological space with under-
lying set Spec(R), where the topology is given by defining a basis of closed sets
consisting of precisely those sets, which are open and quasi-compact in Spec(R).
Therefore, the open sets of Spec(R)∗ are precisely the arbitrary unions

⋃

i∈I Vi of
sets Vi, such that the complement of Vi is open and quasi-compact in Spec(R).
These sets have an easy characterization. As usual, given an ideal I of a com-
mutative ring R, we let V (I) = {p ∈ Spec(R) | I ⊆ p} be the Zariski closed set
defined by ideal I.

Lemma 1.4.16. [6, 00F6 Lemma 10.28.1] A subset V of Spec(R) has a quasi-
compact open complement if and only if V = V (I) for some finitely generated
ideal I.

In 1997 work [38], Thomason showed that the open sets of the Hochster dual
Spec(R)∗ correspond bijectively to the thick subcategories of the derived category
of perfect complexes over an arbitrary commutative ring. This explains the fol-
lowing name for the open sets of the space Spec(R)∗ often found in literature, even
though Hochster’s works predates that of Thomason by almost three decades.

Definition 1.4.17. Let R be a commutative ring. A subset X of Spec(R) is
called Thomason, if it satisfies any of the three following equivalent conditions:

(i) X is an open set in Spec(R)∗,

(ii) X is a union of Zariski closed sets with quasi-compact complements,

(iii) there is a set I of finitely generated ideals of R such that X =
⋃

I∈I V (I).

1.4.3 The three points of viewing Thomason sets and the
vaguely associated primes

We finish this section by writing out in detail the tight connection between the
three kinds of objects over a commutative ring R - hereditary torsion pairs of finite
type, finitely generated Gabriel topologies, and Thomason sets. Apart from the
vaguely associated prime business, all the parts are either salvageable in literature,
or folklore to experts. However, since it proved highly useful to switch between
these three viewpoints in the body of the thesis (mainly in papers [i] and [iii]), we
feel it is worthy to make the correspondence clear. The following generalization
of the notion of associated primes over a noetherian ring was introduced in paper
[i]:

Definition 1.4.18. Let R be a commutative ring and M an R-module. We
say that a prime p ∈ Spec(R) is vaguely associated to M if R/p belongs to the
smallest full subcategory of Mod-R containing M and closed under direct limits
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and submodules. By VAss(M), we denote the set of all primes which are vaguely
associated to M .

Let us gather the basic properties of this notion, proved in [i]:

Lemma 1.4.19. Let R be a commutative ring.

1. If M is a non-zero R-module, then VAss(M) is non-empty.

2. If R is noetherian, then VAss(M) coincides with the set of standard asso-
ciated primes Ass(M).

3. For any R-module M , VAss(M) ⊆ Supp(M) = {p ∈ Spec(R) |M ⊗R Rp 6=
0}.

4. If M is a finitely generated R-module, then p ∈ VAss(M) implies that
HomR(M,R/p) 6= 0.

Proof. Follows directly from Lemmas 2.3.8 - 2.3.10.

Theorem 1.4.20. Let R be a commutative ring. Then there are bijective corre-
spondences between the following collections:

(i) Thomason subsets X of Spec(R),

(ii) finitely generated Gabriel topologies G of R, and

(iii) hereditary torsion pairs (T ,F) of finite type.

The mutually inverse assignments are given as follows:

(i)→ (ii) : X 7→ {I ideal of R | V (I) ⊆ X},
(i)→ (iii) : X 7→ ({M | Supp(M) ⊆ X}, {M | VAss(M) ∩X = ∅}),
(ii)→ (i) : G 7→

⋃

I∈G

V (I) = G ∩ Spec(R),

(iii)→ (i) : (T ,F) 7→
⋃

M∈T

Supp(M) = Spec(R) \ Ass(F).

For correspondences between (ii) and (iii) we refer to Theorem 1.4.6.

Proof. (i)↔ (ii): This is proved in Lemma 4.2.10.
(i)→ (iii): Combine Propositions 4.2.11 and 4.2.13.
(iii) → (i): The assignment of the torsion class T is handled in Proposition

4.2.11. Then F = T ⊥0 . Since T is closed under submodules and direct limits, we
have

X :=
⋃

M∈T

Supp(M) =
⋃

F∈T , F finitely generated

Supp(F ).

From Lemma 2.3.10, we infer equivalences for a prime p:

p ∈ X ⇐⇒ ∃M ∈ T : Hom R(M,R/p) 6= 0 ⇐⇒ R/p 6∈ F ⇐⇒ p 6∈ Ass(F).

That concludes the proof.
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We conclude this section by a homological characterization of vaguely associ-
ated primes. The condition (i) of the following Proposition would in the setting of
a noetherian ring R and a finitely generated module M read “the grade of M with
respect to I is at least n”. The connection with the grade theory is made more
apparent in Sections §4.3.3 and §4.3.4, where Koszul cohomology characterization
is appended.

Proposition 1.4.21. (Proposition 4.3.13) Let R be a commutative ring and I a
finitely generated ideal. Given a module M and n > 0, the following are equiva-
lent:

(i) ExtiR(R/I,M) = 0 for all i = 0, 1, . . . , n− 1,

(ii) VAss(M) ∩ V (I) = ∅ for all i = 0, 1, . . . , n− 1.

In particular, the hereditary torsion-free pair of finite type with the torsion-free
class (R/I)⊥0 (cf. Lemma 1.4.8) corresponds to the Thomason set V (I) in the
sense of Theorem 1.4.20.

1.5 Classification results

Now we are ready to sum our main results - the classifications theorem for tilting
and silting classes over an arbitrary commutative ring. In this section, let R be
always a commutative ring.

1.5.1 Classes

The following notion will give us the right parametrizing set for the n-tilting
classes. It is a direct generalization of the notion of the same name used in [3].

Definition 1.5.1. Let n ≥ 0. We say that a sequence t̄ = (t0, t1, . . . , tn−1)
of hereditary torsion pairs ti = (T (ti),F(ti)) of finite type is characteristic (of
length n) if the following two conditions are satisfied:

• The torsion-free classes form a (not necessarily strictly) increasing sequence:
F(t0) ⊆ F(t1) ⊆ · · · ⊆ F(tn−1), and

• Ω−iR ∈ F(ti) for each i = 0, 1, . . . , n− 1.

Via Theorem 1.4.20, to each hereditary torsion pair t = (T (t),F(t)) corresponds
a finitely generated Gabriel topology G(t), and a Thomason set X(t). Then we
have:

Lemma 1.5.2. A sequence (t0, t1, . . . , tn−1) of hereditary torsion pairs of finite
type is characteristic if and only if

• G(t0) ⊇ G(t1) ⊇ · · · ⊇ G(tn−1), and

• ExtiR(R/I,R) = 0 for each I ∈ G(ti) and each i = 0, 1, . . . , n− 1

if and only if
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• X(t0) ⊇ X(t1) ⊇ · · · ⊇ X(tn−1), and

• VAss(Ω−iR) ∩X(ti) = ∅ for each i = 0, 1, . . . , n− 1.

Proof. A direct consequence of Theorem 1.4.20 and Lemma 1.4.21.

Hence, we can view a characteristic sequence equivalently as a sequence of
hereditary torsion pairs of finite type, finitely generated Gabriel topologies, or
Thomason sets satisfying the conditions above. Indeed, from now on we will
freely switch betweens those three versions of characteristic sequences in order
to make the formulations of the classification theorems easier. Using the closure
under injective envelopes, the classification on the cotilting side has the following
nice form, for which we do not have an analogous version on the tilting side.

Theorem 1.5.3. (Theorem 4.5.3. and Theorem 4.6.1) There is a 1-1 correspon-
dence

{characteristic sequences t̄ of length n} ↔ {n-cotilting classes C of cofinite type}

given by the mutually inverse assignments

t̄ 7→ {M ∈ Mod-R | Ω−iM ∈ F(ti) ∀i = 0, 1, . . . , n− 1}

C 7→ (Ass(C)c,Ass(C(1))
c, . . . ,Ass(C(n−1))

c),

where c stands for the complement of a set in Spec(R).

By the character duality, we then automatically have a bijection between
characteristic sequences and tilting classes, which can be stated explicitly in the
following way. Given a finitely generated Gabriel topology G, let Gf denote the
collection of all finitely generated ideals from G (and indeed, the following theorem
would work if we replaced Gf by any subset G ′ of G consisting of finitely generated
ideals such that the closure of G ′ under ideal product is a filter basis of G).

Theorem 1.5.4. (Theorem 4.6.2) Given n ≥ 0, the following three families are
in bijective correspondences:

(i) characteristic sequences t̄ of length n,

(ii) n-tilting classes T in Mod-R, and

(iii) n-cotilting classes C of cofinite type in Mod-R

given by assignments

(i)→ (ii) : t̄ 7→
n−1
⋂

i=0

⋂

I∈G(ti)f

Ker TorRi (R/I,−),

(i)→ (iii) : t̄ 7→
n−1
⋂

i=0

⋂

I∈G(ti)f

Ker ExtiR(R/I,−).
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In paper [iii], we prove versions of Theorem 1.5.4 replacing the Tor and Ext

by Koszul, local, and Čech homology and cohomology, and we also provide a
description of the corresponding resolving subcategories of modn-R. For this, see
Sections §4.6 and §4.7.

Finally, we extract the main result from paper [ii] on silting classes in the
following way.

Theorem 1.5.5. The following collections are in bijective correspondences

(i) Thomason subsets X of Spec(R),

(ii) silting classes D in Mod-R,

(iii) cosilting classes C of cofinite type in Mod-R.

These are given by the following mutually inverse bijections

(i)→ (ii) : X 7→ {M ∈ Mod-R |M = IM for any ideal I such that V (I) ⊆ X},

(ii)→ (i) : D 7→ {p ∈ Spec(R) |M = pM for any M ∈ D},
and

(i)→ (iii) : X 7→ {M ∈ Mod-R | VAss(M) ∩X = ∅},
(iii)→ (i) : C 7→ (Spec(R) \ Ass(C)).

Proof. (i)↔ (ii): This follows by straightforward combination of Theorem 3.4.7
and Theorem 1.4.20.

(i)↔ (iii): By Corollary 1.3.10, the cosilting classes of cofinite type in Mod-R
are precisely the hereditary torsion-free classes of finite type. The correspondence
is then established by Theorem 1.4.20.

Note that in the light of Theorem 1.5.4, the 1-tilting class amongst the silting
classes in Theorem 1.5.5 are precisely the ones which correspond to a Thomason
set X such that VAss(R) ∩X = ∅.

1.5.2 Modules

Generally speaking, given an n-tilting class T we can always construct an n-tilting
module T such that T⊥∞ = T by iterating special T -preenvelopes, starting with
R:

0→ R→ T0 → T1 → · · · → Tn−1 → Tn → 0,

where Tn is the cokernel of the n-iteration of the special T -preenvelope. Then
T = T0 ⊕ T1 ⊕ · · · ⊕ Tn is the desired n-tilting module (see [23, Chapter 13]).
However, the special T -preenvelopes, although the small object argument en-
sures their existence, are in general hard to construct explicitly. In Section §2.4,
we provide for any 1-tilting class over a commutative ring a rather explicitly con-
structed tilting module δ generating it. We call δ a Fuchs-Salce tilting module,
as its construction generalizes that of the Fuchs and Salce modules introduced
by Facchini [24] for divisible modules over domains, by Fuchs-Salce [25] for S-
divisible module for any multiplicative set S of a domain, and by Salce [26] for
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localizing sets of a Prüfer domain. Also, this construction is generalized to the
silting case in Construction 3.4.5.

One application of this construction is an alternative elementary proof of
the commutative version of the so-called Saoŕın’s problem, solved originally by
Bazzoni ([14]) - see Theorem 2.4.6. Here, we remark another consequence of
this construction. In Section §2.5, we discuss the cases when the 1-tilting class
T over a commutative ring R admits a tilting module T induced by a flat ring
epimorphisms - meaning that T = S⊕S/R, where R→ S is a flat epimorphism of
rings. Such situation is characterized in terms of the associated Gabriel topology
in Theorem 2.5.4, and it is a rather special situation. For example if R = k[x, y]
is a ring of polynomials in variables x, y over a field k, I is the ideal generated by
{x, y}, then the class T = {M ∈ Mod-R | M = IM} of I-divisible modules is 1-
tilting. But, there is no flat ring epimorphism R→ S such that Gen(S) = T (see
[31, §IX Exercise 3 and Theorem 2.5.4]). However, if carried out carefully, the
Fuchs-Salce construction yields a tilting module for this class of form M ⊕M/R,
where M is a flat module with R as a submodule.

Proposition 1.5.6. Let I be a countable set of finitely generated ideals of R.
Then there is an inclusion R

ι−֒→ M of R into a flat R-module M such that
M ⊕M/ Im(ι) is a 1-tilting module generating the tilting class {M ∈ Mod-R |
M = IM ∀I ∈ I}.
Proof. Since I is countable, there is an ω-sequence (In | 0 < n < ω) of ideals of
I such that every ideal of I occurs in this sequence infinitely many times. For
each n > 0 we fix a finite generating set x1

n, x
2
n, . . . , x

kn
n . Then the construction

of the Fuchs-Salce module in Definition 2.4.1 can be adjusted as follows (and in
the case of I being a singleton, the construction will be exactly the same).

For each n > 0, let An =













x1
n

x2
n
...
xkn
n













be the matrix inducing a map R
An−֒→ Rkn .

Note that since HomR(R/In, R) = 0, this map is a monomorphism. The module
M = MI is obtained as a direct limit of the following well-ordered ω-sequence of
monomorphisms

R
A1−֒→ Rk1

A
⊕k2
2−֒−−→ Rk1·k2

A
⊕k3
3−֒−−→ Rk1·k2·k3

A
⊕k4
4−֒−−→ · · ·

where A⊕k denotes the diagonal-block matrix of k copies of A. As a direct limit
of free modules, M is flat. Since the sequence In contains each ideal of I infinitely
many times, we infer that M = IM for any I ∈ I. Also, because Coker(An) is
an Auslander-Bridger transpose of R/In for each n > 0, we conclude that the
inclusion A1 : R −֒→ M is a special I-divisible preenvelope of R (see Proposition
2.4.3 for details). By the same argument as in Proposition 2.4.3, we have that
M ⊕M/ ImA1 is a 1-tilting module generating {M ∈ Mod-R | M = IM ∀I ∈
I}.

1.5.3 Example - von Neumann regular rings

To further illustrate our results, we apply them to a particular class of commu-
tative rings. Recall that a ring R is von Neumann regular, if any one of the
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following equivalent conditions is satisfied by R (see [32, Theorem 1.1, Corollary
1.13]):

(i) for any a ∈ R there is x ∈ R such that a = axa,

(ii) any finitely generated ideal right (or equivalently, left) ideal of R is gener-
ated by an idempotent,

(iii) all right R-modules (or equivalently, or left R-modules) are flat.

Proposition 1.5.7. Let R be a commutative von Neumann regular ring. Then
there are bijections between the following collections:

(i) ideals I of R,

(ii) silting classes D in Mod-R,

(iii) cosilting classes C in Mod-R,

(iv) epiclasses of flat ring epimorphisms R→ S.

The bijections from (i) to (ii), (iii), and (iv) are given as follows:

(i)→ (ii) : I 7→ D = Gen(R/I),

(i)→ (iii) : I 7→ C = Gen(R/I),

(i)→ (iv) : I 7→ (R→ S) = (R ։ R/I).

In particular, any definable torsion class in Mod-R is silting.
Furthermore, a silting module generating the silting class Gen(R/I) for some

ideal I can be chosen as R/I.

Proof. (i) → (ii): Let D be a silting class in Mod-R. By Theorem 1.5.5, there
is a finitely generated Gabriel topology G such that D = {M ∈ Mod-R | M =
JM ∀J ∈ G}. Since R is von Neumann regular, any finitely generated ideal J
is generated by some idempotent. Therefore, there is a set E of idempotents
of R such that D = {M ∈ Mod-R | M = eM ∀e ∈ E}. Define I to be the
ideal generated by the set {1 − e | e ∈ E} of all the complements of elements
from E . Then it is easily seen that IM = 0 for any M ∈ D, establishing D ⊆
Gen(R/I) = Mod-R/I. On the other hand, R/I is clearly divisible by e for any
e ∈ E , showing that R/I ∈ D. As D is closed under direct sums and epimorphic
images, we conclude that D = Gen(R/I).

Therefore, the assignment I 7→ Gen(R/I) induces a surjection from the set
of ideals to silting classes. As R is commutative, different choice of ideals yield
different classes, and therefore this assignment is a bijection, as desired.

(i) → (iii): First, we show that any cosilting class over R is of cofinite type.
Since R is von Neumann regular, the notions of pure-injective envelope and in-
jective envelope coincide. If C is a cosilting class, it is definable by [19, Corollary
4.8], and thus C is closed under pure-injective envelopes by [23, Lemma 6.9]. To-
gether, any cosilting class in Mod-R is closed under injective envelopes, and thus
is of cofinite type by Theorem 1.3.9.
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Therefore, by Theorem 1.3.7, the assignment

D 7→ C = {M ∈ Mod-R |M+ ∈ D}

is a bijection between silting classes D and cosilting classes C in Mod-R. But it
is easy to check that the R-module elementary duality functor (−)+ restricted to
Mod-R/I is naturally isomorphic to an elementary duality functor in the module
category Mod-R/I. Since D = Mod-R/I for some ideal I, we infer that C =
Mod-R/I. Indeed, if M ∈ Mod-R is such that IM+ = 0, then IM++ = 0, and
therefore by the evaluation monomorphism M −֒→M++ also IM = 0.

Furthermore, since cosilting classes coincide with definable torsion-free classes
by [30], any definable torsion class is dual definable to a cosilting class in the sense
of Theorem 1.3.7, and thus is silting.

(i)→ (iv): Since any R-module is flat, the surjective ring morphism R→ R/I
is a flat ring epimorphism. On the other hand, any (epiclass of) a flat ring
epimorphism R → S is uniquely determined by a (finitely generated4) Gabriel
topology G by the assignment (R → S) 7→ G = {J ⊆ R | S = JS} (see [31, §XI,
Proposition 3.4]). If G is a finitely generated Gabriel topology, let I be the ideal
generated by complements of idempotents from G as in the proof (i)→ (ii) above.
It follows that G = {J ⊆ R | J(R/I) = R/I}, establishing the correspondence.

Finally, we prove that R/I is a silting module in Mod-R for any ideal I. To
that end, we need to construct a map σ between projective modules such that
Coker(σ) ≃ R/I, and such that Dσ = Gen(R/I). Let E be a set of idempotents
of R such that Gen(R/I) = {M ∈ Mod-R | M = eM ∀e ∈ E}, see the proof
of (i) → (ii). For each e ∈ E , let πe : R ։ R/(1 − e)R be the canonical split
projection, and let π : R(E) ։

⊕

e∈E R/(1−e)R be the (block) direct sum of maps
πe. Then Dπ consists precisely of those modules annihilated by (1 − e) for each
e ∈ E , and thus Dπ = Gen(R/I).

Next, consider the inclusion map τe : (1 − e)R −֒→ R, and let τ :
⊕

e∈E(1 −
e)R→ R be the summing map induced by τe’s. Since I is generated by elements
(1 − e), e ∈ E , we have Coker(τ) = R/I. Now because HomR((1 − e)R,M) = 0
for any e ∈ E and M ∈ Gen(R/I), we see that Gen(R/I) ⊆ Dτ .

Finally, let

σ = π ⊕ τ : R(E) ⊕
⊕

e∈E

(1− e)R

(

π 0
0 τ

)

−−−−−−→ (
⊕

e∈E

R/(1− e)R)⊕R

be the (block) direct sum of maps π and τ . Then Coker(σ) = Coker(τ) = R/I
and Dσ = Dπ ∩ Dτ = Gen(R/I), as desired.

We add that the only tilting class over a (possibly non-commutative) von Neu-
mann regular ring R is the whole Mod-R. Indeed, a tilting class contains all
injectives, and thus all pure-injectives. Since tilting classes are definable, such a
class has to contain all R-modules (see [23, Lemma 6.9]).

Also, some behaviour of silting modules not found amongst tilting modules
can be demonstrated using Proposition 1.5.7. First, whenever I is not finitely

4Indeed, epiclasses of flat ring epimorphisms are in 1-1 correspondence with certain finitely
generated Gabriel topologies called perfect, and over semihereditary rings (such as the von
Neumann regular rings), any finitely generated Gabriel topology is perfect. See [31, §XI].

27



generated, we exhibited an example of a finitely generated silting module which
is not projective, generalizing Example 3.4.9 (cf. [23, Lemma 13.2]). Also, if I is
projective, but not finitely generated5, then R/I is a silting module of projective
dimension 1 which is not tilting. Therefore, it admits a monomorphic projective
presentation, but non of these witnesses R/I being silting.

1.6 Integral domains and closure under flat cov-

ers

The goal of this section could be viewed as an explanation for why the process
of classification of the tilting classes, be it the noetherian case in [3] or in our
approach in [i] or [iii], was easier handled by working in the dual setting of cotilting
classes first, and only then transferring the results back by the elementary duality.
Namely, the crucial initial observation that cotilting (or cosilting) classes over
commutative rings are closed under taking injective envelopes does not have an
obvious analog on the tilting side. With respect to Theorem 1.5.4, the natural
question to consider is:

Question 1.6.1. Are tilting classes over commutative rings closed under flat
covers?

If this was true, we could for example easily infer a dual version of Theo-
rem 1.5.3, describing n-tilting classes homologically by ideal divisibility of their
“yokes” (that is, kernels of maps in their minimal flat resolution). Alas, as we
show in this section, the answer to Question 1.6.1 is a rather resolute NO.

By a flat cover, we mean a FLAT -cover, where FLAT denotes the class of
all flat R-modules. Say that a class of modules C is closed under flat covers if for
any flat cover F → M , M ∈ C implies F ∈ C. The following lemma allows for a
useful characterization of tilting classes closed under flat covers.

Lemma 1.6.2. Let C be a preenveloping class closed under direct summands.
Then C is closed under flat covers if and only if any flat module admits a C-
preenvelope, which is also flat.

Proof. (⇒) Let F be a flat module and f : F → C a C-preenvelope. By the
assumption, the domain of the flat cover h : F ′ → C of C is in C. Then there is
a map g : F → F ′ such that f = hg. It is easy to see that g is a C-preenvelope
of F , and it is flat.

(⇐) Let C ∈ C and consider its flat cover h : F → C. Using the assumption,
there is a flat C-preenvelope of F , say f : F → L. Since f is a C-preenvelope,
there is a factorization g : L → C with h = gf . Because h is a flat precover,
there is a factorization l : L → F such that g = hl. The situation is encaptured
in the following diagram:

5Such an ideal is available whenever R is not noetherian, that is, not semisimple. Indeed,
by [29, p. 45], any countably generated ideal is projective.
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F C

L

f

h

l
g

Hence, hlf = gf = h, and thus lf is an automorphism of F . Therefore, f
is a split monomorphism, and therefore F ∈ C, since C is closed under direct
summands.

Corollary 1.6.3. A tilting class T is closed under flat covers if and only if any
flat R-module has a T -preenvelope which is flat.6

From this point we confine ourselves to the case of R being an integral domain,
and consider the class D = {M ∈ Mod-R | rM = M ∀0 6= r ∈ R} of all classical
divisible R-modules. Then D = (

⊕

0 6=r∈RR/rR)⊥∞ is a 1-tilting class in Mod-R.
We prove that D is closed under flat covers if and only if R is an almost perfect
domain, and in this case, all tilting classes are closed under flat covers. We start
by recalling several useful kinds of integral domains.

During the rest of the section, let Q always denote the field of quotients of
integral domain R.

Lemma 1.6.4. Suppose that F is a flat R-module such that F admits a flat
D-preenvelope. Than the canonical map F → F ⊗R Q is a D-envelope of F .

Proof. Let f : F → L be a D-preenvelope of F such that L is flat, and let
ι : F → F ⊗RQ denote the canonical map. Since L is flat (and thus torsion-free),
and divisible, we have a natural isomorphism L⊗R Q ≃ L. Then tensoring f by
Q yields that f factors through ι. This already shows that ι is a D-preenvelope
of F . Because ι is an essential monomorphism, we easily deduce that it has to
be a D-envelope.

Recall that an integral domain R is called Matlis, if pdQ ≤ 1.

Lemma 1.6.5. Let R be a Matlis domain. If there is a flat module F such that
pdF > 1, then the class D of all divisible R-modules is not closed under flat
covers.

Proof. Using Lemma 1.6.2, it is enough to show that F has no flat D-preenvelope.
Towards a contradiction, suppose otherwise. Therefore, by Lemma 1.6.4, the
canonical map ι : F → F ⊗RQ is a D-envelope. By the Wakamatsu Lemma ([23,
Lemma 5.13]), ι is a special D-preenvelope, and thus pd Coker(ι) ≤ 1. But since
F ⊗R Q is isomorphic to a direct sum of copies of Q, we conclude from R being
a Matlis domain that pd(F ⊗R Q) ≤ 1, and thus pdF ≤ 1, a contradiction.

Lemma 1.6.6. Let R be an integral domain. If D is closed under flat covers,
then R is Matlis.

6Note that this is not the same thing as a (T ∩ FLAT )-preenvelope.
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Proof. IfD is closed under flat covers, then again by Lemma 1.6.2 and Lemma 1.6.4,
the canonical map ι : R(κ) → Q(κ) is a D-preenvelope for all cardinals κ. But
then Q generates D, which implies pdQ ≤ 1 by [12, Theorem 1.1].

An integral domain is said to be almost perfect if any proper factor of R is a
perfect ring (i.e., a ring such that any flat module is projective). These domains
were introduced by Bazzoni and Salce and have many equivalent characterizations
(see e.g. [22]). We list just a few of them, which will be useful in what follows.
Recall that integral domain R is h-local if the following two conditions hold:

1. R has finite character, that is, each non-zero element belongs to only finitely
many maximal ideals of R, and

2. every non-zero prime ideal of R is contained in precisely one maximal ideal
of R.

Theorem 1.6.7. [22, Main Theorem] For an integral domain R, the following
conditions are equivalent:

1. R is almost perfect,

2. R is h-local, and every localization of R is almost perfect,

3. every R-module of weak dimension ≤ 1 has projective dimension ≤ 1.

We also note some properties of almost perfect domains:

Lemma 1.6.8. Let R be an almost perfect domain. Then R is Matlis, and has
Krull dimension at most 1. A noetherian domain of Krull dimension at most 1
is almost perfect.

Proof. The first two properties are proved in [22, Proposition 3.5]. The last claim
is [22, Proposition 5.1].

Before proceeding with studying flat covers, we prove some properties of h-
local domains of Krull dimension 1 concerning the Hochster topology of the spec-
trum and also the tilting modules. By mSpec(R) we denote the subset of Spec(R)
consisting of all maximal ideals. Reader interesting only in flat cover closure only
needs to be concerned with Proposition 1.6.9, and then skip to Lemma 1.6.13.
Also, given a maximal ideal m we denote by Rm the localization of R in m, and
for any subset X of mSpec(R) let RX =

⋂

m∈X Rm. If m ∈ mSpec(R), we denote
for convenience by [m] = mSpec(R) \ {m} the complement of m in mSpec(R).
Given a module M , we adopt the shorthand notation Mm = M ⊗R Rm.

Proposition 1.6.9. Let R be an integral domain of Krull dimension 1. Then
any subset of mSpec(R) is Thomason if and only if R is h-local.

Proof. Let R be of Krull dimension 1. First, let R be h-local and let us show
that any set of maximal ideals is Thomason. It is clearly enough to show that
any singleton set {m} ⊆ mSpec(R) is Thomason, that is, find a finitely generated
ideal I such that V (I) = {m}. Pick any non-zero element x0 ∈ m. Since R is
h-local, V (x0) is a finite set containing m. Now for any n ∈ V (x0) not equal to

30



m, there is an element xn ∈ m such that xn 6∈ n. Hence, the ideal I generated by
x0 and all the xn’s is a finitely generated ideal with V (I) = {m}.

Conversely, suppose that for any maximal ideal m there is an ideal I generated
by x1, . . . , xn such that V (I) = {m}, and let us show that R is h-local. By [21,
IV.3. Theorem 3.7], it is enough to show that for each m ∈ mSpec(R), the module
A = Rm ⊗R R[m] is divisible (and thus, isomorphic to Q). There is a disjoint
partition of [m] = X1 ∪X2 ∪ . . . ∪Xn such that for each i = 1, . . . , n, xi is not
contained in any maximal ideal from the set Xi. It follows that RXi

is divisible
by xi; indeed, 1

xi
∈ Rn for each n ∈ Xi. As localizations commute with finite

intersections, we have that A =
⋂

1≤i≤nAi, where Ai = Rm⊗RRXi
. Let Si = {xni |

n ≥ 0} be the multiplicative set generated by xi. Then AiS
−1
i = (RmS

−1
i )⊗RRXi

is a divisible R-module, because xi ∈ m, and Rm is a 1-dimensional local domain.
Because xi 6∈ Xi, the module Ai is divisible by Si, that is Ai = xiAi. On the
other hand, we showed that the localization AiS

−1
i is divisible (by any non-zero

element of R). It follows that Ai is divisible for each i. Therefore, A =
⋂

1≤i≤nAi
is an intersection of torsion-free divisible modules, which is always divisible, as
desired.

Lemma 1.6.10. Let R be an integral domain of Krull dimension at most 1. Then
any tilting class is 1-tilting.

Proof. With respect to Theorem 1.5.4, it is enough to show that Ext1
R(R/I,R) 6=

0 for any non-zero finitely generated ideal I (in the noetherian setting, this follows
directly from the classical grade theory). Applying HomR(R/I,−) to the exact
sequence 0 → R → Q → Q/R → 0 yields Ext1

R(R/I,R) ≃ HomR(R/I,Q/R).
Since R/I is finitely presented, the vanishing of the latter abelian group is equiv-
alent to HomRm

(Rm/Im, Q/Rm) = 0 for all m ∈ mSpec(R). But whenever
m ∈ V (I), this would by 1-dimensionality and locality7 imply that Q/Rm is a
(classical) torsion-free Rm-module, and therefore Q/Rm = 0. This can happen
only in the situation Q = R, where the whole claim is trivially true.

Definition 1.6.11. Let R be a Matlis domain with quotient field Q. Denote
by π : Q → Q/R the canonical projection, and let A be any direct summand of
Q/R. Then the module A⊕ π−1[A] is the Bass tilting module associated to A.

Since R is Matlis, that is pdQ ≤ 1, and using the fact that, denoting by P1

the class of all R-modules of projective dimension ≤ 1, (P1,D) is a cotorsion pair
(see [16, Proposition 6.3]), it is easy to check properties (T1)-(T3) in order to
infer that any Bass tilting module is a 1-tilting R-module.

Proposition 1.6.12. Let R be a Matlis domain. Then any tilting module is
equivalent to a Bass tilting module if and only if R is h-local and of Krull dimen-
sion at most 1.

Proof. Let R be a 1-dimensional h-local domain. By the previous lemma, any
tilting class is 1-tilting. Let T be a 1-tilting class, and let X ⊆ mSpec(R)
be the Thomason set corresponding to T in the sense of Theorem 1.5.4 and
Theorem 1.4.20. Explicitly, with respect to Proposition 1.6.9, there is a finitely

7Indeed, over a 1-dimensional local integral domain there are only three hereditary torsion
pairs of finite type - (0, Mod-R), (Mod-R, 0), and the classical one, cf. Theorem 1.4.20.
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generated ideal Im such that V (Im) = {m}, and T = {M ∈ Mod-R | M =
ImM ∀m ∈ X}. Since R is h-local, there is by [21, Theorem 3.7] a natural
isomorphism Q/R ≃ ⊕

m∈mSpec(R) Q/Rm ≃
⊕

m∈mSpec(R) R[m]/R. We let AX =
⊕

m∈X Q/Rm and let TX = AX⊕π−1[AX ] be the Bass tilting module corresponding
to AX . It is easy to see that TX is divisible by a finitely generated ideal I if and
only if V (I) ⊆ X (as π−1[AX ] = RmSpec(R)\X). Since TX is a 1-tilting module, it
has to generate the tilting class T (see Theorem 2.3.16).

Suppose, on the other hand, that any tilting class in Mod-R is generated by a
Bass tilting module. First, let us show that the Krull dimension of R is at most
1. Indeed, if p is a non-zero and non-maximal prime ideal, consider the tilting
class TS of all S-divisible modules, where S = R \ p (any multiplicative set is a
filter basis of a finitely generated Gabriel topology). Suppose TS is generated by
a Bass tilting module T . Localizing at any maximal ideal m containing p, we can
assume without loss of generality that R is local - clearly a localization of a Bass
tilting module at m is a Bass tilting module over Rm, and by [23, Proposition
13.50], the tilting class generated by Tm consists of all Sm = (Rm \ pm)-divisible
modules. Since R is now a assumed to be local, Q/R is indecomposable, and thus
there are only two Bass tilting modules over - the trivial one generating Mod-R,
and then Q⊕Q/R generating D. As none of these generates TS, we established
a contradiction, and thus R is indeed 1-dimensional.

Finally we prove that R is h-local. Given any maximal ideal m, the cofinite
subset [m] of mSpec(R) is easily seen to be Thomason. Therefore, there is a
tilting class T corresponding to [m] as in the first part of this proof. By the
hypothesis, T is generated by a Bass tilting module TA = A ⊕ π−1[A] for some
direct summand A of Q/R. By [21, §IV, Lemma 4.2b], necessarily A ≃ Rm/R
and Q/R is naturally isomorphic to Rm/R ⊕ R[m]/R. Then the complement
B = R[m]/R is non-zero, and if TB = B ⊕ π−1[B] is the Bass tilting module
corresponding to B, the tilting class is not equal to Mod-R. Furthermore, any
ideal I such that TB = ITB is not contained in any maximal ideal other than m.
Then the Thomason set corresponding to TB needs to be the singleton {m}. We
proved that any subset of mSpec(R) is Thomason, and therefore R is h-local by
Proposition 1.6.9.

Lemma 1.6.13. Let R be an integral domain. If D is closed under flat covers,
then R is almost perfect.

Proof. By combining Lemmas 1.6.5 and 1.6.6, we know that the hypothesis im-
plies that all flat R-modules have projective dimension at most 1. Let M be of
flat dimension 1, that is, we have an exact sequence

0→ F1 → F0 →M → 0

with F0, F1 flat. Let Z denote the cokernel of the obvious map F1 → F0 ⊗R Q.
Consider the exact sequence

0→ (F1 ⊗R Q)/F1 → Z →M ⊗R Q→ 0.

The leftmost term has projective dimension ≤ 1, because it is a cokernel of a
special D-preenvelope (Lemma 1.6.4), while the rightmost term has projective
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dimension ≤ 1 because R is Matlis. Hence, pdZ ≤ 1. Now, let us focus our
attention on the exact sequence

0→M → Z → (F0 ⊗R Q)/F0 → 0.

We already know that pdZ ≤ 1. The rightmost term of the sequence is again
a cokernel of a special D-preenvelope, whence it is of projective dimension at
most 1 too. Therefore, pdM ≤ 1 as desired. We proved that R-modules of weak
dimension ≤ 1 coincide with the R-modules of projective dimension ≤ 1, proving
that R is almost perfect.

In the final step, we prove that all tilting classes over an almost perfect domain
are closed under flat covers. Before that, we recall some required basics of the
fractional ideal theory. Given an ideal I, let I−1 = {r ∈ Q | rI ⊆ R}. Ideal I is
invertible if II−1 = R. For any n > 0, we set I−n = (In)−1 and I0 = R.

Lemma 1.6.14. Let R be an integral domain and I a non-zero ideal. Then:

(i) I is projective if and only if it is invertible, and in this case, I is finitely
generated.

(ii) If I is invertible, the quotient of fractional ideals I−(n+1)/I−n is a projective
generator in Mod-R/I for any n ≥ 0.

(iii) If I is invertible, then Ext1
R(P,D) = 0 for any projective R/I-module P

and any D such that D = ID.

Proof. (i) See [33, Proposition 7.2 and Lemma 7.1].

(ii) Consider the tensor product I−(n+1)⊗RR/I. By right exactness of tensoring,
we have natural isomorphisms

I−(n+1) ⊗R R/I ≃ (I−(n+1) ⊗R R)/(I−(n+1) ⊗R I) ≃ I−(n+1)R/I−(n+1)I.

If I is invertible, then In is invertible too, and I−(n+1) = (I−1)n+1. This
shows that I−(n+1) ⊗R R/I ≃ I−(n+1)/I−n. Therefore, I−(n+1)/In is an
R/I-module, and since I−(n+1) is a projective R-module, I−(n+1)/I−n is a
projective R/I-module. Since R is a domain, I−(n+1) is a projective gener-
ator (as the trace is a pure ideal of R), and thus I−(n+1) ⊗R R/I is also a
projective generator in Mod-R/I.

(iii) Since I is projective, we have that I → R → R/I → 0 is a projective
presentation of R/I. Therefore, I−1/R is an Auslander-Bridger transpose of
R/I, and thus (I−1/R)⊥1 = {D ∈ Mod-R | D = ID} (for details, see §2.3.1
and Theorem 2.3.16). By (ii), I−1/R is a projective generator of Mod-R/I,
and thus Add(R/I) = Add(I−1/R), and therefore Ext1

R(P,D) = 0 for any
P ∈ Add(R/I) and any D ∈ Mod-R such that D = ID.

Lemma 1.6.15. Let R be an almost perfect domain. Then:

(i) every finitely generated Gabriel topology has a filter basis of projective ideals,
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(ii) every 1-tilting class is closed under flat covers.

Proof. (i) First, by Lemma 1.6.9, there is for each m ∈ mSpec(R) a finitely
generated ideal Im, such that V (Im) = {m}. It is then enough to settle (i) for the
Gabriel topology generated by Im, that is, for the case G = {J | ∃n > 0 : (Im)n ⊆
J}). Indeed, a filter basis of finitely generated Gabriel topology corresponding to
some general Thomason set X ⊆ mSpec(R) via Theorem 1.4.20 can be obtained
as the ideal-product closure of the set {Im | m ∈ X}, and a product of projective
(=invertible) ideals is clearly projective.

An easy observation shows that by localizing at m, the obtained set Gm =
{Jm | J ∈ G} is a finitely generated Gabriel topology over Rm. Since Im ∈ G, Gm
contains a non-trivial ideal. As Rm is local and 1-dimensional, Gm has to consist
of all non-zero ideals of Rm. As Gn = {Rn} for all n ∈ (mSpec(R) \ {m}), it
follows that there is a filter basis of G consisting of locally projective ideals. In
particular, there is J ∈ G with J 6= R and J flat. As R is almost perfect, this
implies pd J ≤ 1.

Finally, by [36, Proposition 3.2], any R-module of finite projective dimension
has projective dimension at most 1. Therefore, pdR/J = 1, and thus J is
actually projective, and hence also finitely generated. The finitely generated
Gabriel topology generated by J needs to coincide with G, and thus {Jn | n ∈ ω}
is a filter basis of G.

(ii) Let T be a 1-tilting class in Mod-R. By Theorem 2.3.16, there is a finitely
generated Gabriel topology G such that T = G -Div. Let I be a filter basis of G
consisting of (finitely generated) projective ideals. Using (i) and the h-locality of
R again, it is enough to show that T is closed under flat covers if G is generated
by a projective ideal I such that V (I) = {m} for some m ∈ mSpec(R) (every
non-trivial 1-tilting class is an intersection of those).

Let QI =
⋃

n∈N I
−n be the union of powers of the fractional ideal I−1. Then the

inclusion ϕ : R→ QI is a flat ring epimorphism, and QI ∈ T . Let Y = Coker(ϕ).
Then Y is filtered by modules I−(n+1)/I−n, n ≥ 0. By Lemma 1.6.14 and by Eklof
Lemma ([23, Lemma 6.2]), we conclude that ϕ is a flat special T -preenvelope of
R. Let now F be a flat R-module, and consider the exact sequence:

0→ F → F ⊗R QI → X → 0.

Any presentation of F as a direct limit of free modules yields that X is a direct
limit of copies of Y , so there is a pure exact sequence:

ǫ : 0→ K
∗−→ Y (κ) → X → 0.

Denote by Yn = HomR(R/In, Y ) the In-socle of Y . Applying HomR(R/In,−)
yields an exact sequence

ǫ′ : 0→ Kn → (Yn)(κ) → Xn → 0,

where Kn and Xn are the In-socles of K and X, accordingly. This exact sequence
is pure in R/In-Mod. Indeed, if G is a finitely presented R/In-module, the
sequence HomR/In(G, ǫ′) is naturally isomorphic to HomR/In(G,HomR(R/In, ǫ)).
We have a natural isomorphism (of complexes)

Hom R/In(G,Hom R(R/In, ǫ)) ≃ Hom R(G, ǫ).
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Since In is finitely generated, G is a finitely presented R-module, and because ǫ
is an exact sequence in Mod-R, the resulting sequence is exact.

Now apply the tensor functor R/I ⊗RIn − onto the pure exact sequence ǫ′,
which yields a pure exact sequence

0→ Kn/IKn
∗−→ (Yn/IYn)(κ) → Xn/IXn → 0.

Since IYn = Yn−1, it follows that Xn/IXn = Xn/Xn−1. As this sequence is
pure, and Yn/Yn−1 is a projective R/I-module by Lemma 1.6.14, it follows that
Xn/Xn−1 is a flat R/I-module. But R/I is a perfect ring, and thus Xn/Xn−1 is
actually a projective R/I-module, and therefore belongs to ⊥1T by Lemma 1.6.14.
As X is filtered by the set {Xn/Xn−1 | n ∈ N}, where X0 = 0, we apply again
the Eklof Lemma in order to infer that X ∈ ⊥1T . Therefore, the monomorphism
F → F ⊗RQI is a special T -preenvelope of F , which is flat. Using Lemma 1.6.2,
we infer that T is closed under flat covers.

Together, this yields the following characterization:

Theorem 1.6.16. Let R be an integral domain. Then the following conditions
are equivalent:

(i) R is an almost perfect domain,

(ii) the class D of all divisible modules is closed under flat covers,

(iii) all 1-tilting classes in Mod-R are closed under flat covers, and

(iv) all tilting classes in Mod-R are closed under flat covers.

Proof. (i)→ (iii) : Lemma 1.6.15.
(iii) → (iv) : The hypothesis implies in particular that the class D is closed

under flat covers, which by Lemma 1.6.13 implies that R is almost perfect, and
thus 1-dimensional. Therefore, any tilting class is 1-tilting by Lemma 1.6.10.

(iv)→ (ii): Trivial.
(ii)→ (i): Lemma 1.6.13.

We remark that Bazzoni proved in [8] the following related characterization:
An integral domain R is almost perfect if and only if the class D is enveloping.

Bibliography for Chapter 1

[1] F.W. Anderson, K.R. Fuller, Rings and Categories of Modules, Sec-
ond Edition, Springer-Verlag, 1992.
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Abstract. We classify 1-tilting classes over an arbitrary commutative ring. As a
consequence, we classify all resolving subcategories of finitely presented modules
of projective dimension at most 1. Both these collections are in 1-1 correspon-
dence with faithful Gabriel topologies of finite type, or equivalently, with Thoma-
son subsets of the spectrum avoiding a set of primes associated in a specific way
to the ring. We also provide a generalization of the classical Fuchs and Salce tilt-
ing modules, and classify the equivalence classes of all 1-tilting modules. Finally
we characterize the cases when tilting modules arise from perfect localizations.
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Chapter 2

One-tilting classes and modules
over commutative rings

2.1 Introduction

The classification of tilting classes and modules was done gradually, starting
with abelian groups ([GT00]), then small Dedekind domains, first assuming V=L
([TW02],[TW03]), and then in ZFC ([BET05]), for Prüfer domains ([Baz07]), and

almost perfect domains ([AJ11]). Recently, in [AHPŠT14] the authors classified
tilting classes of a commutative noetherian ring in terms of finite sequences of
subsets of the Zariski spectrum of R. In particular, they proved that 1-tilting
classes correspond bijectively to specialization closed subsets of Spec(R) that do
not contain associated primes of R. We generalize this result to arbitrary com-
mutative rings by showing that there is a one-to-one correspondence between
1-tilting classes and Thomason subsets of Spec(R) that avoid primes “associ-
ated” to R in certain sense. Thomason subsets of the spectrum coincide with
specialization closed subsets in the noetherian case, and seem to be the correct
generalization in various classification theorems. The prime example of this phe-
nomenon is the classification of compactly generated localizing subcategories of
the unbounded derived category of R done first by Neeman for noetherian rings
and then in general by Thomason ([Tho97]).

As in the noetherian case in ([AHPŠT14]), we start working in the dual setting
of cotilting classes. Even though there is an explicit duality between tilting
modules and cotilting modules of cofinite type, the one way nature of the duality
makes the tilting side harder to approach. For example, cotilting modules over
commutative noetherian case are described in [ŠTH14], but tilting modules were
described only for special classes of noetherian rings. The crucial step in our
approach is to show that a 1-cotilting class is of cofinite type if and only if it is
closed under injective envelopes (Corollary 2.3.13).

The author is partially supported by the Grant Agency of the Czech Republic under the
grant no. 14-15479S and by the project SVV-2015-260227 of the Charles University in Prague.
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Alternatively, 1-tilting classes over a commutative ring R correspond bijec-
tively to faithful finitely generated Gabriel topologies over R. From this point
of view, our classification generalizes directly results for Prüfer domains from
[Baz07]. If R is not semihereditary, one has to replace the cyclic generators of the
hereditary torsion class by their Auslander-Bridger transposes in order to describe
the resolving subcategories of finitely presented modules of projective dimension
at most 1. In the second part of the paper, we use this idea and construct an
associated tilting module for each 1-tilting class over a commutative ring. This
construction generalizes the Fuchs and Salce tilting modules introduced by Fac-
chini, Fuchs-Salce, and Salce ([Fac88], [FS92], [Sal05]) from multiplicative sets
over a domain and finitely generated Gabriel topology over a Prüfer domain to
general faithful finitely generated Gabriel topology over a commutative ring.

In the rest of the second section we use the “minimality” of the constructed
1-tilting modules and provide an elementary proof of the commutative version of
the recently solved Saoŕın’s problem ([BHP+15]). Finally, in the last section we
show that a 1-tilting module arises from a perfect localization if and only if the
associated Gabriel topology is perfect and the induced perfect localization has
projective dimension 1.

2.2 Preliminaries

2.2.1 Basic notation and cotorsion pairs

Given an (associative, unital) ring R, we denote by Mod-R the category of all
right R-modules and by mod-R the full subcategory of Mod-R consisting of all
finitely presented right R-modules.

For a class of right R-modules S, we will use the following notation:

S⊥ = {M ∈ Mod-R | Ext1
R(S,M) = 0 for all S ∈ S},

⊥S = {M ∈ Mod-R | Ext1
R(M,S) = 0 for all S ∈ S}.

Similarly, if S is a class of left R-modules we let:

S⊺ = {M ∈ Mod-R | Tor1
R(M,S) = 0 for all S ∈ S}.

Given a class S, a chain of submodules of an R-module M

0 = M0 ⊆M1 ⊆ · · · ⊆Mα ⊆Mα+1 ⊆ · · · ⊆Mλ = M

indexed by ordinal λ + 1, with the property that Mβ =
⋃

α<βMα for each limit
ordinal β ≤ λ and Mα+1/Mα is isomorphic to some module from S for each
α < λ, is called an S-filtration of M . We say that M is S-filtered if it possesses
an S-filtration.

A couple of full subcategories (A,B) of Mod-R is called a cotorsion pair pro-
vided that A = ⊥B and B = A⊥. Given a class S of modules, the cotorsion pair
(⊥(S⊥),S⊥) is generated by S. The following important result about cotorsion
pairs generated by sets of modules will be used freely throughout the paper.

Lemma 2.2.1. ([GT12, Corollary 6.14]) Let S be a set of modules and (A,B) the
cotorsion pair generated by S. Then A consists precisely of all direct summands
of all S-filtered modules.
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2.2.2 Gabriel topologies, torsion pairs, and divisibility

Given a right ideal I and an element t of a ring R, we denote (I : t) = {r ∈ R |
tr ∈ I}.
Definition 2.2.2. A filter G of right ideals of R is called a Gabriel topology
provided that:

• if I ∈ G and t ∈ R, then (I : t) ∈ G,

• if J is a right ideal and I ∈ G is such that (J : t) ∈ G for any t ∈ I, then
J ∈ G.

A Gabriel topology is finitely generated if it has a basis of finitely generated right
ideals. A right ideal I of R is faithful if Ann I = 0 (if R is commutative, this is
equivalent to HomR(R/I,R) = 0). We say that a Gabriel topology is faithful if
it has a basis consisting of faithful ideals (and thus all ideals in G are faithful).

There is an easier description of finitely generated Gabriel topologies over
commutative rings.

Lemma 2.2.3. Suppose R is commutative. A filter G of ideals of R with a basis
of finitely generated ideals is a (finitely generated) Gabriel topology iff it is closed
under ideal products.

Proof. If G is a Gabriel topology, then it is closed under products, since for any
i ∈ I we have (IJ : i) ⊇ J , and thus IJ ∈ G, provided that I, J ∈ G. Suppose
that G is closed under products. Let I ∈ G and t ∈ R. Since R is commutative,
I ⊆ (I : t) and thus the latter ideal is in G. Let now J be any ideal and I ∈ G
such that (J : t) ∈ G for each t ∈ I. We want to show that J ∈ G. By the
hypothesis, we can assume that I is finitely generated, say with a generating set
{i1, i2, . . . , in}. We have Ik = (J : ik) ∈ G for all k = 1, 2, . . . , n. It follows that
II1I2 · · · Ik ⊆ J , and thus J ∈ G, as claimed.

We say that a pair of full subcategories (T ,F) of Mod-R is a torsion pair
provided that T = {M ∈ Mod-R | HomR(M,F ) = 0 for all F ∈ F} and F =
{M ∈ Mod-R | HomR(T,M) = 0 for all T ∈ T }. The class T (resp. F) is called
a torsion (resp. torsion-free) class. A class of modules fits into a torsion pair as a
torsion (resp. torsion-free) class iff it is closed under extensions, direct sums, and
homomorphic images (resp. under extensions, direct products, and submodules).
Such torsion pair is said to be:

• hereditary provided that T is closed under submodules (or, equivalently, F
is closed under injective envelopes),

• faithful provided that R ∈ F ,

• of finite type provided that F is closed under direct limits.

With any torsion pair (T ,F) in Mod-R there is an associated idempotent
subfunctor t on Mod-R called the torsion radical, defined by the property that
for any module M , we have t(M) ∈ T and M/t(M) ∈ F . It is easy to see that
(T ,F) is of finite type iff t commutes with direct limits. The following observation
will be useful in characterizing cotilting torsion-free classes of cofinite type.
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Lemma 2.2.4. A hereditary torsion pair (T ,F) is of finite type iff there is a set
S of finitely presented modules such that F = {M ∈ Mod-R | HomR(S,M) =
0 for all S ∈ S}.

Proof. The if-part follows from the fact that HomR(S,−) commutes with direct
limit for any finitely presented module S.

Let us prove the other implication. Since the pair is hereditary, there is a
set E of finitely generated modules such that F = Ker HomR(E ,−) (e.g. the set
of all cyclic modules from T ). We are left to show that we can find such set
consisting of finitely presented modules. Fix M ∈ E . Let 0 → K → Rn →
M → 0 be a free presentation of M . We can write K as a directed union K =
⋃

i∈I Ki of its finitely generated submodules. Then M is a direct limit of finitely
presented modules Rn/Ki, i ∈ I in a way that all the maps of this direct system
are projections. Since the torsion radical t of the torsion pair (T ,F) commutes
with direct limits, we have that M = t(M) = t(lim−→I

Rn/Ki) = lim−→I
t(Rn/Ki).

Let Ji, i ∈ I be submodules of Rn containing Ki such that the torsion-free part of
Rn/Ki is isomorphic to Rn/Ji for each i ∈ I. Since lim−→I

Rn/Ji is isomorphic to the
torsion-free part of M , it is zero, and thus lim−→I

Ji =
⋃

I Ji = Rn. As Rn is finitely
generated, there is k ∈ I with Jk = Rn. It follows that R/Kk is in T , and thus M
is a direct limit of finitely presented modules Rn/Ki, i ≥ k, which all belong to T ,
because the directed system consisted of projections. Put SM = {Rn/Ki, i ≥ k}.
Because SM ⊆ T generates M , we infer that T = Ker HomR(E \ {M} ∪ SM ,−).

Constructing the set of finitely presented modules SM for each M ∈ E and
putting S =

⋃

M∈E SM , we infer that T = Ker HomR(S,−) as desired.

Given a Gabriel topology G, there is a hereditary torsion pair induced by G
with the torsion class {M | Ann(m) ∈ G for all m ∈M}. Also, there is another
torsion pair (usually not hereditary) with the torsion class {M ∈ Mod-R | M =
MI for all I ∈ G}.

Theorem 2.2.5. ([Ste75, §VI.Theorem 5.1]) Let R be a ring R. There is a 1-1
correspondence between hereditary torsion pairs (T ,F) in Mod-R and Gabriel
topologies G given by

T 7→ {I right ideal | R/I ∈ T },

G 7→ {M ∈ Mod-R | Ann(m) ∈ G for all m ∈M}.

Notation 2.2.6. Given a set of (right) ideals I, we denote by I -Div the class
of all I-divisible right modules, that is, the class

DI = {M ∈ Mod-R |M = MI for all I ∈ I}.

2.2.3 Prime spectrum

Given a commutative ring R, we denote by SpecR the prime spectrum of R. Set
SpecR is endowed with the Zariski topology, i.e. the topology with closed sets
being the sets of form

V (I) = {p ∈ SpecR | I ⊆ p},
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for some ideal I of R. Following the work of Thomason ([Tho97]), we say that a
subset of SpecR is Thomason if it is a union of sets V (I) with I being finitely
generated (equivalently, if it is a union of Zariski closed sets with quasi-compact
complements). It is well-known that Thomason subsets of SpecR correspond
bijectively to finitely generated Gabriel topologies (by assigning to a finitely gen-
erated Gabriel topology the set of all primes contained in it). We will prove a
”faithful“ version of this fact in Theorem 2.3.16 for convenience.

For any M ∈ Mod-R, symbol AssM stands for the set of all associated primes
of M , that is, all primes p ∈ SpecR such that R/p embeds into M . Similarly, for
a subclass C of Mod-R we fix a notation Ass C =

⋃

M∈C AssM .
We denote the localization of R at prime p by Rp. For any M ∈ Mod-R we

put Mp = M ⊗R Rp. The set of all primes p such that Mp is non-zero is called
the support of M and denoted by SuppM . It is well-known that SuppM = {p ∈
SpecR | AnnM ⊆ p} provided that M is finitely generated.

2.2.4 Tilting and cotilting

We use the following definition of an (infinitely generated) right 1-tilting module
over an arbitrary ring R ([CT95],[HC01]).

Definition 2.2.7. An R-module T is said to be 1-tilting if

• pdT ≤ 1,

• Ext1
R(T, T (X)) = 0 for any set X,

• there is an exact sequence 0 → R → T0 → T1 → 0, where Ti is a direct
summand of a direct sum of copies of T for each i = 0, 1.

The class T = T⊥ is called a 1-tilting class, and the induced cotorsion pair (A, T )
a 1-tilting cotorsion pair. Two 1-tilting modules T and T ′ are said to be equivalent
if T⊥ = T ′⊥.

Remark 2.2.8. Given a module M , denote by Gen(M) the class of all homomor-
phic images of direct sums of copies of M . We remark that module T is 1-tilting
if and only if Gen(T ) = T⊥ (see [GT12, Lemma 14.2]), providing an easier al-
ternative definition. In particular, note that a 1-tilting class is a torsion class.
Also, a class T is 1-tilting if and only if it is a special preenveloping torsion class
([GT12, Theorem 14.4]).

Classical tilting theory of artin algebras focuses on finitely presented tilting
modules, which is in stark contrast with the commutative setting, where only
infinitely generated ones are interesting:

Lemma 2.2.9. ([PT11, Lemma 1.2]) Let R be a commutative ring. Then any
1-tilting module equivalent to a finitely generated one is projective.

On the other hand, infinitely generated tilting modules share a lot of prop-
erties of their classical finitely presented counterparts. In particular, they still
serve as a generalization of progenerators from the classical Morita equivalence, as
they induce equivalences of subcategories of module categories, or derived equiva-
lences between triangulated subcategories of derived module categories ([Baz10],
[BMT11]).
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Even though tilting modules over commutative rings are almost always in-
finitely generated, the tilting classes can be fully described in terms of the small
module category mod-R. Using the Small Object Argument, one can show that
given a set S of finitely presented modules of projective dimension at most 1, the
class S⊥ is 1-tilting. Crucial results by Bazzoni-Herbera (and Bazzoni-Štov́ıček
for general n-tilting classes) show that the converse is also true. We recall that
a subcategory S of mod-R is resolving, if all finitely generated projectives are
contained in S, and S is closed under extensions, direct summands, and syzygies.

Theorem 2.2.10. ([BH08], [BŠ07]) Let R be a ring. There is a 1-1 correspon-
dence between 1-tilting classes T in Mod-R, and resolving subcategories S of
mod-R contained in {M ∈ mod-R | pdM ≤ 1}. The corespondence is given by
the assignments S 7→ S⊥ and T 7→ (⊥T ) ∩mod-R.

Definition 2.2.11. An R-module C is said to be 1-cotilting if

• idC ≤ 1,

• Ext1
R(CX , C) = 0 for any set X,

• there is an exact sequence 0→ C1 → C0 → W → 0, where W is an injective
cogenerator in Mod-R, and Ci is a direct summand of a direct product of
copies of C for each i = 0, 1.

The class C = ⊥C is called a 1-cotilting class induced by C and 1-cotilting modules
C,C ′ are said to be equivalent if their induced cotilting classes coincide.

Unlike tilting classes, 1-cotilting classes do not in general come from a set of
finitely presented modules unless the ring is noetherian (see a counter-example
due to Bazzoni in [Baz07, Proposition 4.5]).

Definition 2.2.12. A 1-cotilting class C is of cofinite type provided there is a
set of finitely presented modules S of projective dimension at most 1 such that
C = S⊺.

Given a 1-tilting right module T , its character module T+ = HomZ(T,Q/Z)
is a 1-cotilting left R-module. Furthermore, if S is a subset of mod-R such that
T⊥ = S⊥, then the cotilting class ⊥(T+) equals S⊺, and thus is of cofinite type.
In fact, the assigment T 7→ T+ induces a 1-1 correspondence between equivalence
classes of 1-tilting right R-modules and equivalence classes of 1-cotilting left mod-
ules of cofinite type (meaning that the induced 1-cotilting class is of cofinite type).
For details, see [GT12, §15].

2.3 Tilting and cofinite-type cotilting classes

2.3.1 General formulas

We start with recalling the notion of transpose from [AB69]. Although this idea
was originally used mostly in the artin algebra setting, it has proven useful in
classifying tilting classes over commutative noetherian rings in [AHPŠT14]. In
fact, it will serve the same purpose over a general commutative ring.
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Definition 2.3.1. Let R be a ring and M a finitely presented left R-module.

Let P1
f−→ P0 → M → 0 be a presentation of M with both P0 and P1 finitely

generated projectives. We use the notation (−)∗ for the regular module duality
functor HomR(−, R). The (Auslander-Bridger) transpose of M is obtained as the
cokernel of the map of right R-modules f ∗ : P ∗

0 → P ∗
1 . We denote the transpose

by TrM .

Remark 2.3.2. It is important to note that the right R-module TrM is uniquely
determined only up to stable equivalence, that is, up to splitting off or adding a

projective direct summand ([AB69, §2.1]). We will use the notation M
st≃N for

M being stably equivalent to N .
However, there is a nice choice of a concrete representative module for TrM

if pdRM ≤ 1. Indeed, then Ext1
R(M,R)

st≃TrM (see Lemma 2.3.4 below).

We gather several well-known homological formulae for the transpose we will
need later on, and reprove them in our setting for convenience.

Lemma 2.3.3. ([AHPŠT14, Lemma 2.9]) Let R be a ring, M a non-zero left
finitely presented R-module, such that HomR(M,R) = 0. Then:

(i) pdR TrM = 1 and TrM is finitely presented,

(ii) HomR(M,−) and TorR1 (TrM,−) are isomorphic functors,

(iii) Ext1
R(TrM,−) and (−⊗RM) are isomorphic functors.

Proof. (i) Since M is finitely presented, there is a part of a projective resolution
of M

P1 → P0 →M → 0, (2.1)

consisting of finitely generated projectives. Applying (−)∗ we get a complex

0← TrM ← P ∗
1 ← P ∗

0 ← 0,

which is exact by our hypothesis on M , showing that pd TrM ≤ 1, and that
TrM is finitely presented. If TrM was projective, then M is projective,
which together with M∗ = 0 implies that M = 0, a contradiction. Hence,
pd TrM = 1.

(ii) Let N be a left R-module. By definition, Ext1
R(M,N) is the first homology

of the complex obtained by applying HomR(−, N) on (2.1). We now use the
natural isomorphism HomR(P,N) ≃ P ∗⊗RN where P is a finitely generated
projective (see [AF92, Proposition 20.6]) to infer the desired isomorphism.

(iii) Analogous.

A sort of converse for Lemma 2.3.3 also holds, if we choose a representative of
the transpose well enough. Unlike Lemma 2.3.3, this result does not generalize
to higher projective dimension in a straightforward way.

Lemma 2.3.4. Let S ∈ mod-R be such that pdR S ≤ 1. Put S† = Ext1
R(S,R).

Then S† is a finitely presented left R-module with (S†)∗ = 0, and S† st≃TrS.
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Proof. Let
0→ P1 → P0 → S → 0, (2.2)

be a projective resolution of S consisting of finitely generated projectives. Ap-
plying (−)∗ we get an exact sequence

0← S† ← P ∗
1 ← P ∗

0 ← S∗ ← 0,

showing that S† is finitely presented, and by the definition S† st≃TrS. Applying
(−)∗ again we get back to the exact sequence (2.2), proving that (S†)∗ = 0.

Notation 2.3.5. We fix the notation S† = Ext1
R(S,R) for any S ∈ Mod-R.

Combining Lemma 2.3.3 and Lemma 2.3.4 we obtain:

Corollary 2.3.6. Let S be a set of finitely presented right R-modules of projective
dimension 1. Let T = S⊥ and C = S⊺ be the induced 1-tilting and 1-cotilting class
of cofinite type. Then:

• T =
⋂

S∈S Ker(−⊗R S†),

• C =
⋂

S∈S Ker HomR(S†,−).

Proof. By Lemma 2.3.4, the module S† satisfies S∗ = 0 and pdS ≤ 1 for each S ∈
S. Therefore, we can use Lemma 2.3.3(3) to infer that

⋂

S∈S Ker Ext1
R(TrS†,−) =

⋂

S∈S Ker(− ⊗R S†). As TrS† st≃S by Lemma 2.3.4, this class is equal to T
as desired. The formula for the cotilting class is derived analogously, using
Lemma 2.3.3(2).

2.3.2 Commutative rings

From now on, let R be a commutative ring. We begin by proving that any
cofinite type 1-cotilting torsion pair is hereditary. Note that this in general fails for
non-commutative rings1. If R is not noetherian, the classical theory of associated
primes does not function well. Indeed, there can be non-zero modules with no
associated primes2. The following notion will prove useful in the cotilting setting.

Definition 2.3.7. Given a class C of modules, let SubLim(C) denote the smallest
(isomorphism-closed) subclass of Mod-R containing C closed under direct limits
and submodules.

We say that a prime p is vaguely associated to a module M if R/p is con-
tained in SubLim({M}). Denote the set of all vaguely associated primes of M
by VAssM .

1Counter-example (communicated to the author by Jan Šťov́ıček) can be obtained as follows.
Let A be a left hereditary right artinian ring such that the only projective injective right module
is zero (e.g. the Kronecker algebra over a field). Then the class of all projective (equally, flat)
right A-modules is equal to (R-mod)⊺, and thus is a 1-cotilting class of cofinite type not closed
under injective envelopes.

2Easy example can be obtained as follows. Let R be a valuation domain of Krull dimension
1 with idempotent radical (e.g. the ring of all Puiseux series over a field). Then it is an easy
exercise to show that any cyclic module of form R/rR for r ∈ R non-zero has zero socle, and
thus it has no associated primes.
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First, we note that this is indeed a generalization of the concept of associated
primes over noetherian rings.

Lemma 2.3.8. Let R be noetherian, then VAssM = AssM for any R-module
M .

Proof. Let p ∈ VAssM and let us show that p ∈ AssM . By definition, we have
that R/p ∈ SubLim({M}). Since taking submodules does not introduce any new
associated primes, it is enough to show that whenever L is a direct limit of a
direct system Li, i ∈ I such that p 6∈ AssLi for each i ∈ I, then p 6∈ AssL. Using
[GT12, Corollary 2.9], there is a pure epimorphism π :

⊕

i∈I Li → L. Since R
is noetherian, the module R/p is finitely presented, and thus we can factorize
the inclusion R/p −֒→ L through π. Therefore, R/p ∈ Ass

⊕

i∈I Li. This already
shows that there is i ∈ I, such that p ∈ Li, a contradiction. We showed that
VAssM ⊆ AssM ; the inverse inclusion is trivially true.

Lemma 2.3.9. If M is non-zero, then VAssM is non-empty. Also, VAssM ⊆
SuppM .

Proof. Define

X = {I ideal | R 6= I and R/I ∈ SubLim({M})}.

Since M is non-zero, X is non-empty. We claim that X is inductive (with respect
to inclusion). Indeed, let c be an increasing chain of ideals from X and put
I =

⋃

c. As R 6∈ c, also I 6= R. The cyclic module R/I can be obtained as
a direct limit of the modules R/J, J ∈ c, from SubLim({M}). Then R/I is an
element of SubLim({M}), and thus I ∈ X, proving that X is inductive.

We can thus use Zorn’s Lemma to find a maximal element p of X, which is
easily seen to be prime, hence p ∈ VAssM .

Finally, any p ∈ VAss(M) has to be in the support of M , because R/p ∈
SubLim({M}), and the localization functor −⊗RRp commutes with submodules
and direct limits.

Lemma 2.3.10. For a finitely generated module M and prime p, HomR(M,R/p) 6=
0 iff p ∈ SuppM .

Proof. Suppose first that there is a non-zero map f : M → R/p. If p 6∈ SuppM ,
then R/p contains a non-zero R/p-torsion submodule, a contradiction.

Let p ∈ SuppM . Consider the quotient M/pM . Localizing at p we obtain
Mp/(ppMp). As Mp is a non-zero finitely generated Rp-module, the latter quotient
is non-zero by Nakayama. It follows that the torsion-free quotient of M/pM
(considered now as a module over the integral domain R/p) is non-zero. This
module is well-known to embed into a finite product of R/p (see [GT12, Lemma
16.1]). Hence, HomR(M,R/p) is non-zero as claimed.

Proposition 2.3.11. Any 1-cotilting class of cofinite type is closed under taking
injective envelopes. That is, any 1-cotilting torsion pair is hereditary.

Proof. Let C be a 1-cotilting class and let C be a 1-cotilting module cogenerating
C. Using [Man01, Lemma 1.3], it is enough to show that E(C) ∈ C. Since C is of
cofinite type, there is a set S of finitely presented modules of projective dimension
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1 such that C = S⊺. By Corollary 2.3.6, putting E = {S† | S ∈ S} we get
C =

⋂

M∈E Ker HomR(M,−). Suppose that there is a non-zero map M → E(C)
for some M ∈ E . Its image has to intersect C non-trivially. It follows that there
is an ideal J 6= R containing AnnM such that R/J ∈ C. By Lemma 2.3.9, there
is a prime p ∈ VAss(R/J). Since C is closed under submodules and direct limits,
we have that R/p ∈ C. On the other hand, since M is finitely generated and
J ⊆ p, we have that p ∈ SuppM , and thus HomR(M,R/p) 6= 0 by Lemma 2.3.3.
This is a contradiction.

Corollary 2.3.12. Let R be a commutative ring. Then 1-cotilting classes of
cofinite type in Mod-R coincide with torsion-free classes of faithful hereditary
torsion pairs of finite type.

Proof. Any 1-cotilting class of cofinite type is a torsion-free class of a faithful
hereditary torsion-pair of finite type by Corollary 2.3.6 and Proposition 2.3.11.

A torsion-free class of a faithful hereditary torsion pair of finite type is of form
Ker HomR(S,−) for a set of finitely presented modules S by Lemma 2.2.4. Since
the pair is faithful, we have S∗ = 0 for each S ∈ S, and thus the torsion-free class
equals {TrS | S ∈ S}⊺ by Lemma 2.3.3, proving that it is a 1-cotilting class of
cofinite type.

Given a module M , we let Prod(M) denote the class of all modules isomorphic
to a direct summand of product of copies of M .

Corollary 2.3.13. Let R be a commutative ring, and C a 1-cotilting class. Then
the following conditions are equivalent:

1. C is of cofinite type,

2. C is closed under injective envelopes,

3. for any 1-cotilting module C with C = ⊥C, we have E(C) ∈ Prod(C).

Proof. (1) ⇒ (2): Proposition 2.3.11.
(2)⇒ (3): LetW = C⊥. Since E(C) is injective, we have E(C) ∈ C ∩W, and

C ∩W = Prod(C) by [GT12, Lemma 15.4].
(3) ⇒ (1): As E(C) ∈ C, the class C is closed under injective envelopes by

[Man01, Lemma 1.3]. Then the induced torsion pair (E , C) is faithful, hereditary,
and of finite type, and thus C is of cofinite type by Corollary 2.3.12.

Before classifying all 1-tilting classes, we distinguish the following two steps.

Lemma 2.3.14. Let T be a 1-tilting class and J an ideal such that M = JM for
each M ∈ T . Then there is a finitely generated ideal I ⊆ J such that M = IM
for each M ∈ T .

Proof. Let T be a 1-tilting module such that T = T⊥ = Gen(T ). Since T is
closed under direct products, we have that T T = JT T . Let t = (t)t∈T ∈ T T

be the sequence of all elements of T . Since t ∈ T T = JT T , there is a finitely
generated ideal I ⊆ J such that t ∈ IT T . Looking at the canonical projections,
we infer that t ∈ IT for each t ∈ T , showing that T = IT . But since T generates
T , this means that T ⊆ {M ∈ Mod-R |M = IM} as claimed.
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Lemma 2.3.15. Let S be a finitely presented module of projective dimension
1. Then there is a finitely generated ideal I such that S⊥ = {I} -Div = {M ∈
Mod-R |M = IM}.
Proof. We first show that there is an ideal J such that S⊥ = {J} -Div. By
Corollary 2.3.6, T = Ker−⊗R S†. Also let C = Ker HomR(S†,−) be the induced
1-cotilting class and let C = T+ be the 1-cotilting module dual to T . Let us fix
a filtration 0 = M0 ⊆ M1 ⊆ · · · ⊆ Mn = S† of S† by cyclic modules, that is,
such that there is an ideal Ji with Mi+1/Mi ≃ R/Ji for each i = 0, . . . , n− 1. We
have shown in Proposition 2.3.11 that E(C) ∈ C, and thus HomR(S†, E(C)) = 0.
Since the functor HomR(−, E(C)) is exact, it follows that HomR(R/Ji, E(C)) = 0
for each i = 1, . . . , n, and thus also HomR(R/Ji, C) = 0 for each i = 1, . . . , n.
Using the standard isomorphism (R/Ji ⊗R T )+ ≃ HomR(R/Ji, T

+), we get that
(R/Ji ⊗R T )+ = 0, and thus R/Ji ⊗R T = 0. In other words, T = JiT for
each i = 1, . . . , n, and thus T = JT , where we put J = J1J2 · · · Jn. We have
proved that T ⊆ {J} -Div. The other inclusion follows easily, as S† is filtered by
{R/Ji | i = 1, . . . , n}.

Since S⊥ is a 1-tilting class, by Lemma 2.3.14 there is a finitely generated
ideal I ⊆ J such that S⊥ ⊆ {I} -Div. The latter inclusion must be an equality,
because {I} -Div ⊆ {J} -Div = S⊥.

2.3.3 Main theorem

Theorem 2.3.16. Let R be a commutative ring. There are bijections between
the following collections:

1. 1-tilting classes T ,

2. 1-cotilting classes of cofinite type C,

3. faithful finitely generated Gabriel topologies G,

4. Thomason subsets X of Spec(R) \ VAss(R),

5. faithful hereditary torsion pairs (E ,F) of finite type in Mod-R,

6. resolving subcategories of mod-R consisting of modules of projective dimen-
sion at most 1.

The bijections are given as follows:

Bijection Formula
(1) → (2) T 7→ (⊥T ∩mod-R)⊺

(1) → (3) Ψ : T 7→ {I ideal |M = IM for all M ∈ T }
(3) → (1) Φ : G 7→ G -Div = (

⊕

I∈G, I f.g. Tr(R/I))⊥

(3) → (4) Ξ : G 7→ G ∩ Spec(R)
(4) → (3) Θ : X 7→ {J ideal | ∃I ⊆ J finitely generated such that V (I) ⊆ X}
(5) → (2) (E ,F) 7→ F
(2) → (4) C 7→ (Spec(R) \ Ass C)
(3) → (2) G 7→ {M ∈ Mod-R | Ann(m) 6∈ G for all non-zero m ∈M}
(3) → (6) G 7→ S = {M ∈ mod-R |M is isomorphic to a direct summand

of a finitely {R} ∪ {Tr(R/I) | I ∈ G f.g.}-filtered module}
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Proof. (1)↔ (2): Follows by Theorem 2.2.10 and using the character duality (see
the last paragraph of Section 2).

(1) ↔ (3): First let us prove that the prescribed maps Ψ : T 7→ G and
Φ : G 7→ T are well-defined. Let T be a 1-tilting class. By Lemma 2.3.14,
whenever J ∈ Ψ(T ), there is a finitely generated ideal I ⊆ J with I ∈ Ψ(T ).
Also, any ideal in Ψ(T ) is faithful. Indeed, otherwise the special T -preenvelope
of R would have a non-zero annihilator, which is not the case. As Ψ(T ) is
evidently a filter closed under products, we infer from Lemma 2.2.3 that it is a
faithful finitely generated Gabriel topology. On the other hand, if G is a faithful
finitely generated Gabriel topology with basis of finitely generated ideals I, then
Φ(G) = {M ∈ Mod-R | M ⊗R R/I = 0 for each I ∈ I}, and thus Φ(G) = E⊥,
where E = {TrR/I | I ∈ I} by Lemma 2.3.3 (explicitly, we use the isomorphism
of functors −⊗R R/I ≃ Ext1

R(Tr(R/I),−)). This is a 1-tilting class by the same
lemma.

We need to prove that Ψ and Φ are mutually inverse. Let T be a 1-tilting
class. It is easy to see that T ⊆ Φ(Ψ(T )). Let S be a set of finitely presented
modules of projective dimension 1 such that T = S⊥. By Lemma 2.3.15, there
is for each S ∈ S a (again, necessarily faithful) finitely generated ideal IS such
that S⊥ = {M ∈ Mod-R | M = ISM}. Put I = {IS | S ∈ S}. It follows that
T =

⋂

S∈S S
⊥ = I -Div. Then I ⊆ Ψ(T ), and therefore Φ(Ψ(T )) ⊆ T , proving

that Φ(Ψ(T )) = T .
Finally, let G be a faithful finitely generated Gabriel topology and let I be

some basis of G of finitely generated ideals. Let J ∈ Φ(Ψ(G)) be a finitely
generated ideal. Denote by (A, T ) the tilting cotorsion pair (⊥Ψ(G),Ψ(G)). Note
that since T = I -Div, this cotorsion pair is generated (in the sense of [GT12,
Definition 5.15]) by the set S = {Tr(R/I) | I ∈ I}. Since T ⊆ {M ∈ Mod-R |
M = JM}, we have that Tr(R/J)3 ∈ A. By [GT12, Corollary 6.14] and the Hill
Lemma ([GT12, Theorem 7.10]), we infer that Tr(R/J) is a direct summand of
a module N possessing a finite S ∪ {R}-filtration.

Therefore, there is a filtration 0 = N0 ⊆ N1 ⊆ · · · ⊆ Nl = N with Ni+1/Ni ∈
S ∪ {R} for each i = 0, 1, . . . , l − 1. Let us apply the functor Ext1

R(−, R) = (−)†

to this filtration. Since all modules in S ∪{R} have projective dimension at most
1, this functor will act as a right exact functor on this filtration. As the filtration
of N was finite, we obtain a filtration 0 = M0 ⊆ M1 ⊆ · · · ⊆ Ml = N † such that
Mi+1/Mi is isomorphic to a homomorphic image of X† for some X ∈ S ∪{R} for
each i = 0, 1, . . . , l − 1.

Since pd(Tr(R/I)) = 1 for any I ∈ I, we can apply Lemma 2.3.4 in order to

see that Tr(R/I)† st≃Tr Tr(R/I), and that (Tr(R/I)†)∗ = 0. The only possibility
is that Tr(R/I)† ≃ R/I. As R† = 0, we conclude that N † admits a filtration
0 = M ′

0 ⊆ M ′
1 ⊆ · · · ⊆ M ′

k = N † such that M ′
i+1/M

′
i ≃ R/Li for an ideal Li

containing some ideal Ii ∈ I for each i = 0, 1, . . . , k − 1. Put L = L0L1 · · ·Lk−1.
Then L ⊆ AnnN †, and as I0I1 · · · Ik−1 ⊆ L, we have that L ∈ G. But R/J ≃
Tr(R/J)† is a direct summand of N †, whence L ⊆ AnnN † ⊆ Ann(R/J) = J .
Therefore, J ∈ G, proving that Φ(Ψ(G)) = G.

(3) ↔ (4): Let us again first prove that prescribed maps Ξ : G 7→ X and
Θ : X 7→ G are well-defined. Let G be a faithful finitely generated Gabriel topol-
ogy with basis I of finitely generated ideals. Then Ξ(G) is equal to

⋃

I∈I V (I), and

3The stable equivalence representative choices do not matter in this argument.
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therefore is a Thomason set. Suppose that there is p ∈ Ξ(G)∩VAss(R). Let C be
the 1-cotilting class of cofinite type associated to Φ(G). Since p ∈ VAss(R),
and R ∈ C, we have that R/p ∈ C. But this is a contradiction, because
C =

⋂

J∈G Ker HomR(R/J,−) by the previous bijection and Lemma 2.3.4 and
Corollary 2.3.6.

Let X be a Thomason subset of Spec(R) \ VAss(R). It is easy to see that
Θ(X) is a finitely generated Gabriel topology. Suppose that there is an ideal
I ∈ Θ(X) and a non-zero map R/I → R. Then there is p ∈ VAss(R) such that
I ⊆ p, and therefore p ∈ Θ(X). But then p ∈ X, a contradiction.

Now we prove that Ξ and Θ are mutually inverse. That Ξ(Θ(X)) = X is easy
to see. Let us show that Θ(Ξ(G)) = G. Clearly G ⊆ Θ(Ξ(G)). Suppose that there
is I ∈ Θ(Ξ(G)) \ G. Since G has a basis of finitely generated ideals, by Zorn’s
Lemma there is a maximal ideal with this property, let I ′ be maximal such. Then
I ′ is necessarily prime. Since Θ(Ξ(G)) ∩ Spec(R) = G ∩ Spec(R), we arrived at a
contradiction.

(3) → (2): Correctness of this bijection follows from Lemma 2.3.4 and Corol-
lary 2.3.6. Indeed, the cotilting class dual to the tilting class Φ(G) is equal to
⋂

I∈G Ker HomR(R/I,−).
(2)→ (4): Using the already established bijections, and that C is closed under

submodules and direct limits, it is enough to show that C = {M ∈ Mod-R |
VAss(M) ∩ G = ∅}, where G is the finitely generated Gabriel topology such that
C =

⋂

I∈G Ker HomR(R/I,−). It is easily seen that p 6∈ VAss(M) for any prime
p ∈ G and M ∈ C. To prove the converse, suppose that VAss(M) ∩ G = ∅.
If there was a non-zero map in HomR(R/I,M) with I ∈ G, there would exist
by Lemma 2.3.9 a prime ideal p ∈ VAss(M) such that I ⊆ p (see the proof of
Proposition 2.3.11), a contradiction. Therefore, we can conclude that M ∈ C.

(5) → (2): Direct consequence of Corollary 2.3.12.
(3) → (6): By Theorem 2.2.10, there is a 1-1 correspondence between 1-

tilting classes and resolving subcategories of projective dimension at most 1 given
by T 7→ S = (⊥T ) ∩ mod-R. If G is a Gabriel topology with G = Ψ(T ),
we know from above that the cotorsion pair (⊥T , T ) is generated by the set
{R}∪{Tr(R/I) | I ∈ G f.g.}. Then S = (⊥T )∩mod-R has the desired form, and
we established the correspondence.

2.4 Tilting modules

2.4.1 Fuchs-Salce tilting modules

In the previous part we have proved that 1-tilting classes coincide with the classes
of all modules divisible by all ideals of a faithful finitely generated Gabriel topol-
ogy. The purpose of this section is to construct 1-tilting modules generating
those classes, and hence classify all 1-tilting modules over commutative rings up
to equivalence. Of course we can always construct such modules using the Small
Object Argument (see [ET01] or [GT12, Theorem 6.11, Remark 13.47]). However,
the following construction is “minimal” in the sense that the resulting module has
a filtration of length only ω by direct sums of finitely presented modules. Also,
the explicit contruction allows for direct computations, as we will demonstrate in
the next second subsection.
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The following construction generalizes the tilting modules generating the class
of all divisible modules over a domain due to Fachini ([Fac88]), of all S-divisible
modules for a multiplicative set S due to Fuchs-Salce ([FS92]), and of all F -
divisible modules for a finitely generated Gabriel topology F over a Prüfer domain
due to Salce ([Sal05]).

Definition 2.4.1. Let R be a commutative ring, and let I be a set of faithful
finitely generated ideals of R. For each I ∈ I fix a finite set of generators
{xI1, xI2, . . . , xInI

} of I. Let Λ denote the set consisting of all finite sequences of
pairs of the form (I, k), where I ∈ I, and k < nI (including the empty sequence
denoted by w). Let F be a free R-module with the basis Λ. Given two sequences
λ, λ′ ∈ Λ, we denote their concatenation by λ⊔λ′. In particular, symbol λ⊔(I, k)
will stand for appending pair (I, k) to sequence λ ∈ Λ.

Define a submodule G of F as the span of all elements of the form

λ−
∑

k∈nI

xIk(λ ⊔ (I, k)),

for each λ ∈ Λ and I ∈ I. Put MI = F/G. Let us call the module δI =
MI ⊕MI/ Span(w) the Fuchs-Salce tilting module.

If G is a faithful finitely generated Gabriel topology, we will abuse the notation
by writing δG instead of δI , where I is the set of all finitely generated ideals from
G.

w

1 2 3 nI0

I0
1 2 3 nI1

I1
1 2 3 nIα

Iα

1 2 3 nI0

I0
1 2 3 nI1

I1
1 2 3 nI0

I0
1 2 3 nI1

I1

Figure 2.1: Construction of the Fuchs-Salce tilting module
Picture illustrates the first three levels of the homogeneous tree Λ from Defini-
tion 2.4.1. The basis of the module MI consists of all vertices of this tree. For
each “bubble” we add one relation identifying the parent vertex with the linear
combination of the vertices in the bubble with scalar coefficients being the chosen
generators xI1, x

I
2, . . . , x

I
nI

of the ideal I.

We fix a concrete representative in the stable equivalence class Tr(R/I):

Notation 2.4.2. In the setting as in Definition 2.4.1, we define for each I ∈ I a

module tr(R/I) = RnI/(xI1, x
I
2, . . . , x

I
nI

)R. Note that tr(R/I)
st≃Tr(R/I).

Proposition 2.4.3. The module δI defined above is a 1-tilting module generating
the 1-tilting class I -Div.

Proof. Put T = I -Div. First note that by the hypothesis that we have imposed
on the ideals in I, we see that tr(R/I) is a finitely presented module of projective
dimension 1 for each I ∈ I, and whence (

⊕

I∈I tr(R/I))⊥ = T is a 1-tilting class.
Put A = ⊥T .
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Let MI be the module from Definition 2.4.1. For each n ∈ ω let Mn be
the submodule of MI generated by (the images of) all sequences in Λ of length
smaller then or equal to n. In particular, M0 = Span(w) is isomorphic to R. The
quotient Mn+1/Mn is generated by the cosets of all sequences in Λ of length n+1.
We claim that Mn+1/Mn is isomorphic to a direct sum of a suitable number of
copies of the modules tr(R/I) with I ∈ I.

In order to prove this claim, let us fix more notation: For each n ∈ ω denote by
Λn (resp. Λ<n) a subset of Λ consisting of all sequences of length n (resp. smaller
than n). Put Fn = Span(Λ<n+1) ⊆ F and Gn = Fn ∩ G, so that Mn ≃ Fn/Gn.
Let X = {λ − ∑

k∈nI
xIk(λ ⊔ (I, k)) | λ ∈ Λ, I ∈ I} be the prescribed set of

generators of G. Let Xn = X ∩ Fn for each n ∈ ω. Observe that X is actually
a free basis of G, and furthermore, that X \ Xn is linearly independent in F
modulo Fn. Indeed, our hypothesis of HomR(R/I,R) = 0 assures that I has no
non-trivial annihilator in R for each I ∈ I, and thus the elements of the form
∑

k∈nI
xIk(λ ⊔ (I, k)) are torsion-free, and hence they are linearly independent in

F/Fn. It follows that Gn = Span(Xn), that is, Gn is generated by elements

λ−
∑

k∈nI

xIk(λ ⊔ (I, k)),

where λ ∈ Λ<n, I ∈ I. From this it is easily seen that Mn+1/Mn can be viewed
as a module with generators Λn+1 and relations of the form

∑

k∈nI

xIk(λ ⊔ (I, k)) = 0,

where λ ∈ Λn and I ∈ I. It follows that Mn+1/Mn ≃
⊕

λ∈Λn

⊕

I∈I tr(R/I), and
the claim is proved.

As M0 = wR ≃ R, we have that MI is filtered by the set {R} ∪ {tr(R/I) |
I ∈ I} ⊆ A, and so MI ∈ A, and also MI/wR ∈ A. On the other hand, MI is
generated by Λ, and from the construction we have that for each λ ∈ Λ and each
I ∈ I, λ ∈ IMI . It follows that MI ∈ T .

Altogether we have that the inclusionR ≃M0 →MI is a special T -preenvelope
of R. An argument [GT12, Remark 13.47] then shows that δI = MI ⊕MI/wR
is a 1-tilting module in A ∩ T , and thus generating the class T .

Combining Theorem 2.3.16 and Proposition 2.4.3 we obtain the following.

Theorem 2.4.4. Let R be a commutative ring. Then

{δG | G a faithful finitely generated Gabriel topology}

is the set of representatives of equivalence classes of all 1-tilting modules over R.

2.4.2 An application

As an application, we present an alternative proof of the positive solution of the
so-called Saoŕın’s problem for commutative rings. The Saoŕın’s problem is the
following statement.

Problem 2.4.5. ([PS13]) Let R be a ring and T a 1-tilting module such that
the induced torsion-free class F = Ker HomR(T,−) is closed under direct limits.
Is then T equivalent to a finitely generated 1-tilting module?
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The motivation of the problem is the recent result of Parra and Saoŕın [PS13,
Theorem 4.9], which states that heart of the t-structure associated to a tilting
torsion pair (T ,F) is a Grothendieck category if and only if F is closed under
direct limits.

If R is commutative, then any finitely generated tilting module is projective,
so a positive answer implies that F = {0}. Problem 2.4.5 has a negative answer
in general, a very involved counter-example was found by Herzog, and further
counter-examples that are non-commutative, but two-sided noetherian were con-
structed by Př́ıhoda ([BHP+15]). On the other hand, Problem 2.4.5 has a positive
answer whenever R is commutative, as proved by Bazzoni in [BHP+15]. We can
now reprove the latter result in an elementary way using our classification of
1-tilting classes and 1-tilting modules.

Theorem 2.4.6. ([BHP+15]) Let R be a commutative ring and T a 1-tilting
module such that F = Ker HomR(T,−) is closed under direct limits. Then T is
projective.

Proof. By Theorem 2.3.16 and Theorem 2.4.4, there is a faithful finitely generated
Gabriel topology G such that T = T⊥ = G -Div and we can without loss of
generality assume that T = δG. Suppose that T is not projective. Then necessarily
G contains a non-trivial ideal. Let I be a basis of finitely generated ideals of G. Let
MI be the module from the construction of δG, that is, δG = MI ⊕MI/ Span(w),
and MI =

⋃

n∈ωMn with M0 = Span(w) ≃ R and Mn+1/Mn isomorphic to a
direct sum of copies of tr(R/I), I ∈ I for each n ∈ ω.

Denote by t(−) the torsion radical of the torsion pair (T ,F). Since F is
closed under direct limits, the direct limit functor is exact, and M ∈ T , we have
MI =

⋃

n∈ω t(Mn). It follows that there is n ∈ ω such that w ∈ t(Mn). In other
words, there is a submodule X of Mn containing w such that X = IX for each
I ∈ I. It is clear that n 6= 0, since then it would follow that R = t(R), which
cannot be the case since G contains non-trivial ideals.

Suppose that n > 0. From now on we adopt the notation of Definition 2.4.1
for the generators of Mn. For each n-tuple of ideals Ī = (I1, I2, . . . , In) ∈ In,
we define a finite subset YĪ of Mn as follows: Let YĪ,1 = {(w, (I1, k)) | k ∈ nI1

}.
For 1 < j ≤ n, we put YĪ,j = {λ ⊔ (Ij, k) | λ ∈ YĪ,j−1, k ∈ nIj

}. Finally, we set
YĪ =

⋃

1≤j≤n YĪ,j. Note that Span(YĪ) is a free R-module with basis consisting of
sequences from YĪ of maximal length (that is, of length n). We can index this
basis as follows: Denote by κĪ the set of all sequences k̄ = (k1, k2, . . . , kn) ∈ ωn
such that kj ∈ nIk

for all 1 ≤ j ≤ n. For each k̄ ∈ κĪ let λĪ
k̄

denote the
element w ⊔ (I1, k1) ⊔ (I2, k2) ⊔ . . . ⊔ (In, kn). Then Span(YĪ) is a free module
with basis {λĪ

k̄
| k̄ ∈ κĪ}. Also, note that w =

∑

k̄∈κĪ
xI1

k1
xI2

k2
· · ·xIn

kn
λĪ
k̄
. Denote

xĪ
k̄

= xI1

k1
xI2

k2
· · ·xIn

kn
for each Ī ∈ In and k̄ ∈ κĪ . Finally, it is easy to see that

Mn = Span(YĪ | Ī ∈ In).
As X is the direct limit of all its finitely generated submodules containing

w, we again use the hypothesis of F being closed under direct limits in order to
find a finitely generated submodule N of X such that w ∈ t(N). As N is finitely
generated, there are Ī1, Ī2, . . . , Īm ∈ Im such that t(N) ⊆ Span(YĪ1 , YĪ2 , . . . , YĪm).
Denote this span by S. Then S is a module with generators

{λĪj

k̄ | 1 ≤ j ≤ m, k̄ ∈ κĪj}
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subject to the following relations:

w =
∑

k̄∈κ
Ī1

xĪ
1

k̄ λ
Ī1

k̄ =
∑

k̄∈κ
Ī2

xĪ
2

k̄ λ
Ī2

k̄ = · · · =
∑

k̄∈κĪm

xĪ
m

k̄ λ
¯Im

k̄ . (2.3)

This leads to a contradiction. Indeed, since t(N) is divisible by each ideal
in I, and I consists of finitely generated faithful (and therefore not idempotent)
ideals, we infer that there is an ideal J ∈ I such that J (

∏

1≤i≤m,1≤j≤n I
i
j.

Hence, there are elements si
k̄
∈ J for each 1 ≤ i ≤ m and k̄ ∈ κĪi , such that

w =
∑m
i=1

∑

k∈κ
Īi
si
k̄
λĪ

i

k̄
. Note that S/ Span(w) decomposes as follows:

S/ Span(w) ≃
⊕

1≤i≤m

R(κ
Īi )/ Span(

∑

k̄∈κ
Īi

xĪ
i

k̄ k̄).

Projecting S onto the i-th summand in this decomposition yields that there is
ti ∈ R such that si

k̄
= tix

Īi

k̄
for all 1 ≤ i ≤ m and k̄ ∈ κĪi . Since Span(xĪ

i

k̄
|

k̄ ∈ κĪi) = I i1I
i
2 · · · I in, we infer that ti ∈ (I i1I

i
2 · · · I in : J). Using the relations

(2.3) several times, we get that w = (t1 + t2 + · · · + tm)
∑

k̄∈κ
Ī1
xĪ

1

k̄
λĪ

1

k̄
. Since

Ann(w) = 0, this implies that t1 + t2 + · · · + tm = 1. But ti ∈ (I i1I
i
2 · · · I in : J) ⊆

(
∏

1≤i′≤m,1≤j≤n I
i′

j : J) 6= R for each i = 1, . . . ,m by the assumption on J , making
the assertion t1 + t2 + · · ·+ tj = 1 a contradiction.

2.5 Perfect localizations

As hereditary torsion classes coincide with localizing subcategories of Mod-R,
each hereditary torsion class E in Mod-R gives rise to a (Serre) localization
Mod-R → Mod-R /E . Therefore, each 1-tilting class over a commutative ring
corresponds naturally to some localization functor. The localized category is not
in general a module category, and so it is not induced by a ring homomorphism.
In this section, we focus on the case when this localization is induced by a flat ring
epimorphism. In particular, we describe when this so-called perfect localization
allows to replace the Fuchs-Salce module by a much nicer tilting module, arisen
from a ring of quotients.

Given a Gabriel topology G, recall that a module M is G-closed if the inclusion
I ⊆ R induces an isomorphism HomR(R,M)→ HomR(I,M) for any ideal I ∈ G.
Denote the full subcategory of all G-closed modules by X (G). This subcategory
is Giraud, that is, a full subcategory of Mod-R such that its inclusion into Mod-R
has a left adjoint which is exact (and, in fact, all Giraud subcategories of Mod-R
are of form X (G) for some Gabriel topology G). The composition of this left
adjoint and the original inclusion yields a localization functor L : Mod-R →
Mod-R. The unit of the adjunction ηR : R→ L(R) then induces a ring structure
on QG = L(R), with the unit ηR being a ring homomorphism. For all details we
refer to Chapters VII.-XI. in [Ste75], as for the proof of the following:

Theorem 2.5.1. ([Ste75, XI, Proposition 3.4]) Let R be a commutative ring,
and G a Gabriel topology. Then the following are equivalent:

1. ηR : R→ QG is a flat ring epimorphism, and {I ⊆ R | QG = IQG} = G,

2. X (G) is naturally equivalent to Mod-QG,
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3. the R-module QG is G-divisible.

If G satisfies conditions of this theorem, we call it perfect. Say that a perfect
localization λ : R → S is faithful, if the map λ is injective. Say that two ring
epimorphisms λ : R→ S, λ′ : R→ S ′ are equivalent if there is a ring isomorphism
ϕ : S → S ′, such that λ′ = ϕλ. The equivalence classes of ring epimorphism under
this equivalence are called epiclasses of R. By [Ste75, XI, Theorem 2.1], the ring
maps R → QG, with G running through perfect Gabriel topologies, parametrize
all epiclasses of flat ring epimorphisms, which justifies the terminology perfect
localization instead of flat ring epimorphism.

We recall that a ring is right semihereditary, if any finitely generated right
ideal is projective.

Theorem 2.5.2. (cf. [BŠ14, Proposition 7.4]) Let R be a commutative semihered-
itary ring, T a 1-tilting class, and G a Gabriel topology associated to this class
(via Theorem 2.3.16). Then G is perfect, and the perfect localization η : R→ QG

is faithful. Furthermore, there is a 1-1 correspondence between 1-tilting classes T
and epiclasses of faithful perfect localizations R −֒→ S; the correspondence given
by

Γ : T = G -Div 7→ (R −֒→ QG),

∆ : (R −֒→ S) 7→ {I ⊆ R | S = IS} -Div .

Proof. By Theorem 2.3.16, the Gabriel topology G is necessarily finitely gener-
ated and faithful, and hence perfect by [Ste75, XI, Corollary 3.5] and [Ste75,
IX, Proposition 5.2], and any perfect Gabriel topology inducing a faithful per-
fect localization arises in this way. The map ηR : R → QG is injective again
by faithfulness of G and [Ste75, IX, Lemma 1.2]. Together with Theorem 2.5.1,
this shows that Γ is well-defined. By Theorem 2.5.1 and [Ste75, XI, Theorem
2.1], ∆(R −֒→ S) is equal to some perfect Gabriel topology G, which is finitely
generated by [Ste75, XI, Proposition 3.4], and faithful by [Ste75, IX, Lemma
1.2], and thus ∆ is well-defined by Theorem 2.3.16. Finally, Γ and ∆ are mu-
tually inverse, for checking which it is now enough to use the fact that epi-
classes of faithful perfect localizations are parametrized by the set {R → QG |
G a perfect faithful Gabriel topology}.

Definition 2.5.3. We say that a tilting module T arises from a perfect localiza-
tion, if there is an faithful perfect localization R −֒→ S such that S ⊕ S/R is a
1-tilting module equivalent to T .

We can now prove the following generalization of (part of) [AHA12, Theorem
4.10] and [HHT05, Theorem 1.1].

Theorem 2.5.4. Let R be a commutative ring, T a 1-tilting module, and G a
Gabriel topology associated to T = T⊥ in the sense of Theorem 2.3.16. Then the
following are equivalent:

1. G is perfect, and pdRQG ≤ 1,

2. T arises from a perfect localization,

3. Gen(QG) = G -Div.
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Proof. (1)⇒ (2): By [AHA12, Lemma 1.10], the module T ′ = QG⊕QG/R is a 1-
tilting module. Therefore, there is by Theorem 2.3.16 a faithful finitely generated
Gabriel topology G ′ such that T ′⊥ = G ′ -Div. Using Theorem 2.5.1, we conclude
that G = G ′, proving that T = T⊥, and therefore T is equivalent to T ′.

(2) ⇒ (3): Follows quickly from Gen(QG) = Gen(QG ⊕QG/R) = T = G -Div.
(3) ⇒ (1): That G is perfect follows directly from Theorem 2.5.1. By (3),

there is an epimorphism Q
(X)
G → δG for some set X. Since QG ∈ T , there is also

an epimorphism δ
(Y )
G → QG for some set Y . Together we get an epimorphism

Q
(X×Y )
G → QG in Mod-R. As R → QG is a ring epimorphism of R, Mod-QG

is a full subcategory of Mod-R, and thus the epimorphism from last sentence is
actually a map of QG-modules, and hence it splits. But then also the epimorphism

Q
(X×Y )
G → δ

(Y )
G splits, and thus QG has projective dimension at most 1 over R.
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[FS92] László Fuchs and Luigi Salce. S-divisible modules over domains. In
Forum Mathematicum, volume 4, pages 383–394, 1992.
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Abstract. Tilting modules over commutative rings were recently classified in [i]:
they correspond bijectively to faithful Gabriel topologies of finite type. In this
note we extend this classification by dropping faithfulness. The counterpart of
an arbitrary Gabriel topology of finite type is obtained by replacing tilting with
the more general notion of a silting module.
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Chapter 3

Silting modules over
commutative rings

3.1 Introduction

Silting modules were introduced in [3] as a common generalisation of tilting mod-
ules and of the support τ -tilting modules from [1]. They are in bijection with
2-term silting complexes and with certain t-structures and co-t-structures in the
derived module category. For certain rings, they are also known to parametrize
universal localisations and wide subcategories of finitely presented modules [14,
Theorem 4.5],[4, Corollary 5.15].

In this note, we give a classification of silting modules over commutative
rings, establishing a bijective correspondence with Gabriel filters of finite type.
This extends the results in [13] from the tilting to the silting case, and it is a
further piece of evidence for the close relationship between silting modules and
localisation theory.

Our result is achieved by investigating the dual notion of a cosilting module
recently introduced in [9] as a generalisation of cotilting modules. Indeed, the
dual of a silting module T is a cosilting module T+, and there is a duality between
the modules in the silting class GenT and the cosilting class CogenT+. When
R is commutative, CogenT+ turns out to be the torsionfree class of a hereditary
torsion pair of finite type. We can thus interpret the modules in CogenT+ as the
G-torsionfree modules with respect to a Gabriel filter of finite type G. The silting
class GenT is then the class of G-divisible modules. This defines a map assigning
a Gabriel filter G to every silting class GenT . We show that this assignment is a
bijection by constructing explicitly, for any G, a silting module T which generates

The first named author is partially supported by Fondazione Cariparo, Progetto di Eccel-
lenza ASATA. The second named author is partially supported by the Grant Agency of the
Czech Republic under the grant no. 14-15479S.
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the G-divisible modules (Construction 3.4.5). We also provide a construction for
a cosilting module cogenerating the G-torsionfree modules (Construction 3.5.2).

In general, not all cosilting modules arise as duals of silting modules. This is
a phenomenon that already occurs for cotilting modules [6], see Example 3.5.1
for a cosilting example. If R is a commutative noetherian ring, however, our
classification yields bijections between silting classes, cosilting classes, Gabriel
filters, and subsets of Spec(R) closed under specialisation (Theorem 3.5.1). This
generalises the classification of tilting and cotilting modules in [5, Theorem 2.11].

In fact, silting and cosilting classes are in bijection also over non-commutative
noetherian rings. As a consequence, every definable torsion class of right modules
over a left noetherian ring is generated by a silting module (Corollary 3.3.7).
Finally, extending a result from [8], we show that the only silting torsion pair of
finite type over a commutative ring is the trivial one (Proposition 3.4.8).

The note is organized as follows. In Section 2 we investigate a finiteness
condition which is shown to hold for silting classes, recovering a recent result
from [15]. Section 3 is devoted to the duality between silting and cosilting classes.
In Sections 4 and 5 we turn to commutative rings and prove our classification
results. In 3.5.1 we further exhibit an example showing that the inclusion of silting
modules in the class of finendo quasitilting modules proved in [3, Proposition 3.10]
is proper.

3.2 Definability and finite type

Let R be a ring, and let Mod-R (respectively, R-Mod) denote the category of
all right (respectively, left) R-modules. Denote by Proj-R and proj-R the full
subcategory of Mod-R consisting of all projective and all finitely generated pro-
jective modules, respectively. Given a subcategory C of Mod-R, write Mor(C) for
the class of all morphisms in Mod-R between objects in C, and denote

C⊥ = {M ∈ Mod-R | Ext1
R(C,M) = 0}.

Given a map σ in Mor(Proj-R), we are going to investigate the class

Dσ := {X ∈ Mod–R | HomR(σ,X) is surjective}.

We say that Dσ is of finite type if it is determined by a set of morphisms between
finitely generated projective modules, i. e. there are σi ∈ Mor(proj-R), i ∈ I, such
that Dσ =

⋂

i∈I Dσi
. As a shorthand, we say that σ ∈ Mor(Proj-R) is of finite

type if the class Dσ is of finite type.
Recall that a class is said to be definable if it is closed under direct limits,

direct products and pure submodules. We are going to see that Dσ is definable
if and only if it is of finite type.

Lemma 3.2.1. Let σ ∈ Mor(Proj-R). Then

Dσ = (Cokerσ)⊥ ∩ Dσ′ ,

where σ′ : P−1 → Imσ is given by restricting the codomain of σ to its image.
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Proof. It is clear that Dσ ⊆ Dσ′ . Then for any M ∈ Dσ′ , a standard long exact
sequence argument shows that M ∈ Dσ if and only if Ext1

R(Cokerσ,M) = 0,
finishing the proof.

Lemma 3.2.2. Let σ ∈ Mor(Proj-R) be a map between projective modules. Then
Dσ = Dϕ, where ϕ is a map between free modules.

Proof. Suppose that σ : P−1 → P0. Let P ′ be a projective module such that
P−1 ⊕ P is free, and let P ′′ be a projective module such that P0 ⊕ P ′ ⊕ P ′′ is
free. We then let ϕ be the direct sum of the maps σ : P−1 → P0, P

′ =−→ P ′, and

0
0−→ P ′′. It is a routine check that Dσ = Dϕ.

Theorem 3.2.3. Let σ ∈ Mor(Proj-R). Then the following are equivalent:

(i) Dσ is of finite type,

(ii) Dσ is definable.

Proof. In the whole proof, let σ : P−1 → P0, and C = Cokerσ.
(i) → (ii): As an intersection of definable classes is a definable class, it is

enough to show that Dσ is definable if σ ∈ Mor(proj-R). By [3, Lemma 3.9], Dσ
is closed under direct products and epimorphic images, it is thus enough to show
that it is closed under direct sums and pure submodules. By Lemma 3.2.1, we
have that Dσ = Dσ′ ∩ C⊥, where σ′ : P−1 → Imσ is σ with codomain restricted
to its image. As C is finitely presented, the class C⊥ is definable by [11, Theorem
13.26]. We finish the proof by showing that Dσ′ is closed under direct sums and
submodules.

Let (Mi | i ∈ I) be a family of modules from Dσ′ , and f : P−1 →
⊕

i∈IMi

a map. As P−1 is finitely generated, there is a finite subset J ⊆ I such that
f factors through the direct summand

⊕

i∈JMi ≃
∏

i∈JMi. Since Dσ′ is clearly
closed under products, f factorizes through σ′.

Let M ∈ Dσ′ and ι : N ⊆ M be an inclusion. Applying HomR(−, ι) on the

exact sequence 0→ K → P−1
σ′−→ Imσ → 0 yields

0 −−−→ HomR(Imσ,M)
HomR(σ′,M)−−−−−−−−→ HomR(P−1,M)

ϕ−−−→ HomR(K,M)
x







x







θ

x







0 −−−→ HomR(Imσ,N)
HomR(σ′,N)−−−−−−−−→ HomR(P−1, N)

ψ−−−→ HomR(K,N).

By the assumption, the map ϕ = 0, and thus θψ = 0. By left-exactness, all the
vertical maps are injective, and therefore ψ = 0, showing that HomR(σ′, N) is
surjective. Therefore, N ∈ Dσ′ .

(ii) → (i): Using Lemma 3.2.2, we can without loss of generality assume that
P−1 and P0 are free modules. Fix a free basis X of P−1, and write the set X as a
direct union X =

⋃

i∈I Xi of its finite subsets, inducing a presentation of P−1 as a
direct union of direct summands Fi = R(Xi). Denote Gi = σ(Fi). Fix a free basis
Y of P0. As Gi is finitely generated for each i ∈ I, there is a finite subset Y ′

i of Y
spanning Gi. Moreover, there are finite subsets Yi of Y such that Y ′

i ⊆ Yi for each
i ∈ I, and (Yi | i ∈ I) forms a directed system. Indeed, we can find such sets by
setting Yi = Y ′

i ∪
⋃

j≤i Y
′
j . As this is clearly a finite union of finite sets, we have
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that (Yi | i ∈ I) is a directed system of finite subsets of Y . We let F ′
i = R(Yi), a

free direct summand of P0 for each i ∈ I.
The directed union

⋃

i∈I F
′
i = R(

⋃

i∈I
Yi) is a direct summand of P0, and the

projection of the image of σ onto the complement R(Y \
⋃

i∈I
Yi) is necessarily zero.

Therefore, we can without loss of generality assume that P0 =
⋃

i∈I F
′
i . Let

σi : Fi → F ′
i be the restriction of σ onto Fi, with codomain restricted to F ′

i . We
claim that Dσ ⊆ Dσi

for each i ∈ I. To prove this, let M ∈ Dσ and fix a map
fi : Fi → M . As Fi is a direct summand of P−1, we can extend fi to a map
f : P−1 → M . As M ∈ Dσ, there is a map g : P0 → M such that f = gσ. Let
gi be the restriction of g to F ′

i . Then fi = giσi, proving that M ∈ Dσi
. Denoting

D =
⋂

i∈I Dσi
, we have Dσ ⊆ D.

Finally, we show that Dσ is of finite type by proving D ⊆ Dσ. The class Dσ
is definable by the assumption, and the definability of the class D is proved by
implication (i)→ (ii) of this Theorem. By [11, Lemma 6.9], it is enough to show
that M ∈ D implies M ∈ Dσ for M pure-injective.

Let M ∈ D be pure-injective. Denote Ci = Cokerσi for all i ∈ I. By
Lemma 3.2.1, we have that Ext1

R(Ci,M) = 0 and M ∈ Dσ′
i
, where σ′

i is given by
restricting the codomain of σi to Gi. Since M is pure-injective, we have by [11,
Lemma 6.28] the following isomorphism:

Ext1
R(C,M) ≃ Ext1

R(lim−→
i∈I

Ci,M) ≃ lim←−
i∈I

Ext1
R(Ci,M).

This shows that M ∈ C⊥. Applying HomR(−,M) to the exact sequence Fi
σ′

i−→
Gi → 0 we obtain that HomR(σ′

i,M) is an isomorphism for all i ∈ I. As inverse
limit of a directed system of isomorphisms is an isomorphism, we obtain that

lim←−
i∈I

HomR(σ′
i,M) ≃ HomR(lim−→

i∈I

σ′
i,M) ≃ HomR(σ′,M)

is an isomorphism, where again σ′ : P−1 → G is given by restricting the codomain
of σ to its image G =

⋃

i∈I Gi. In other words, M ∈ Dσ′ . As M ∈ C⊥ ∩ Dσ′ ,
Lemma 3.2.1 yields M ∈ Dσ as desired.

3.3 Silting and cosilting modules

According to [3], an R-module T is said to be silting if it admits a projective
presentation P−1

σ−→ P0 −→ T → 0 such that the class GenT of T -generated
modules coincides with the class Dσ. The class GenT is then called a silting
class.

It is shown in [3, 3.5 and 3.10] that silting classes are definable torsion classes.
From Theorem 3.2.3 we obtain that every silting class is of finite type. This
reproves the if-part in the following recent result due to Marks and Šťov́ıček.

Theorem 3.3.1. [15, Theorem 6.3] A map σ in Mor(Proj-R) is of finite type if
and only if the class Dσ is a silting class.

Remark 3.3.2. The only-if-part of Theorem 3.3.1 could be employed in the proof
of our main Theorem 3.4.7, but we will show that each Gabriel filter of finite type
gives rise to a silting class directly, by constructing the silting modules explicitly
in Construction 3.4.5 and Proposition 3.4.6.
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Let us now turn to the dual notion. Following [9], an R-module C is said to
be cosilting if it admits an injective copresentation 0 → C −→ E0

σ−→ E1 such
that the class CogenC of C-cogenerated modules coincides with the class

Cσ := {X ∈ Mod–R | HomR(X, σ) is surjective}.
The class CogenC is then called a cosilting class.

It is shown in [9] that every cosilting module is pure-injective and that cosilting
classes are definable torsionfree classes. In fact, there is a duality between the
silting classes in Mod-R and certain cosilting classes in R-Mod (see also [9, 3.7
and 3.9]). These cosilting classes will be characterized by the property below.

Definition 3.3.1. For any map σ ∈ Mor(Proj-R), denote

Tσ = {X ∈ R-Mod | σ ⊗R X is injective}.
Given a map λ between injective left R-modules, we say that the class Cλ (or, the
map λ) is of cofinite type, if there is a set of maps σi ∈ Mor(proj-R), i ∈ I, such
that Cλ =

⋂

i∈I Tσi
.

Let us investigate the duality. Assume that R is a k-algebra over some com-
mutative ring k. Given an R-module M , we denote by M+ its dual with respect
to an injective cogenerator of Mod–k, for example we can take k = Z and M+

the character dual of M . To every definable category C of right (left) R-modules
we can now associate a dual definable category of left (right) R-modules C∨ which
is determined by the property that a module M belongs to C if and only if its
dual module M+ ∈ C∨. This assignment defines a bijection between definable
subcategories of Mod-R and R-Mod, which restricts to a bijection between de-
finable torsion classes and definable torsionfree classes and maps tilting classes
to cotilting classes of cofinite type, see [7, Propositions 5.4 and 5.7 and Theorem
7.1]. We are now going to prove the analogous result for silting and cosilting
classes.

Lemma 3.3.3. 1. Let σ ∈ Mor(Proj-R). Then Tσ = Cσ+, and a left R-module
X belongs to Cσ+ if and only if X+ ∈ Dσ.

2. If σ ∈ Mor(Proj-R) has finite type, then Dσ and Cσ+ are dual definable
categories, and a right R-module Y belongs to Dσ if and only if Y + ∈ Cσ+.

3. A map λ between injective left R-modules has cofinite type if and only if
there is a map σ ∈ Mor(Proj-R) of finite type such that Cλ = Cσ+.

Proof. (1),(2) By Hom-⊗-adjunction, for any left R-module X there is a com-
mutative diagram linking the maps HomR(X, σ+), (σ⊗RX)+ and HomR(σ,X+).
This shows that X ∈ Cσ+ if and only if X+ ∈ Dσ, which in turn means that
(σ ⊗R X)+ is surjective, or equivalently, σ ⊗R X is injective.

Furthermore, if σ is of finite type, the definable class Dσ contains a right R-
module Y if and only if it contains its double dual Y ++, see e.g. [16, 3.4.21]. This
implies that Y ∈ Dσ if and only if Y + ∈ Cσ+ .

(3) Let σi ∈ Mor(proj-R), i ∈ I, be a set of maps such that Cλ =
⋂

i∈I Tσi
,

and let σ =
⊕

i∈I σi. Then Cλ =
⋂

i∈I Tσi
= Tσ = Cσ+ by (1), and Dσ =

⋂

i∈I Dσi
,

so the map σ is of finite type. Conversely, if Cλ = Cσ+ for a map σ of finite
type, there are maps σi ∈ Mor(proj-R), i ∈ I, such that Dσ =

⋂

i∈I Dσi
, and

Cλ = Cσ+ =
⋂

i∈I Cσ+

i
=
⋂

i∈I Tσi
.
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Proposition 3.3.4. Let σ ∈ Mor(Proj-R), and let T = Cokerσ be a silting
module with respect to σ. Then T+ is a cosilting left R-module with respect to the
injective copresentation σ+. Moreover, GenT and CogenT+ are dual definable
classes, and CogenT+ is a cosilting class of cofinite type.

Proof. We have to verify CogenT+ = Cσ+ . The class Cσ+ is closed under sub-
modules by [9, 3.5], so for the inclusion ⊂ it is enough to show that Cσ+ contains
the direct product (T+)α for any cardinal α. Notice that the definable class Dσ
contains T (α). The claim then follows from Lemma 3.3.3 as T (α) + ∼= (T+)α.
For the inclusion ⊃, take X ∈ Cσ+ . Then X+ ∈ Dσ = GenT , so there is
an epimorphism T (α) → X+ for some cardinal α. This yields a monomorphism
X →֒ X++ → (T+)α, showing that X ∈ CogenT+.

From Theorem 3.3.1 and Lemma 3.3.3 we obtain

Corollary 3.3.5. The assignment GenT 7→ CogenT+ is a 1-1-correspondence
between silting classes in Mod-R and cosilting classes of cofinite type in R-Mod.

We now give a criterion for a torsionfree definable class to be of cofinite type.

Lemma 3.3.6. Let U be a set of finitely presented left R-modules, and let (T ,F)
be the torsion pair in R-Mod generated by U , that is, F = {M ∈ R-Mod |
HomR(U,M) = 0 for all U ∈ U}. Then F is a cosilting class of cofinite type.

Proof. For every U ∈ U we choose a projective presentation αU ∈ Mor(R-proj),
and we denote σU = αU

∗ and σ =
⊕

U∈U σU . Then, using that for any P ∈ R-proj
and any X ∈ R-Mod there is a natural isomorphism P ∗ ⊗R X ∼= HomR(P,X),
we see that F =

⋂

U∈U TσU
= Cσ+ is a cosilting class of cofinite type.

Corollary 3.3.7. If R is a left noetherian ring, the definable torsionfree classes
in R-Mod coincide with the cosilting classes of cofinite type, and the assignment
GenT 7→ CogenT+ defines a 1-1-correspondence between silting classes in Mod-R
and cosilting classes in R-Mod. Moreover, the definable torsion classes in Mod-R
coincide with the silting classes.

Proof. Let (T ,F) be a torsion pair in R-Mod with F being definable. By [11,
Lemma 4.5.2], there is a torsion pair (U ,V) in R-mod such that T and F consist
of the direct limits of modules in U and V , respectively, and F = {M ∈ R-Mod |
HomR(U,M) = 0 for all U ∈ U}. Then F is a cosilting class of cofinite type by
Lemma 3.3.6. In particular, every cosilting class is of cofinite type, and Corollary
3.3.5 yields the second statement.

For the last statement, recall from [7, Proposition 5.7] that the bijection in
Corollary 3.3.5 extends to a bijection between definable torsion classes and defin-
able torsionfree classes. By the discussion above, if T is a definable torsion class,
its dual definable class T + coincides with the dual definable class of a silting
class. Now use that the assignment is injective.

In general, a definable torsion class need not be silting, cf. Example 3.5.1. As
for the dual result, it was recently shown in [19] that the definable torsionfree
classes over an arbitrary ring are precisely the cosilting classes. But in general
these classes are not of cofinite type, see again Example 3.5.1.
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3.4 Silting classes over commutative rings

In this section, we classify silting classes over commutative rings, proving that
they coincide precisely with the classes of divisibility by sets of finitely generated
ideals.

The key to our classification are the following results relating cosilting modules
of cofinite type with hereditary torsion pairs. Recall that a torsion pair (T ,F)
is hereditary if the torsion class T is closed under submodules, or equivalently,
the torsionfree class F is closed under injective envelopes. Moreover, (T ,F) has
finite type if F is closed under direct limits.

First of all, combining Lemma 3.3.6 with [13, Lemma 2.4], we obtain

Corollary 3.4.1. Let R be a ring. If (T ,F) is a hereditary torsion pair of finite
type in R-Mod, then F is a cosilting class of cofinite type.

For a commutative ring, also the converse holds true.

Lemma 3.4.2. Let R be a commutative ring. Let λ be a map between injective
R-modules. If Cλ is of cofinite type, then it is a torsionfree class in a hereditary
torsion pair of finite type.

In particular, if R is a commutative noetherian ring, a torsion pair has finite
type if and only if it is hereditary.

Proof. By assumption Cλ =
⋂

i∈I Tσi
for a set of maps σi ∈ Mor(proj-R), i ∈ I. It

is then enough to prove the claim for each Tσi
, or in other words, we can assume

w.l.o.g. that Cλ = Tσ for some σ ∈ Mor(proj-R). By Lemma 3.3.3, Tσ = Cσ+

is a definable category, which is closed under submodules and extensions by [9,
Lemma 2.3], so it is a torsion-free class closed under direct limits. It remains to
show that is is also closed under injective envelopes.

Let M ∈ Tσ, and consider the exact sequence induced by an injective envelope
0→M

ι−→ E(M)→ C → 0. Tensoring this sequence with σ yields a commutative
diagram

0 0






y







y

0 −−−→ P−1 ⊗RM σ⊗RM−−−−→ P0 ⊗RM






y

P−1⊗Rι







y

P−1 ⊗R E(M)
σ⊗RE(M)−−−−−−→ P0 ⊗R E(M).

The exactness of the columns follows from the projectivity of P−1, P0, while the
exactness of the first row follows by definition of Tσ. Since R is commutative, this
is a commutative diagram in Mod-R (this is where we need the commutativity of
R). First, we claim that the inclusion P−1⊗Rι is an injective envelope of P−1⊗RM .
Indeed, let P be a finitely generated projective such that P−1⊕P ≃ Rn for some
n. Then (P−1⊕P )⊗R ι = Rn⊗R ι is essential by [2, Proposition 6.17(2)], and since
E(M)n ≃ Rn⊗RE(M) is injective, it is an injective envelope of Mn = Rn⊗RM .
As Rn ⊗R ι = (P−1 ⊗R ι) ⊕ (P ⊗R ι), we conclude that P−1 ⊗R ι is an injective
envelope of P−1 ⊗RM .

If P−1⊗RM is zero, then its injective envelope P−1⊗RE(M) is also zero, and
thus σ⊗RE(M) is injective. Towards a contradiction, suppose that P−1⊗RM is
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non-zero, and the kernel of σ⊗RE(M) is non-zero. By the essentiality of P−1⊗R ι,
there is a non-zero element x ∈ P−1⊗RM such that (σ⊗RE(M))(P−1⊗Rι)(x) = 0,
which by a simple diagram chasing yields (σ ⊗R M)(x) = 0, a contradiction to
σ ⊗R M being injective. Therefore, the kernel of σ ⊗R E(M) is zero. In both
cases, we showed that E(M) ∈ Tσ.

The last statement follows from Corollary 3.3.7.

It is well known that hereditary torsion pairs correspond bijectively to Gabriel
filters. This will allow to establish a correspondence between silting classes and
Gabriel filters. We first review the relevant notions.

Reminder 3.4.3. A filter G of right ideals of R is a (right) Gabriel filter, if the
following conditions hold true:

(i) if I ∈ G, then for any x ∈ R the ideal (I : x) = {r ∈ R | xr ∈ I} belongs to
G,

(ii) if J is a right ideal such that there is I ∈ G with (J : x) ∈ G for all x ∈ I,
then J ∈ G.

Further, G is of finite type if it has a filter basis consisting of finitely generated
ideals. We remark that a filter of ideals of a commutative ring with a filter basis
of finitely generated ideals is a Gabriel filter (of finite type) if and only if it is
closed under ideal multiplication, see e.g. [13, Lemma 2.3].

Every Gabriel filter G induces a hereditary torsion pair (TG,FG) where

FG =
⋂

I∈G

Ker HomR(R/I,−)

is the class of G-torsionfree modules. The assignment G 7→ (TG,FG) defines a
bijection between Gabriel filters (of finite type) and hereditary torsion pairs (of
finite type), see [18, Chapter VI, Theorem 5.1, and Chapter XIII, Proposition
1.2].

Given a Gabriel filter G, we say that a module M ∈ Mod-R is G-divisible if
MI = M for all I ∈ G. If Div-G denotes the class of G-divisible modules, then

Div-G =
⋂

I∈G

Ker (−⊗R R/I).

By Hom-⊗ adjunction, a module M is G-divisible if and only if its dual M+

is G-torsionfree (cf. [18, Chapter VI, Proposition 9.2]). So, if the Gabriel filter
G is of finite type, Div-G and FG are dual definable classes, and it follows from
Corollary 3.4.1 that Div-G is a silting class.

Again, in the commutative case, we also have the converse.

Proposition 3.4.4. Let R be a commutative ring, and let σ ∈ Mor(Proj-R) be of
finite type. Then there is a Gabriel filter of finite type G such that Dσ = Div-G.

Proof. By assumption Dσ =
⋂

i∈I Dσi
for a set of maps σi ∈ Mor(proj-R), i ∈

I. If each Dσi
= Div-Gi for some Gabriel filter of finite type Gi, then Dσ =

⋂

i∈I Div-Gi = Div-G, where G = {J ⊆ R | I1I2 · · · In ⊆ J whenever I1, I2, . . . , In ∈
⋃

i∈I Gi} is the smallest Gabriel filter of finite type containing Gi for all i ∈ I. So
we can again assume w.l.o.g. that σ ∈ Mor(proj-R).
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In Lemma 3.4.2 we showed that Cσ+ is a hereditary torsionfree class of finite
type. So there is a Gabriel filter G of finite type such that Cσ+ = FG, which
amounts to Dσ = Div-G. This completes the proof.

Combining the results above, we obtain the desired classification of silting
classes over commutative rings. Here we give a direct proof by providing an
explicit construction for a silting module corresponding to a Gabriel filter of
finite type. It generalises the construction of a Fuchs-Salce tilting module in [13].

Construction 3.4.5. Let R be a commutative ring and G a Gabriel filter of
finite type. Let I be the collection of all finitely generated ideals from G. For
each I ∈ G, we fix a finite set of generators {xI0, xI1, . . . , xInI−1}. The projective
presentation

RnI −−−→ R −−−→ R/I −−−→ 0,

induces a projective presentation

R
σI−−−→ RnI −−−→ Tr(R/I) −−−→ 0,

where σI : R → RnI is given by σI(1) = (xI0, x
I
1, . . . , x

I
nI−1) and Tr denotes the

Auslander-Bridger transpose of R/I (which is uniquely determined only up to
stable equivalence). It is easy to check that DσI

= {M ∈ Mod-R | M = IM},
and thus Div-G =

⋂

I∈I DσI
.

Let now Λ be the set of all finite sequences of pairs (I, k), with I ∈ I and
0 ≤ k < nI . The set includes the empty sequence denoted by w, and it is equipped
with the operation of concatenation of sequences, for which we use the symbol ⊔.
Let F be the free module on basis Λ, F ′ the free module on basis Λ \ {w}, and
K the free module on basis Λ× I.

We define a map ϕG : K → F by its values on the designated basis elements:
for any (λ, I) ∈ Λ× I we set

ϕG((λ, I)) = λ−
∑

k<nI

xIk(λ ⊔ (I, k)).

We also define a map ϕ′
G : K → F ′ by the commutative diagram

K
ϕG−−−→ F −−−→ CG −−−→ 0

∥

∥

∥

∥

p







y







y

K
ϕ′

G−−−→ F ′ −−−→ C ′
G −−−→ 0,

where p denotes the canonical projection F → F ′ killing the coordinate w.
Let now P−1 = K ⊕K and P0 = F ⊕ F ′ and consider

P−1
σG−−−→ P0 −−−→ TG −−−→ 0,

where σG is the direct sum of the maps ϕG and ϕ′
G, and TG = CG ⊕ C ′

G.

Proposition 3.4.6. The module TG is a silting module with respect to the map
σG, and Gen (TG) = Div-G.
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Proof. We divide the proof into several steps. Let us first fix some notation. Let
A =

∑

I∈I Ann(I). Further, for every ideal I ∈ I, we define SI = Tr(R/I)⊗RR/A,
and we set S = {SI | I ∈ I}.

Step I: Every I ∈ I gives rise to a faithful ideal (I + A)/A in the ring R/A.
In other words, every r ∈ R satisfying rI ⊆ A must belong to A.

To see this, use that I is finitely generated to find ideals I1, I2, . . . , Il ∈ I such
that rI ⊆ ∑l

j=1 Ann(Il). Then r(II1I2 · · · Il) = 0, and r ∈ Ann(II1I2 · · · Il) ⊆ A.

Step II: An R/A-module M satisfies Ext1
R/A(SI ,M) = 0 if and only if M =

IM .
Indeed, the map σI : R→ RnI , r 7→ (r xI0, r x

I
1, . . . , r x

I
nI−1) induces a commu-

tative diagram with exact rows

R
σI−−−→ RnI −−−→ Tr(R/I) −−−→ 0







y







y







y

0 −−−→ R/A
σI−−−→ (R/A)nI −−−→ SI −−−→ 0

because the kernel of σI , consisting of the elements r ∈ R/A with rI ⊂ A, is
trivial by Step I. It is now an easy observation that Ext1

R/A(SI ,M) = 0 if and
only if M = (I + A)/A ·M = IM .

Step III: Filtration of CG and C ′
G.

For each n < ω denote by Λn the set of all sequences from Λ of length at most
n. Let Fn be the span of Λn in F , and let Gn be the ϕG-image of the span of
Λn−1 × I in K. For n = 0 we have F0 = Rω, and we set G0 = ∅. Let Cn be the
span of the image of Λn in C, that is, Cn = Fn/(Fn ∩G), where G = ImϕG.

We claim that Fn ∩ G = AFn + Gn. For any λ ∈ Λn and any I ∈ I, the
element ϕG((λ, I)) = λ−∑k<nI

xIk(λ⊔ (I, k)) lies in G. Therefore, by multiplying
by any r ∈ Ann(I), we obtain rλ ∈ G. As clearly Gn ⊆ Fn ∩ G, we have
AFn +Gn ⊆ Fn ∩G.

For the reverse inclusion, let x ∈ Fn ∩G. As x ∈ G, it is of the form

x =
m
∑

j=1

rjϕG((λj, Ij)) =
m
∑

j=1

rj(λj −
∑

k<nIj

x
Ij

k (λj ⊔ (Ij, k)))

for some rj ∈ R, and (λj, Ij) pairwise distinct elements of Λ×I. We claim that if
the length of some λj exceeds n−1, then rj ∈ A. We prove this claim by backward
induction on the length of λj. If j is such that the length of λj is maximal

and exceeding n, it is clear from x ∈ Fn that rj ∈ Ann({xIj

0 , x
Ij

1 , . . . , x
Ij

nIj
−1}) =

Ann(Ij) ⊆ A. Suppose now that λj is of length k > n−1, and that all coefficients
ri such that λi has length > k are in A. Then, since x ∈ Fn, the induction premise
yields rjx

Ij

k ⊆ A for each k = 0, 1, . . . , nIj − 1. In other words, rjI ⊆ A. By Step
I, this implies that rj ∈ A as claimed. We proved that the coefficient rj is in A
for any j such that the length of λj exceeds n− 1, and thus x ∈ AF + Gn. But
since x ∈ Fn, and AF ∩ Fn = AFn, we get x ∈ AFn +Gn as desired.

It follows that Cn = Fn/(AFn + Gn). Then C0 ≃ R/A, and Cn+1/Cn ≃
Fn+1/(Fn + AFn+1 + Gn+1) for any n ∈ ω. Therefore, Cn+1/Cn ≃ Fn+1/(Fn +
Gn+1) ⊗R R/A. The elements ϕG((λ, I)), where λ is of length n, and I ∈ I
generate Gn+1 modulo Fn ∩Gn+1. We obtain that Cn+1/Cn is isomorphic to:

⊕

λ∈Λn\Λn−1

⊕

I∈I

(R(λ⊔(I,k)|k<nI)/(
∑

k<nI

xIk(λ ⊔ (I, k)))R)⊗R R/A ≃
⊕

λ∈Λn\Λn−1

⊕

I∈I

SI .
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In particular, CG is {R/A} ∪ S-filtered, and the quotient CG/C0, which is clearly
isomorphic to C ′

G, is S-filtered.
Step IV: We claim that Gen (TG) = Div-G.
Since C ′

G = CG/C0, it is enough to show Gen (CG) = Div-G. In CG, the image
of any basis element λ is identified with the linear combination

∑

k<nI
xIk(λ ⊔

(I, k)) with coefficients from I, so CG ∈ Div-G. Note that this implies that CG

is an R/A-module. For the other inclusion, let M ∈ Div-G. It is clear that
AM = 0, and therefore there is a surjection π : (C0)

(κ) ≃ (R/A)(κ) → M . Since
Ext1

R/A(SI ,M) = 0 for every I ∈ I by Step II, we have by Step III and by the

Eklof Lemma that Ext1
R/A(C ′

G,M) = 0, and thus the R/A-homomorphism π can

be extended to a (surjective) map C
(κ)
G →M , proving the claim.

Step V: The map ϕG induces a commutative diagram with exact rows

K
ϕG−−−→ F −−−→ CG −−−→ 0







y







y







y

0 −−−→ K/AK
ϕG−−−→ F/AF −−−→ CG −−−→ 0

and the analagous result holds for ϕ′
G.

Indeed, the R/A-module CG is the cokernel of ϕG. Further, since K/AK is
a free R/A-module with basis Λ × I, injectivity of ϕG amounts to showing that
the elements ϕG((λ, I)) with (λ, I) ∈ Λ × I form an R/A-linearly independent
subset in F/AF . To this end, we prove in next paragraph that for each n ∈ ω
the elements ϕG((λ, I)) where λ has length n form a linearly independent subset
in the free R/A-module Fn+1/Fn ⊗R R/A with basis Λn+1 \ Λn. Then indeed, as
ϕG(Λn−1×I) ⊆ Fn for each n > 0, a simple induction argument shows the linear
independence of the ϕG-image of Λn×I for each n ∈ ω, and thus of the ϕG-image
of the whole basis Λ× I.

For any sequence λ ∈ Λ of length n and any I ∈ I, the image of (λ, I) in
Fn+1/Fn ⊗R R/A is equal to

∑

k<nI
(xIk + A)(λ ⊔ (I, k)). As these elements are

linear combinations of pairwise disjoint subsets of Λ, it is clear that their spans
are independent in the free R/A-module F ⊗RR/A with basis Λ. To prove R/A-
linear independency, it remains to show that these elements have zero annihilator
over R/A. But that follows from Step I, as AnnR/A(

∑

k<nI
(xIk +A)(λ⊔ (I, k))) =

AnnR/A((I + A)/A) = 0.
So ϕG is injective, and the proof of injectivity of ϕ′

G is completely analogous.
Step VI: DσG

= Div-G.
Let M ∈ DσG

. We first show that AM = 0. For any m ∈ M , define map
f : K → M by setting f((λ, I)) = m for each (λ, I) ∈ Λ × I. As DσG

⊆ Dϕ′
G
,

there is a map g : F ′ → M such that f = gϕ′
G. But ϕ′

G((w, I)) =
∑

k<nI
xIk(I, k)

is annihilated by Ann(I). It follows that Ann(I)M = 0 for all I ∈ I, and thus
AM = 0. Now, since M ∈ DσG

also implies Ext1
R(C ′

G,M) = 0 by Lemma 3.2.1,
we can conclude as in Step IV that M ∈ GenCG = Div-G.

Conversely, let M ∈ Div-G, and let f : P−1 → M be a map. By Step V we
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have a commutative diagram with exact rows

P−1
σG−−−→ P0 −−−→ TG −−−→ 0

π







y

ψ







y

∥

∥

∥

∥

0 −−−→ P−1/AP−1
σG−−−→ P0/AP0 −−−→ TG −−−→ 0,

where the vertical maps π and ψ are the canonical projections. As M is an R/A-
module, the map f can be factorized through π, say f = f ′π. Now TG is {R/A}∪
S-filtered by Step III, so the Eklof Lemma and Step II imply Ext1

R/A(TG,M) = 0.
Therefore, there is a map h : P0/AP0 →M such that f ′ = hσG. Then f = hψσG,
proving that M ∈ DσG

.

Theorem 3.4.7. Let R be a commutative ring. There is a 1-1 correspondence
between

(i) silting classes D in Mod-R,

(ii) Gabriel filters of finite type G over R.

The correspondence is given as follows:

Θ : G 7→ Div-G,

Ξ : D 7→ {I ⊆ R |M = IM for all M ∈ D}.

Proof. By Proposition 3.4.4 and Proposition 3.4.6, both maps of the correspon-
dence are well defined. By Proposition 3.4.4, it is clear that Θ(Ξ(D)) = D for
any silting class D. That Ξ(Θ(G)) = G for any Gabriel topology of finite type
follows from [18, Chapter VI, Theorem 5.1], and by character duality.

In [17], it was asked whether any tilting torsion pair (T ,F) of finite type is
classical (that is, T is generated by a finitely presented tilting module). The
answer turned out to be negative for general rings, but positive for commutative
rings ([8]). We remind that for commutative rings, this means that F is closed
under direct limits if and only if F = {0}. We conclude this section with a
generalization of this phenomenon for silting classes.

Proposition 3.4.8. Let R be a commutative ring, T a silting R-module, and
(D,F) = (Gen (T ),Ker HomR(T,−)) the associated torsion pair. The following
are equivalent:

(i) T is projective,

(ii) there is a finitely presented silting R-module generating D,

(iii) F is closed under direct limits,

(iv) D = Gen (Re) for a (central) idempotent e ∈ R.
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Proof. Denote A = Ann(T ) = Ann(D). By [3, Proposition 3.13 and Lemma 3.4],
T is a tilting R/A-module. Moreover, it is easy to check that R/A ∈ D if and
only if D = Mod–R/A, or equivalently, D = GenR/A. In this case, A is an
idempotent ideal with D = Ker HomR(A,−) ⊂ (R/A)⊥, cf. [4, Proposition 2.5].

(i)→ (iv): As T is also projective as an R/A-module, D = Ker Ext1
R/A(T,−) =

Mod–R/A. Then R/A ∈ Add (T ) is a projective R-module. Hence, R/A = Re
for an idempotent e ∈ R, and (iv) follows.

(ii)→ (iv): Let T ′ be a finitely presented silting module such that Gen (T ′) =
D. Then T ′ is a finitely presented tilting R/A-module, which is projective by [11,
Proposition 13.2]). Hence, D = Mod–R/A, and A is an idempotent ideal. Also,
R/A ∈ Add (T ′) is finitely presented, and thus A is finitely generated. It follows
from [10, Proposition 1.10(i)] that A = Rf for some idempotent f ∈ R, and thus
R/A = R(1− f), proving (iv).

(iii) → (iv): Consider the (tilting) torsion pair (D,F ′) in Mod–R/A, where
F ′ = Ker HomR/A(T,−). Then F ′ is closed under direct limits, and thus D =
Mod–R/A by [8] or [13, Theorem 4.6]. In particular, A is an idempotent ideal.

We claim that A is finitely generated. Let us write A as a direct union of
its finitely generated subideals, A = lim−→j∈J

Ij. Denote by Kj the ideal such that

R/Kj is the torsion-free quotient of R/Ij with respect to the torsion pair (D,F).
Then Ki ⊆ Kj whenever i ≤ j ∈ J . Since F is closed under direct limits, we
have that lim−→j∈J

R/Kj = R/
⋃

j∈J Kj is in F , and thus zero, because R/A ∈ D,

and A ⊆ ⋃j∈J Kj. It follows that there is j ∈ J such that R = Kj, and therefore
R/Ij ∈ D. But D = Mod–R/A, and Ij ⊆ A, which forces Ij = A.

We now conclude this implication as in (ii) → (iv).
(iv) → (i), (ii), (iii): As F = Gen (R(1 − e)), condition (iii) is clear. Con-

sider the map σ : R → Re ⊕ Re given by the canonical projection of R onto
the first direct summand Re. Then Ker (σ) = R(1 − e), and clearly Dσ =
Ker HomR(R(1 − e),−) = Gen (Re). Hence, Coker(σ) = Re is a silting mod-
ule generating Gen (Re). This proves (ii). Finally, T ∈ AddRe, and thus T is
projective.

The following example shows that, in contrast with tilting modules over com-
mutative rings, we cannot replace “finitely presented” by “finitely generated” in
Proposition 3.4.8(ii).

Example 3.4.1. Let k be a field, κ an infinite cardinal, and R = kκ. Consider
the Gabriel filter G over R with basis consisting of all principal ideals generated
by elements of kκ, such that their support is cofinite in κ. Let D = Div-G be the
associated silting class. Then A = Ann(D) =

∑

I∈G Ann(I) is equal to k(κ) ⊆ R.
Because A + I = R for any I ∈ G, we have that R/A ∈ D, and therefore
D = GenR/A = Ker HomR(A,−) ⊂ (R/A)⊥ (cf. the proof of Proposition 3.4.8).
We claim that R/A is a silting module.

For each a ∈ κ, consider the idempotent ea ∈ R with a-th component equal to
1, and all other components equal to zero. Taking the direct sum of the split exact
sequences 0→ eaR→ R→ (1− ea)R→ 0, we obtain a split exact sequence 0→
A

ι→ R
π→ ⊕

a∈κ(1 − ea)R → 0, where Dπ = Ker HomR(A,−) = D ⊂ (R/A)⊥.
The map σ = ι ⊕ π ∈ Mor(Proj-R) then satisfies Coker(σ) = Coker(ι) = R/A,
and as ι is monic, Dσ = (R/A)⊥ ∩Dπ = Dπ = GenR/A. We proved that R/A is
silting.

73



Finally, note that R/A is not finitely presented, and thus not projective.

3.5 Cosilting modules over commutative rings

If R is a commutative noetherian ring, then all Gabriel filters and all heredi-
tary torsion pairs are of finite type, and they correspond bijectively to subsets
of Spec(R) closed under specialization. Recall that a subset P ⊂ Spec(R) is
closed under specialization if p ∈ P implies that all prime ideals q ⊃ p be-
long to P . Such P gives rise to a hereditary torsion pair (T (P ),F(P )) where
F(P ) = {M ∈ Mod-R | HomR(R/p,M) = 0 for all p ∈ P}, and the assign-
ment P 7→ (T (P ),F(P )) defines the stated bijection. For details we refer to [18,
Chapter VI, §6.6].

Theorem 3.5.1. If R is a commutative noetherian ring, there are bijections
between

(i) silting classes D in Mod-R,

(ii) subsets P ⊆ Spec(R) closed under specialization,

(iii) Gabriel filters G over R,

(iv) cosilting classes C in Mod–R.

In particular, every cosilting class is of cofinite type.

Proof. Apply Corollary 3.3.7 and Theorem 3.4.7.

Next, we provide a construction for a cosilting module cogenerating the G-
torsionfree modules for a given Gabriel filter G. It is inspired by the construction
of cotilting modules over commutative noetherian rings in [12].

Construction 3.5.2. Let R be commutative, and G be a Gabriel filter of finite
type. Let (TG,FG) be the associated hereditary torsion pair from 3.4.3, that is,
FG =

⋂

I∈G Ker HomR(R/I,−), and TG consists of the modules M for which every
element m ∈M is annihilated by some I ∈ G. Let us construct a cosilting module
CG such that Cogen (CG) = FG.

First, since FG is a hereditary torsion-free class, there is an injective module E
with Cogen (E) = FG. Indeed, we can put E =

∏{E(R/J) | R/J ∈ FG}. Then
E is injective, E ∈ FG, and any module from FG is easily seen to be cogenerated
by E.

Next, we let E1 =
∏{E(R/I) | I ∈ G}. Since G is of finite type, FG is

definable, and thus a precovering class. Let f : F → E1 be a FG-precover of E1.
Since E1 is injective, we can extend f to a map f̄ : E(F )→ E1. As E(F ) ∈ FG,
the map f̄ is also an FG-precover of E1. Then E0 = E ⊕ E(F ) is an injective
module in FG. Denote by k : K → E(F ) the kernel of f̄ , and consider the
following exact sequence:

0→ E ⊕K

(

1E 0
0 k

)

−−−−−−−→ E0

(

0 f̄
)

−−−−−→ E1.
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We claim that CG = E ⊕ K is a cosilting module with respect to the map λ =
(

0 f̄
)

, and Cogen (CG) = FG.

Since Cogen (E) = FG, and K is isomorphic to a submodule of E(F ) ∈ FG,
we have Cogen (CG) = FG. Further, if M ∈ FG, then any map g : M → E1

factors through the FG-precover f̄ of E1, so there is h : M → E(F ) such that

g = f̄h = λ

(

0
h

)

, and thus M ∈ Cλ. This proves that FG ⊆ Cλ.
Let now M be an R-module such that the TG-torsion part M ′ of M is non-zero.

Choose any non-zero cyclic submodule R/I of M ′. As necessarily I ∈ G, there
is a non-zero map g : R/I → E1, which extends to ḡ : M → E1. Suppose that
there is h : M → E0 such that ḡ = λh. Then h↾M ′ is a non-zero map M ′ → E0

with E0 ∈ FG, a contradiction. Therefore, M 6∈ Cλ. We have FG = Cλ as desired.

Corollary 3.5.3. Let R be a commutative ring. With the notation of Construc-
tions 3.4.5 and 3.5.2, {TG | G a Gabriel filter of finite type } is a set of repre-
sentatives, up to equivalence, of all silting R-modules, and

{CG | G a Gabriel filter of finite type }

is a set of representatives, up to equivalence, of all cosilting R-modules of cofinite
type.

We close this note with an example of a cosilting module which is not of
cofinite type. The same module is also an example for a finendo quasitilting
module which is not silting. Recall that all silting modules are finendo quasitilting
[3, Proposition 3.10].

Example 3.5.1. Let R be a commutative local ring with a non-zero idempotent
maximal ideal m (e.g. any valuation domain with non-zero idempotent radical,
such as the ring of Puiseux series over a field). We consider the module R/m.

Since m is idempotent, the class C = Gen (R/m) = Add (R/m) is a torsion
class contained in (R/m)⊥. The natural projection R→ R/m is easily seen to be
a C-preenvelope. The cokernel of this map is zero, and [3, Proposition 3.2] shows
that R/m is a finendo quasitilting module. On the other hand, C is not silting by
Theorem 3.4.7. Indeed, the only ideal R/m is divisible by is R. But C 6= Mod-R,
because m 6∈ C, as m2 = m 6= 0.

The same class C is a cosilting class not of cofinite type. Indeed, C is closed
for direct products, and thus it coincides with Cogen (R/m). We prove that R/m

is a cosilting module. Let 0→ R/m→ E0
ϕ−→ E1 be the begining of the minimal

injective coresolution of R/m. Define an injective module E =
∏{E(R/J) | J ⊆

R such that SocR/J = 0}. Let σ : E0 → E1 ⊕E be the direct sum of ϕ and the
zero map 0→ E. We prove that Cσ = C.

Note that the image of any map f : R/m→ E1⊕E is contained in E1 by the
definition of E. By the essentiality of the image of ϕ in E1, f is actually a map
R/m → Imϕ. Since Ext1

R(R/m, R/m) = 0 by the idempotency of m, we have
that R/m ∈ Cσ, and thus C ⊆ Cσ.

Let now M ∈ Mod-R be such that mM 6= 0. Then M contains a cyclic sub-
module R/I with m 6⊆ I. Using injectivity, it is enough to show that R/I 6∈ Cσ. If
SocR/I = 0, then R/I injects into E, and this injection clearly cannot be factor-
ized through σ. If SocR/I 6= 0, let J be an ideal such that (R/I)/SocR/I ≃ R/J .

75



Then J 6= R, because in such case SocR/I = R/I, implying that Ann(R/I) = m,
and thus R/I = R/m, which is not the case. If SocR/J 6= 0, the full preimage
of this socle in R/I would be a non-trivial extension of two semisimple modules,
which does not exist by idempotency of m. Hence, SocR/J = 0, and the compo-
sition of the projection R/I → R/J with inclusion R/J → E is a non-zero map
R/I → E. Again, this map cannot be factorized through σ. Hence, R/I 6∈ Cσ,
and Cσ = Cogen (R/m).

Finally, the class C is not of cofinite type. Indeed, the only injective the class
C contains is zero, and thus it is not of cofinite type by Lemma 3.4.2.
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Abstract. We classify all tilting classes over an arbitrary commutative ring via
certain sequences of Thomason subsets of the spectrum, generalizing the clas-
sification for noetherian commutative rings by Angeleri-Posṕı̌sil-Šťov́ıček-Trlifaj.
We show that the n-tilting classes can be equivalently expressed as classes of
all modules vanishing in the first n degrees of one of the following homology
theories arising from a finitely generated ideal: Tor∗(R/I,−), Koszul homology,

Čech homology, or local homology (even though in general none of those theo-
ries coincide). Cofinite-type n-cotilting classes are described by vanishing of the
corresponding cohomology theories. For any cotilting class of cofinite type, we
also construct a corresponding cotilting module, generalizing the construction of
Šťov́ıček-Trlifaj-Herbera. Finally, we characterize cotilting classes of cofinite type
amongst the general ones, and construct new examples of n-cotilting classes not
of cofinite type, which are in a sense hard to tell apart from those of cofinite type.
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Chapter 4

Tilting classes over commutative
rings

4.1 Introduction

Infinitely generated tilting and cotilting modules were introduced in [15, 4] about
two decades ago as a formal generalization of Miyashita tilting modules [33]. The
main motivation for studying Miyashita tilting modules is that they represent
equivalences of derived categories. In the last few years, it became clear that
infinitely generated modules represent derived equivalences as well (see [10, 11,
44, 20, 38]), but also that there is more than that.

In the realm of commutative noetherian rings, it was shown [6] that tilting
modules have a very close relation to the underlying geometry of the correspond-
ing affine schemes. In fact, a full classification of tilting modules up to additive
equivalence in terms of geometric data was obtained there. From a wider per-
spective, this was explained by Angeleri and Saoŕın [7] who exhibited a direct
relation of the dual cotilting modules to t-structures of the derived category, and
the resulting t-structures were known to have a similar classification from [2].
The outcome was that in the commutative noetherian setting, cotilting modules
represent a class of t-structures (namely those, which are compactly generated
and induce a derived equivalence to the heart).

The motivating question of the present work is, what remains true for com-
mutative rings which are not necessarily noetherian. A posteriori, the general
setting forced us to look for more conceptual proofs and gave more insight in the
problem even for noetherian rings. Here is a short overview of highlights of the
paper:

1. For a commutative ring R, we give a full classification of tilting R-modules
up to additive equivalence in terms of filtrations of Thomason subsets of
SpecR (Theorem 4.6.2).
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2. We obtain more insight in R-modules which are perfect in the derived cat-
egory as well as in resolving subcategories formed by such modules, in
that every such resolving subcategory is generated by syzygies of Koszul
complexes (this follows from Theorem 4.6.2(iv) combined with Proposi-
tion 4.5.12).

3. We observe that tilting modules up to additive equivalence are also classified
by vanishing of the derived completion functors as well as by vanishing of
the Čech homology (Theorem 4.7.7).

4. We give a construction of dual cotilting modules to tilting modules (Theo-
rem 4.8.7) and present some intriguing examples in the last section.

A starting point for the classification in this paper (as well as for its pre-
decessor [26] which focused on (co)tilting modules of homological dimensions at
most one) is the 1997 paper of Thomason [43]. There he generalized Neeman-
Hopkins’s classification of thick subcategories of the derived category of perfect
complexes over a commutative noetherian ring to a general commutative ring.
The parametrizing family for this classification is the set of all sets of the spec-
trum of the ring, which are open with respect to the Hochster dual of the usual
Zariski topology. If the ring is noetherian, these Thomason sets coincide precisely
with the specialization closed subsets (that is, upper subsets of SpecR with re-
spect to set-theoretic inclusion). It turns out that the main classification theorem
for tilting modules and classes induced by them in [6] (but not its proof) remains
valid in the non-noetherian setting provided that we simply change ‘specialization
closed set’ to ’Thomason set’ in the statement.

As was the case in the noetherian case, it is convenient to carry out the main
steps of the proof in the dual setting of cotilting modules and cotilting classes
induced by them first, and then transfer the results via elementary duality. The
reason why the dual setting is more graspable seems to lie in the fact that,
over a commutative ring, the cotilting classes dual to a tilting class are closed
under injective envelopes (Proposition 4.5.5). In homological dimension one,
this already leads to the well-understood theory of hereditary torsion pairs, as
explained in [26]. We do not know of any analogous closure property for tilting
classes.

In other respects, our approach differs considerably from [6]. For example, we
cannot use the Matlis theory of injectives, the classical theory of associated primes
or the Auslander-Bridger transpose anymore. Instead, we use the classification of
hereditary torsion pairs of finite type from [26] and prove directly that a cotilting
class is described cosyzygy-wise by a sequence of such torsion pairs (Lemma 4.5.8).

Another problem we have to tackle is that tilting classes bijectively corre-
spond to resolving subcategories of modules having finite projective resolutions
by finitely generated projectives (in the sense of Theorem 4.4.2). The description
of such resolving subcategories in the noetherian case was obtained, indepen-
dently of [6], by Dao and Takahashi [17]. It turns out that a sufficiently rich
supply of R-modules with such a finite resolution, for any commutative ring R,
comes from tails of classical Koszul complexes associated with finite sets of el-
ements of R. The key point here is to understand when exactly such tails are
exact, i.e. when high enough Koszul homologies of R vanish.
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Apart from the homological description of tilting classes which was obtained
for noetherian rings in [6], i.e. in terms of vanishing of certain degrees of homology
Tor∗(R/I,−), we also obtain another one in terms of vanishing of the Koszul
homology. We proceed further here to show that two other homology theories
also fit in this place—the local and the Čech homology associated to a finitely
generated ideal I. The interesting point is that, unless the ring is noetherian,
these two homologies need not be isomorphic. However, the vanishing of the
first n homologies of a module is always equivalent for all of the four homology
theories in play. The analogous result holds for the dual setting too for more
classical local and Čech cohomologies.

The paper is organized as follows. Section 4.2 gathers the required results
about hereditary torsion pairs of commutative rings, focusing on those of finite
type. In Section 4.3 we prove the key Proposition 4.3.9 which shows that vanish-
ing of ExtiR(R/I,−) for i = 0, 1, . . . , n− 1 is equivalent to vanishing of the corre-
sponding Koszul cohomology for any commutative ring. We link this vanishing
property with the notion of vaguely associated prime ideal, yielding results which
are analogous to characterizations of the grade of a finitely generated module
over a noetherian ring. The fourth section recalls the fundamentals of the theory
of large tilting modules over an arbitrary ring. These three sections prepare the
ground for the core Section 4.5, in which we classify the n-cotilting classes of
cofinite type over a commutative ring. These results are then reformulated and
translated for the tilting side of the story in Section 4.6. The aforementioned
connection with the derived functors of torsion and completion, as well as the
Čech (co)homology, is explained in Section 4.7. In the following Section 4.8, we
show how a cotilting module associated to any cotilting class of cofinite type over
a commutative ring can be constructed, building on the idea from [42]. In the
final Section 4.9, we characterize the cofinite-type cotilting classes amongst the
general ones, and we construct new examples of n-cotilting classes which are not
of cofinite type, but which are in a sense difficult to tell apart from cofinite type
cotilting classes.

4.2 Torsion pairs over commutative rings

In this section we give a classification of hereditary torsion pairs of finite type
over commutative rings by Thomason subsets of the Zariski spectrum. This will
be a key tool further in the paper. The material is probably known or not difficult
to see for experts and almost all the fragments of the classification are present in
the literature, but we have not been able to find a convenient reference.

Regarding our notation, R will always stand for an associative and unital ring
and Mod-R for the category of right R-modules. We will always assume that R
is also commutative unless stated otherwise. If I ⊆ R is an ideal, we denote by

V (I) = {p ∈ SpecR | I ⊆ p}

the corresponding Zariski closed set. We begin our discussion with the so-called
Hochster duality of spectral topological spaces and Thomason sets.

81



4.2.1 Spectral spaces, Hochster duality, and Thomason
sets

The set of Thomason subsets of SpecR was used as an index set in Thomason’s
classification [43] of thick subcategories of the category of perfect complexes.
Although Thomason sets already appear in the work of Hochster [25], their name
is customary nowadays since they were used in connection with other classification
problems (see e.g. [29] and the references therein) and, in particular, with tilting
theory in [26]. Let us start the discussion with a definition, which is relatively
simple:

Definition 4.2.1. Given a commutative ringR, a subsetX ⊆ SpecR is a Thoma-
son set if it can be expressed as a union of complements of quasi-compact Zariski
open sets. That is, there exists a collection G of finitely generated ideals of R
such that

X =
⋃

I∈G

V (I),

where UI = SpecR \ V (I) are the quasi-compact Zariski open sets.

To put this into the right context, one should note that Thomason sets define
a topology on SpecR for which they are the open sets. This observation comes
from Hochster’s [25, Proposition 8] and, following [29, §1], it can be also explained
as follows. First, SpecR with the Zariski topology is a so-called spectral space.

Definition 4.2.2. A quasi-compact topological space X is spectral (or coherent
in the terminology of [27, §II.3.4, p. 65]) if

1. the class of quasi-compact open sets is closed under intersections and forms
an open basis for the topology, and

2. every irreducible closed set is the closure of a unique point.

In fact, Hochster [25] proved that spectral spaces are up to homeomorphism
precisely the ones of the form SpecR for a commutative ring R. If X is a spectral
topological space, the collection of quasi-compact open sets with the operations
of the set-theoretic union and intersection is a distributive lattice. In fact, X is
fully determined by this distributive lattice and every distributive lattice arises
like that. Recall that an ideal I in a lattice L is a prime ideal if x∧ y ∈ I implies
x ∈ I or y ∈ I.

Proposition 4.2.3 ([27, Corollaries II.1.7(i) and II.3.4]). There is a bijective
correspondence between

1. homeomorphism classes of spectral spaces X, and

2. isomorphism classes of distributive lattices L,

given as follows. To a space X we assign the lattice of quasi-compact open sets.
On the other hand, given L, the underlying set of X is the set of all lattice prime
ideals p ⊆ L, and the open basis of the topology is formed by the quasi-compact
sets Ux = {p ∈ X | x 6∈ p}, x ∈ L (this is a lattice theoretic version of the Zariski
topology).
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Remark 4.2.4. The lattice Ω(X) of all open sets in a topological space X is always
a distributive lattice. If X is spectral and L ⊆ Ω(X) is the sublattice of all quasi-
compact open sets, then Ω(X) is isomorphic to the lattice of all ideals L (see the
proof [27, Proposition II.3.2]).

Now, the opposite lattice of Lop of a distributive lattice L is again distributive.
Since the complement of a prime ideal in L is a prime filter in L and hence a
prime ideal in Lop (see [27, Prop. I.2.2]), the space corresponding to Lop has (up
to this canonical identification) the same underlying set as the one corresponding
to L. The topology is different, however. Starting with a spectral space X, the
dual topology will have as an open basis precisely the complements of the original
quasi-compact open sets. The resulting space is called the Hochster dual of X.

If X = SpecR with the Zariski topology, the open sets in the dual topology
are precisely the Thomason sets. The following immediate consequence of the
present discussion will be useful to us.

Corollary 4.2.5. Let R be a commutative ring and consider X = SpecR with
the Zariski topology. Then there is a bijective correspondence between

1. Thomason subsets of SpecR, and

2. filters in the lattice of quasi-compact open sets of X.

Given a Thomason set X ⊆ SpecR, we assign to it the filter of quasi-compact
open sets {U | SpecR \ U ⊆ X}. Conversely, given a filter F , we assign to it
X =

⋃

U∈F(SpecR \ U).

4.2.2 Hereditary torsion pairs of finite type

A torsion pair in Mod-R is a pair of classes (T ,F) of R-modules such that
HomR(T, F ) = 0 for each T ∈ T and F ∈ F and for each X ∈ Mod-R there
exists a short exact sequence 0→ T → X → F → 0. This short exact sequence is
unique up to a unique isomorphism. The class T is called a torsion class and tor-
sion classes of a torsion pair T are characterized by the closure properties—they
are closed under coproducts, extensions and factor modules. Dually, torsion-free
classes F are characterized as those being closed under products, extensions and
submodules.

A torsion pair is hereditary if T is closed under submodules. Equivalently, F
is closed under injective envelopes, [41, §VI.3].

We will be mostly interested in the case when the torsion class is generated
by a set of finitely presented modules. That is, F = Ker HomR(T0,−) for a set
of finitely presented modules T0. Although all the concepts can be defined over
any ring, commutative or not, the following is special in the commutative case.

Proposition 4.2.6. Let R be a commutative ring and (T ,F) be a torsion pair
such that F = Ker HomR(T0,−) for a set of finitely presented modules T0. Then
(T ,F) is hereditary.

Proof. We refer to (the proof of) [5, Lemma 4.2].
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A hereditary torsion pair is determined by the class of cyclic torsion modules,
or equivalently by the set of ideals I for which R/I is torsion, [41, Proposi-
tion VI.3.6]. Such a set of ideals corresponding to a hereditary torsion pair is
called a Gabriel topology. We refer to [41, §VI.5] for the general definition of a
Gabriel topology, while a much simpler special case will be discussed below in
Lemma 4.2.9.

Proposition 4.2.7. Let R be a commutative ring. There is a bijective correspon-
dence between hereditary torsion pairs (T ,F) in Mod-R and Gabriel topologies G
on R. Moreover, the following are equivalent for a hereditary torsion pair (T ,F):

1. There is a set T0 of finitely presented modules with F = Ker HomR(T0,−).

2. F is closed under direct limits.

3. The corresponding Gabriel topology G has a basis of finitely generated ideals
(i.e. each ideal in G contains a finitely generated ideal in G).

Proof. We refer to [41, §VI.6] for the bijective correspondence. The second part
has been proved in [26, Lemma 2.4].

Definition 4.2.8. The torsion pairs satisfying the conditions (1)–(3) above will
be called hereditary torsion pairs of finite type.

If G is a Gabriel topology on R, we denote by Gf the collection of all finitely
generated ideals in G. It is always closed under products of ideals (i.e. if I1, I2 ∈ G,
then I1·I2 ∈ G) and finitely generated overideals. If Propositions 4.2.7(3) holds, Gf
completely determines G and the two latter closure properties in fact completely
characterize such Gabriel topologies.

Lemma 4.2.9 ([26, Lemma 2.3]). Let R be a commutative ring. Then a filter G
of ideals of R with a basis of finitely generated ideals is a Gabriel topology if and
only if it is closed under products of ideals.

The following correspondence is a consequence of standard commutative al-
gebra.

Lemma 4.2.10. For a commutative ring R, there is a bijective correspondence
between

1. Gabriel topologies with a basis of finitely generated ideals, and

2. filters of the lattice of quasi-compact Zariski open subsets of SpecR.

Proof. Quasi-compact Zariski open sets are precisely those of the form UI =
SpecR \ V (I) for a finitely generated ideal I ⊆ R. Moreover, UI ⊆ UI′ if and
only if V (I) ⊇ V (I ′) if and only if

I ⊆
⋂

p⊇I′

p =
√
I ′

if and only if In ⊆ I ′ for some n ≥ 1. Since also UI1·I2
= UI1

∩UI2
, the correspon-

dence which assigns to a Gabriel topology G as in (1) the filter {UI | I ∈ G} of
the lattice of quasi-compact open sets is a bijective.
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If we combine the discussion above with Corollary 4.2.5, we obtain the fol-
lowing parametrization of hereditary torsion pairs of finite type (see [5, 26] for
closely related results and compare also to [41, Proposition VI.6.15]). Here, if
M ∈ Mod-R, Supp(M) = {p ∈ SpecR |Mp 6= 0} denotes as usual the support of
M .

Proposition 4.2.11. Given a commutative ring R, there is a bijective correspon-
dence between

1. hereditary torsion pairs (T ,F) of finite type, and

2. Thomason subsets of SpecR.

Given a torsion pair (T ,F), we assign to it the subset X =
⋃

T∈T Supp(T ).
Conversely, if X is a Thomason set, we put T = {T ∈ Mod-R | Supp(T ) ⊆ X}.

Proof. The fact that there is a bijective correspondence between (1) and (2)
follows by combining Proposition 4.2.7, Lemma 4.2.10 and Corollary 4.2.5. The
particular correspondence given by the three statements is rather explicit. To
(T ,F) we assign the Thomason set X of all prime ideals p ∈ SpecR for which
there exists a finitely generated ideal I ⊆ p with R/I ∈ T . Conversely, to a
Thomason set X we assign the unique hereditary torsion pair of finite type such
that, given a finitely generated ideal I, R/I is torsion precisely when V (I) ⊆ X.

Suppose now that (T ,F) is of finite type and X is the corresponding Thoma-
son set. Since every object in T is an epimorphic image of a coproduct of cyclic
modules contained in T , we have X =

⋃

R/I∈T Supp(R/I) =
⋃

T∈T Supp(T ), as
required. Next let T ′ = {T ∈ Mod-R | Supp(T ) ⊆ X}. This is clearly a heredi-
tary torsion class and, given a finitely generated ideal I ⊆ R, we have R/I ∈ T ′

if and only if SuppR/I ⊆ X. As SuppR/I = V (I) in this case, T ′ is also sent
to X under the bijective correspondence, and hence T = T ′.

We conclude the discussion with a description of the torsion-free classes under
the correspondence from Proposition 4.2.11. This was important in the classifi-
cation of tilting classes in the noetherian case [6] and the current version comes
from [26].

Definition 4.2.12 ([26, §3.2]). Let M be a module over a commutative ring. A
prime ideal p is vaguely associated to M if the smallest class of modules containing
M and closed under submodules and direct limits contains R/p. The set of primes
vaguely associated to M is denoted by VAss(M).

If R is in addition noetherian, VAss(M) coincides with the set of usual asso-
ciated prime ideals by [26, Lemma 3.8]. The following proposition then general-
izes [6, Proposition 2.3(iii)].

Proposition 4.2.13. Let R be a commutative ring and (T ,F) a hereditary tor-
sion pair of finite type. If X is the Thomason set assigned to the torsion pair by
Proposition 4.2.11, then

F = {F ∈ Mod-R | VAss(M) ∩X = ∅}.
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Proof. This has been proved in [26]. Namely, given p ∈ SpecR and a finitely
generated R-module M , then HomR(M,R/p) 6= 0 if and only if p ∈ Supp(M)
by [26, Lemma 3.10]. Then necessarily VAss(M) ∩ X = ∅ for each F ∈ F .
Conversely, suppose that F 6∈ F . Then there is an embedding i : R/J → F with
R/J ∈ T . By the proof of [26, Lemma 3.2] there exists p ∈ VAss(M) such that
p ⊇ I. That is, p ∈ VAss(M) ∩X.

4.3 Generalized grade of a module

A very important concept in homological algebra for modules over commutative
noetherian rings is the one of a regular sequence and of the grade of a module.
The maximal length of a regular sequence in a given ideal has various homolog-
ical characterizations. Appropriate forms of these characterizations still remain
equivalent over non-noetherian commutative rings which will be useful for us. We
shall give details in this section.

We shall use the following notation here. Given M ∈ Mod-R and i ≥ 0, we
denote by Ωi(M) the i-th syzygy of M (uniquely determined only up to projective
equivalence). If i < 0, we let ΩiM stand for the minimal |i|-th cosyzygy of M
(determined uniquely as a module).

4.3.1 Derived categories and truncation of complexes

In this section it will also be useful to argue using the derived category D(Mod-R)
of Mod-R; see for instance [28, Chapter 13]. The suspension functor will be
denoted by

Σ: D(Mod-R)→ D(Mod-R)

and we will typically use the homological indexing of components of complexes:

X : · · · → Xn+1
dn+1−−−→ Xn

dn−→ Xn−1
dn−1−−−→ Xn−2 → · · ·

In this context, we will also use the homological truncation functors with
respect to the (suspensions of the) canonical t-structure on D(Mod-R) (see [13,
Examples 1.3.22] or [28, §12.3]). We shall slightly adapt our notation for it
to be compatible with our homological indexing. Thus, given a complex X ∈
D(Mod-R) and n ∈ Z, we shall denote by X≥n the complex

X≥n : · · · → Xn+1
dn+1−−−→ Xn

dn−→ Im dn → 0→ · · ·
The subcomplex inclusion i : X≥n : → X (when we consider the complexes in

the usual category of complexes C(Mod-R)) induces an isomorphism on the k-th
homology for each k ≥ n and Hk(X≥n) = 0 for all k < n. Dually, the projection
morphism p : X → X/X≥n induces an isomorphism on the k-th homology for all
k < n and Hk(X/X≥n) = 0 whenever k ≥ n.

In fact, (X≥n | n ∈ Z) yields a filtration of X in C(Mod-R). Since the
homologies of X≥n/X≥n+1 in degrees different from n vanish, we have for each
n ∈ Z a distinguished triangle

X≥n+1 → X≥n → ΣnHn(X)→ ΣX≥n+1. (4.1)

in D(Mod-R). This observation, which formalizes how a complex can be built by
extension from its homology modules will be especially useful in §4.5.
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4.3.2 Koszul complexes and Koszul (co)homology

A particularly useful class of complexes here will be the so-called Koszul com-
plexes. Here R will stand for a commutative ring.

Definition 4.3.1 ([14, §1.6], [35, §8.2]). Given x ∈ R, we define the Koszul
complex with respect to x, denoted K•(x), as follows

0→ R
−·x−−→ R→ 0,

by which we mean a complex concentrated in degree 1 and 0, with the only non-
zero map R → R being the multiplication by x. Here we use the homological
indexing (i.e. the differential has degree −1).

More generally, given a finite sequence x = (x1, x2, . . . , xn) of elements of R,
we define the complex K•(x) as the tensor product

⊗n
i=1 K•(xi) of complexes of

R-modules.

In particular, K•(x) is a complex of finitely generated free R-modules con-
centrated in degrees 0 to n. Given an arbitrary module, we can define the corre-
sponding Koszul homology and cohomology.

Definition 4.3.2. Given a finite sequence x = (x1, x2, . . . , xn) of elements of R,
a module M ∈ Mod-R, and i ∈ Z, the i-th Koszul homology of x with coefficients
in M is defined as

Hi(x;M) = Hi

(

K•(x)⊗RM
)

.

Similarly, the i-th Koszul cohomology of x with coefficients in M is defined as

H i(x;M) = H i
(

HomR(K•(x),M)
)

.

Remark 4.3.3. The Koszul cohomology has a particularly easy interpretation in
the derived category D(Mod-R). Namely, we have

H i(x;M) ∼= HomD(Mod-R)(K•(x),ΣiM).

Typically we will start with a finitely generated ideal I = (x1, . . . , xn) of R
and we will consider the Koszul complex or homology or cohomology of x =
(x1, x2, . . . , xn). These notions are not invariant under change of the generating
set of I—see [14, Proposition 1.6.21] for a precise discussion on how the complex
changes. However, the following consequence of this discussion will be crucial for
us and will make the particular choice of a finite generating set of I unimportant.

Proposition 4.3.4. Let R be a commutative ring, I be a finitely generated ideal
and let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , ym) be two systems of generators
of I. Given any integer ℓ ∈ Z, one has H i(x;M) = 0 for all i ≤ ℓ if and only if
H i(y;M) = 0 for all i ≤ ℓ.

Proof. This is an immediate consequence of [14, Corollary 1.6.22] and [14, Corol-
lary 1.6.10(d)].

Hence, we introduce the following slightly abused notation.
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Notation 4.3.5. Given a commutative ring R and a finitely generated ideal I, we
always fix once and for ever a system of generators x = (x1, x2, . . . , xn). We then
say that K•(x) is the Koszul complex of the ideal I and denote it by K•(I).

Similarly for M ∈ Mod-R and i ∈ Z we define the i-th Koszul homology of I
with coefficients in M as Hi(I;M) = Hi(x;M), and similarly for the i-the Koszul
cohomology H i(I;M) = H i(x;M).

The following two well-known properties of Koszul complexes which will be
important in our application.

Lemma 4.3.6. Let I be a finitely generated ideal. Then:

(i) H0(K•(I)) = R/I,

(ii) I ⊆ Ann
(

Hj(K•(I)
)

for all k = 0, 1, . . . , n.

Proof. See [35, p. 360, (8.2.7) and p. 364, Theorem 3] or [14, Prop. 1.6.5(b)].

In fact, the latter lemma allows us to relate the Koszul cohomology of I to
ordinary Ext-groups. Namely, we have a map of complexes

q : K•(I)→ K•(I)/K•(I)≥1
∼= R/I, (4.2)

and if M is an R-module, we can apply HomD(Mod-R)(−,ΣiM) to obtain a map

qiM : ExtiR(R/I,M)→ H i(I;M). (4.3)

This map is natural in M and compares the Ext-group to the Koszul cohomology
with coefficients in M (see also [14, Proposition 1.6.9]). It is easy to see that
q0
M is always an isomorphism, but for i > 0 the relation is more complicated

and will be studied in the next subsection. To get a quick impression of the
potential difficulties, note that H i(I;M) always commutes with direct limits,
while ExtiR(R/I,−) need not if R is not a coherent ring.

4.3.3 More on the relation between Koszul cohomology
and Ext groups

Our strategy will be to try to quantify the difference between K•(I) and R/I in
the derived category. We start with an easy lemma.

Lemma 4.3.7. Let I be a finitely generated ideal. Suppose that M is an R-
module such that M ∈ ⋂n−1

i=0 Ker ExtiR(R/I,−). Then ExtkR(N,M) = 0 for all
k = 0, 1, . . . , n− 1 and any R/I-module N .

Proof. Since N is an R/I-module, there is an exact sequence

0→ K → R/I(κ) → N → 0.

The lemma is then proved by applying HomR(−,M) on this sequence and a
straightforward induction on k, using the fact that K is also an R/I-module.

The last result extends in a straightforward way to the derived category.
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Lemma 4.3.8. Let I be a finitely generated ideal and suppose that M is an R-
module such that M ∈ ⋂n−1

i=0 Ker ExtiR(R/I,−). If X ∈ D(Mod-R) is a complex

such that Hk(X) = 0 for k ≤ −n and I ⊆ Ann
(

Hk(X)
)

for k = −n+1, . . . ,−1, 0.

Then HomD(Mod-R)(X,M) = 0.

Proof. Using the notation from §4.3.1 for truncations of complexes, we first
recall the well-known fact that HomD(Mod-R)(X≥1,M) = 0; see [28, Proposi-
tions 3.1.8 and 3.1.10]. Since by our assumption HomD(Mod-R)(Σ

kHk(X),M) =
0 for k = −n + 1, . . . ,−1, 0, a straightforward induction using the triangles
from (4.1) in §4.3.1 shows that HomD(Mod-R)(X≥−n+1,M) = 0. Finally, the in-
clusion X≥−n+1 → X is an isomorphism in D(Mod-R) since we assume that
Hk(X) = 0 for k ≤ −n.

The latter lemma implies that the comparison map in (4.3) in §4.3.2 between
the i-th Koszul cohomology of I and ExtiR(R/I,M) is an isomorphism under
certain assumptions.

Proposition 4.3.9. Let R be a commutative ring and I be a finitely generated
ideal of R. Suppose that M is a module such that M ∈ ⋂n−1

i=0 Ker ExtiR(R/I,−)
for some n ≥ 0. Then qnM : ExtnR(R/I,M)→ Hn(I;M) is an isomorphism.

Proof. Since the two rightmost terms F1
d1−→ F0 of K•(I) constitute a projective

presentation of R/I, it is clear that q0
M : H0(I;M) → HomR(R/I,M) is always

an isomorphism. This proves the lemma for n = 0.
If n > 0, we consider the triangle

K•(I)≥1 → K•(I)
q−→ R/I → ΣK•(I)≥1

in D(Mod-R) induced by the short exact sequence of complexes in the first three
terms (see also (4.2) in §4.3.2). If we apply HomD(Mod-R)(−,ΣnM), we obtain an
exact sequence of abelian groups

Hom(ΣK•(I)≥1,Σ
nM)→ Extn(R/I,M)

qn
M−→ Hn(I;M)→ Hom(K•(I)≥1,Σ

nM)

Since all the homologies of K•(I)≥1 are R/I-modules, the leftmost and the right-
most term vanish by Lemma 4.3.8 provided that M ∈ ⋂n−1

i=0 Ker ExtiR(R/I,−).
Hence qnM is an isomorphism in such a case.

An immediate but particularly useful consequence is the following identifica-
tion.

Corollary 4.3.10. If R is a commutative ring, then

n−1
⋂

i=0

Ker ExtiR(R/I,−) =
n−1
⋂

i=0

KerH i(I;−)

as subcategories of Mod-R for each finitely generated ideal I and n ≥ 0.

Remark 4.3.11. The dual versions of results from §4.3.3 also hold, and will be
used in §4.7. Explicitly, for each finitely generated ideal I and n ≥ 0 we have

n−1
⋂

i=0

Ker TorRi (R/I,−) =
n−1
⋂

i=0

KerHi(I;−),
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and for any module M belonging to this class, there is a natural isomorphism

qMn : Hn(I;M)→ TorRn (R/I,M),

obtained by applying Hn(−⊗L
RM) onto (4.2). This can be proven either directly

using similar arguments as in this section, or it follows by using the elementary du-
ality (−)+ (see §4.4 for the definition). Indeed, using the Hom-⊗-adjunction and
exactness of the elementary duality, we have for any M ∈ ⋂n−1

i=0 Ker TorRi (R/I,−)
that M+ ∈ ⋂n−1

i=0 Ker ExtiR(R/I,−). It is straightforward to check that the same
properties ensure that (qMn )+ is naturally equivalent to qnM+ , which is an isomor-
phism by Proposition 4.3.9. Since (−)+ is exact and faithful, we conclude that
qMn is an isomorphism.

4.3.4 Vaguely associated primes revisited

Now we give another way to express the very same class as in Corollary 4.3.10 by
giving a homological generalization of Proposition 4.2.13. We start with an easy
observation

Lemma 4.3.12. Let R be a commutative ring, I be a finitely generated ideal.
Then F = Ker HomR(R/I,−) is a hereditary torsion-free class of finite type
whose corresponding Thomason set (in the sense of Proposition 4.2.11) is V (I).

Proof. By Lemma 4.2.9, the smallest Gabriel topology G containing I consists of
the ideals J such that Im ⊆ J for some m ≥ 1. The corresponding cyclic module
R/J then admits a filtration by R/I-modules of length m. Hence the smallest
torsion class T containing R/I coincides with the smallest torsion class containing
G. In particular, (T ,F) is a hereditary torsion pair. The fact that it corresponds
to the Thomason set V (I) follows from the proof of Proposition 4.2.11.

Now can we state and prove the promised result.

Proposition 4.3.13. Let R be a commutative ring, I be a finitely generated ideal,
M be an R-module and n ≥ 1. Then the following are equivalent:

1. ExtiR(R/I,M) = 0 for each i = 0, 1, . . . , n− 1.

2. VAss
(

Ω−i(M)
)

∩ V (I) = ∅ for each i = 0, 1, . . . , n− 1.

Proof. We prove the proposition by induction on n. Let F = Ker HomR(R/I,−).
The statement for n = 1 is precisely Proposition 4.2.13. Suppose now that n > 1,
and consider the exact sequence

0→ Ω−(n−2)(M)→ E → Ω−(n−1)(M)→ 0, (4.4)

where E is the injective envelope of Ω−(n−2)(M). An application of HomR(R/I,−)
yields an exact sequence

HomR(R/I,E)→ HomR(R/I,Ω−(n−1)(M))→ Extn−1
R (R/I,M)→ 0.

If (1) holds, we have VAss
(

Ω−(n−2)(M)
)

∩ V (I) = ∅ by the inductive hy-

pothesis, so Ω−(n−2)(M) ∈ F by Proposition 4.2.13. Since F is a hereditary
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torsion-free class, also E ∈ F and the leftmost term in (4.4) vanishes. As also
Extn−1

R (R/I,M) = 0 by the assumption, we have HomR(R/I,Ω−(n−1)(M)) = 0.

Therefore, we conclude that VAss
(

Ω−(n−1)(M)
)

∩ V (I) = ∅ as required.

Suppose conversely that (2) holds. Then HomR(R/I,Ω−(n−1)(M)) = 0 by
Proposition 4.2.13 and hence Extn−1

R (R/I,M) = 0. The other Ext-groups in (1)
vanish by the inductive hypothesis.

4.3.5 Characterizations of grade

Now we are in a position to state and prove the main result of the section. As the
definition of the grade of a module is specific to the noetherian situation and will
not be so important for the rest of the paper, we only refer to [14, §§I.1.1–I.1.2] for
the corresponding standard definitions. The equivalences below are well-known
under additional finiteness conditions (R noetherian, M finitely generated)—see
for instance [14, Theorems I.2.5 and I.6.17].

Theorem 4.3.14. Let R be a commutative ring, M be an R-module and n ≥ 1.
Then the following are equivalent:

1. H i(I;M) = 0 for each i = 0, 1, . . . , n− 1.

2. ExtiR(R/I,M) = 0 for each i = 0, 1, . . . , n− 1.

3. VAss
(

Ω−i(M)
)

∩ V (I) = ∅ for each i = 0, 1, . . . , n− 1.

If, moreover, R is noetherian and M finitely generated, the statements are further
equivalent to:

(4) The grade of I on M is at least n.

Proof. The equivalence between (1) and (2) has been established in Corollary 4.3.10
and the equivalence between (2) and (3) in Proposition 4.3.13. For the equivalence
between (2) and (4) see [14, Theorems I.2.5].

4.4 Infinitely generated tilting theory

At this point, we quickly recall basic terminology and facts about module ap-
proximations and cotorsion pairs, two essential tools of the forthcoming sections.
We also remind the reader of the notion of (not necessarily finitely generated) n-
tilting and n-cotilting module, as defined by [15] and [4], and the duality between
those two.

4.4.1 Module approximations

We briefly recall the definitions of (pre)covers and (pre)envelopes of modules.
Let C be a class of right R-modules, and M ∈ Mod-R. We say that a map
f : C → M is a C-precover of M provided that C ∈ C, and for any C ′ ∈ C the
map HomR(C ′, f) is surjective. Furthermore, if any map g ∈ EndR(C) such that
f = fg is necessarily an automorphism, we say that f is a C-cover. Finally, a
surjective map f : C → M is called a special C-precover if C ∈ C and Ker(f) ∈
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⊥1C. It is easy to see that any special C-precover is a C-precover. Also, by the
Wakamatsu Lemma ([21, Lemma 5.13]), any surjective C-cover is a special C-
precover. Finally, we say that a class C is (special) (pre)covering, if any module
M ∈ Mod-R admits a (special) C-(pre)cover.

The notions of C-preenvelope, C-envelope, and special C-preenvelope are de-
fined dually.

4.4.2 Cotorsion pairs

Given a class C ⊆ Mod-R, we fix the following notation:

C⊥1 = {M ∈ Mod-R | Ext1
R(C,M) = 0 for all C ∈ C},

C⊥ = {M ∈ Mod-R | ExtiR(C,M) = 0 for all C ∈ C and i > 0},
C⊺ = {M ∈ R-Mod | TorRi (C,M) = 0 for all C ∈ C and i > 0}.

We also define the “left-hand” version of those classes in an obviously analogous
way. A pair of classes (A,B) is called a cotorsion pair if B = A⊥1 , and A = ⊥1B.
Such a cotorsion pair is said to be hereditary, if furthermore B = A⊥.

A cotorsion pair (A,B) is complete provided that A is a special precovering
class (equivalently, B is a special preenveloping class, see [21, Lemma 5.20]).
Complete cotorsion pairs are abundant - indeed, any cotorsion pair generated by
a set is complete, and the left class of the pair can be described explicitly:

Theorem 4.4.1. ([21, Theorem 6.11], [21, Corollary 6.14]) Let S be a set of
modules. Then:

(i) The cotorsion pair (⊥1(S⊥1), S⊥1) is complete,

(ii) The class ⊥1(S⊥1) consists precisely of all direct summands of all S ∪ {R}-
filtered modules.

4.4.3 Tilting and cotilting modules and classes

Let T be a right R-module and n ≥ 0. We say that T is n-tilting if the following
three conditions hold:

(T1) pdT ≤ n,

(T2) ExtiR(T, T (X)) = 0 for all i > 0 and all sets X,

(T3) there is an exact sequence 0 → R → T0 → · · · → Tn → 0, where Ti is a
direct summand of a direct sum of copies of T for all i = 0, 1, . . . , n.

A module T is tilting if it is n-tilting for some n ≥ 0. An n-tilting module T
induces a hereditary and complete cotorsion pair (A, T ) = (⊥1(T⊥), T⊥). The
class T is called an (n-)tilting class. Two tilting modules T, T ′ are equivalent if
they induce the same tilting class. Even though the tilting modules in our setting
are in general big (indeed, over a commutative ring, any finitely generated tilting
module is projective), the tilting classes arise from small modules in the following
sense. Let mod-R denote the full subcategory of Mod-R consisting of strongly
finitely presented modules, that is, modules having finite projective resolution
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consisting of finitely generated projectives. A full subcategory S of mod-R is
called resolving if it contains all finitely generated projectives, is closed under
extensions and direct summands, and A ∈ S whenever there is an exact sequence

0→ A→ B → C → 0,

with B,C ∈ S.

Theorem 4.4.2. ([12], [21, Theorem 13.49]) There is a bijective correspondence
between n-tilting classes T and resolving subcategories S of mod-R consisting of
R-modules of projective dimension ≤ n. The correspondence is given by mutually
inverse assignments T 7→ (⊥T ) ∩mod-R, and S 7→ S⊥ = S⊥1.

The cotilting modules have a formally dual definition - a left R-module C is
(n-)cotilting if the following conditions hold:

(C1) idT ≤ n,

(C2) ExtiR(CX , C) = 0 for all i > 0 and all sets X,

(C3) there is an exact sequence 0 → Cn → · · · → C0 → W → 0, where Ci is
a direct summand of a direct product of copies of T for all i = 0, 1, . . . , n,
and W is an injective cogenerator of R-Mod.

As for the tilting modules, a cotilting module C induces a cotilting class C = ⊥C,
and two cotilting modules C,C ′ are equivalent if they induce the same cotilting
class. There is also an explicit duality between tilting and cotilting modules.
If R is a k-algebra over a commutative ring k (e.g. k = Z), we denote by
(−)+ = Homk(−, E) the duality with respect to an injective cogenerator E of
k -Mod. Then for any right tilting R-module T , the dual T+ is a left cotilting
R-module. We say that a tilting class T in Mod-R and cotilting class C in R-Mod
are associated if there is a tilting module T inducing T such that T+ induces C.

It is not true that every cotilting class is associated to a tilting class. We say
that a class C is of cofinite type provided that there is a set of strongly finitely
presented modules S of projective dimension bounded by n such that C = S⊺.

Theorem 4.4.3. ([21, Proposition 15.17], [21, Theorem 15.18]) Any class of
cofinite type is cotilting. A cotilting class is associated to some tilting class if and
only it is of cofinite type. Furthermore, the assignment T⊥ 7→ ⊥(T+) induces a
bijection between tilting class in Mod-R and cotilting classes in R-Mod of cofinite
type.

An example of a cotilting class not of cofinite type was first exhibited in [9].
In §4.9, we show a more general construction of such classes.

All tilting and all cotilting classes are definable (i.e., closed under pure sub-
modules, direct products, and direct limits). Furthermore, a pair of associated
tilting class and cotilting class is dual definable in the following sense:

Lemma 4.4.4. Let R be a ring, T a tilting class in Mod-R, and C the cotilting
class of cofinite type in R-Mod associated to T . Then for any M ∈ Mod-R, and
N ∈ R-Mod:

(i) M ∈ T if and only if M+ ∈ C,
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(ii) N ∈ C if and only if N+ ∈ T .

Proof. The proof is the same as that of [5, Lemma 3.3]. As T is of finite type,
there is a set S ⊆ mod-R such that T = S⊥. By [21, Theorem 15.19, and the
paragraph following it], also C = S⊺. Using the Hom-⊗ adjunction, exactness
of (−)+, and [19, Theorem 3.2.10], we have TorRi (S,N)+ ≃ ExtiR(S,N+), which
yields (ii). Since T is definable, M ∈ T if and only if M++ ∈ T by [39, 3.4.21].
Then we can apply (ii) tho obtain (i).

Finally, as in [6], we fix the following notation for cotilting classes of lower
dimensions induced by a cotilting class, which will be useful for arguing by in-
duction on the dimension.

Notation 4.4.5. Given an n-cotilting class C induced by a cotilting module C, we
let C(i) = ⊥Ω−iC for all i ≥ 0. In particular, C(0) = C, and C(i) is a (n− i)-cotilting
class for all i = 0, 1, . . . , n (see [6, Lemma 3.5]).

4.5 Cotilting classes of cofinite type

In this section we classify cotilting classes of cofinite type over a commutative
ring. The parametrizing set for this classification will consist of sequences of
torsion-free classes of hereditary torsion-free pairs of finite type satisfying some
extra conditions. Using results from Section 4.2, these classes are in bijective
correspondence with certain Thomason sets, and thus generalize in a direct way
the parametrizing sets used in the noetherian case in [6].

Definition 4.5.1. Let R be a commutative ring and n ≥ 0. We say that

a sequence of torsion-free classes S = (F0,F1, . . . ,Fn−1) is a characteristic se-
quence (of length n) if

(i) Fi is hereditary and of finite type for each i = 0, 1, . . . , n− 1,

(ii) F0 ⊆ F1 ⊆ · · · ⊆ Fn−1,

(iii) Ω−iR ∈ Fi for each i = 0, 1, . . . , n− 1.

Notation 4.5.2. Given a characteristic sequence S = (F0,F1, . . . ,Fn−1) and
i = 0, 1, . . . , n− 1 we put

Fi(S) = Fi,
and we define a class

C(S) = {M ∈ Mod-R | Ω−iM ∈ Fi(S) for each i = 0, 1, . . . , n− 1}.
Our goal in this section is to prove the following:

Theorem 4.5.3. Let R be a commutative ring and n ≥ 0. Then the assignment

Ψ : S 7→ C(S)

is a bijection between the set of all characteristic sequences of length n and all
n-cotilting classes in Mod-R of cofinite type.

The proof of Theorem 4.5.3 will be done in several steps throughout this
section, by proving subsequently that Ψ is surjective, well-defined, and injective.
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4.5.1 Ψ is surjective

Lemma 4.5.4. Let R be a commutative ring, M ∈ Mod-R, and P a finitely
generated projective R-module. If ι : M → E(M) is the injective envelope of M ,
then P ⊗R ι is the injective envelope of P ⊗RM .

Proof. Let P ′ ∈ Mod-R be a finitely generated projective module such that P ⊕
P ′ ≃ Rn for some n ∈ ω. As E(M)n is injective, the map Rn ⊗R ι = ιn is the
injective envelope of Mn by [3, Proposition 6.16(2)]. As ιn = (P ⊗R ι)⊕ (P ′⊗R ι),
we infer that P ⊗R ι is the injective envelope of P ⊗RM .

Proposition 4.5.5. Let R be a commutative ring and C be a cotilting class in
Mod-R. If C is of cofinite type, then it is closed under injective envelopes.

Proof. Fix a module M ∈ C, and let us show that E(M) ∈ C, provided that C
is of cofinite type. Under this assumption, there is a set S of strongly finitely
presented modules of projective dimension bounded by n such that C = S⊺. We
proceed by induction on n. If n = 0 the claim is clear as C = Mod-R; henceforth
assume that we proved the claim for all k < n. Pick S ∈ S and fix its projective
resolution

P• : 0→ Pn
σn−→ Pn−1

σn−1−−−→ · · · σ1−→ P0 → 0,

consisting of finitely generated projectives. Tensoring the complex P• with the
injective envelope ι : M → E(M) yields a commutative diagram in Mod-R (this
is where we use the commutativity of R):

0 0 0






y







y







y

P2 ⊗RM σ2⊗RM−−−−→ P1 ⊗RM σ1⊗RM−−−−→ P0 ⊗RM






y

P1⊗Rι







y







y

P2 ⊗R E(M)
σ2⊗RE(M)−−−−−−→ P1 ⊗R E(M)

σ1⊗RE(M)−−−−−−→ P0 ⊗R E(M)

(In the case of n = 1 we put P2 = 0.)
Since P• consists of projective modules, the columns are exact. We have

H1(P• ⊗RM) ≃ TorR1 (S,M) = 0,

as M ∈ C, and we want to show that H1(P• ⊗R E(M)) ≃ TorR1 (S,E(M) = 0.
If Ker(σ1 ⊗R E(M)) = 0 there is nothing to prove. Otherwise, since P1 ⊗R ι
is the injective envelope of P1 ⊗R M by Lemma 4.5.4, P1 ⊗R ι is an essential
monomorphism. Therefore, the module

Ker(σ1 ⊗R E(M)) ∩ Im(P1 ⊗R ι) = (P1 ⊗R ι)(Ker(σ1 ⊗RM)) =

= (P1 ⊗R ι)(Im(σ2 ⊗RM))

is non-zero, and thus essential in Ker(σ1 ⊗R E(M)). It follows that Im(σ2 ⊗R
E(M)) is essential in Ker(σ1 ⊗R E(M)). Now we use the induction hypothesis,
which implies that TorRk (S,E(M)) ≃ TorR1 (Ωk−1S,E(M)) = 0 for all k > 1. This
means that Hk(P• ⊗R E(M)) = 0 for all k > 1, and as this complex consists of

95



injectives and is left-bounded, the map (σ2 ⊗R E(M)) is a split monomorphism.
The only case for which this is not a contradiction is when Im(σ2 ⊗R E(M)) =
Ker(σ1⊗RE(M)), showing that 0 = H1(P•⊗RE(M)) = TorR1 (S,E(M)), proving
finally that E(M) ∈ C.

Given a fixed module C, we can assign to any module X the canonical map
ηX : X → CHomR(X,C) = CX . This map is in fact (covariantly) functorial, as we
recall in the following Lemma.

Lemma 4.5.6. The map ηX is functorial in X. That is, given any map X
f−→ Y ,

there is a map ηf : CX → CY such that ηY f = ηfηX , and such that ηgηf = ηgf
for any map g : Y → Z.

Proof. For any β ∈ HomR(Y,C), let πβ : CY → C be the projection onto the β-th
coordinate. We define ηf by the following rule: For any c = (cα)α∈HomR(X,C) ∈ CX ,
and any β ∈ HomR(Y,C), we let

πβηf (c) =







cα, α = βf

0, otherwise.
(4.5)

It is easy to see that ηf is an R-module homomorphism. Also, for any β ∈
HomR(Y,C) we have

πβηY f = βf = πβηfηX ,

proving that indeed ηY f = ηfηX . Finally, the equality ηgηf = ηgf can be checked
by direct computation from (4.5).

Lemma 4.5.7. Let R be a ring and let C be an cotilting class in R-Mod closed
under injective envelopes. Then there is a hereditary faithful torsion-free class of
finite type F such that

C = {M ∈ Mod-R |M ∈ F & Ω−1M ∈ C(1)}.

Proof. Let C be the cotilting module associated to C. Applying HomR(−, C) to
the exact sequence 0 → M → E(M) → Ω−1M → 0, and using that C is closed
under injective envelopes by Proposition 4.5.5, we infer that M ∈ C if and only
if E(M) ∈ C and Ω−1M ∈ C(1).

We let F be the closure of C under submodules. As C is closed under injective
envelopes, injectives of C and F coincide. From this it is easy to infer that
C = {M ∈ Mod-R | M ∈ F & Ω−1M ∈ C(1)}. We are left to show that F
is a hereditary faithful torsion-free class of finite type. It is easy to check that
R ∈ F , and that F is closed under submodules, injective envelopes, extensions,
and products.

It remains to show that F is closed under direct limits. Note that F =
Cogen(C). Let (Xi)i∈I be a directed system of modules from F . As Xi is cogen-
erated by C, the canonical map ηXi

: Xi → CXi
is monic. Using the functoriality

proved in Lemma 4.5.6, we actually have a directed system (Xi → CXi
)i∈I of

monic maps. Taking the direct limit yields a monic map lim−→i∈I
Xi → lim−→i∈I

CXi
.

As C is definable, the latter direct limit is in C, proving that lim−→i∈I
Xi is indeed

in F .
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Lemma 4.5.8. Let R be a commutative ring and C be an n-cotilting class in
Mod-R of cofinite type. Then there is a characteristic sequence (F0,F1, . . . ,Fn−1)
such that C = {M ∈ Mod-R | Ω−iM ∈ Fi for each i = 0, 1, . . . , n− 1}. In
particular, map Ψ is surjective.

Proof. First observe that C(1) is of cofinite type provided that C is. Indeed,
if C = S⊺ for some resolving subcategory of mod-R consisting of modules of
bounded projective dimension, we have

C(1) = {M ∈ Mod-R | ΩM ∈ C} = {ΩS | S ∈ S}⊺,

demonstrating the cofinite type of C(1). With Proposition 4.5.5 in mind, we
can apply Lemma 4.5.7 inductively (n − 1)-times in order to obtain the desired
sequence (F0,F1, . . . ,Fn−1), where Fn−1 = C(n−1). Using the same Lemma and
Proposition, this sequence is indeed characteristic, and C = C((F0,F1, . . . ,Fn−1))
as desired.

4.5.2 Ψ is well-defined

Definition 4.5.9. Let S be a characteristic sequence of length n. We let Gi(S)
denote the Gabriel topology associated to the torsion-free class Fi(S) in the sense
of Proposition 4.2.7 for each i = 0, 1, . . . , n− 1.

In particular, Gi(S) is a Gabriel topology of finite type, and

Fi(S) =
⋂

I∈Gf
i

(S)

Ker Hom R(R/I,−).

Lemma 4.5.10. Let S be a characteristic sequence of length n. Then

C(S) =
n−1
⋂

i=0

⋂

I∈Gf
i

(S)

Ker Ext iR(R/I,−)

.

Proof. Let S = (F0,F1, . . . ,Fn−1). We prove by induction on 0 < k ≤ n that
C((F0,F1, . . . ,Fk−1)) =

⋂k−1
i=0

⋂

I∈Gf
i

(S) Ker Ext iR(R/I,−). If k = 1, then indeed

C((F0)) =
⋂

I∈Gf
0

(S) Ker HomR(R/I,−). Suppose that the claim is valid up to

k − 1 for 0 < k − 1 < n, and let I ∈ Gfk . Let M ∈ C((F0,F1, . . . ,Fk−1)). The
long exact sequence obtained by applying HomR(R/I,−) on the exact sequence
0 → M → E(M) → Ω−1M → 0 yields an isomorphism Extk−1

R (R/I,Ω−1M) ≃
ExtkR(R/I,M) (for k = 1 we use the fact that E(M) ∈ F0 ⊆ Fk).

By dimension shifting, we have Extk−1
R (R/I,Ω−1M) ≃ Ext1

R(R/I,Ω−k+1M).
Finally, since E(Ω−k+1M) ∈ Fk−1 ⊆ Fk, we have also the zero-dimension shift
isomorphism Ext1

R(R/I,Ω−k+1M) ≃ HomR(R/I,Ω−kM). Putting the isomor-
phisms together, we have HomR(R/I,Ω−kM) ≃ ExtkR(R/I,M), showing that
Ω−kM ∈ Fk holds if and only if M ∈ ⋂

I∈Gf

k

Ker ExtkR(R/I,−) for any M ∈
C(F0,F1, . . . ,Fk−1). Therefore, using the induction premise, an arbitrary mod-
ule M ∈ Mod-R satisfies M ∈ C(F0,F1, . . . ,Fk) if and only if we have M ∈
⋂k
i=0

⋂

I∈Gf
i

(S) Ker Ext iR(R/I,−), establishing the induction step.

In what follows, we denote by (−)∗ the regular module duality HomR(−, R).
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Definition 4.5.11. Let I be a finitely generated ideal, and let us denote the
Koszul complex K•(I) as follows

· · · dn+1−−−→ Fn
dn−→ · · · d2−→ F1

d1−→ F0 → 0,

where Fk is in degree k for all k = 0, 1, 2, . . . , n+1. We denote by SI,k the cokernel
of the map d∗

k. That is, SI,k is (up to stable equivalence) the Auslander-Bridger
transpose of Coker(dk).

Proposition 4.5.12. Let I be a finitely generated ideal such that ExtiR(R/I,R) =
0 for all i = 0, 1, . . . , n− 1. Then:

(i) SI,n is a strongly finitely presented module of projective dimension n,

(ii)
⋂n−1
i=0 Ker ExtiR(R/I,−) = (SI,n)⊺,

(iii)
⋂n−1
i=0 Ker ExtiR(R/I,−) is an n-cotilting class of cofinite type.

Proof. Let us adopt the notation for K•(I) as in Definition 4.5.11. Let 0 < k ≤ n.
Applying (−)∗ to K•(I) we obtain complex

0→ F ∗
0 → F ∗

1 → · · · → F ∗
k−1

d∗
n−→ F ∗

k → SI,k → 0, (4.6)

which is exact by our assumption and Proposition 4.3.9. This proves (i).
Denote by C• the complex (4.6) with SI,k deleted, and F ∗

k in the degree zero.
Then C• is a projective resolution of SI,k, and thus H1(C•⊗RM) ≃ TorR1 (SI,k,M).
But as Fj is finitely generated projective for all j = 0, 1, . . . , n, we have by [3,
Proposition 20.10] a natural isomorphism F ∗

j ⊗R M ≃ HomR(Fj,M). Hence,
using Proposition 4.3.9 we obtain

TorR1 (SI,k,M) ≃ H1(C• ⊗RM) ≃ (4.7)

≃ Hk−1(HomR(K•(I),M) ≃ Extk−1
R (R/I,M),

for any M ∈ ⋂k−2
i=0 Ker ExtiR(R/I,−).

Now we prove (ii). Note first that SI,k is an (n− k)-th syzygy of SI,n. Hence,
TorRk (SI,n,M) ≃ TorR1 (SI,n−k+1,M). Then (SI,n)⊺ =

⋂n
k=1 Ker TorR1 (SI,k,−). A

straightforward induction on k = 1, 2, . . . , n together with (4.7) proves that the
latter class is equal to

⋂n
k=1 Ker Extk−1

R (R/I,−) as desired.
Finally, (iii) follows directly from (ii) by Theorem 4.4.3.

Lemma 4.5.13. Let S be a characteristic sequence of length n, then C(S) is a
n-cotilting class of cofinite type. In particular, map Ψ is well-defined.

Proof. We have the following chain of equalities:

C(S) =
n−1
⋂

i=0

⋂

I∈Gf
i

(S)

Ker Ext iR(R/I,−) =
n−1
⋂

i=0

⋂

I∈Gf
i

(S)

i
⋂

j=0

Ker Ext jR(R/I,−) =

=
n−1
⋂

i=0

⋂

I∈Gf
i

(S)

(SI,i+1)
⊺.

The first equality is Lemma 4.5.10, the second one follows easily from Gfi ⊇ Gfi+1

for each i = 0, 1, . . . , n − 2, and the last one is an application of Proposi-
tion 4.5.12(ii). Then Theorem 4.4.3 yields the result.
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4.5.3 Ψ is injective

Lemma 4.5.14. Let S = (F0,F1, . . . ,Fn−1) be a characteristic sequence, and
C = C(S) the associated n-cotilting class. Then

(i) ΩM ∈ C((F0,F1, . . . ,Fn−1)) if and only if M ∈ C((F1,F2, . . . ,Fn−1)),

(ii) C(i) = C((Fi,Fi+1, . . . ,Fn−1)) for each i = 0, 1, . . . , n.

Proof. (i) Choose I ∈ Gfi (S) for some i = 0, 1, . . . , n − 1. Consider the long
exact sequence obtained by applying HomR(R/I,−) onto a projective pre-
sentation of M , say

0→ ΩM → P →M → 0.

Since cotilting classes contain all projectives modules, this long exact se-
quence yields HomR(R/I,ΩM) = 0 and ExtjR(R/I,ΩM) ≃ Extj−1

R (R/I,M)
for all j = 1, 2, . . . , i. Therefore,

ΩM ∈
n−1
⋂

i=0

⋂

I∈Gf
i

(S)

Ker Ext iR(R/I,−)

if and only if

M ∈
n−1
⋂

i=1

⋂

I∈Gf
i

(S)

Ker Ext i−1
R (R/I,−).

This concludes (i) by Lemma 4.5.10.

(ii) It follows directly from the definition that C(i) = {M ∈ Mod-R | ΩiM ∈ C}.
Then (ii) is proved by (i) and a straightforward induction.

Lemma 4.5.15. Let S and S′ be two characteristic sequences. If S 6= S′, then
C(S) 6= C(S′). In particular, map Ψ is injective.

Proof. Let i ≥ 0 be smallest such that Fi(S) 6= Fi(S′). Suppose without loss
of generality that there is M ∈ F ′

i(S) \ Fi(S). If i = 0, then clearly E(M)
is in C(S′), but E(M) 6∈ F0(S) proving the statement for i = 0. Let now
i = 0, 1, . . . , n − 1 and suppose towards contradiction that C(S) = C(S′). Then
also C(S)(i) = C(S′)(i), but this is a contradiction using the case i = 0 and
Lemma 4.5.14(ii).

4.5.4 The result

Now we are ready to prove our classification theorem.

Proof of Theorem 4.5.3. The assignment Ψ : S 7→ S(S)) is a well-defined map
from the set of all characteristic sequences of length n to n-cotilting classes of
cofinite type by Lemma 4.5.13. This map is injective by Lemma 4.5.15 and
surjective by Lemma 4.5.8.
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4.6 Main classification results

In this section we rephrase Theorem 4.5.3 in terms of Thomason sets, and state
our characterization of tilting classes over commutative rings.

Theorem 4.6.1. Let R be a commutative ring and n ≥ 0. There is a 1-1 cor-
respondence between n-cotilting classes C of cofinite type in Mod-R and finite
sequences (X0, X1, . . . , Xn−1) of Thomason subsets of Spec(R) satisfying:

(i) X0 ⊇ X1 ⊇ · · · ⊇ Xn−1,

(ii) Xi ∩ VAss(Ω−jR) = ∅ for all j = 0, 1, . . . , i and all i = 0, 1, . . . , n− 1.

The correspondence is given by mutually inverse maps

C 7→ (Spec(R) \ Ass(C(0)), Spec(R) \ Ass(C(1)), . . . , Spec(R) \ Ass(C(n−1))),

(X0, X1, . . . , Xn−1) 7→ {M ∈ Mod-R | VAss(Ω−iM) ∩Xi = ∅ for all i < n}.
Proof. Start with a cofinite-type cotilting class C, and let S = (F0,F1, . . . ,Fn−1)
be the characteristic sequence corresponding to C in the sense of Theorem 4.5.3.
Note that Ass(C(j)) = Ass(Fj) for each j = 0, 1, . . . , n− 1. Indeed, one inclusion
follows trivially, as C(j) ⊆ Fj by Lemma 4.5.14, while the second inclusion follows
from C(j) and Fj being both closed under injective envelopes and having the same
injectives.

The rest of the proof is a combination of Theorem 4.5.3, Proposition 4.2.11,
and Proposition 4.2.13.

Theorem 4.6.2. Let R be a commutative ring and n ≥ 0. There are 1-1 corre-
spondences between the following collections:

(i) sequences (G0,G1, . . . ,Gn−1) of Gabriel topologies of finite type satisfying:

(a) G0 ⊇ G1 ⊇ · · · ⊇ Gn−1,

(b) ExtjR(R/I,R) = 0 for all I ∈ Gi, all i = 0, 1, . . . , n − 1, and all
j = 0, 1, . . . , i.

(ii) n-cotilting classes C in Mod-R of cofinite type,

(iii) n-tilting classes T in Mod-R,

(iv) resolving subcategories S of mod-R consisting of modules of projective di-
mension ≤ n.

The correspondences are given as follows:

(i)→ (ii) : (G0,G1, . . . ,Gn−1) 7→
n−1
⋂

i=0

⋂

I∈Gf
i

Ker Ext iR(R/I,−) =
n−1
⋂

i=0

⋂

I∈Gf
i

(SI,i+1)
⊺

(i)→ (iii) : (G0,G1, . . . ,Gn−1) 7→
n−1
⋂

i=0

⋂

I∈Gf
i

Ker Tor Ri (R/I,−) =
n−1
⋂

i=0

⋂

I∈Gf
i

(SI,i+1)
⊥

(i)→ (iv) : (G0,G1, . . . ,Gn−1) 7→ {M ∈ mod-R |M is isomorphic

to a direct summand of a finitely {R} ∪ {SI,i+1 | I ∈ Gfi , i < n}-filtered module}
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Proof. Correspondence (i) → (ii) follows directly from Theorem 4.5.3, Gabriel
correspondence between hereditary torsion pairs and Gabriel topologies (see [41,
VI, Theorem 5.1 and XIII, Proposition 1.2]), and combination of Lemma 4.5.10
and Proposition 4.5.12. We show that (i) → (iii) is a composition of (i) → (ii)
with the character duality correspondence between tilting and cofinite-type cotilt-
ing classes. Indeed, we have as in the proof of Lemma 4.4.4 that TorRi (X,M) = 0
if and only if ExtiR(X,M+) = 0 for any i ≥ 0. Therefore, we have M ∈
⋂n−1
i=0

⋂

I∈Gf
i

Ker Tor Ri (R/I,−) if and only if M+ ∈ ⋂n−1
i=0

⋂

I∈Gf
i

Ker Ext iR(R/I,−),

and thus the former class is the tilting class associated to the latter cotilt-
ing class by Lemma 4.4.4(i). Similarly, N ∈ ⋂n−1

i=0

⋂

I∈Gf
i
(SI,i+1)

⊺ if and only if

N+ ∈ ⋂n−1
i=0

⋂

I∈Gf
i
(SI,i+1)

⊥. As the latter class is of finite type, and thus defin-

able, it is uniquely determined by its pure-injective objects ([21, Lemma 6.9]).
Using Lemma 4.4.4(ii) and [21, Theorem 2.27(c)], we see that pure-injectives
of this class coincide with pure-injectives of the tilting class associated to the
cotilting class

⋂n−1
i=0

⋂

I∈Gf
i
(SI,i+1)

⊺, and thus the two classes coincide.

Finally, by Theorem 4.4.2, resolving subcategories S as in (iv) correspond
bijectively to tilting classes T via the assignment T 7→ (⊥T )∩mod-R. Whenever
T = S⊥ for some set S ⊆ mod-R, we have that ⊥T equals to all direct summands
of all {R} ∪ S-filtered modules by Theorem 4.4.1, and thus ⊥T ∩mod-R equals
to direct summands of all finitely {R} ∪ S-filtered modules. By (i) → (iii), we
can chose S = {SI,i+1 | I ∈ Gfi , i = 0, 1, . . . , n− 1}, establishing (i)→ (iv).

Remark 4.6.3. If the ring R is coherent, we can use a projective resolution of
R/I in mod-R instead of the Koszul complex. Therefore, in this case SI,i+1 can
be replaced by module Tr(ΩiR/I) for each i = 0, 1, . . . , n − 1, where Tr is the
Auslander-Bridger transpose (cf. [6]).

Example 4.6.4. Let R be a commutative perfect ring. Then the only tilting class
in Mod-R is the trivial one, that is the whole Mod-R. By Theorem 4.6.2, it is
enough to show that if I is a finitely generated ideal such that HomR(R/I,R) = 0,
then I = R. Indeed, since I is finitely generated, the descending chain (In | n ∈
ω) stabilizes at some n (see [31, Theorem 23.20, p. 345]). Then either I is
nilpotent, and thus HomR(R/I,R) 6= 0 unless I = R, or In is idempotent. As
I is finitely generated, the latter case implies that In is a direct summand of R,
and thus again HomR(R/I,R) 6= 0 unless I = R.

4.7 Derived functors of torsion and completion

and Čech (co)homology

In Section 4.6, we characterized cofinite type n-cotilting classes over a commu-
tative ring as classes of all modules which vanish in certain degrees of Koszul
cohomologies, arising from a set of finitely generated ideals. In this section, we
show that we can replace Koszul complexes by two kinds of more canonically
defined cohomology theories associated to an ideal—Čech cohomology, and local
cohomology. Our results are valid for a general commutative ring, even though
the latter two cohomology theories do not in general coincide for non-noetherian
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rings. An analogous description of n-tilting classes via Čech homology and lo-
cal homology will also be accomplished, after dealing with a few extra technical
difficulties. The main sources we use in this section are [23, 37, 36, 40].

Throughout this section, let R be a commutative ring.

4.7.1 Local (co)homology

Given a finitely generated ideal I, there are two additive functors Mod-R →
Mod-R arising from it—the I-torsion functor ΓI and the I-adic completion functor
ΛI , defined for an R-module M as follows:

ΓI(M) = {m ∈M | Inm = 0 for some n > 0} = lim−→
n∈ω

HomR(R/In,M),

ΛI(M) = lim←−
n∈ω

M ⊗R R/In.

A module M is said to be I-torsion if ΓI(M) = M , and we denote the full
subcategory of all I-torsion modules by TI . Then TI is an abelian category with
exact direct sums, and the embedding TI ⊆ Mod-R is exact and clearly admits
ΓI as is its right adjoint.

TI Mod-R

⊆

ΓI

(4.8)

In particular, ΓI is left exact, and we can form the right derived functor RΓI ,
called the local cohomology functor of I.

The situation is a bit more tricky in the case of completion functors. Following
Positselski [37], we say that a module M is an I-contramodule provided that
ExtjR(R[x−1

i ],M) = 0 for j = 0, 1, and for i = 1, 2, . . . , n, where {x1, x2, . . . , xn}
is a set of generators of I. By [37, p. 3880], the choice of generators does not
matter, and this is a correct definition. Denote by CI the full subcategory of all
I-contramodules. Then CI is an abelian category with exact products and the
embedding CI ⊆ Mod-R is exact and admits a left adjoint ([37, Proposition 2.1]).
Following [37] we denote the left adjoint by ∆I .

CI Mod-R

⊆

∆I

(4.9)

However, usually ΛI does not fit in this adjunction in place of ∆I . Indeed, ΛI

can be neither left nor right exact, even over a noetherian ring. Nevertheless, we
can compute the left derived functor LΛI , and call it the local homology.

By [32, §I. Lemma 5.13], both adjunctions (4.8) and (4.9) survive passing to
the (unbounded) derived category, and thus we have adjoint pairs:

D(TI) D(Mod-R)

RΓI

(4.10)
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and

D(CI) D(Mod-R).

L∆I

(4.11)

However, note that in general not even in the derived picture we can swap
L∆I for LΛI (see [37, Example 2.6]). This will be further discussed in §4.7.4.

4.7.2 Čech (co)homology

As discussed in §4.3.2, the Koszul complex K•(I) for a finitely generated ideal I is
not a well-defined object even in the derived category, as the homology can change
when passing from one generating system of I to another. This can be mended
by stepping outside of the realm of perfect complexes and using generators of I
to form a Čech cochain complex (also called a stable Koszul complex).

Definition 4.7.1. Let x be an element of R. The Čech complex with respect to
x, denoted by Č•(x), which is defined as

0→ R
ι−→ Rx → 0,

where Rx = R[x−1], ι is the natural morphism, and the cochain complex is concen-
trated in (cohomological) degrees 0 and 1. Given a sequence x = (x1, x2, . . . , xn)
of elements of R, we define Č•(x) as the tensor product

⊗n
i=1 Č

•(xi).

Lemma 4.7.2. ([22, Corollary 3.12]) Let I be a finitely generated ideal, and
x = (x1, x2, . . . , xn),y = (y1, y2, . . . , ym) two sequences of generators of I. Then

the Čech complexes Č•(x) and Č•(y) are quasi-isomorphic.

Lemma 4.7.2 legitimizes the following notation: Given a finitely generated
ideal I with a finite sequence of generators x, we denote Č•(I) = Č•(x). The
cochain complex Č•(I) is then well-defined as an object of the derived category.

Similar to Koszul complexes, we can compute Čech cohomology and homology.
First we address the former, defined as follows:

Ȟ i(I;−) = H i(Č•(I)⊗L
R −).

As Č•(I) is a bounded complex of flat modules, we can drop the left derivation

symbol L from the formula. This Čech cohomology can also be viewed as a limit
version of Koszul cohomology in the following way. Given x ∈ R, the Koszul chain
complexes (K•(x

j) | j > 0) form an inverse system with the following connecting
maps:

0 R R 0

0 R R 0

·xj

·x

·xj+1

(4.12)

Dualizing this with respect to R, we obtain a direct system (K•(x
j)∗ | j > 0) of

cochain complexes, and it is easy to check that its limit is precisely Č•(x). As
direct limit commutes with tensor product, we get Č•(I) = lim−→j>0

K•(x
j)∗, where

we fix the notation
xj = (xj1, x

j
2, . . . , x

j
m)
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for a set of generators x = x1 of I. Given a module M , we infer from exactness
of the direct limit functor the following isomorphism

Ȟ i(I;M) ≃ lim−→
j>0

H i(xj;M). (4.13)

Using this representation, we can already show that the Čech complexes classify
the cofinite type cotilting classes (see also Theorem 4.7.7 below). In the following
proofs, let always Ij denote the ideal generated by the sequence xj (not to be
confused with Ij).

Lemma 4.7.3. Let R be a commutative ring, I a finitely generated ideal, and
n > 0. Then

n−1
⋂

i=0

KerH i(I;−) =
n−1
⋂

i=0

Ker Ȟ i(I;−).

Proof. We proceed by induction on n ≥ 0. For the induction step, we fix through-
out the proof a module

M ∈
n−1
⋂

i=0

KerH i(I;−) =
n−1
⋂

i=0

Ker Ȟ i(I;−)

(which is a vacuous assumption if n = 0), and prove that Hn(I;M) = 0 if and
only if Ȟn(I;M) = 0. We recall the comparison map qnM(j) : ExtnR(R/Ij,M) →
Hn(xj;M) from §4.3.2. By Proposition 4.3.9, the map qnM(j) is an isomorphism
for any j > 0.

Assume first that Hn(I;M) = 0. By the pigeon hole principle, Ij/Ij+1 is
an R/Im(j+1)-module for any j > 0, and thus R/Ij is finitely filtered by R/I-
modules. Then Hn(xj;M) ≃ ExtnR(R/Ij,M) = 0 by Lemma 4.3.7. Using (4.13),

we infer Ȟn(I;M) = 0. This proves one implication.
To prove the other implication, assume that Ȟn(I;M) = 0. It is enough to

show that the direct system (Hn(xj;M) | j > 0) consists of monomorphisms, be-
cause then (4.13) immediately yieldsHn(I;M) = Hn(x1;M) = 0. Observing that
H0(xj;M) = {m ∈M | Ijm = 0}, where Ij is the ideal generated by xj, we infer
that the directed system (H0(xj;M) | j > 0) consists of inclusions. For n > 0, we
argue as follows. By Corollary 4.3.10, we have M ∈ ⋂n−1

i=0 Ker ExtiR(R/I,−). Con-
sider the long exact sequence obtained by applying HomR(−,M) to the following
exact sequence, where π is the natural projection:

0→ Ij/Ij+1 → R/Ij+1
π−→ R/Ij → 0.

By the same argument using Lemma 4.3.7 as above, we have

Extn−1
R (Ij/Ij+1,M) = 0.

It follows that the map ExtnR(π,M) is a monomorphism. From the construction
and naturality of qnM , we infer that the there is a commutative diagram

ExtnR(R/Ij , R) Hn(xj ;M)

ExtnR(R/Ij+1, R) Hn(xj+1;M),

qnM (j)

ExtnR(π,M) φj

qnM (j+1)

(4.14)
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where φj is the j-th map from the direct system (Hn(xj;M) | j > 0). Since
the horizontal maps of (4.14) are isomorphisms, we finally infer that this direct
system consists of monomorphisms, as desired.

Now we treat the Čech homology, which we define, following [40], in this way:

Ȟi(I;−) = Hi(RHomR(Č•(I),−)).

Because this functor a priori inhabitates strictly the derived category, we would
like to replace Č•(I) by its projective resolution, in a way that respects the limit
construction of Č•(I). To this end, we recall the telescope cochain complex (here
we follow [36]). For any subset X of ω, let F [X] be the free R-module with basis
{δj | j ∈ X}. Given an element x ∈ R we let

Tel(x) = (· · · → 0→ F [ω]
d−→ F [ω]→ 0→ · · · ),

be the cochain complex concentrated in (cohomological) degrees 0 and 1, where
the differential d is defined on the above basis as follows

d(δj) =







δ0, if j = 0,

δj−1 − xδj, otherwise.

For any j > 0, we let

Telj(x) = (· · · → 0→ F [j]
d−→ F [j]→ 0→ · · · )

be the subcomplex of Tel(x), so that Tel(x) =
⋃

j>0 Telj(x). More generally, given
a sequence of elements x = (x1, x2, . . . , xn) of R, we let

Telj(x) =
n
⊗

i=1

Telj(xi) and Tel(x) =
n
⊗

i=1

Tel(xi).

Note that again Tel(x) =
⋃

j>0 Telj(x). It follows from ([36, Lemma 5.7]) that
there are natural homotopy equivalences

wx,j : Telj(x)→ K•(x
j)∗,

such that their limit map

wx : Tel(x)→ Č•(x)

is a quasi-isomorphism. If I is the ideal generated by x, we can now represent
the Čech homology as follows:

Ȟi(I;M) = Hi(RHomR(Č•(I),M)) ≃ Hi(HomR(Tel(x),M)) ≃
≃ Hi(HomR(lim−→ j>0 Telj(x),M)) ≃ Hi(lim←− j>0 HomR(Telj(x),M)) ≃

≃ Hi(lim←− j>0(Telj(x)∗ ⊗RM)).

Of course, in general, taking homology does not commute with inverse limits.
On the other hand, the inverse system (Telj(x)∗ ⊗R M | j > 0) consists of
epimorphisms, and thus satisfies the Mittag-Leffler condition (see [21, Definition
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3.5 and Lemma 3.6]). Using [45, Theorem 3.5.8], we have for each i ≥ 0 the
following exact sequence:

0→ lim←−
1
j>0Hi+1(Telj(x)∗ ⊗RM)→ Ȟi(I;M)→ lim←− j>0Hi(Telj(x)∗ ⊗RM)→ 0.

Here, the symbol lim←−
1

j>0
stands for the first right derived functor of the inverse

limit functor lim←−j>0
. Furthermore, because

w∗
x,j : K•(x

j)→ Telj(x)∗

is also a natural homotopy equivalence of complexes, we can rewrite this sequence
as:

0→ lim←−
1
j>0Hi+1(x

j;M)→ Ȟi(I;M)→ lim←− j>0Hi(x
j;M)→ 0. (4.15)

We are ready to prove that Čech complexes allow to classify tilting classes (see
also Theorem 4.7.7 below).

Lemma 4.7.4. Let R be a commutative ring, I a finitely generated ideal, and
n > 0. Then

n−1
⋂

i=0

KerHi(I;−) =
n−1
⋂

i=0

Ker Ȟi(I;−).

Proof. We proceed again by induction on n ≥ 0, and fix throughout the proof a
module M ∈ ⋂n−1

i=0 KerHi(I;−) =
⋂n−1
i=0 Ker Ȟi(I;−).

Suppose first that Hn(I;M) = 0. By Remark 4.3.11, Hi(x
j;M) is naturally

isomorphic to TorRi (R/Ij,M) for each j > 0 and i = 0, 1, . . . , n + 1. An argu-
mentation analogous to the one in the proof of Lemma 4.7.3 then yields that
Hn(xj,M) = 0 for each j > 0, and that the inverse system (Hn+1(x

j;M) | j > 0)
consists of epimorphisms. In particular, this system is Mittag-Leffler, and thus
[21, Lemma 3.6] implies that

lim←−
1
j>0Hn+1(x

j;M) = 0.

Therefore, we can use (4.15) to infer that Ȟn(I;M) ≃ lim←−j>0
Hn(xj;M) = 0.

This proves
⋂n−1
i=0 KerHi(I;−) ⊆ ⋂n−1

i=0 Ker Ȟi(I;−).
To prove the other inclusion, suppose that Ȟn(I;M) = 0. By (4.15), this

implies lim←−j>0
Hn(xj;M) = 0. Using again the same argument as above for ho-

mological degree shifted by −1, the inverse system (Hn(xj;M) | j > 0) consists of
epimorphisms (in the initial case of n = 0, it consists of projections M/Ij+1M →
M/IjM). It follows that Hn(x;M) = 0, and thus Hn(I;M) = 0.

4.7.3 Main theorem revisited

In this section, we show that instead of Ext (Tor) or Koszul (co)homology, we

can use either local (co)homology, or Čech (co)homology, in the formulation of
Theorem 4.6.2. We prove the remaining parts in the following Lemmas, and then
state the alternative classification Theorem.
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Lemma 4.7.5. Let R be a commutative ring and S = (F0,F1, . . . ,Fn−1) a char-
acteristic sequence of length n. Then

C(S) =
n−1
⋂

i=0

⋂

I∈Gf
i

(S)

{M ∈ Mod-R | RiΓI(M) = 0}.

Proof. This follows directly from the definition of C(S) (see Notation 4.5.2).
Indeed, if I ∈ Gfm and 0 ≤ m < n, then a module M ∈ C(S) must be in the class

m
⋂

i=0

Ker HomR(R/I,Ω−i(−)) =
m
⋂

i=0

Ker ΓI(Ω
−i(−)).

We prove by induction on j ≤ m that RjΓI(M) ≃ ΓI(Ω
−jM) for each M ∈

Ker HomR(R/I,Ω−(j−1)(−)) = Ker ΓI(Ω
−(j−1)(−)) (this condition is vacuous for

j = 0). This follows from the definition of ΓI for j = 0, and for j > 0 note that
ΓI(Ω

−(j−1)M) = 0 implies ΓI(E(Ω−(j−1)M)) = 0 and we have an exact sequence

0 = ΓI(E(Ω−(j−1)M))→ ΓI(Ω
jM)→ RjΓI(M)→ 0.

Lemma 4.7.6. Let R be a commutative ring, I a finitely generated ideal, and
n > 0. Then:

n−1
⋂

i=0

Ker TorRi (R/I,−) =
n−1
⋂

i=0

{M ∈ Mod-R | LiΛI(M) = 0}.

Proof. The shape of the proof is the same as that of Lemma 4.7.4, using the
exact sequence [23, Proposition 1.1] instead of (4.15). For the convenience of the
reader, we provide details here. We proceed by induction on n ≥ 0 (the case
of n = 0 is a vacuous statement). For the induction step, we will assume that
M ∈ ⋂n−1

i=0 KerLiΛI . By [23, Proposition 1.1], there is an exact sequence:

0→ lim←−
1
j>0 Tor Rn+1(R/I

j,M)→ LnΛI(M)→ lim←−
j>0

Tor Rn (R/Ij,M)→ 0. (4.16)

If LnΛI(M) = 0, then rightmost term also vanishes. By the induction hypothesis
we have M ∈ ⋂n−1

i=0 Ker TorRi (R/I,−). Applying −⊗RM to the exact sequence

0→ Ij/Ij+1 → R/Ij+1 → R/Ij → 0,

and noting that TorRn−1(I
j/Ij+1,M) = 0, we infer that the inverse system

(Tor Rn (R/Ij,M) | j > 0)

consists of epimorphisms. This shows that TorRn (R/I,M) = 0, proving one in-
clusion. To prove the other inclusion, suppose now that TorRn (R/I,M) = 0. It
follows easily that TorRn (R/Ij,M) = 0 for all j > 0, and thus the rightmost term
of (4.16) is zero. By repeating the same argument as above for a homological
degree shifted by 1, we obtain that the inverse system (Tor Rn+1(R/I

j,M) | j > 0)
consists of epimorphisms, and thus is Mittag-Leffler. Hence, the leftmost term
of (4.16) also vanishes by [21, Lemma 3.6], and thus LnΛI(M) = 0, finishing the
proof.
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Theorem 4.7.7. Let R be a commutative ring. Consider the following collec-
tions:

(i) characteristic sequences S = (F0,F1, . . . ,Fn−1) of length n,

(ii) n-tilting classes in Mod-R,

(iii) n-cotilting classes of cofinite type in Mod-R,

The following assignments are bijections (i)→ (ii):

S 7→
n−1
⋂

i=0

⋂

I∈Gf
i

(S)

{M ∈ Mod-R | LiΛI(M) = 0},

S 7→
n−1
⋂

i=0

⋂

I∈Gf
i

(S)

{M ∈ Mod-R | Ȟi(I;M) = 0},

and the following assignments are bijections (i)→ (iii):

S 7→
n−1
⋂

i=0

⋂

I∈Gf
i

(S)

{M ∈ Mod-R | RiΓI(M) = 0},

S 7→
n−1
⋂

i=0

⋂

I∈Gf
i

(S)

{M ∈ Mod-R | Ȟ i(I;M) = 0}.

Proof. Follows by putting together Theorem 4.6.2, Corollary 4.3.10, and Lem-
mas 4.7.5, 4.7.6, 4.7.3, and 4.7.4.

4.7.4 The big picture

As the four homological and four cohomological theories used in the classification
Theorems 4.6.2 and 4.7.7 may feel a little overwhelming, we devote this and the
next subsection to a short explanation of the relations between these. In particu-
lar we show that the Čech (co)homology, analogously to the local (co)homology,
also induces a pair of adjoint functors between derived categories, and that there
are always comparison functors between the Čech and local (co)homologies which
are equivalences under a technical condition.

Although in this material is not really new, it requires some effort to extract it
from the existing literature [1, 23, 36, 40]. Here we especially rely on a recent and
original presentation in [37, Theorem 3.4]. In fact, all we want to say is essentially
a reformulation of [37, Theorem 3.4] and its proof, and we refer the reader to [37]
for a more comprehensive treatment. We will freely use the theory of localization
of the derived category, as well as recollements and their translation to TTF
triples. For these we refer to [13], [30], or [34].

Given a full subcategory A of Mod-R, let us denote by DA(Mod-R) the sub-
category of D(Mod-R) consisting of all complexes such that their homology mod-
ules live in A. If A is an extension closed abelian subcategory of Mod-R, then
DA(Mod-R) is a triangulated subcategory of D(Mod-R). Given a set of objects
S in D(Mod-R), let Loc(S) be the smallest localizing subcategory of D(Mod-R)
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containing S. Let I be an ideal generated by x = (x1, x2, . . . , xn). By [37, Propo-
sition 5.1], the category DTI

(Mod-R) is generated (as a triangulated subcategory)
by the compact object Telj(x) for any fixed j > 0. Using [29, Proposition 2.1.2]
(see also [18, §6]), we have

Loc(R/I) = Loc(K•(I)) = D TI
(Mod-R).

Using the machinery of localization theory of triangulated categories (see [30],
namely [30, 4.9.1, 4.13.1, 5.3.1, 5.4.1, 5.5.1]) there is a recollement (we adopt the
convention that going up amounts to taking left adjoints)

DTI
(Mod-R)⊥ D(Mod-R) DTI

(Mod-R),
⊆ T

H

ι

(4.17)
corresponding (as in [34, 2.1]) to the TTF triple

(Loc(R/I),Y ,Z),

where Y = DTI
(Mod-R)⊥. By [29, Theorem 2.2.4], we also have

Y = Loc(Rx1
, Rx2

, . . . , Rxn
). (4.18)

In particular it is a localizing subcategory, and hence a tensor ideal by [29, Lemma
1.1.8]. Consider the triangle

Č•(I)
f−→ R→ Cone(f)→ ΣČ•(I), (4.19)

induced by the identity map R→ R in degree 0. Let M be a complex and apply
−⊗L

RM to (4.19) in order to obtain a triangle

Č•(I)⊗RM f⊗RM−−−−→M −→ Cone(f)⊗RM −→ ΣČ•(I)⊗RM. (4.20)

Then Č•(I) ⊗R M ∈ DTI
(Mod-R) by [37, Lemma 1.1]. Note that Cone(f) is

quasi-isomorphic to the complex

n
⊕

i=1

Rxi
→

⊕

1≤i<j≤n

Rxi,xj
→ · · · → Rx1,x2,...,xn

.

Since Y is thick and a tensor ideal, it follows from 4.18 that Cone(f)⊗RM ∈ Y .
Then (4.20) is the approximation triangle for M with respect to the torsion pair
(Loc(R/I),Y), and thus by [13, Proposition 1.3.3] or [29, Theorem 1.1.9], the
right adjoint T is equivalent to Č•(I)⊗R −.

Since T composed with the inclusion ι is equivalent to Č•(I) ⊗L
R −, passing

to right adjoints we obtain HT ≃ RHomR(Č•(I),−). From the description of
recollements arising from TTF triples (see [34, 2.1]), we get

RHomR(Č•(I),−) ≃ HT ≃ τZιT,

where τZ is the left adjoint to the inclusion Z ⊆ D(Mod-R). Since ιT is a triangle
equivalence Loc(R/I) → Z, we finally infer that RHomR(Č•(I),−) is the left
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adjoint to the inclusion Z ⊆ D(Mod-R). Now it can be easily checked that the
triangle obtained by applying RHomR(Č•(I),−) to (4.19) is the approximation
triangle with respect to the torsion pair (Y ,Z). This yields that a complex M is in
Z if and only if the natural map RHomR(Č•(I), f) : M 7→ RHomR(Č•(I),M) is
an isomorphism. Combining [37, Lemma 2.2 a),c)], and the proof of [37, Theorem
3.4], we conclude that Z = DCI

(Mod-R), where CI is the subcategory of I-
contramodules (see §4.7.1).

To summarize, since a composition of right (left) adjoints is a right (left)
adjoint, respectively, we have two compositions of adjoint pairs depicted in (4.21)
and (4.22). Here F := RΓI↾ DTI

(Mod-R) is the right adjoint of the canonical
functor D(TI)→ DTI

(Mod-R) and similarly G is the left adjoint of the canonical
functor D(CI)→ DCI

(Mod-R). Both RΓI and L∆I are then naturally equivalent
to the compositions of the corresponding two “short” adjoints pointing to the left:

D(TI) DTI
(Mod-R) D(Mod-R)

F

⊆

Č•(I)⊗R−

RΓI

(4.21)

D(CI) DCI
(Mod-R) D(Mod-R)

G

⊆

RHomR(Č•(I),−)

L∆I

(4.22)
There is a technical condition on I, so-called weak proregularity of I, which

ensures (and in fact is equivalent to) that both adjunctions on the left in (4.21)
and (4.22) are in fact equivalences (see [37, Theorem 1.3, Corollary 2.10]). We
will discuss this in §4.7.5

Here we conclude by noting that in such a case, the local (co)homology coin-

cides with the Čech (co)homology. Furthermore, weak proregularity also implies
that L∆I is naturally equivalent to LΛI ([37, Lemma 2.5]) and, since DTI

(Mod-R)
and DCI

(Mod-R) are always equivalent (cf. the recollement (4.17) or [37, Theorem
3.4]), weak proregularity also implies that:

D(TI) ≃ D(CI).

The latter statement is known as the Matlis-Greenlees-May duality, [18, 36, 37].

4.7.5 Weak proregularity

A classical result ([24]) says that, over a commutative noetherian ring, the local

cohomology coincides with the Čech cohomology. The dual result for the left
derived completion functor and Čech homology ([23, 36, 40, 1]) is a much more

110



recent development. However, over a general commutative ring, the local and
Čech (co)homologies need not be the same, despite the fact that we can use
either of them in Theorem 4.7.7 to classify (co)tilting classes. Here we gather
relevant results to understand the issue.

Definition 4.7.8 ([40, §2]).

1. An inverse system (Mi, fji | j ≥ i) of modules is pro-zero if for every i there
is j ≥ i such that fji is zero.

2. Let R be x = (x1, x2, . . . , xn) be a sequence of elements of a commutative
ring R. We say that x is weakly proregular if the inverse system (Hi(x

j;R) |
j > 0) (see §4.7.1) is pro-zero for each i > 0.

Fact 4.7.9. ([36, Corollary 6.2]) The weak proregularity of x depends only on the
ideal I generated by x (in fact only on

√
I). This legitimizes us to define a finitely

generated ideal I to be weakly proregular, if any of its finite generating sequences
is weakly proregular.

If R is noetherian, then any ideal is weakly proregular ([36, Theorem 4.34]).
On the other hand, over a general commutative rings, there can easily be non-
weakly proregular finitely generated ideals ([23, Example 1.4]). It turns out that
this property characterizes precisely when the local (co)homology of an ideal

coincides with the Čech (co)homology. The result on the side of cohomology is
[40, Theorem 3.2]. In the same paper, the homology analog is proved under the
extra assumption that each element of the generator sequence forms itself a one-
element weakly proregular sequence ([40, Theorem 4.5]). This extra assumption
was removed in [36].

Theorem 4.7.10. Let R be a commutative ring and I a finitely generated ideal.
Then the following are equivalent:

(a) I is weakly proregular,

(b) the functorial map
RΓI(M)→ Č•(I)⊗RM

is a quasi-isomorphism for each module M ,

(c) the functorial map

RHomR(Č•(I),−)→ LiΛI(M)

is a quasi-isomorphism for each module M .

Proof. Although all the difficult steps have already been carried out by the afore-
mentioned authors, we need to make a few explanations to establish the full
equivalence in this form.

The equivalence (a) ↔ (b) is a slight reformulation of the one in [40]—our
statement is a weakened version of statement (iii) of [40, Theorem 3.2], which
easily implies (ii), and thus also (i) by the proof.

The equivalence (a)↔ (c) is explained as follows. The implication (a)→ (c)
is proved in [36, Corollary 5.25]. The converse implication follows from the proof
of [40, Theorem 4.5]. Indeed, both the implications (iii) → (iv) and (iv) → (i)
of [40, Theorem 4.5] do not use (or need) the assumption of “bounded torsion”
imposed in the statement of [40, Theorem 4.5].
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Therefore, any example of a non-weakly proregular ideal I (such as [23, Ex-
ample 1.4]) gives a situation where both the local cohomology and homology are

not computed via the Čech complex. Indeed, not only the functorial map from
Theorem 4.7.10 fails to be a quasi-isomorphism, but inspecting the proofs in [40],

some flat (injective) module has a non-zero higher Čech homology (cohomology),
but the local homology (cohomology) will vanish, respectively.

4.8 Construction of the corresponding

cotilting modules

In this section we construct to each cotilting class of cofinite type over a com-
mutative ring a cotilting module inducing it. The construction generalizes ideas
from [42].

Lemma 4.8.1. Let R be a ring and C a n-cotilting class in R-Mod. Suppose that
C is a left R-module satisfying ⊥C = C, C ∈ C, and C ⊆ Cogen(C). Then C is
a cotilting module.

Proof. We prove that Cogenn(C) = C, which implies that C is a n-cotilting
module by [8, Theorem 3.11]. Since C is a n-cotilting class and C ∈ C, we
have inclusion Cogenn(C) ⊆ C. To show the other inclusion, let M ∈ C, put
I = HomR(M,C), and let ϕ : M → CI be the coevaluation map. Since M ∈
Cogen(C), we have that the map ϕ is injective. Applying HomR(−, C) onto the

exact sequence 0→M
ϕ−→ CI → X → 0 yields

Hom R(CI , C)
HomR(ϕ,C)−−−−−−→ Hom R(M,C)→ Ext 1

R(X,C)→ Ext 1
R(CI , C) = 0.

As HomR(ϕ,C) is clearly surjective, we have that Ext1
R(X,C) = 0. Using the

fact that CI ,M ∈ C = ⊥C, we infer that X ∈ C = ⊥C. Repeating this argument
shows that indeed M ∈ Cogenn(C).

Corollary 4.8.2. Let R be a commutative ring and C a cotilting module such
that the induced cotilting class C = ⊥C is of cofinite type. Let S be the char-
acteristic sequence such that C = C(S). Let Wj be an injective module such
that Cogen(Wj) = Fj(S). Then Ω−j(C)⊕Wj is a cotilting module inducing the
cotilting class C(j).

Proof. Put C ′ = Ω−jC ⊕Wj. We clearly have ⊥C ′ = C(j), Lemma 4.5.14 gives
C ′ ∈ C(j), and C(j) ⊆ Fj(S) = Cogen(C ′). Therefore, Lemma 4.8.1 implies that
C ′ is a cotilting module.

In the rest of the section let R be a commutative ring and fix a characteristic
sequence S = (F0,F1, . . . ,Fn−1). Our goal is to construct a cotilting module
C(S) such that ⊥C(S) = C(S).

Construction 4.8.1. We aim to construct a (co)complex of injective modules

0→ E0 ψ0−→ E1 ψ1−→ · · · ψn−1−−−→ En ψn−→ 0(= En+1),

where Ei is in cohomological degree i, satisfying the following properties:
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(i) the cohomology of the complex vanishes with the exception of degree 0,

(ii) for each i = 0, 1, . . . , n, the kernel Ci of ψi is a (n− i)-cotilting module such
that ⊥Ci = C(i).

We construct the complex by backwards induction on i = n, n − 1, . . . , 1, 0. For
the step i = n, we let En be an injective cogenerator of Mod-R, and ψn be the
zero map.

Suppose that we have already constructed the complex down to degree k + 1
for some 0 ≤ k < n so that it is exact in degrees > k + 1 and satisfies (ii). By
[21, Theorem 15.9], there is a C(k)-cover f : F k → Ck+1 of Ck+1.

Lemma 4.8.3. The module F k is injective.

Proof. Because F k ∈ C(k), we have by Lemma 4.5.14(ii) that Ω−1F k ∈ C(k+1). By
the inductive premise, Ck+1 is a cotilting module such that ⊥Ck+1 = C(k+1), and
therefore Ck+1 ∈ C⊥

(k+1). It follows that the cover f : F k → Ck+1 can be extended

to a map f ′ : E(F k) → Ck+1. As E(F k) ∈ C(k) by Proposition 4.5.5, it can be
easily seen that f ′ is an C(k)-precover of Ck+1. Therefore, F k is a direct summand
of E(F k), proving that F k is injective.

Now we let Ek = F k ⊕ W k, where W k is any injective module such that
Cogen(W k) = Fk (e.g. W k =

∏{E(R/J) | R/J ∈ Fk}). We define ψk : Ek →
Ek+1 by setting ψk↾ F

k = f and ψk↾ W
k = 0. Since W k is injective and belongs

to Fk, it is in C(k), and then it easily follows that ψk : Ek → Ck+1 is a C(k)-precover
of Ck+1 = Ker(ψk+1) = Im(ψk).

Lemma 4.8.4. We have ⊥Ck = C(k) and Ck ∈ C(k).

Proof. By the inductive premise of the construction, we know ⊥Ω−1Ck = C(k+1),

and thus
⋂

j>1 Ker ExtjR(−, Ck) = C(k+1). Let M ∈ C(k+1). Then Ext1
R(M,Ck) = 0

if and only if any map g : M → Ck+1 can be factorized through ψk : Ek → Ck+1. If
M ∈ C(k), then this factorization is always possible, because ψk is an C(k)-precover.
This proves that C(k) ⊆ ⊥Ck.

For the converse inclusion, suppose that M 6∈ C(k). Consider first the case
where even M 6∈ Fk and let T be the torsion part of M with respect to the torsion
pair (Tk,Fk). By construction, Ck+1 has an injective direct summand W k+1 which
cogenerates the torsion-free class Fk+1. Since M and also T belong to Fk+1, there
is a non-zero map T → W k+1, which extends to a map g : M → W k+1 ⊆ Ck+1.
Such map does not factor through ψk since HomR(T,Ek) = 0. The remaining
case is where M ∈ Fk, but Ω−1M 6∈ C(k+1). Consider the long exact sequence
obtained by applying HomR(−, Ck) to

0→M → E(M)→ Ω−1M → 0.

Since M ∈ Fk, then necessarily E(M) ∈ C(k), and thus we obtain isomorphisms
ExtiR(M,Ck) ≃ Exti+1

R (Ω−1M,Ck) for all i > 0. Hence, if Ω−1M 6∈ C(k+1), then
M 6∈ ⊥Ck. This finishes the proof of ⊥Ck = C(k).

Finally, that Ck ∈ C(k) follows from Lemma 4.5.14 and from Ω−jCk being a
direct summand of Ck+j for each j = 1, 2, . . . , n− k − 1.

Lemma 4.8.5. The module Ck is an (n− k)-cotilting module.
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Proof. Since Cogen(Ck) = Fk ⊇ C(k), and by Lemma 4.8.4, the module Ck and
the (n− k)-cotilting class C(k) satisfy the hypothesis of Lemma 4.8.1. Therefore,
Ck is (n− k)-cotilting by that lemma.

This concludes the inductive step, and hence also the construction.

Notation 4.8.6. We put C(S) = Ker(ψ0), and conclude:

Theorem 4.8.7. Let R be a commutative ring. Then the set

{C(S) | S a characteristic sequence of length n}

parametrizes the equivalences classes of all n-cotilting modules of cofinite type in
Mod-R.

4.9 Examples of cotilting classes not of cofinite

type

We conclude the paper by providing intriguing examples of cotilting classes which
are not of cofinite type, but which are in some sense difficult to tell apart from
classes of cofinite type. To explain the issue, we first give a characterization of
cotilting classes of cofinite type which follows from the proof of Theorem 4.5.3.

Theorem 4.9.1. Let R be a commutative ring and C an n-cotilting class in
Mod-R. Then C is of cofinite type if and only if C(i) is closed under injective
envelopes for all i = 0, 1, . . . , n− 1.

Proof. If C is of cofinite type, then C(i) is easily seen to be of cofinite type too
for any i = 0, 1, . . . , n − 1. Then C(i) is closed under injective envelopes by
Proposition 4.5.5.

The other implication follows from Lemma 4.5.7, the proof of Lemma 4.5.8,
and Lemma 4.5.13.

In the rest of the section, we exhibit for each n ≥ 2 a concrete example
of an n-cotilting class which is not of cofinite type, but for which C(i) is closed
under injective envelopes for all i = 0, 1, . . . , n− 2. To this end, we first recall a
characterization of cotilting classes which is valid for any (even non-commutative)
ring:

Proposition 4.9.2. ([6, Proposition 3.14]) Let R be a ring, n ≥ 0, and C a class
of left R-modules. Then C is n-cotilting if and only if the following conditions
hold:

(i) C is definable,

(ii) R ∈ C and C is closed under extensions and syzygies,

(iii) each n-th syzygy module is in C,

In particular, a class of left R-modules is 1-cotilting precisely when it is a definable
torsion-free class containing R.

114



In order to construct the aforementioned examples, we need a suitable family
of examples of non-cofinite type 1-cotilting classes to start with. The following is
a generalization of [9, Proposition 4.5]:

Example 4.9.3. Let R be a local commutative ring admitting a non-trivial
idempotent ideal J . Let G be a Gabriel topology of finite type such that J ∈
G, and such that G is faithful, i.e. HomR(R/I,R) = 0 for all I ∈ G. Let
F =

⋂

I∈G Ker HomR(R/I,−) be the torsion-free class of the associated hereditary
torsion pair of finite type. Given a moduleM , let SocJ(M) = {m ∈M | Jm = 0}.
We define a class C as follows:

C = {M ∈ Mod-R |M/ Soc J(M) ∈ F}.
Alternatively,

C = {M ∈ Mod-R | JtG(M) = 0} = {M ∈ Mod-R | tG(M) ∈ Mod-R/J},
where tG is the torsion radical associated to the torsion pair (T ,F).

We will show that C is a 1-cotilting class, but not of cofinite type. First, we
claim that C =

⋂

I∈G Ker HomR((J + I)/I,−). Let M be a module such that
there is a non-zero map f : (J + I)/I → M for some I ∈ G. Since (J + I)/I is
J-divisible (i.e. ((J + I)/I) · J = (J + I)/I), we have Im f ∩ SocJ(M) = 0. Thus,
if we compose f with the surjection M → M/tG(M), we obtain a non-zero map
(J + I)/I → M/tG(M). Since (J + I)/I ∈ T , it follows that M/tG(M) 6∈ F and
M 6∈ C. This establishes one inclusion of the claim.

Let now M be such that HomR((J + I)/I,M) = 0 for all I ∈ G, and let
us show that M ∈ C. Towards contradiction, suppose that there is non-zero
map f : R/I → M/ SocJ(M) for some I ∈ G. Because SocJ(M/ SocJ(M)) = 0,
applying HomR(−,M/ SocJ(M)) to 0 → (J + I)/I → R/I → R/(J + I) → 0
yields an exact sequence

0→ HomR(R/I,M/SocJ(M))→ HomR((J + I)/I,M/SocJ(M)).

Hence f restricts to a non-zero map f̃ : (J + I)/I →M/ SocJ(M). Let us denote
the image of f̃ by X̃ and by X the full preimage of X̃ in M with respect to the
projection M → M/ SocJ(M). We have IX ⊆ SocJ(M), and thus IJX = 0.
Observe that if JX 6= 0, we would have a non-zero morphism R/I → JX which
would similarly as above restrict to a non-zero morphism (J + I)/I → JX. This
is, however, not possible since we assume that HomR((J + I)/I,M) = 0. Thus
JX = 0 and X ⊆ SocJ(M). But then X̃ = 0, contradicting that f̃ is a non-zero
map. This establishes the other inclusion of the claim. In particular, we have
proved that C is a torsion-free class.

As a torsion-free class, C is closed under products and (pure) submodules. To
prove that C is definable, it remains to treat direct limits. Since (T ,F) is of finite
type, the torsion radical tG commutes with direct limits. Given a directed system
Mi, i ∈ I with Mi ∈ C, we compute:

tG(lim−→
i

Mi) ≃ lim−→
i

tGMi.

The latter is a direct limit of R/J-modules, proving that JtG(lim−→i
Mi) = 0 as

desired. Finally, since G is faithful, we have that R ∈ F ⊆ C. Using Proposi-
tion 4.9.2, we infer that C is a 1-cotilting class.
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Finally, we prove that C is not of cofinite type. Indeed, if it was of cofinite
type, Theorem 4.6.2 would provide us with a Gabriel topology H of finite type
such that C =

⋂

K∈H Ker HomR(R/K,−). Since Mod-R/J ⊆ C, this implies that
J + K = R for all K ∈ H. Since R is local, the only possibility is H = {R},
which forces C = Mod-R. Recall that we assumed J ∈ G, and thus there is
a finitely generated ideal I ∈ G with I ⊆ J . If R/I ∈ C, then necessarily
R/I = SocJ(R/I), which implies I = J . But J is a non-trivial idempotent ideal
in a local commutative ring, so it cannot be finitely generated, a contradiction.

As a next step, we would like to extend the example to n-cotilting classes for
n ≥ 1. The strategy is to reverse (under suitable assumptions) the process of
Lemma 4.5.7. That is, we would like to combine a hereditary faithful torsion-free
class F and an n-cotilting class, which is not necessarily of cofinite type, to an
(n+ 1)-cotilting class. Note that in Lemma 4.5.7 we have Inj-R ∩ F ⊆ C, where
Inj-R ⊆ Mod-R is the class of injective modules. We will adopt this assumption
for the next auxiliary result which can be viewed as an analog of [6, Lemma 3.10].

Lemma 4.9.4. Let F be a hereditary torsion-free class and let C ∈ Mod-R be a
module such that the class C = ⊥C contains Inj-R ∩ F . Then the class

D = {M ∈ R-Mod |M ∈ F and Ω−1M ∈ C}

satisfies the following property: If 0 → L → M → N → 0 is a short exact
sequence with M ∈ D, then L ∈ D if and only if N ∈ C.

Proof. First observe that M ∈ D if and only if M ∈ F ∩ C and each morphism
f : M → C extends to f̃ : E(M) → C. Indeed, this follows at once from the
long exact sequence obtained by applying HomR(−, C) to 0 → M → E(M) →
Ω−1(M)→ 0.

Now let ε : 0 → L
u→ M → N → 0 be exact with M ∈ D. In particular

L ∈ F and, if we apply HomR(−, C) to ε, we obtain isomorphisms ExtiR(L,C) ∼=
Exti+1

R (N,C) for all i ≥ 1.
Suppose next that L ∈ D. In particular L ∈ ⊥C, so ExtiR(N,C) = 0 for all

i ≥ 2. It remains to show that Ext1
R(N,C) = 0. To this end, let v : L→ E(L) be

an injective envelope and let w : M → E(L) be a morphism such that wu = v,
obtained by the injectivity of E(L). If f : L → C is any homomorphism, it
extends to f̃ : E(L) → C since L ∈ D. In particular f = f̃v = f̃wu, showing
that the leftmost morphism in the following exact sequence is surjective:

HomR(M,C)→ HomR(L,C)→ Ext1
R(N,C)→ Ext1

R(M,C) = 0

Thus Ext1
R(N,C) = 0 and N ∈ C.

Conversely suppose that N ∈ C. Then L ∈ F ∩ C by the above observations.
To see that L ∈ D, it remains to prove that each f : L→ C extends to f̃ : E(L)→
C. Consider the following commutative square with injective envelopes in rows,
where the right vertical map is completed using the injectivity of E(M):

L
v−−−→ E(L)

u







y







y

M
z−−−→ E(M)
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Then HomR(u,C) is surjective since Ext1
R(N,C) = 0 and HomR(z, C) is surjective

since M ∈ D. It follows that HomR(v, C) is surjective, as required.

Now we prove a result which, under more restrictive assumptions, allows us
to combine a hereditary torsion-free class with an n-cotilting class.

Proposition 4.9.5. Let R be a ring and n ≥ 1. Suppose that all of the following
conditions are satisfied:

1. C is an n-cotilting class in Mod-R and Ω−1(R) ∈ C.

2. (T ,F) is a faithful hereditary torsion pair of finite type in Mod-R.

3.
⋂n−1
i=0 Ker ExtiR(T ,−) ⊆ C.

Then D = {M ∈ R-Mod | M ∈ F and Ω−1M ∈ C} is an (n + 1)-cotilting class
which is closed under injective envelopes and D(1) = C.

Proof. Let C ∈ Mod-R be a cotilting module such that C = ⊥C and let us denote
the class from condition (4) by I. If G is the Gabriel topology corresponding to
(T ,F), we have

n
⋂

i=0

Ker ExtiR(T ,−) =
n
⋂

i=0

⋂

I∈Gf

Ker ExtiR(R/I,−) =
n
⋂

i=0

⋂

I∈Gf

KerH i(I;−).

Indeed, the first equality follows by an argument analogous to the one from
Lemma 4.3.7 while the second equality follows from Corollary 4.3.10. Since all the
H i(I;−) commute with direct products and direct limits, the class I is definable
by [16, §§2.1–2.3].

Next we claim that Inj-R ∩ F ⊆ I ⊆ D. The first inclusion is trivial and
to see the second one, let M ∈ I and consider the short exact sequence 0 →
M → E(M) → Ω−1(M) → 0. We must show that M ∈ D. Clearly M ∈ F by
assumption, and we also have E(M) ∈ F . If T ∈ T is torsion, it follows that
ExtiR(T,Ω−1(M)) ∼= Exti+1

R (T,M) for all i ≥ 0. Thus,

Ω−1(M) ∈
n−1
⋂

i=0

Ker ExtiR(T ,−) ⊆ C

by condition (3), and the claim is proved.
Now we prove that D is (n + 1)-cotilting by checking the assumptions of

Proposition 4.9.2. If M ∈ D and N ⊆ M is a pure submodule, then M/N ∈ C
since M ∈ C and definable classes are closed under pure quotients; [39, Theorem
3.4.8]. Hence N ∈ D by Lemma 4.9.4. If (Mi)i∈I is a directed system in D, we
fix an injective module F ∈ F which cogenerates F (see [41, Proposition VI.3.7])
and consider the directed system of maps (Mi → FMi

= FHomR(Mi,F ))i∈I given by
Lemma 4.5.6. All the maps in the system are monomorphisms by the choice of
F , and there is an exact sequence

0→ lim−→
i∈I

Mi → lim−→
i∈I

FMi
→ lim−→

i∈I

FMi
/Mi → 0.

As FMi
∈ I for each i ∈ I, we have lim−→i∈I

FMi
∈ I ⊆ D. Since FMi

∈ D, we

have FMi
/Mi ∈ C for each i ∈ I, and so lim−→i∈I

FMi
/Mi ∈ C. It follows from
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Lemma 4.9.4 that lim−→i∈I
Mi ∈ D. Finally, since D is closed under products by its

very definition, we have verified Proposition 4.9.2(i).
Conditions (1) and (2) imply that R ∈ D. Since D is definable, it must

contain all projective modules as well. Hence given any M ∈ Mod-R, we have
Ω(M) ∈ D if and only if M ∈ C by Lemma 4.9.4. In particular D is closed under
taking syzygies, and that D is closed under extensions follows from the Horseshoe
Lemma. Thus Proposition 4.9.2(ii) holds for D. Finally, if M ∈ Mod-R, then
Ωn(M) ∈ C since C is assumed to be n-cotilting, so Ωn+1(M) ∈ D by what we
have just shown. Hence D is an (n + 1)-cotilting class by Proposition 4.9.2 and
we have also proved that

D(1) = {M ∈ Mod-R | Ω(M) ∈ D} = C.

The closure of D under injective envelopes is obvious from the definition.

Now we formulate an easier way to apply this result for constructing n-
cotilting classes not of cofinite type. The constructed classes are almost identical
to what we obtained for classes of cofinite type in Lemma 4.5.8. The only differ-
ence is that the last torsion-free class in the sequence need not be of cofinite type
(viewed as a 1-cotilting class).

Corollary 4.9.6. Let R be a commutative ring, n ≥ 1, and let (F0,F1, . . . ,Fn−1)
be a sequence of definable torsion-free classes such that

(i) Fi is hereditary for each i = 0, 1, . . . , n− 2,

(ii) F0 ⊆ F1 ⊆ · · · ⊆ Fn−1,

(iii) Ω−iR ∈ Fi for each i = 0, 1, . . . , n− 1.

Then D = {M ∈ Mod-R | Ω−iM ∈ Fi for each i = 0, 1, . . . , n− 1} is an n-
cotilting class such that D(i) is closed under injective envelopes for each i =
0, 1, . . . , n − 2. In particular, D is of cofinite type if and only if the definable
torsion-free class Fn−1 is hereditary.

Proof. We will inductively apply Proposition 4.9.5 and prove the result along
with the following equality:

D =
n−1
⋂

i=0

Ker ExtiR(Ti,−), (4.23)

where for each i, Ti is the torsion class corresponding to Fi.
If n = 1, there is nothing to prove, because a definable torsion-free class

containing R is 1-cotilting by Proposition 4.9.2. If n > 1, we apply the inductive
hypothesis to (F1, . . . ,Fn−1) and obtain an (n− 1)-cotilting class

C =
n−2
⋂

i=0

Ker ExtiR(Ti+1,−). (4.24)

We need to check conditions (1)–(3) of Proposition 4.9.5 for F0 and C and for-
mula (4.23) for D. However, (1) and (2) are straightforward and (3) follows imme-
diately from (4.24) since T0 ⊇ Ti for each i = 1, . . . , n−2. Finally, to prove (4.23),
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consider M ∈ F0 and a short exact sequence 0 → M → E(M) → Ω−1(M) → 0.
Then E(M) ∈ F0 and ExtiR(T,Ω−1(M)) ∼= Exti+1

R (T,M) for each T ∈ T0 and
i ≥ 0. It follows that in that case M ∈ D if and only if Ω−1(M) ∈ C if and only
if ExtiR(Ti,M) = 0 for each i = 1, . . . , n− 1.

We conclude by an explicit construction of an n-cotilting class not of cofinite
type, by combining Corollary 4.9.6 and Example 4.9.3.

Example 4.9.7. Let n > 0 and R be a local commutative ring satisfying:

(i) there is a non-trivial idempotent ideal J in R,

(ii) there is a finitely generated ideal I ⊆ J satisfying ExtiR(R/I,R) = 0 for all
i = 0, 1, . . . , n− 1.

First we provide a concrete example of such a ring R. Let k be a field, and
let R be the ring of Puiseux series in n variables. That is,

R =
⋃

m∈N

k[[x
1

m
1 , x

1

m
2 , . . . , x

1

m
n ]]

is the ring of formal power series in n variables with exponents which are rational,
but for each particular series the denominators are bounded. This ring has a
unique maximal ideal J consisting of all series with zero coefficient in degree 0,
and J is easily seen to be idempotent. Also, put I = Span(x1, x2, . . . , xn) and
note that the elements (x1, x2, . . . , xn) form a regular sequence. Then K•(I) is a
projective resolution of R/I, implying that H i(I;R) = 0 for all i = 0, 1, . . . , n−1.
Therefore, we have ExtiR(R/I,R) = 0 for all i = 0, 1, . . . , n−1 by Corollary 4.3.10.

Put Fn−1 = {M ∈ Mod-R | M/ SocJ(M) ∈ Ker HomR(R/I,−)}. Then Fn−1

fits the construction of Example 4.9.3 (the Gabriel topology G is generated by
the ideal I, and the choice of non-trivial idempotent ideal is J). This shows that
Fn−1 is a 1-cotilting class not of cofinite type, i.e. a definable torsion-free class
containing R which is not hereditary. It also follows from the assumption on I
that Ker HomR(R/I,−) ⊆ Fn−1 contains Ω−iR for all i = 0, 1, . . . , n− 1.

We put Fk = Ker HomR(R/I,−) for all k = 0, 1, . . . , n−2, and note that those
are hereditary torsion-free classes of finite type. Then it is straightforward to
check that the sequence (F0,F1, . . . ,Fn−1) satisfies conditions of Corollary 4.9.6.
We conclude that

D = {M ∈ Mod-R | Ω−iM ∈ Fi for all i = 0, 1, . . . , n− 1}

is an n-cotilting class such that D(i) is closed under injective envelopes for all
i = 0, 1, . . . , n− 2, but not for i = n− 1. In particular, D is not of cofinite type.
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[13] A. A. Bĕılinson, J. Bernstein, and P. Deligne. Faisceaux pervers. In Analysis
and topology on singular spaces, I (Luminy, 1981), volume 100 of Astérisque,
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seconde partie. Publications Mathématiques de l’IHÉS, 17:5–91, 1963.
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