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Introduction

Ramsey Theory studies the appearance of some specific patterns in large struc-
tures. For example, Ben Green and Terence Tao proved that in the set of
primes (the structure), there is an arbitrarily long arithmetic progression (the
pattern) [9]. Another result in this area is Endre Szemerédi’s theorem on the
existence of an arbitrarily long arithmetic progression (the pattern) in subsets
of the natural numbers that have positive upper density [I7]. Franklin Ramsey
classical theorem, reduced to the context of graphs, says that in any graph of
large order (the structure), there is either a relatively large independent set, or a
relatively large clique (the pattern) [I6] (for the basic notions of graphs, see for
example Diestel []). As a last example, let us mention a result in combinatorial
geometry. Among many points in the plane that are in general position, there
is a large subset which forms a convex polygon (see [7]). There are many more
examples of Ramsey type theorems. For a good introduction on Ramsey Theory,
see for example [§].

In this thesis, we focus on the question of finding graphs (more particularly trees)
in larger graphs that satisfy certain conditions. We investigate the following con-
jecture by Martin Loebl, Janés Komlés and Vera Sos.

Conjecture. If a graph G has at least half of its vertices of degree at least k,
then any tree with at most k edges embeds in G.

The topic is also related to the Ramsey number of a tree. Indeed, for the special
case of k = %, the Loebl-Komlés-Sés Conjecture implies that the Ramsey number
r(T,2) of a tree T is 2|E(T')|. This means that if we two-colour the edges of a
complete graph on 2n vertices, we find any tree with at most n edges in one of
the two colour classes.

There are two possible approaches how to investigate the Loebl-Koml6s-Sos Con-
jecture. The first one is to reduce the problem only to certain classes of trees we
intend to embed into GG. For example, it is easy to see that the Loebl-Komlds-Sos
Conjecture is true for the class of stars (a star of order k + 1 consists of a central
vertex of degree k connected to k vertices of degree 1).
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The second approach to the question consists in strengthening the condition on
the hosting graph, in particular to make it larger and denser. For example, if all
vertices of the graph G have degree at least k, it is easy to embed any tree on
k + 1 vertices.

In this thesis, we develop both approaches. The first result is the solution of
the Loebl-Komlés-Sés conjecture for the special class of trees with diameter at
most 5. By diameter of a tree T', we understand the length of the longest path
contained in 7T

The second result is a solution of an approximate version of the Loebl-Komlés-Sos
Conjecture. The strengthening on the graph G is the following.

e The size k of the tree is linear with respect to the order of the graph.
e The graph G is large.

e The size of the set of vertices with high degree must be slightly larger than

n

5"

e The degree of the vertices of the mentioned set has to be slightly more than
k.

This gives us the following theorem.

Theorem. For every v,q > 0 there is an ny € N so that for all graphs G on
n > ng vertices the following is true.

If at least (1+ )5 vertices of G have degree at least (1 +)qn, then G contains,
as subgraphs, all trees with at most gn edges.

This result is based on a paper of Miklos Ajtai, Jandés Komlés and Endre Sze-
merédi [I], where they proved the above stated theorem for the special case when
q= % Their result can be easily generalised for g > %, but the case when ¢ < %
needs new ideas.

The thesis is divided into two chapters. The first one, entitled Regularity Lemma,
contains background information on this powerful tool in modern graph theory.
It explains the notion of regularity, states the Regularity Lemma, gives a proof
of it and describe several properties we need in the second part. All the facts of
Chapter I are well-known. For a good survey on the topic, refer to [I1].



The second chapter, entitled Embedding of trees, contains mostly, but not exclu-
sively, new results. The solution of the Loebl-Komlds-Sés Conjecture for trees of
diameter at most 5 can be found in Section 24l This section is based on [I3].
For completeness, we quote a result of Cristina Bazgan, Hao Li and Mariusz
Wozniak in Section saying that the Loebl-Komlés-Sés Conjecture is true for
paths. This comparison is especially interesting, as it envolves completely differ-
ent classes of trees: one class contains trees with very small diameter, and the
other one with very large diameter.

In Section 23, we give a solution to an approximative version of the Loebl-
Komlés-Sos Conjecture, together with many tools for embedding trees using reg-
ularity. At the end of the section, we improve this result, extending it to a
class of graphs more general than trees. A shorter but more dense proof of the
approximate version of the Loebl-Komlés-S6s Conjecture can be found in [T4].



Chapter 1

Regularity Lemma

After introducing the notion of regularity in Section [T, we state several equiv-
alent formulations of the Regularity Lemma in Section and we prove their
equivalence in Section [C3

Then, we discuss the usual procedure used after the application of the Regularity
Lemma in Section [L4. The last section is devoted to some useful properties we
can deduct from regularity.

Most of the material in this chapter is from the notes [I1] written by the author
during a course on Ramsey theory [I3]. For a good survey on Regularity Lemma.

1.1 Notion of Regularity

For a graph G = (V, E) and for two disjoint sets X,Y C V| denote by e(X,Y)
the number [{{z,y} € G,z € X,y € Y}|. Then the density is defined by

_eXY)
S(X.Y) = Ty

Given an ¢ > 0, call a pair (A, B) e-regular, if for any subsets X C Aand Y C B
with | X| > €|A| and |Y| > ¢|B|, we have

6(X,Y) — 6(A, B)| < «.

So, in a regular pair any the density between two significant subsets is about the
same as in the whole pair. If a pair is e-regular, it gives us extra information,
because it can be approximated by a regular graph.



In the definition of e-regularity, the number ¢ represents two different things:
first, the portion of the set that forms a significant subset; and then, the differ-
ence of density allowed for significant sets. They have nothing in common, except
that they are small. Therefore, we bound them by .

In the next definition we differentiate these two meaning of ¢ and use « for the
portion of a set to be significant.

We say that a pair (A, B) is (e, a)-regular if, for any subsets X C Aand Y C B
with | X| > a|A| and |Y| > «|B|, it holds that [6(X,Y) — 0(A, B)| < e.

A partition C = {Vy, Vi,...,Vx} of a vertex set V(G) is called (e; N)-equitable
(or equitable), if

o |Vi|=|V;| fori,j>1,
o |Vy| < en, where n = |[V(G)|, and

e all but at most eN? pairs (V;,V;) with i, j > 1 are e-regular.

Analogously, we we have the following definition.
A partition C = {V, Vi,..., Vv } of a vertex set V(G) is called (e, a; N)-equitable,
if

o [Vi[ = [Vj[ for i, j > 1,
o |V4| < en, where n = |[V(G)|, and

e all but at most eN? pairs (V;,V;) with i, j > 1 are (¢, a)-regular.

The sets V; € C are called clusters. The set V; is called the exceptional set. The
only meaning of the exceptional set Vj is to have the rest of the clusters of the
same size. In this chapter, we formulate a version of Regularity Lemma that does
not consider equitable partition.

We say that a partition R’ refines a partition R, if, for any choice of an element
R € R/, there exists an element R € R such that ¥ C R. Then, we write
R <R.



1.2 Different versions of the Regularity Lemma
Here is the first formulation of Szemerédi’s Regularity Lemma. We shall prove
this version in Section [CA.

Theorem 1.2.1 (The Regularity Lemma). For any e > 0 and any m € N, there
exist M,ng € N such that every graph on n > ngy vertices admits an (g; N)-
equitable partition of its vertex-set that is e-reqular, with m < N < M.

The next formulation of the Regularity Lemma is the one we shall use in Sec-

tion 220l

Theorem 1.2.2 (Second formulation of the Regularity Lemma). For everye, a >
0 and m € N, there exist M,ny € N such that every graph G of order n > ny
admits an equitable partition {Vy, Vi, ..., Vy} of its vertex-set with m < N < M.

In the following formulation of the Regularity Lemma, we do not require the
partition to be equitable, but only semi-equitable.

Theorem 1.2.3 (Third formulation of the Regularity Lemma). For every e > 0
and every m € N there exist M,ng € N such that every graph of order n > ng
admits a partition {Vi, ..., Vy} of its vertex set with m < N < M and

o ||Vi| = V|| <1 foralli,j, and

e all but at most eN? pairs (V —1i,V;) are e-regqular.

1.3 Different formulations are equivalent

In this section we prove the equivalence of the different formulations of the Reg-
ularity Lemma.

Proposition 1.3.1. Theorems[LZ1, [[Z2 and [LZ3 are equivalent.

Proof. 2T = L2
Suppose €, « > 0 and m € N are given. Set £ := min{e, o} and use Theorem [[2.T]
with values € and m. It gives us integers ny and M.

We claim that if (V;,V}) is é-regular, then it is also (e, a)-regular. Let U; C V;
with |Uy| > a|V,| > &|V,| for ¢ =1, j. Then,
e(Ui’ Uj) e(Vi’ VJ) ~

— <e<e.
\UillU;| - ViV

Also |Vy| < én < en and at most EN? < eN? pairs (V;, V) are not (g, a)-regular.
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Suppose an £ > 0 and a natural number m € N are given. Then, set €, & := €.
Theorem [L2Z2 with &, @ and m implies Theorem [L21] for £ and m.

217 =

Suppose an m € N and an € > 0 are given. Choose € := i—z and use Theorem [CL2T]
with the values m and €. Then, for any graph G with at least ng(&, m) vertices,
we get a vertex partition V(G) := Cy U CY,...,Cy such that |Cy| < én, |C;] =
|Cj] =: s fori,j =1,...N, where m < N < M and all but at most EN? pairs
(Cy, C)) are é-regular.

Distribute the vertices of Cy between the sets C1, ..., Cy as evenly as possible.
We get sets Vi, ..., Vy with |Vi| < |Vo| <--- < |Vy| < V1| + 1 and no set Vj.
We claim that, if a pair (C;, C;) is é-regular, the corresponding pair (V;,V}) is
e-regular.

Let U, C V, with |Uy| > €|V,| for £ = i,5. Set V2 :=V, N Cy, U := U, N Cy, and
Sg = UZ\U?, i. e. Sg:UgﬂCg. Then, W:WOUCZ and Ug:UlpUSg.

We want to prove that |§(U;, U;) — 6(V;, V)| < e. For this, we show that

(i) 10(5i,55) —0(Cs, C)| <&,
(i) [6(Vi, V5) — 0(Cs, C5)] < 5¢,
(111) |5(SZ,S]) — (S(UZ,Uj)‘ <3

To prove (fl), observe that for £ =i, j,

|Se| > |Ue| - > e|Vi| — > E|Cy|.

FAIEN
N
As (C;, C)) is é-regular, () holds.

We prove () by contradiction. Assuming that () does not hold, we get

56@ < BeVillVil < | e(Vi, V) = 0(Ci, CH)(IC: U V|G U VDY) |
< le(V;, Vj) — e(Ci, Cp)I + 8(Ci, ) (IGHIV| + 1G5V + VPNV
2 2

< (1+6(Cy, C;)) (22 ;+52%) 25%(2%)

2

< 5§m,

a contradiction.



We prove (i) also by contradiction and assuming, without loss of generality, that
U] = [Uil.

2 n € n
ZN|Uj| < 1(5 —5)N|Uj|
19
< §|Ui||Uj| <1 6(8:,5;) - |UP U S||UY U S;| = e(Us, Uy) |
< e(S;,5;) — e(U;, Up)| + 6(S:,S;) (1S:l|UY| + U [|UD))
n n
< o) (19, N < 46—\[].
< (1+0(85,57)) (3 (8i +1U3])) < 452 |U;

2

e n
=Tl
a contradiction.

We have just shown that |6(U;, U;)—d(Vi, Vi)| < |6(Ss, S;)—6(Ci, Cy)|+16(Vi, Vi) —
8(Ci, Cy)| +16(S:, 85) = 6(Us, Uj) | < 66+ § < 5+ § <.

So, we have at most EN? < eN? pairs (V;,V;) that are not e-regular.
= [T

Suppose an € > 0 and an m € N are given. Set € := 5. Theorem [[Z3, with &
and m, gives us integers ny and M. Set ng := max{ny, %} Let G be a graph of
order n > ng, and C1,...Cly its (&; N)-equitable partition with m < N < M.

In every cluster C; with |C;| > |Cy|, choose some vertex v; € C;. Set V :=
{vi;1C;] > |C1]}. Then |Vy| < N < en. For each cluster C;, set V; := C; \ V4.
Then, |Vi| = [Va| =+ = |V

We claim that, if the pair (C;, C;) is é-regular, then the corresponding pair (V;, V;)
is e-regular. Let U, C V, with |U, > €|V,| for ¢ =1, .

Observe that |Uy| > |Vi| > 2¢|Vi| > &|Cy|, for £ = i, j. By regularity of the pair
(C;, C;), we have

0(U;, Uj) — 6(Cy, Cy)| < €.
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As [Vi| > |Cy| =1 > €|Cyl, we have

0(Vi, Vi) = 0(Ci, Cj)| < &,

implying the inequality

10(U;, U;) —0(Vi, Vy)| < 26 = e.

We have at most EN? < eN? pairs (V;,V;) that are not e-regular.
Hence the equivalence between Theorems [L2Z2] [CZT] and is proved. O

1.4 Cleaning the graph

The e-regularity (or (e, «)-regularity) of a pair gives us extra information on the
graph G. Indeed we can approximate this pair with a regular graph. We still
have some pairs of clusters that are not regular, and therefore, we have no control
on the degree of the vertices in this pair. We have also no information on the
edges incident to the set V and on the edges lying inside some cluster.

An other problem is when the density between a pair is very low (less than ).
Then, it may happen that two significant subsets in the pair have no edge be-
tween them. This does not suit us, as we want to take profit of the non-zero
degree of the vertices to embed some graph in G.

Therefore, we will delete the undesirable edges to get a subgraph Gs. We delete

e all edges incident to the set Vj,
e all edges lying in a cluster,
e all edges in irregular pairs, and

e all edges in pairs with low density (< 4).

This procedure erases at most

en®* + N (%)2 +eN? (%)2 + N2§ (%)2 < (2 + % +8)n*  (1.1)
edges.

We shall call such a graph Gs a cleaned graph (with minimal density ¢).
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1.5 Properties of cluster graphs

After the cleaning procedure of Section [L4 we got a subgraph Gy of a graph G.
In the graph Gy, all pairs are regular and have either density 0 or density at least
d. On such a subgraph Gg, we define a cluster graph H = H(Gj) as follows. The
vertices of H are the clusters in Gy and two vertices C, D in H are joined by an
edge, if the density in the pair (C, D) is positive.

We use the same notation to denote the cluster (set of vertices in Gs) and the
vertex of the cluster graph.

In a cleaned graph, most of the vertices have a degree close to the average degree
of the cluster in which it lies. Throughout this section, suppose that Gy is a
cleaned graph with minimal density 6 and of order n with (a,e)-regular pairs
and cluster’s size s.

Lemma 1.5.1. Let (C, D) be a pair of clusters in Gs. Then, all but at most s
vertices v in C have degp(v) > degp(C) —es > (§ — €)s.

We call those (1 — «)s vertices typical vertices with respect to D.

Proof of Lemma [ 2. Suppose on the contrary that there is a set C" C C of size
> as of vertices v with degp(v) < degp(C)—es. Then, degp(C’) < degp(C)—es,
implying
!
e(C,D) e(C',D) > e
52 |C"|s

a contradiction with the regularity of the pair (C, D). O

In a similar way, we get the following lemma.

Lemma 1.5.2. Let (C, D) be a pair of clusters in Gs. Then, all but at most s

vertices v in C have degp(v) < degp(C) + €5 := e(C—S’D) +e€s.

Proof of Lemma L2224 Similarly as before, denote by C” the set of vertices v with
degp(v) > degp(C) + es. If |C'| > as, then

e(C’,D) e(C.D) .
|C"|s s

This yields a contradiction. O

Corollary 1.5.3. Let (C, D) be a pair of clusters in Gs. Then all but at most
2acs wertices v in C1 have degp(v) € (degp(C) — es,degp(C) + €s).
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Now, instead of looking for the degree in the whole cluster D, we are interested
in the degree into a significant subset of D.

Lemma 1.5.4. Let (C,D) be a pair of clusters in Gs and let D' C D with
|D'| > as. Then, all but at most as vertices v in C' have degp(v') > degp (C) —
e|lD'| > (6 —¢)|D'| > (6 — 2¢)s.

We call those (1 — a)s vertices typical vertices with respect to D'.

Proof of Lemma [I-57) First, observe that as D’ is a significant set, we have

e(D',C)
| D'[s

e(D,C)

52

< + €.

Denoting by C” the set of vertices v with degp/(v') < degp/(C) — 2¢|D’|, we have

/ ! /

e(D',C") < e(D',C) 9 < e(D,C)

[Drler = D S
This implies

e(D,C) e(D,C")
— > £,
s? |Drlcr

a contradiction with the regularity of the pair (C, D). O

Lemma 1.5.5. Let (C, D) be a pair of clusters in Gs and let D' C D with
|D'| > as. Then, all but at most as vertices v in C' have degp (V') < degp(C') +
2e|D'| < degp/(C) + 2es.

Proof of Lemma L2 Similarly as before, if C" denotes the set of vertices v with
degp (V') > degp (C') 4 2¢|D'|, we get

e(D',C")

e(D',C) e(D,C)
>
DIC] T2

|D’|s 2

A%

+ ¢,

again contradicting the regularity of the pair (C, D). O

After studying the degrees into cluster D or a significant subset of D, we turn
our attention to the degree into a wider set. formulace

Lemma 1.5.6. Let C' be a cluster of graph Gs. Then,

1. all but at most as vertices v of cluster C' has degree at least degg,(v) >
degg,(C) —en and

2. all but at most as vertices v have degg;(v) < degg,(C) + en.
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Proof of LemmalLZZA. Let C’ be the set of vertices v in cluster C' that have
deggs(v) < degas(C) — en. Then, degg,(C') < degg,(C) — en. On the other
hand, as |C'| > as, we have

dega;(C") = Z degp(C") > Z degp(C) — es > degg,(C) — en,
D#C D#C
a contradiction. The second case is proved similarly. O

Lemma 1.5.7. Let D be a cluster of graph Gs. Let C be a set of clusters. Let

C" € C with |C'] > as, for each cluster C € C. Denote by C' = g C' the
union of those subsets. Then

1. all but at most as vertices v of cluster D has degree at least dege(v) >
dege/ (D) — 2es|C| and

2. all but at most as vertices v of cluster D have degree at most degp(v) <
dege (D) + 2es]|C|.

We call those (1 — «)s vertices typical vertices with respect to C' (We use only the
first property).

Proof of Lemma[I.5.7] Let denote by D’ the set of vertices v with dege/(v) <
dege (D) — 2es|C|. If |D'| > as, then by regularity,

dege/(D') = Z degcr(D') > Z dego (D) — 2es = dege (D) — 2es|C].
cec cec
On the other hand, by the definition of D’,

dege/(D') < deger (D) — 2es|C],

a contradiction.

The second case is proved analogously. O

Lemma 1.5.8. Let C be a cluster and let C' C C be the set of vertices in C' that
has degree at least A in the graph Gs. If |C'| > as, then degg;(C) > A — en.

Proof of Lemma L0238
degGa (C> = Z degD(C) = Z 5(07 D>S

D#C D#C

> > (5(C, D) — €)s > degg,(C') — en
D#C

>A—en
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Let us resume some of the properties we saw in the lemmas of this section. Let
C,DeV(H)and C CV(H).

degci(v) > dege (D) — 2es for all but at most as vertices v € D. (1.2)
degg;(v) > dega; (D) — en for all but at most as vertices v € D. (1.3)
deger(v) > dege (D) — 2es|C| for all but at most as vertices v € D. (1.4)

1.6 The proof of the Regularity Lemma

For any partition of a vertex-set, we define an index. This index is bounded by
1. In Lemma [LE&T, we observe that refining the partition does not decrease its
index. In Lemma [C62, we show how to take profit of the irregularity of a pair
to find a partition of the pair with higher index.

In the Index Pumping Lemma [[63, on the base of those observations, we show
how to refine a non-regular partition to get its refinement with higher index.

The proof of the Regularity Lemma [L2]] consists of iterating the use of the Index
Pumping Lemma [CE3

1.6.1 Index of a partition

For a graph G = (V, E) and for disjoint A, B C V| we define the index q(A, B)
of a pair (A, B) as follows.

_ AllB]

¢(A, B) == d*(A, B) = e(4, B)”

~ |AllBn*

n2

For a partition A of A and a partition B of B, let us define the index ¢(.A, B) of
these partitions as follows.

(A B) = Y qA.B).
A e A
B B

Note that for a partition P = {C1,...,Cy} of our vertex set V', we define

9(P) = a(Ci,Cy).

i<j
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For the partition of the vertex set with an exceptional set C, we consider this set
as a set of singletons, instead of taking it as a whole. We can do that, because
we do not expect from the exceptional set nothing else than to be small, so we
treat it in the proof as singletons and at the end put these singeltons together to
form the exceptional set.

1.6.2 Refining the partition

To prove the Regularity Lemma, we need the following Cauchy-Schwartz inequal-
ity. For real numbers mq,...,m; > 0 and eq,...,ex > 0,

S 19

\/

Lemma 1.6.1.

1. Let C, D CV be disjoint sets. If C is a partition of C' and D is a partition
of D, then q(C,D) > q(C, D).

2. If P, P are partitions of V and P’ refines P, then q(P') > q(P).

Proof of Lemma LG

1) Let C ={C1,...,Cx} and D = {Dy,..., D;}, then
\CHD| 1 = <c D>
iuj:l 2] 1

(Zz] 1 (CZ?D)) _iez(CaD) —
= n2 Y (C|D;l n? |ClID

q(C, D)

2,7=1

2) Let P ={C,...,Cy} and for i = 1,...,k let C; be the partition of C; induced
by P’, then

a(P)=>_a(C.C)) <) a(CGi.C)) <Z )+ a(CiCy) = a(P)
Ny

1<j 1<j 1<j
U

Assuming that the pair (C, D) is not regular allows us to strengthen the previous
lemma. Then, the irregularity allows us to increase the index.
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Lemma 1.6.2. Let ¢ > 0 and let C,D C V be disjoint sets. If (C, D) is not
regular, then there are partitions C = (Cy,Cy) of C and D = (Dy, D) of D such
that

)

n2

q(C,D) > q(C, D) + (1.6)

Proof of Lemma[LGA. 1f (C, D) is not a regular pair, then there exist C; C C
and D; C D with |Cy| > ¢|C| and |D;| > ¢|D| such that || > e, where
n = d(Cy, D) — d(C, D). The partitions C = (Cy,C \ C4) and D = (D, D\ D)

satisfy (CG).

To simplify the notation, set e; ; = e(C;, D;), e = e(C, D), ¢; = |Ci|, d; = |Dj|,c =
C|,d = |D|. Now

1 ei; 1 611
Q(Cup):_ = ng Z

2 A 2
n2 cd;  n cldl sl

2 2
> 1 efy +i(2i+j>2ei,j)
Erﬂ cdy  n? Zi+j>2cidj

_ 1 (e L (e ei,1)’
N n? Cldl cd — Cldl

By definition, we have e;; = c1dy 5 + neidy, inserting this into the equation, we

have
i1 | (e—en)’
2 > 1,1 1,1
Q(C,D) - <01d1 * cd — Cldl
e 2

a + ncldl) +
B e 2 e ncydy 2
= Cldl (a + n) + (Cd Cldl) <a m)

e’ 2 e’ 2 2
> — 4 cdin® > — +¢€cd-¢€
cd cd

Czy

e 2
— = 7701d1>

—cd
¢ Cllcd

o (
cd — Cldl

So ¢(C,D) > & (% +84Cd).

Hence, the partitions C and D satisfy (L6 O
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1.6.3 The Index Pumping Lemma

The following Lemma, is the key tool in the proof of the Regularity Lemma.

Lemma 1.6.3 (Index Pumping Lemma). Let 0 < e < 1 and P = {Cy, C ..., Cy}
be a partition of V with exceptional set Cy and |C;| = |C}| fori,j > 1. If P is not
e-reqular, then there is a partition P' = {C{,C1,...,C]} of V with exceptional
set C{, such that

1. k<I<k-4F,

2. |Gyl < 1Co| + 3,

5. |Cil =Gy =--- =],
4. q(P") > q(P)+ 5.

Proof of Lemma[Lf3. We have a non-regular partition P = {Cy,C1,...,Ci}.
For all 1 <1i,j <k, define a partition C;; of C; and a partition Cj; of C; as follows.

If the pair (C;, C;) is e-regular, then C;; = {C;} and C;; = {C};}, but if the pair

is not e-regular, use the partition as in Lemma [C62 Then |C;;| = |C;;| = 2 and
e|Gil|C; -

q(Cij,Cji) > q(CZ-,Cj) -+ % Let C(] = {{’U},U € Co}

For each i =1,...,k, let C; be the unique maximal partition (with respect to <)

refining all C;;, with j = 1,..., k. Then, |C;| < 2*~!. Now, consider the partition

C={CulUr,C. Wehave C <P and k < |C| < k- 281,

The index of the partition C satisfies

aC)= > 4(CC)+ Y alCo,C)+ Y alC

1<i<j<k 1<i 0<i
> Y q(CiC) + > a(Co,Ci) + q(Co)
1<i<i<k 1<s
> Y q(CiCy) +6/€2— + Y q(Co, Ci) + q(Co)
1§i<j§k 1<q
k2c?
= 4(P) +&"—
5
> q(P)+ —.
2
The last inequality comes from ¢ > ”(1 ) > %% So, e % > %
" 1
€§Z
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Now, we modify the partition C to get a partition with all unexceptional clusters
of the same size. As |C| < k- 257! | the average size of a cluster is . Set
d := ;. To construct the partition P, we divide each set into smaller sets of size
d and put the rest-over into the set C. For each cluster of C we put less then d
elements into C. We have

1
— -

, n
Chl < 1Col + (d = 1)I€] < 1Col + 74

n
k2F = |Co| + 7
Then the set C} is not too big, as we promised. What about the index of P’? We
did change the partition, but as we refined it we could only increase the index,

SO
5

a(P') > q(C') > q(P) + .

This ends the proof of the Index Pumping Lemma. O

1.6.4 Proof of the Regularity Lemma

Now, with an iterate use of the Index Pumping Lemma, we prove the Regularity
Lemma.

Proof of the Regularity Lemma[LZ1dl The main idea is to use the Index Pumping
Lemma 2 times. Let Py be an initial partition with m clusters. If the given
partition is regular, we are done. If not, then use inductively the Index Pumping
Lemma [C63 If a partition P; is not regular, we find a partition P;,; such that
q(Piz1) > q(Pi) + % As the index is bounded by 1, we can repeat this step at
most 83 times. U
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Chapter 2

Embedding of Trees

2.1 Introduction

Martin Loebl conjectured the following:

Conjecture 2.1.1 (Loebl Conjecture). If a graph G of order n has at least %
vertices of degree at least 5, then any tree with at most 5 edges embeds into G.

Jandés Komlés and Vera T. Sés generalised the Loebl Conjecture to the following
[6]:

Conjecture 2.1.2 (Loebl-Komlés-S6s Conjecture). If a graph G has at least half
of its vertices of degree k, then any tree with at most k edges embeds in the graph

G.

An other related conjecture comes from Paul Erdés and Vera T. S6s [5]. Instead
of considering graphs with high median degree, they considered graphs with high
average degree.

Conjecture 2.1.3 (Erdés-Sos Conjecture). Let G be a graph on n vertices with

more than 5 (k — 1) edges. Then, any tree with at most k edges embeds into G.

If true, the Erdds-Sés Conjecture would imply an immediate bound on the Ram-
sey number for trees. Indeed, if we colour a complete graph on ¢k vertices with £
colours, then in at least one colour, we have more than (k —1)% edges. Then by
the Erdés-Sos Conjecture, we would be able to embed any tree with at most &
edges in this colour-class. Ajtai, Komlds, Simonovits and Szemerédi are working
on a paper on the Erdds-Sos Conjecture for graphs on sufficiently many vertices
(see [2]). Andrew McLennan proved that the Erdés-Sés Conjecture is true for
trees of diameter at most four. The proof of this result can be found in [12)].
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It is trivial to see that both the Loebl-Komlds-Sos and the Erdds-Sés Conjec-
ture are true for stars. Indeed, it is enough to find one vertex of degree k£ and
embed the center of the star on this vertex. We prove the simple fact that the
Loebl-Komlés-S6s Conjecture is true for dumbbells, (two stars with their centres
joined by an edge) in the beginning of Section Z4l Then, in the rest of the sec-
tion, we prove that the conjecture is also true for any tree with diameter at most 5.

Cristina Bazgan, Hao Li and Mariusz WozZniak proved that the Loebl-Komlés-S6s
Conjecture is true for the class of trees consisting of paths and also for the class
of trees consisting of paths with one of its vertex identified with a centre of a star.
We insert the proof of their theorem in Section P23 and find some other classes
of trees for which the Loebl-Komlés-Sés Conjecture is true as an easy corollary
of their theorem.

In Section 22 by extending an argument of Zhao [I9], we prove that condition
on the number of vertices with degree at least k£ can not be relaxed too much, for
k < %. Indeed, we can not replace § by & —/n — 2.

Section presents an approximation of the Loebl-Komlés-Sés Conjecture for
sufficiently large graphs; it is Theorem 251l This result is a joined work with
Maya Stein. It is greatly inspired by a preprint of Ajtai, Komlés and Szemerédi
[M]. In this thesis the proof of this result is divided in different independent lem-
mas, introducing many tools for the embedding of trees into sets of regular pairs.
Also we present two different proofs, using different embedding techniques. At
the end of the section, there is an easy generalisation of Theorem 5] extend-
ing the class of graphs that we can embed in G to a slightly wider class. This is
Theorem EZ0.3Tl A shorter, but denser version of the proofs of Theorems 25T
and 2031 can be found in [T4].

2.2 A graph not not containing all trees with at
most k edges

In this section we show that, for k < 7, there is a graph with & — % — 2 vertices

n
k
with degree k that does not contain a certain tree of order k + 1.

Construction 2.2.0.1. Let k = gn with ¢ < 12 and let G be a graph of order n with
a vertex set V4 U---U V1 such that |V;| =k for all i = 1,...,%. Let A;,UB; =V,
q

be a partition of the vertex set V;, for all i € [5] such that |4;| = & — \/qn — 1.
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Each vertex of the set A; is adjacent to any vertex in V; and sends exactly one edge
in B;yq (ifi = %, then it sends to Bj) in the following way. Partition A; in subsets
Al ... A™ each of size at most \/qn. We have that m =]|A;|/\/qn] < @ -1
Choose some vertices vi™, ... v"! in the set B;;;. Now, each vertex from A7} is

. r e m
adjacent to the vertex v/*".

q

The vertices in |J A; have degree k and ||JA;| = 2(% —\/gn—1) = 2 — \/g— %.

Lemma 2.2.1. Let T be a tree of order k + 1 with one vertex v of degree g and
all vertices in N(v) have degree 2. All other vertices are leaves. Then, G defined
in Construction [ZZIL1 does not contain T as a subgraph.

Proof of Lemma[ZZ. For contradiction, suppose that there is an embedding ¢
of the tree T" in G.

A vertex v;» has at most /qn neighbours in A; ;. Therefore, the degree of the
vertices in B; is at most /qn + |A;| < ¢5. This implies that the vertex v € V(T)

qn

cannot be embedded in any vertex of |J B;, as deg(v) = & > deg(u) for any

So ¢(v) € |JA;. By the symmetry of the construction of G, we may reduce
ourself to the study of the case when ¢(v) is in one of the A,.

Denote by B’ the set of vertices in |J B; that have positive degree in | J A; \ A,.

The set B’ consists of one vertex in B,_; and m vertices of B,. Therefore we have
B < 4.

Now, the vertex ¢(v) has degree at most @ in B’ and degree &£ — ,/qn — 2 in
A;. So we have that

n
degaun, (p(v)) < 5 = 2.

The vertices in B, \ B’ have neighbours only in A,. This is a contradiction with
the fact that there is an embedding extending ¢ [ v.

O

2.3 The Loebl-Komlés-Sés Conjecture for paths

Next theorem says that the Loebl-Komlés—Sés Conjecture is true for paths.

Theorem 2.3.1 (Bazgan, Li, WozZniak). Any graph with at least half of its ver-
tices having degree at least k contains any path of length k.
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Corollary 2.3.2. The Ramsey number for paths r(P,2) is 2 - |E(P)].

Indeed, if we 2-colour the edges of a complete graph on 2n vertices, then, in one
of the two colours, we have at least 5 vertices of degree at least 5. Theorem EL3.T]
implies then, that in this colour we can find any path of length at most n.

Proof of Theorem [ZZ31l. The proof goes by contradiction. Let k£ be the smallest
integer such that Theorem 231l does not hold. Then k£ > 3, as for k = 2 the the-
orem holds trivially. With this choice of k, let n be the smallest integer for which
there a graph G of order n such tat GG satisfy the hypothesis of Theorem 2311, but
not the conclusion. Also suppose that G is minimal, i. e. for each edge e € E(G)
we have that G — e does not satisfy the hypothesis of ZZ3.1] anymore. Denote by
L the set of vertices that have degree at least k. Observe that S := V(G) \ L is
an independent set.

By minimality of n, we have that G is connected, otherwise at least one of the
components satisfies the hypothesis of 23Tl and is of smaller order. Therefore, we
could embed the path in this component. Also we may assume that each vertex
v € L has at most one neighbour of degree 1, otherwise if vy, v9 are neighbours
of some v € L and deg(v1) = deg(ve) = 1, then the graph G — {vy, v} is of order
n—2 and has at least L\ {v}| > 5 —1= Mé{v“’z}' vertices of degree at least k.
Therefore we can embed our path in G — {vy, v, }. Similarly we get the following
lemma.

Lemma 2.3.3. Let X CV \ L. Then |X| < 2|N(X)|.

Proof of Lemma[ZZZ3. For contradiction suppose that | X| > 2|N(X)|. Consider
the graph G’ :== G — X. The order of G’ is at most n — 2|N(X)| =: n’. The set
L(G") of vertices in G’ with degree at least k contains L \ N(X) and therefore
IL(G")| > 5—|N(X)| = %/ By our assumption, n is the smallest integer for which
the Theorem EZ3.1] does not hold. Therefore we can embed a path of length £ in
G’ C G, a contradiction. I

Lemma 2.3.4. The graph G contains none of the following subgraphs
1) a path P of length k — 1 with one extremity in the set L,

2) a path P' of length k — 2 with both extremities in the set L,

3) a cycle C of length k,

4) a cycle C" of length k — 1,

5) a cycle C of length k — 2.
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Proof of Lemma[2.37 M) If v is the extremity of the path P that lies in L then
it has at least 1 neighbour u that does not lie in the path P. Then the path
V(P)U{u}, E(P)U{v,u} is a path of length k in the graph G, a contradiction.

B) Let vy, vy € L are the two extremities of the path P’. Then v; has at least one
neighbour u that does not lie in the path P’. Then the path V(P")U{u}, E(P")U
{v1,u} is a path in G of length £ — 1 with one extremity in L, a contradiction
with [).

B) We have that |V (G)| > k+ 1 and as G is connected there exists a vertex v in
V(G)\ V(C) that is adjacent to our cycle C. Then we can find a path of size k
in the induced subgraph on V(C') U {v}, a contradiction.

H) First suppose that there is a vertex v € L\ V(C’). As G is connected, we
can fin a path connecting v with the cycle C” such that all vertices except one
extremity lie in V(G) \ V(C”). Then we can find a path of length k£ — 1 with one
extremity in L in the graph G, a contradiction with [l). Therefore we may sup-
pose that the cycle C’ contains all vertices of the set L. If two vertices u,v € L
are adjacent in C’, then C" — {u, v} is a path of length k —2 with both extremities
in L, a contradiction with £]). So there are no consecutive vertices from L on C".
As V(G) \ L is independent and |L| > |V(G) \ L|, we have that C" goes through
all vertices from G and therefore is of length |V(G)| > k + 1, a contradiction.

B) Suppose that there is a cycle of length k£ — 2 and choose between all cycles of
length k& — 2, the one with the most vertices in L.

First suppose that there exists a vertex in L\ V(C). As G is connected, there
exists a path connecting this vertex with the cycle C. This path is of length at
most 1, otherwise we can find a path of length k£ — 1 with one extremity in L, a
contradiction to ). So we have an edge {v,u} € E(G), with v € L\ V(C) and
ueV(C).

If the neighbour uy or uy of u in the cycle C' is in L, then the path with vertex
set V(P)U{v} and with edges E(P)U{u,v}\ {u,u;} is of length k£ — 2 with both
extremities u; and v in L, a contradiction with Bl). So any neighbour of v that
lies on the cycle C' is from L and its neighbours on the cycle are in V(G)\ V(C).

Consider w, the neighbour of u; in the cycle C, different from u. If {v,w} € E(G),
then the path {w, v, u} together with C'—u; forms a cycle of length k—2 with one
more vertex from L than C, a contradiction. But as u; ¢ L, we have that w € L
and therefore between two neighbours of v in C' we have at least three vertices (two
from V(@) \ L and one from L between them). Hence |[N(v)NV(C)| < (k—2)/4
and thus [N (v) \ V(C)| > (3k +2)/4 > 2 for k > 2. Observe that all neighbours
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of v, not lying on C, are in V(G)\ L, otherwise we find a path of length k —1 with
one extremity, the neighbour of v, lying in L\ V(C). This contradicts [). So,
by Lemma L33 at least one of these neighbours v, have degree greater than 1.
All the neighbours of v, are in V(C) U {v}, otherwise there is a path of length k
formed by the path of length 3 containing this neighbour, and the vertices vy, v, u
and by C' — {u,u1}. So let vy be its neighbour on the cycle C. Consider the path
formed by the path of length 2 on vertices v, v1, vo and by C — e, where e is one of
the edges containing v,. This path has length £ — 1 and has one extremity in L,
a contradiction. Therefore we may assume that the cycle C' contains all vertices

in L and thus k —2 = |L| + Yz, where Y¢ := V(C) \ L. Consider an orientation
of our cycle C' and denote by S the set of vertices from L which has a successor
in C also in L. The cardinality of S is equal to the number of edges in C' with
both extremities in L and thus is equal to

S| = |E(C)| —2|Ye| =k — 2 —2|Ye| = |L| — [Yel. (2.1)

We claim that none of the vertices from S have a common neighbour in V(G) \
V(C). Indeed if u ¢ V(C) is a common neighbour to vy, v, € S then consider the
path formed by the path of length 2 containing vy, u, vy together with C'—{ey, 5},
where ¢; is an edge of C' with both extremities in L: v; and its successor in the
orientation of C. This path has length ¥ — 2 and has its both extremities in
L, a contradiction with B). Observe that each vertex from L has at least three

neighbours in V(G) \ V(C). So

[N (O) =D IN(@)\ V()] = 3]5].

veES
As all vertices that are not in C' are not vertices from L, we have by () that
3L = 3[S]+3|Ye| < [V(G)\ L] +2[Yel,

so n > 4|L| — 2|Y¢| > 2n — 2|Y¢|. This implies that [Y¢| > 4, implying that the
cycle C' is of length at least n > k + 1, a contradiction. O

Let us turn back now to the proof of Theorem EZ3Tl By our assumption, the
theorem holds for any k' < k. Therefore our graph G contains a path of length
k — 1. By ), we know that both extremities of this path lie in V/(G) \ L. We
shall consider a subpath P, by deleting these two extremities. The path P has
length k£ — 3 and has its two extremities vy, vy € L.

The vertices v; and v, have each at least 3 neighbours that are not contained
in V(P) and any such neighbour is in L or we would get BI). Also remark that
by B), denoting by W, and W5 the sets of neighbours in V(G) \ V(P) of v; and v,
respectively, we have W7 N W,y = (). Remark that the neighbours of W and W,
must lie on P, otherwise we get ). Set N; := N(W;)\{v;} and N := NJUN, C L.
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Let w; € W; and let u; € N; be any of its neighbour. Now consider the neighbour
w of u; on the subpath of P from wu; to v;. If w € L, then the path formed by
P — {w,u;} and by the path on vertices v;, w;, u; is of length k& — 2 and has both
extremities in L, a contradiction with B).

Denote by S; the set of such vertices w adjacent in P to some u; € N; and lying
on the subpath with extremities u; and v;. Set S := S; U S5. Any vertex in N
generates one vertex that is in S. We want to show now that different vertices
in NV generates different vertices in S. So suppose that there exists w € S; N Sy
with neighbours uw; € N; on P and u; = N(w;), for some w; € W;. The cycle
formed by P — w and by the paths on vertices v;, w;, u; is of length k — 1, what
contradicts @l). Thus we have

|S1] + [S2] =[S = [N]. (2.2)

Now consider an edge e = {u,v} € E(P) such that u is on the path from v
to vy. If w is connected to vy and at the same time v is connected to vy, then
P —{u, v} together with the edges {u, v2} and v, v; from a cycle of length k—2, a
contradiction with H). For the same reason, we have that {vy,v2} ¢ E(P). This
implies that

IN(v1) N V(P)|+ |[N(vy) NV(P)| < |[V(P)|—1=Fk—3.
As vy, vy € L, we have
(WAl + [Wa| = [N(v1)] = [N(v1) N V(P)] + [N(vz)| = [N(v2) NV(P)| 2 k + 3.

Now we use Lemma for X := W; U W, and get

Wi |+ [Ws - E+3

2 - 2
Combining this result with (Z2), we get that |[N|+|S| > (k+3) —4 =k — 1.
N,S CV(P)and N and S are disjoint, as N C L and SN L = (). Therefore we
have that P is of length at least k£ — 2, a contradiction.

24+ |N| >

O

Corollary 2.3.5 (Bazgan, Li, Wozniak). Any graph with at least half of its ver-
tices having degree at least k contains any tree of order k+ 1 consisting of a path
and a star with its centre on the path.

Proof of Corollary[Z-33. Let H be a graph of order k + 1, consisting of a path
P of length k — s < k — 1 with v, a vertex in P of degree s + 2 in H. We want
to embed H in G. First remember that we can assume that the set of vertices
with degree less that k from an independent set. By Theorem 23] we find an
embedding of a path of length at least k. There are two subpaths P, and P, of
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length k—1 that are shifted by 1 one from the other. Consider the path P; embed
P on Py and look at the vertex u := p(v). If u is a vertex of degree at least k, we
can extend the embedding ¢ to V/(H), as [N(u) \ ¢(V(P))| > s. So suppose that
u is a vertex with degree < k. Then its neighbours in the path P; have degree at
least k. Consider then the shift 7" by one of ¢(P) such that T'(¢(P)) embeds on
the path P,. Then T'(¢(v)) is a vertex with degree at least k and the embedding
T o ¢ can be extended to V(H). O

Using the proof of Theorem EZ3T and pushing the argument in the proof of
the corollary a little bit further, we found with Maya Stein the following
corollary.

Corollary 2.3.6. Let G be a graph with at least half of its vertices having degree
at least k. Let H be any tree of order k + 1 consisting of a path of length k — /¢
and two stars with their centres anywhere on the path, but at even distance < (.

Proof of Corollary[Z.34. Let H be a graph of order k + 1, consisting of a path
P of length k — ¢ < k — 2 with v; and vy, a vertices in P of degree s; and s
respectively in H such that the distance d(vy,vy) between v; and vy in P is even
and at most £. We want to embed H in G.

Denote by L the set of vertices that have degree at least k and set S := V(G)\ L.
Once again we assume that S is independent. By Theorem EZ3T we find an em-
bedding of a path P of length at least k.

Consider the subpath P, of length k — ¢, containing one of the extremities u of P.
Embed P on P;. Let u; := p(vq1) and uy := ¢(vy). If both u; and uy are vertices
in L, we can extend ¢ to V(H).

Again we shall consider a shift 7" that shifts P, by one (i. e. T(V(F)) does not
contain any extremities of P). If u; and uy are both in S, then Top({uy,us}) C L
and the embedding T o ¢ can be extended to V(H).

Therefore we may suppose that u; and us lie in different sets L and S. But as the
distance between u; and us on the path is even and S is independent, this implies
that on the path going from u; to uy there are two consecutive vertices from L.
Denote this two consecutive vertices by w; and we (with wy closer to u; than ws).

Observe that wy; = T™(uy) for some m < (. If T™(uy) € L, we are done,
because 7™ o ¢ can be extended to V(H). So, assume that 7™ (us) € S. Then,
T (uy) € L as well as T™ " (u;) := w,, and the embedding 7™ o ¢ can be
extended to V(H).

U
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Remark 2.3.7. If we had to extend the embedding Tf o, then one of the extrem-
ities of the path P is mapped on the extremity of P different from u. Therefore
we cannot hope to have d(vy,v9) larger than ¢ with this approach.

2.4 The Loebl-Komlés-S6s Conjecture for trees
of small diameter

In this subsection, we prove that the Loebl-Koml6s-Sés Conjecture is true
for the class of trees of diameter at most five.

First, we show the easy fact that the Loebl-Komlés-Sés is true for the trees
of diameter at most 3, i. e. for dumbbells.

Proposition 2.4.1. Let G be a graph such that at least a half of its vertices have
degree at least k, then any tree T of diameter at most 3 and with at most k edges
embeds in G.

Proof of Proposition [2.4.1 If there is an edge between two vertices of L, we can
embed the center of the tree on those vertices and embed the leaves without
any problem, as they are adjacent to vertices embedded in L. Suppose on the
contrary that there is no edges with both end-vertices in L. Counting the number
of edges between L and S we get

IL| k<e(L,V\L)<|[V\L| k

a contradiction.

O

Theorem 2.4.2. Let G be a graph such that at least a half of its vertices have
degree at least k, then any tree T of diameter at most 5 and with at most k edges
embeds in G.

Proof of Theorem[2.7.3. Let G be a graph such that at least a half of its vertices
have degree at least k, and let T" be a tree of order at most k + 1 and of diameter
at most 5.

We denote by L the set of vertices in G with degree at least £ and we set S :=
V(G)\ L. We may assume that S is an independent set (we can delete any edge in
(5) without changing the sets L and S). Also we may assume that |L| < [S]+ 1.
Indeed, suppose this is not the case. Then, if there is an edge between L and
S, choose such an edge and delete it. Either L and S keep their cardinality or
the size of the set L decreases by one and the size of the set S increases by one.
Continue to delete such edges as long as |L| < S|+ 1 or until there is no edge
between L and S. If e(L, S) = 0, we have no problem to embed any tree of order
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at most k + 1 in the set L. Indeed, in the induced graph G | L, all vertices have
degree at least k.

We use the following notation.

B:={v e L; deg(v) > £},

A:=L\B,

Cim {0 € 8 deglv) = degy () > £},
D:=S\C

X ={ve L degruc(v) > £} D B and

YV :=L\X ={veL; degruc(v) < £} C A.

e(M, K) shall denote the number of edges between two given sets M and K and
Ny (M) shall denote the set of all the neighbours of M lying in the set K.

For the tree T', we choose an edge containing the center (either the edge is the

centre or it contains the center in one of its endvertices), and denote this edge by
{7’1, 7"2}. Let

P = N(ri) \ {ra},
Q = N(r2) \ {r1},
R:= N(P)\ {nr},

= N(Q) \ {r2},

P :={v € P; deg(v) > 2},
Q@ =A{v e Q; deg(v) > 2}.

Without loss of generality, we may assume that
k
|IRUQ| < 7

Remark 2.4.3. Along the whole proof, we use many times the fact that both
the degree of a vertex, as well as the cardinality of a set of vertices, are natural
numbers. So, if for a set U of vertices and for a vertex u, we have |U| < z + 1
with z € R and deg(u) > x, then |U| < deg(u).

Lemma 2.4.4. If there exists an edge e = {u,v} € E(G) such that u € X and
veC, any tree T of order k + 1 and diameter at most 5 embeds in G.

Proof of Lemma 244 Let {u,v} € E(G) with u € X and v € C. We define our
embedding ¢ as follows.

Embed 71 in u, ro in v and P"in V(u) N (L U C). We can do so, as
, k
[PI< Rl <[RUQ| < 3.
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Set Py to be the set of vertices in P’ that are embedded in the set C'. Set

RQ = N(PQ) N R,
Pp:=P'\ Pg,
Ry := R\ Re.

Embed Rg in N(¢(Pc)) € L. Indeed, as each vertex in C has degree at least £
and

k
|RCU(PL)\+1§|R\+1<§.

Otherwise, Q = ), and by Proposition 222 we can embed T
Embed @ in N(v) C L. Indeed, v has degree at least & and

k
|QURCUPL|+1§|QUR|+1<§+1

and, therefore, |Q U Rc U Pr| + 1 < deg(v).
Now, we can embed P\ P’, Ry and S without any problem as they are adjacent
to vertices embedded in L. O

Remark 2.4.5. By Lemma EZZ4 we can assume that X = B. Therefore, A =Y
and there is no B-C' edges.

Lemma 2.4.6. If there ezists an edge e = {u,v} such that u,v € B, then any
tree T of order k + 1 and diameter 5 embeds in G.

Proof of Lemma [27.0, Let {u,v} € E(G) with u,v € B. We define our embed-
ding ¢ as follows.

Embed 71 in u, 75 in v and P’ in V(u) N L. Indeed, |P'| < £. Now, embed @Q in
N(v)N L. We can do so, as [P'UQ[+1<|RUQ|+1< % +1 and, therefore,
|P"UQ|+1 <degr(v).

Now, we can embed P\ P’, R and S without any problem as they are adjacent
to vertices embedded in L. O

Remark 2.4.7. By Lemma 220, we may assume that the set B is independent.

Lemma 2.4.8. If there exists a vertex v € N(B) N L such that degp(v) > %,
then any tree T of order k 4+ 1 and diameter 5 embeds in G.

Proof of Lemma[24.8 First, observe that |P'UQ’| < g and, therefore, the small-
est of |P'| and |Q'| is smaller than £. Suppose that the smallest is P’. The case
when the smallest is )" is done analogously.

We shall define our embedding ¢ as follows. Embed r; in the vertex v and
P'U{ry} in N(v) N B. We can do so as |P'| + 1 < £ + 1. Thus |P'| < degp(v).
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Now, embed the set Q" in N(p(ry)) =: u. Indeed, B is independent by 227, and
therefore N(u) N(P') =0 and |Q'| +1 < £ + 1. Thus, |Q'] + 1 < degy(u).

Now we can embed P\ P', @ \ @', R and S without any problem as they are
adjacent to vertices embedded in L.

O

Lemma 2.4.9. If there exists a vertex v € N(B) N L such that degruc(v) >
then any tree T of order k + 1, diameter 5 (with |[RU Q| < ) and

S

)

k
P < -
P <3

embeds i G.

Proof of Lemma[Z.4.9 The proof goes along as the proof of Lemma ZZA] em-
bedding 7 in v, ro in w € N(v) N B. Then, P’ is embedded in L UC, R¢ :=
o Hp(P)NC) is embedded in L, Q in N(u) N L. At the end, we embed the
leaves of T O

Lemma 2.4.10. If there exists a vertex v € N(B) N L such that degruc(v) > %,
then any tree T of order k + 1, diameter 5 (with |[RU Q| < £) and

k
|P'US| < 5
embeds i G.

Proof of Lemma [27.10. By Lemma ZZ9, we may assume that

k
<P IR

This implies that |Q| < £. Embed r5 in vertex v and ry in vertex u € N(v) N B.
Then, embed @ in N(v) N (LU C). This is possible, as |@| +1 < & + 1. Thus,
Q] + 1 < degruc(v). Denote by Q¢ the vertices of () embedded in the set C,
and set

QL ::Q\QC>
SC = N(QC)QS,
SL Z:N(QL)QS:S\SC‘.

Now, we can embed the set S¢ in N(p(Qc¢)). Indeed, [ScUQL|+1<|S|+1<
E+1. Thus, |[ScUGL|+1 < N(w), for any w € C. Observe that by Remark P23,
there is no B — C' edge, and therefore, u ¢ N(C).

Next, embed the set P’ in N(u) N L. This is possible, as [P U QL U S¢| +1 <
|[P'US|+1< %41 Thus, [P'UQLUSc|+1 < degr(u).

Now, we can embed the vertices in (P \ P’) US, U R without any problem, as
they are leaves adjacent to vertices embedded in L. O
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Proposition 2.4.11. Let G be a graph such that at least a half of its vertices
have degree at least k, then any tree T' of order at most k+ 1, of diameter 5 (with
IRUQ| < %) and with

k k
|P,|<Z or |P/US|<§

embeds in G.

Proof of Proposition [Z.7.11. Suppose this is not the case. LemmasZZ 9 and ZZT0
imply that there is no vertex v € N(B) N L with degruc(v) > &. We bring this
fact to a contradiction.

Any vertex v € N := N(B) N L has degp(v) > 2. By a double edge-counting
argument, we have

k 3k k
[AN NG + N7 < e(A, D) < |DI5. (2:3)

Recall that by Remark 243, A =Y and thus, degp(v) > £, for v € A.
Dividing 3) by £, we get

214 + |N| < 2|D|. (2.4)

Once more, by a double edge-counting and using Remark P27 and Lemma ZZ.8,
we have

k k
Bl <e(N.B) < |V
Then,
|IN| > 2|B. (2.5)
Giving (Z4)) and (Z3) together, we find

2|D| > 2A| +2|B| > n,

a contradiction with the fact that [S| < 3.
U

Remark 2.4.12. We can assume now that |P'| > £ and [P’US| > £ Ifz € (0,1)
such that |[P'| = z - £. Then,

15| > (1 - x)g. (2.6)
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On the other hand, we have that |R| > |P’'| = x - . This implies that

\QUSU(P\P/)|<k—2-x§:(1—x)k.

Using 28, we get |Q U (P \ P')| < (1 — z)%. Then,

QUP|=IQU(P\P)UP| <.

The rest of the proof of Theorem goes under this assumption.

Lemma 2.4.13. [f there exists a vertexv € N(BUC)NL such that degr(v) > &
then any tree T of order k + 1 and diameter 5 (with [RUQ| < &, |P'| > % an
|IPUQ| < %) embeds in G.

Proof of Lemma [ZZ.13 Embed 75 in vertex v and r; in vertex u € N(v)N(BUC).
Then, embed the set @ in N(v) N L. Indeed, |Q| +1 < & — |P/| < £ +1, thus
Q] +1 < degp(v). Next, embed the set P in N(u) N L. We can do so, as
QU P|+1<%+1and thus |QUP|+1 < degp(u).

Now, we can embed the rest of the tree, as they are leaves adjacent to vertices
embedded in the set L. O

Proposition 2.4.14. Let G be a graph such that at least a half of its vertices

hcwe degree at least k. Then any tree T of order at most k+ 1 and with diameter
5 (with |[RUQ| < %, |[P'|>% and |[PUQ| > %) embeds in G.

Proof of Proposition [2.7.14 By Lemma ELZT3 we may assume that there is no

vertex v € N := N(BUC)N L with deg,(v) > %. By Remark 223 and a double
edge-counting, we get

k 3k k
[ANNIG +[N|= = e(C,N) + |Blk — e(B, N) < e(L, D) <|D|3

Using this fact in the next double edge-counting argument, we have
k k
(IC\HBI) +\N\ < (|Al+]B|- ID\) +\B| 5 TNl < (e(CUB),N) <INl
Multiplying by %, we get
IN| > 2|C| +2|B|. (2.7)
A final double edge-counting gives us
k k k k k
(141 + 1Bl +101)% < |AI% +INIS < e(4,5) < |DI% + ICls = |S|% + |C1
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This implies

S| > [L],

a contradiction.

Propositions ZATT and ZZZT4 imply Theorem ZZ2.
[

2.5 The approximate version of the Loebl-Komloés-
S6s Conjecture

In this section, we prove the following approximative version of the Loebl-Komlés-
Sés Conjecture.

Theorem 2.5.1 (An approximate version of the L-K-S Conjecture). For every
v,q > 0 there is an ng € N so that for all graphs G on n > ny vertices the
following s true.

If at least (1 + )5 wvertices of G have degree at least (14-v)qn, then G contains,
as subgraphs, all trees with at most gn edges.

The proof of this theorem is greatly inspired by a preprint of M. Ajtai, J. Komlos

and E. Szemerédi [1], where they proved the Theorem EZ5T for ¢ := 1.

Theorem 2.5.2 (Ajtai, Komlds, Szemerédi). For every m > 0, there is anng € N
such that for all graphs G on n > ny vertices the following holds.

If at least (14 7)%5 vertices of G have degree at least (1+ )%, then any tree with

at most 5 edges embeds in G.

Their approach can be generalised very easily for ¢ > % (see Remark ZZ0.0), while
the case ¢ < % needs a little different approach. We follow a hint given by Ajtai,
Komlés and Szemerédi in [I], but give here a slightly stronger lemma then the
original one. This is Lemma 200

Before going into the details of the proof, we first state some useful tools as
embedding of specific trees. In this way we get in touch with problems one at a
time, making the reading easier. In Subsection EZh.3, we show how to decompose
trees into a small set of vertices and small rooted subtrees. The main idea again
was taken in [I], and developed to other cases of configurations needed for the
proofs.

Also, some lemmas in Subsection are not directly used in the proof of
Theorem 20Tl as Propositions 22, or Z22Z3. They follow the main lines
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of the proof of Theorem L5l giving a good idea how the proof goes through,
but letting aside some technical details making them not so general, but more
readable.

On page B0, we have a discussion on the main differences between the proofs of
Propositions ZR22 or 2523 (i. e. the simplified versions) and Propositions 22025
and respectively (the non-simplified versions used in the proof of Theo-
rem Z0T]). We show what makes the proof non-simplified versions longer and
more complicated.

We also give a variation of Poposition 22528 and one of Proposition 2520 that
one can also use for the proof of Theorem -0l

At the end of this section, we apply the techniques developed so far to prove
a stronger theorem. In a graph satisfying the hypothesis of Theorem L5l we
embed some graphs obtained from trees of order at most k + 1 by adding a few
(well chosen) edges. This gives Theorem EZR311

2.5.1 Tools for the proof of the approximative version

The first tool for the proof of Theorem L0l is Szemerédi’s Regularity Lemma.
We already stated it in Chapter ?7. We shall use the following version:

Theorem (Szemerédi’s regularity Lemma).

For every e,a > 0 and m € N, there exist M,ng € N so that every graph G of
order n > ngy admits a partition of its vertex set V(G) = VoU Vi U...UVy such
that

e m<N<M,

o [Vo| <en,

o Vi =Va =---=|Vnl,

e all but at most eN? pairs (V;,V;) with i # j are (¢, a)-regular.

Next tool is a simplified version of Gallai-Edmonds Matching Theorem (see [4]).
Before stating the theorem, we shall introduce the notion of k-factor and factor
criticality.

A graph G has a k-factor if there exists a spanning subgraph H C G that is k-
regular. We shall say that a graph (or component) G = (V, E) is k-factor critical
if for any vertex v € V' the graph G — v has a k-factor. So G is 1-factor critical

if for any vertex v € V(G), there exists a matching in E covering all vertices of
V\o.
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Theorem 2.5.3 (Gallai-Edmonds Matching Theorem). Any graph H contains a
set S of vertices such that all components of H— S are 1-factor-critical and such

that there is a matching that matches each vertex of S with a different component
of H—S.

For a proof of this theorem see [4].

The next two lemmas were taken from [I]. Lemma 51 is here a little stronger
than the original one. For both lemmas we give a proof.

Lemma 2.5.4. Let I be a finite set, and let p,q,( > 0. For all i € I, let
pi, G € (0,(], so that
p q
+ <1 (2.8)
Zielpi Zie[ g;
Then there is a partition of I into I, and I, such that > ,.; p; > p — ¢ and
Zielq q; > q.

Proof. For 1,57 € I set @ =X j if % < ’;—j. Let ¢ € I be minimal in this (total)
ordering of I with p > %", , p;.

Set I, :={i€I: i>(} andset [, := I\ I,. By the minimality of ¢, we have
that p — ( < Zigp p;. So, all we have to show is that ¢ < Zielq qi-

Indeed, suppose otherwise. Then by (2.8)), and by definition of ¢, we have that

Zielq 4G p— Zielp Di 4 4 Zielp bi Zielq Di

Zie[ 4di Zie[pi Zie[ % Zie[pi B Zie[pi.

Multiply with } ;e pi-D e @i subtract 32 pird2icp ¢i and divide by 320 65D ieq @i
to obtain

e < Zz’elp pi - Zielq Pi < Pe
U~ Dien, G e, & @

a contradiction. O

Y

Lemma 2.5.5. Let H be a weighted graph on N vertices, with some weight-
function w. Let L be the set of all vertices v € V(H) with deg(v) > K, for some
K € N. Suppose that |L| > 5.

Then there are two adjacent vertices A, B € L, and a matching M in H—(AUB)
such that one of the following holds.

(a) M covers all but at most one cluster in N(AU B),

(b) M covers N(A), and deg; ,,(B) > &

5. Moreover, every edge in M has at
most one endvertex in N(A).
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Proof of Lemma[ZZ223. We may suppose that Y := V(H) — L is independent.
Theorem applied to the graph H (without considering the weights) yields
a separator S and a matching M. Among all such matchings, assume M to be
chosen so that it contains a maximal number of vertices of Y.
Clearly, if there is an edge AB with endvertices A, B € L' := L\ S, then A and
B lie in the same factor-critical component of H — S, thus, (a) holds. We may
thus assume that L’ is independent.
So, each edge that is not incident with S has one endvertex in L', and one in Y.
Consider any component C' of H — S. Since C' is factor-critical, we have that
(C—2z)NY]| = |(C —x)N L for every x € V(C). Hence, C must be trivial.
Thus, all components of H — S are trivial.
Denote by X the set of those vertices of Y that are not covered by M. Set
L := N(L')NL. Now, if there is a vertex B € L whose weighted degree into H — X
is at least %, then B, together with any of its neighbours A in L', satisfies (b).
So we may assume that for each B € L,

Tegvin-x(B) < 5 (29
and hence degy(B) > £. Then, by double edge-counting of E(X, L), where we
sum the weights of the edges, .

| X| > |£2| (2.10)

Furthermore, (20) implies that the weighted degree of S := L U (S — L) into L’
is less than \f)\% +|S — L| K, while each vertex of L’ has weighted degree at least
K into S’. Thus, again by double edge-counting, and by (ZI0),

L
|X|—|—|S—L|2%+|S—L|>|L’|. (2.11)
On the other hand, since Y is independent, M matches S — L C Y to L'. Thus,
L] = S — L| + |L — M], and so, by (T,

1X| > |L — M].

Hence, since |L| > %, there is an edge AB € M with both clusters A, B in L,
more precisely, with A € L, and B € L. By &3), B has a neighbour D in X.
then, the matching M U{BD} —{AB} contains more vertices of Y than M does,
a contradiction to the choice of M. O

Remark 2.5.6. Suppose that the weight function gives values w(e) < 1 for any
edge e, and suppose that K < % Then, we know that in lemma case 1
occurs. This variant of the lemma is the one used in [I] to prove the approxi-
mation version of the Loebl Conjecture. In fact it can be used for the proof of
Theorem EZET], as long as ¢ > 3.
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Lemma 2.5.7. Let H be a weighted graph on N vertices, with some weight-
function w with w(e) < 1, for any e € E(H). Let L be the set of all vertices
v € V(H) with deg(v) > K, for some K < . Suppose that |L| > &

Then there are two adjacent vertices A, B € L, and a matching M in H—(AUB)
such that M covers all but at most one cluster in N(A U B).

Proof of Lemma [2.57] As in Lemma 251, we use the Gallai-Edmonds Matching
Theorem to get a separator S and a matching of H.
Observe that there is at least one component in H — S that contains at least a
vertex from L. Indeed, otherwise, we have L C S, so

N N
— < |L] < < —
7 <ILI<ISI< 3,

a contradiction.

Now, observe that there is at most one component in H —.S that contains vertices
from L. Each component, containing some vertex from L, has cardinality greater
than £ — |S] + 1. So, if there are at least two such components, we have

N
\V(H) > 2|S| —2+2(5 —|S|+1)=N,

a contradiction.

therefore, there is a a unique component K in H — S that contains vertices from
L. Now, we show that there is an edge in L N K. If this is not the case, any
vertex in L N K has neighbours only in S U (K \ L). So, we have that

N
|S|+|K N L 25+1.
Now, as vertices from L are contained in S U K only, we have
N
S|+ |KNL|l>|L| 25—1—1.
Then,
[VH)| > |KNL|+|K\Ll+2[S|—1>N +1,
again a contradiction. O

Lemma 2.5.8 (Partitioning the clusters). Let 0 < a,e,0 < & such that oo <
. Let H be a cluster graph with every edgeformed by an (e, o)-reqular pair of
clusters. Lest each cluster have size s. LetC C V(H). Let A, B be sets of clusters.
For clusters A € A let Ny C C such that

AC %
degn,(A) == Z e(4,0) > | yA| (1+20) + [ Nyles, (2.12)
CeENy

S

38



and for clusters B € B let Ng C Csuch that

e(B,C V
degn,(B) == > ( ; )Z 1|_B|y

CeNpg

(14 20) + |Ngles. (2.13)

Then there exists a partition C* U CB of each cluster C in C with the following
properties.

If N4 denotes the set pcy, C4, then degna(A) > [Val(1+ "—;), and
if NP5 denotes the set Jpey, CF, then degys(B) > |Vp[(1+ %), and

|CA|,|CB| > as for each cluster C € C.
Proof of Lemma[ZZ2Z8. Set

y+o ify<o
Ti=4q Y ify € 0,1 —0]
y—o ify>1—-o

For each cluster C' € C we shall choose any subset C* of size s and set CB :=
C'\ CA. We have that |C4|,|C®| > os. Then for clusters A € A and Ny, we
have

degus(4) > 3 (5(4,C) = 2)os

CeNy
> 2 (degn,(A) — [Nales)

|Vl
VAl

> (1+20).

First suppose that x = y > o, then

2
g
degna(A) > |Val(1 +zag) = [Val(l+ ).

The second possibility is when x =y + o, if y < 0. Then

.
degrs ()= v+ )21+ 20)

— [Val(1 + 20) + §|VA|(1 +20)

> Val(1 + 0?).
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The last possibility is when x =y — o, i. e. when y > 1 — ¢. This gives us

V.
degna(4) 2 (s - /21 420
2 2
> Val(1 420 — 2 = =22
Y Y

2 [Val(1+ (29 = 1= 20))
> Val(1+ 22 =20 —1—20))
Yy
2

g
> |Val(1+ g)-

Now we shall check the degree for clusters B € B into N5. We have

degys(B) > > (6(B,C) —¢e)(1—x)s

Ce N)p
> (1 =) - (degn, (B) — |Nples)
Vsl
>(1—= 1+ 20).
(1) 2 51+ 20)
For x =y, we have 1 —y > ¢ and then
1—y o2
degNg(B) > |V|(1 —1—201 — ) > |VB|(1+ - ).

For the case when x = y — o, we have that

\Z]

1+ 20

_y( )
—|— g
I—y

degys(B) > (1—y+0)

~— =

= |Va|(1+20

|VB|(1+ 20)

2

> |Val(1+ ).

Now for x =y + o (i. e. y < ), we have
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\Z3

-y

> |Val(L + 20 - ———(1+20)
—y

degng(B) 2 (1 —y —o)7——(1+ 20)

> |Val(1+ (220 — 1 - 20)
-y

2

> |[Va|(1 + 1" ).

2.5.2 Some simple embeddings

In the next lemma we see how to use an edge, formed by a regular pair, to embed
a tree of small size in it. This lemma will be widely used in the proof of other
lemmas.

Lemma 2.5.9 (Embedding in an edge). Let 0 < e,a,6 < 1. Let t be a rooted
tree and let (C, D) be an (e, a)-reqular pair with s := |C| = |D| and density

§ = @. If C C C and D C D such that |C|, |D| > (Z‘;S_J;E')), then we can

embed the tree t in C U D. Moreover we can choose in which of the two clusters
we want to embed the root of the tree.

Proof of Lemma[ZZ23. By (CZ) we have that all but at most as vertices of C
are typical with respect to D. Choose any of those typical vertices to embed
the root r € V(t) in. Because ¢(r) is typical with respect to D, it has at least
(6 —2¢) - |D| > as + |t| neighbours in D.

Between those neighbours of ¢(r) we want to choose typical vertices with respect
to C' to embed the neighbours of r in. From as + |t| vertices in D (resp. in ),
at least |t| of them are typical with respect to C' (resp. to D).

We shall continue to embed the tree ¢ levelwise. At each step, we shall choose
between the at least [¢| typical vertices, from a neighbourhood N(v), some that
is not already used by the embedding ¢ and embed the neighbours of p=!(v)
in. O

The following two lemmas show us how to embd larger tree into a matching and
a cluster with high average degree into this matching.

First we bring some definitions. We say that (7', R) is a rooted 7-tree, if (T, R) is

a rooted tree with root R and if T'— R decomposes into a forest of trees, each of
cardinality at most 7.
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A matching M is an (g, «; §)-matching of C, if M covers C and if each edge of M
is an (e, a)-regular pair with density at least o.

Lemma 2.5.10 (Embedding in a matching —I). Let 0 < &,a, 0 < 1 with 2 < 4.
Let (T, R) be a rooted T-tree. Let C be a set of clusters, each having size s. Let
N CCand U C Upee C. Let M be an e, a;0)-matching of C such that each
matching edge has at most one end vertex in N'. Let as < s’ < 5. Then, for all
CeClet C" CC be of size s and denote N' := UcenC" and C' := UgecC'. Let
A ¢ C be a cluster of size s and let v € A such that

degn(v) 2 |T| + U+ V|- A,

where A = (?;_s;r;))_ Then, there is an embedding of the tree T such that R embeds

onv and T\ {R} embeds in C'\U and such that any vertex of T with odd distance
to the root R is embedded on a vertex that has at least (0—¢)s neighbours in cluster

A.

Proof of Lemma [ZZ2101. We embed the root R of the tree T' on vertex v € A.
We shall then embed 7"\ {R} in ¢ steps, where ¢ is the number of components
in T\ {R}. In each step we embed the tree ¢/ forming the j-th component. We
claim that for each step j, 1 < j < ¢ we find an edge e € M such that

deger(v) — leNU;_1| — U] > A, (2.14)

for C' := enN N, where U;_; denotes the set of vertices already used by the
embedding before step j, i. e. Uj := ¢(R) UU,; ¢(V (). Indeed, suppose on
the contrary, that there is no such edge. Then,

T+ NT-A = |Ujma] <) degean (v) = U] = [eN U] < IN]A,

eeM

a contradiction.
So let e = {C, D}, with C := eN N, be a suitable edge with property (ZI4).
Inequality (ZT4) implies that

A<s —|en (U, UD)| < D'\ (U, UU)| = |D|.

By ([2I3), it is clear that |[N(v) N C"\ (U;—; UU)| > A. Denote by C' the set of

vertices in N(v)NC"\ (U;—; UU) that are typical with respect to cluster A. Such
(as+7)
0—2¢ °

Using Lemma 250, we embed the tree ¢/ in C'U D choosing to embed the root
of t/ in cluster C.

vertices have each degree at least (§ — )s in cluster A. We have that C' >

O
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Remark 2.5.11. In the proof of Theorem ATl the set U will be used for a set of
vertices used by the embedding in some previous step of the embedding process.
In the next lemma, we do not deal with such a set. Instead, we state and prove
Lemma to take care of the used vertices.

Lemma 2.5.12 (Embedding in a matching — II). Let 0 < g, ,0 < 1 with e <.
Let (T, R) be a rooted T-tree. Let C be a set of clusters, each having size s and
N CC. Let M be an (g,a;0)-matching of C. Let as < s’ < s. Then, for each
C eClet C"CC be of size s'. Denote by C' := UcecC' and N := UcenC'. Let
A ¢ C be a cluster of size s and let v € A such that

degn(v) > [T+ |N|- A+ |M| -,

where A = %. Then, there is an embedding of the tree T' such that R embeds

onv and T\ {R} embeds in C' and such that any vertex of T with odd distance to
the root R is embedded on a vertex that has at least (§ — €)s neighbours in cluster

A.

Proof of Lemma[ZZ2 14 We embed the root R of the tree T on vertex v € A.

We embed T'\ { R} into ¢ steps, where ¢ is the number of components in 7'\ { R}.
In each step, we embed the tree #/, which is the j-th component of T\ {R}.
Define U7~ as the set of vertices in the clusters used so far by the embedding.
We claim that there is an edge e € M such that

dege(v) — leNU 7 > lenNN|- A+ (2.15)
Indeed, suppose for contradiction that this is not the case. Then,
IT|+ |N|- A+ M|t — U7 < |NA+ M| -,

implying |V (#)] < 0, a contradiction.
Therefore we have found a suitable edge for the embedding of #/. At each step
j > 1, our embedding will satisfy the following conditions for edge e = {C, D}.

(a) If min{degenpi-1(v), degpnpi-1(v)} = A, then ||[CNU| - |[DNUY|| < T

(b) If degpnpi-1(v) < A, then degp(v) < |[CNU7! + A+ 7 and
if degonpi—1(v) < A, then deger(v) < [DNUTTH + A+ 7.

Without loss of generality assume that degen i (v) > degpnyi(v). Then, degenyi (v)

A. We claim that |[D"\ U771 > A.
If degprpi-1(v) > A, there is nothing to prove. So, assume that degpnyi-1(v) <
A. Using Property (b), we have
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leNN|- A+ 71 < degenpi-1(v)
<|ICNUTH+8 —lenU’™
<D\ U7

This implies the required inequality.

If degpnpi-1(v) < A, then we shall embed the root rt(#) in cluster C. If
degpnpi-1(v) > A, then we choose to embed the root (/) of the tree t/, de-
pending on the following criteria.

Let Lo(77) denote the set of vertices that are at even distance from the root
rt(t?). Set Ly(tV) := V (/) \ Lo(t/).. We want to embed the largest of Lg(t’)
and Li(#) to the cluster with less used vertices, i. e. which has the smallest
|CNUTTY,|DNUY. We choose to embed the root rt(t?) according to this crite-
ria. To simplify the notation, we assume that the root embed in C’ (Otherwise,
just interchange the C’s and the D’s).

Denote by C' the set of vertices in N(v) NC"\ U7~ that are typical with respect
to cluster A and set D := D'\ U’~!. We have

as+ T

§—2¢

We embed the tree t/ in C'U D using Lemma and choosing to embed the
root of ¢ in C.

Now, we check that the define embedding of # fulfill Properties (a) and (b).

IC|,|D| > A —as >

Property (a) follows from the facts that if min{} > A, then (a) for ¢ — 1 implies
that [[CNU'~| — |DNU’7!|| < tau and that we have embedded the largest part
of # to the cluster with less used vertices. Therefore, the difference ||C'NU7| —
|D N UY|| was kept under 7.

To see that Property (b) holds, first assume that degpnpsi-—2(v) < A. Then, (b)
for i — 1 implies (b) for 4. So, assume now that degpnyi(v) > A. Then (a) for
i — 1 implies that ||[C N U~ — DN U < 7. So,

degp(v) < |IDNUH+AL|[CNTH+A+T

After having embedded that last trees of T'— R, we have defined ¢ for the whole
tree T'. This ends the proof of Lemma EZ5T2A O

In the proof of Theorem EZAT] we shall meet the situation when, for the embed-
ding of a rooted subtree, we will have to use a pair of clusters that was already

44



used by an other rooted subtrees of the tree T'. For this situation we shall use
next lemma.

Lemma 2.5.13 (Embedding in used edges). Let 0 < «,e,0 < 1 with 2e < §.
Let A,C,D be 3 clusters of size s, each. The pairs of clusters from A,C, D
form (e, a)-regular pairs. Let as < &' < s and let C" C C and D' C D with
|C"|,|D'| = s'. Moreover suppose that the density between the clusters C' and D
1s at least 0. Let T be a rooted tree with root R such that T — R decomposes
into components of size at most T, each. Let U be a subset of C'" U D" with the
following properties:

If||ICnU|—=|DNU|| >, then
min{degc(A) — [UNC|,degp(A) — |[UND|} < A+ 2es'. (2.16)
Also

degor(A) < [UNC|+ A+ 2es’ = deger(A) < [UN D]+ A +2es’ +7 (2.17)
degp(A) <|UND|+ A +2es = degp(A) < |[UNC|+ A+2es'+ 7 (2.18)
Let A" C A be the set of vertices in A that are typical with respect to both C' and

D'. If
degorop (A) > |T| + |U| + 2(A + 2es’) + 7, (2.19)

where A = 25’18—;;, then for any vertex v € A’ we can embed the tree T into

AUCUD such that R embed onto v and T — R embeds into (C" U D') \ U
such that any vertex of T' with odd distance to the root R has at least (0 — €)s
neighbours in cluster A and that if we set U := U U p(V(T)), then U fulfill the

same conditions as U, 1. e.

If|lCnU|—|DNU|| >, then
min{degc/(A) — |U N C|,degp (A) — |[UND|} < A + 25,

Also

deger(A) < |[UNC|+ A+ 265" = deger(A) < |UND|+ A +2es + 71 (2.20)

degp(A) < |[UND|+ A+ 25" = degp(A) < |[UNC| + A +2es + 71 (2.21)
Proof of Lemma[ZZ2 13 We are given a vertex v € A’. Embed R in v, a typical
with respect to the set C’ and with respect to the set D'. By (ILl) we have

degcrop (v) = degorup (A) —des’ > |T| + U] + 2A. (2:22)

For the components of T'— R we shall proceed inductively, embedding one com-
ponent after the other. Suppose we are at step ¢ > 0. We have embedded all
the components ¢/ of T'— R, for j < i, and want to embed component t*. Set
V<ii=U L V(F) and US' = (V). Set Uy := U UU<'. For each step i > 1
we have two possible cases.
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(i) min{degcnv,_, (v), degpnu,_,(v)} = A
(11) min{degc/\Uifl(v), degD/\Uifl ('U)} <A
Then our embedding will satisfy the following.

(a) If case (fl) holds, then either
cnU| - |DNnU| <7,

or

T<||[CNU| = [DNU| < ||[CNUia| = [D N U] -

Without loss of generality suppose that
deger(A) — |CNU;_4| > degp (A) — | DN U;_4].

Then by [Z22)
d€gcl(1}) — |C N Ui—1| Z A (223)

We want to show that |D’\ U;—1| > A. If degpny, ,(v) > A, we are done. So
suppose that
degpnu,_, (v) < A (2.24)

We claim then that
degcqu/(A) — |Ui_1| S |D/ \ Ui_1| + A + 288/ + T (225)

If I DNU;—4| < |CNU;—1| + 7 then we get immediately [Z2ZH). So suppose we
have [CNU;1| < |[DNU;—y| + 7.
Let ¢ < i — 1 be the minimal index with the property that degpny,(v) < A. If
¢ =0, then

degp(A) — |UN D] < degpnu(v) < A

and by ([ZIF), we get

degp(A) < |UNC|+A+2es'+7 < U1 NC|+ A+ 2"+ 7 (2.26)

implying at once [Z2H). Now if ¢ > 0, we have that degppy, ,(v) > A. Together
with (Z22), Property (@) we get

ICNU| < |DNU|+T.

Now if we have ([2I8), we get directly (ZZH). If Case ([ZI7) occurs, then
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degcqu(A) — |UZ'_1‘ < degD/(A) + |U N C| + A + 285/ — |UZ'_1‘
S Sl+ |Ui_1 ﬂC| - |Ui_1| +A+2€S,
<|D'| = |Uizi N D]+ A+ 2ed,

leading to (Z2ZH).
Now by ([I9) and [Z2H), we get

2(A+2es) +7 < |D'\Ui_1| + A+ 2es + 7,
which gives us finely that
|ID'\U;_1| > A+2es" > A. (2.27)

Denote by C the set of vertices in Newvw,_, (v) that are typical with respect to
cluster A and by D the set of vertices in D'\ U;_; that are typical with respect
to cluster A. We have that (C U D) NU = @ and by [ZZ3) and @Z0) that
|C|,|D| > 4257 We may use Lemma 50 to embed tree ¢'.

Observe that if case (fl), we may choose in which cluster we want to embed the
root of the tree t'. Therefore, we can guaranty that property (@) holds.

After having embedded all the components of T'— R we have define the required
embedding.

We have now to check if properties (220) and (2Z1]) hold. So suppose that
degor(A) < |UNC| + A + 25, (2.28)
but .
deger(A) > [UND|+ A+ 2es' + 7 (2.29)

The other case is proved analogously.

We have then |[UND|+7 < |[UNC|. If ||[UND|—|UNC|| > T, then properties (Z20)
and (ZZ1) hold from ([ZI7) and IF). So we may assume, by Property (@), that
Case () holds.

Set ¢ to be the largest index for which min{degcny, ,(v),degpnu, ,(v)} > A.
Then ||U, N D| — |U, N C|| < 7. By maximality of ¢, we have that

min{degcnu, (v), degpnu, (v)} < A.
Suppose that deger (v) — |U, N C| < A then

dege(A) < deger(v) + 288’ < A+ 2es’' + |U, N C|
<A+2s+|UND|+7
< A+28 +|UND|+7,
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a contradiction with (EZ29).
Therefore, we know that

degp(A) —2es’ — U, N D| < degpny,(v) < A.

But then by (229)

degerup(A) < A4 2es' +|{U,ND|+|UNC|+ A+ 25
<|U|+|T|+2A + 4es’ + 7,

a contradiction with (ZI9). This ends the proof of Lemma ZHT3
At least we have to check if

|CNU|—|DNU|| > 7 = min{deger(A)—|UNC|, degp(A)—|UND|} < A+2es'.
Either |[UNC| —|U N D|| > 7 and then

min{degc:/(A) — |U N C|,degp(A) — |UN D|}
< min{dege(A) —|UNC|,degp/(A) — |U N D|}
< A+ 2ed,

or at some step ¢ we had min{degc/(v) — |UyNC|,degp(v) — U, N D]} < A, but
by the typicality of vertex v, we have that

min{degc:(A) — |U N C|, degp (A) — U N D|}

< min{degc:(A) — U, N C|,degp/(A) — |U, N DI}

< min{degc(v) — |U, N C|,degp(v) — |U, N D]} + 2¢es’
< A+ 2e5,

O

In the next lemma, we see how to take profit of clusters with high average degree.

Lemma 2.5.14 (Embedding using clusters with high average degree). Let 0 <
a,e,0 < 1 with 26 < §. Let T be a rooted tree with root R, such that T \ {R}
decomposes into a forest for which each component is a tree of size at most T.
Let H be a cluster graph with clusters of size s each and in which each edge is
(e, av)-reqular with density at least .

Let as < 8 < s and for each C € V(H) let C" C C be of size s'. Then denote by
V"= Ucev)C'. Let L be a set of clusters of H with the property that if C € L

then
e(C,D")

degy/(C) == Y > T+ |V(H)| - (A +2es) + 5,

DeV (H)

48



where A = (?gx_s;:)). If L' denotes the set Uger,C' and v € A be such that

e(A,C’
d6g£/(’U) = Z ! Z |T| + |£| - A
CeN 5

Then there is an embedding of the tree T such that R embeds on v and T\ {R}
embeds in V' \ A and such that any vertex of T with odd distance to the root R
is embedded on a vertex that has at least (6 — €)s neighbours in cluster A.

Proof of Lemma[Z.5.14) Embed the root R of the tree T" in vertex v € A. We
shall embed T'\ { R} into ¢ steps, where ¢ is the number of components in 7'\ { R}.
In each step we embed the tree ¢;, which is the j-th component of 7"\ { R}. Define
U,_1 as the set of vertices in the clusters used so far by the embedding.

Suppose we are in step 1 < j < ¢ and we want to embed ¢;. We claim that there
is a cluster C' € L such that

deger(v) — |C"NU;—4| > A (2.30)
Suppose this is not the case. Then

L] A < |T| = [Ujoa| + [£]- A <Y deger(v) — [Uja| < [£]- A,
cel

a contradiction.

So assume that C' € L is a suitable cluster with property 2230, Embed the root
of t; in a vertex u € C" N N(v) that is typical with respect to V' \ A. Then

degyna(u) > |T|+ |V(H)| - A. (2.31)
We claim that there is a cluster D € V/(H) \ A such that
degpr(u) > A.
If not, then by ([Z31) we have that
V)| - A < [T] + [V(H)| - A = Uy 1| < degyna(v) < V(H)|- A,

a contradiction.
Denote by C' C C"\U;_; the set of vertices that are typical with respect to cluster
A. We have that |C' > $55T. Set D := N(u) N D'\ U;_;. Then |D| > =L The
sets C' and D contain no vertices used by the embedding. Lemma 5.9 ensures
us the embedding of the rest of tree ¢;.

U
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2.5.3 Partitioning trees

On a rooted T with root R, we shall define a natural partial order (V (T, <) as
follows: u =< v if there exists a path from R to v containing vertex u. In this
ordering R is the smallest vertex and any leaf (# R) is a maximal vertex. For any
subtree 7" of the tree T" and a vertex r € V(1"), we define 7"(r) as the subtree
of T" induced by all vertices in V' (7”) that are greater or equal to r in the partial
order <. Then r is the minimal vertex (or the root) of 7"(r). For any tree t
forming one of the components of 7"(r) — r, we shall denote by v(t) the maximal
vertex in 7" that is smaller than any vertex of the tree ¢, i. e. v(t) = r. We call
this vertex v(t) the seed of the tree t and say that t grows from v(t).

Lemma 2.5.15. Let 1 < 7 <. Then for any rooted tree (T, R) of order ¥ + 1,
there exists a set R of vertices of T of size at most g + 1 such that T — R
decomposes into trees of order at most T.

Proof of Lemmal[ZZ213. We shall define the set R inductively. For i > 0, R;
shall denote a set of vertices of T;, where T; shall denote the subtree containing
the root Rin T — R; (if R € R;_1, then T; = () and the process ends). Now
set Ty := T. In each step 7+ > 1 define R; as the set of vertices r which are
minimal in 7;_, with the property that |V (7;_,(r))| > 7. Then, by minimality,
T;—1(r) — r decomposes into a component containing the root (if » # R) and into
components of size at most 7, containing vertices that are greater than r. If there
is no such vertex r, i. e. |V(T;_1)| < 7, then set R; := R. Observe that T;_; — R;
decomposes into subtrees of size at most 7 and in 7;. At the end of the process,
set R := J; R;. We have to check that [R| < £ + 1. O

Lemma 2.5.16. Let 1 < 17 <. Then for any rooted tree (T, R) of order 9 + 1,
there exist sets Ra and Rp of size at most g + 1 each, such that T — (RaURg)
decomposes into TyUTpg, sets of subtrees of size at most T and the following holds:

o For any tree ty € Ty we have that v(ta) € Ra and for any tree tg € Tp we
have that v(tg) € Rp.

e Any two vertices from the set R4 have even distance between them and any
two vertices from the set Rp have even distance between them.

e No vertex from a treet € T4 is adjacent to a vertex from Ry and analogously
no vertex from a tree t € Ig is adjacent to a vertex from R 4.

Remark 2.5.17. This means that the subtrees in 74 grow all from vertices in R 4
and analogously the subtrees in 75 grow from vertices in Rz. The subtrees from
T4 and Tp are connected by edges between vertices in R 4 and vertices in Rp.

Proof of Lemma[ZZ214. First we use Lemma 25 TH to get a set R of size at most
g + 1 such that 7"\ R decomposes into subtrees of size at most 7. Let R/, denote
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the set of vertices from R that are at even distance from the root and by R'5
the set of vertices from R that have odd distance from the root R. Denote by
Sa the set of vertices in some tree t from 7 with v(t) € R/, that is adjacent
to some vertex in R’5. Observe that vertices in S, have even distance to the
root. Analogously define Sg. Vertices in the set S have odd distance to the
root. Now define R4 := R/, U Sy and Rp := R’ U Sg. Denote by 74 the set of
components from T'— (R4 UR ) that contain a vertex adjacent to a vertex from
R4 and analogously denote by 75 the set of components from 7' — (R4 U Rp)
that contain a vertex adjacent to a vertex from Rp. Observe that Ty N 7g = (.
The components of T — (R4 U Rp) are subsets of components of 7' — R and
therefore are of size at most 7 each. O

Lemma 2.5.18. Let 1 < 7 <. Then for any rooted tree (T, R) of order ¥ + 1,
there exist sets R4 and Rp of size at most 3(2+1) each, such that T—(R4URg)

decomposes into Ty UTg U TR, sets of subtrees of size at most 7 and the following
holds:

e For any vertex v in a subtree t € Ty U Tg, if v is adjacent to some vertex
inu € RasURE, then u = v(t).

o Foranytreety € TaUTr we have that v(ta) € Ra and for any tree tp € Tp
we have that v(tp) € Rp.

¢ |Uier, VIOI = [Uieq, VDI

Remark 2.5.19. Again all subtrees from 7 and 74 grow from vertices in R4 and
all subtrees from 75 grow from vertices in Rp and both parts are connected by
edges between sets R4 and Rp. Moreover subtrees from the sets 74 and 75 and
“end-subtrees”; this means that there are no vertices from R, U Rp that are
greater or equal to some vertex in a subtree from 74 U 75.

The idea of the proof is the following. After partitioning the set of components
into two sets 74 and 7, using Lemma EZ0.T0, we consider “end-components”,
that is the ones that do not lie between two or more other components. Those
shall define the set 7r. We look which one of 74 \ 7r and 7r \ 7F is smaller. The
smaller shall be denoted by T, the other one by 74 and we shall “switch” all 7p
on the side of 74. This switching shall enlarge the set R only by few vertices.

Proof of Lemma[Z218 Use Lemma EZ0.T0 to get a vertex-cut R’y U Ry of size
Y + 1 each giving sets of components 74 and 7}. Denote by 7} the set of
components of 7' — (R/y UR/;) for which more than one vertex from R’y U R’y
is adjacent to some vertex of the given component. Without loss of generality
suppose that | UteTé\Tg V()] < |UteT;‘\T; V(t)| (otherwise interchange A’s and
B’s). Set T := T, \ T} and Ty := T\ 7j. Observe that any tree t from 7,4 or 7p
has only one vertex (the root of t) that is adjacent to some vertex v(t) € R,UR';.
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Now we want to “switch” 7} on the A side. We do this as follows. For any tree ¢
in 7; N7} denote by S; the set of vertices in ¢ that are adjacent to some vertex in
R’;. By those vertices we shall enlarge the set R’;. Set R4 := R/, U Ute?}ﬂ?’é Sy.
Observe that | UteT‘;mT/3 Si| < 2|R5| and therefore

9
|Ral <Rl + 2[R} < 3(; +1).
This switching changes the set 7/ in a natural way, i. e.

Tr = (ThNTHU | t=S.

te(7,NTE)

where by t — S; here we understand the union of components of ¢ — S;.

From Lemma 516 it is clear that for t € 74 we have v(t) € R4 and for t € T we
have v(t) € Rp. Now any tree t € 7 is adjacent to vertices from R 4, therefore
v(t) € R4. At the end observe that any component in T'— (R4 URpg) is a subset
of some component from 7" — (R4 U Rp) and therefore by Lemma 2510 their
size 1s at most 7. U

Lemma 2.5.20. Let 1 < 7 < 4. Let (T, R) be a rooted tree of order 9 + 1. Let
S1 and Sy be subsets of V(T') each of size ¢ such that all vertices of Sy are at
odd distance to R and all vertices of Sy are of even distance from R. Then there
exist sets R4 and Rp of size at most g + 1+ 2¢ each, such that T — (RaURg)
decomposes into TyUTp, sets of subtrees of size at most T and the following holds:

[} Sl QRB O/ﬂdSQ QRA

o For any tree ty € Ty we have that v(ta) € Ra and for any tree tg € Tp we
have that v(tg) € Rp.

e Any two vertices from the set R4 have even distance between them and any
two vertices from the set Rp have even distance between them.

e No vertex from a treet € T4 is adjacent to a vertex from Ry and analogously
no vertex from a tree t € Tg is adjacent to a vertex from R 4.

Proof of Lemma [ZZ220. The proof is very similar to the proof of Lemma Z5.T0.
We use Lemma to get a set R of size at most £ + 1 such that 7'\ R
decomposes into subtrees of size at most 7. Let R/, denote Sy union the set of
vertices from R that are at even distance from the root and R’; denote S; union
the set of vertices from R that have odd distance from the root R.

Denote by S, the set of vertices in some tree ¢t from 7 with v(¢) € R/, that
is adjacent to some vertex in R’;. Analogously define Sg. Now define R4 =
R,y US, and Rp := Rz U Sp. We have S; C Rl; CRp and S, C Ry C Ra.
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Denote by T4 the set of components from T'— (R4 U Rp) that contain a vertex
adjacent to a vertex from R 4 and analogously denote by 75 the set of components
from T'— (R4 UR p) that contain a vertex adjacent to a vertex from Rp. Observe
that 74 N7 = (). The components of T'— (R4 U Rp) are subsets of components
of T'— R and therefore are of size at most 7 each.

O

Lemma 2.5.21. Let 1 <7 < 9. Let (T, R) be a rooted tree of order ¥ + 1. Let
S1 and Sy be subsets of V(T') each of size ¢ such that all vertices of Sy are at odd
distance to R and all vertices of Sy are of even distance from R. Then there exist
sets Ra and Rp of size at most 3(2 + 1+ 2¢) each, such that T — (R4 U Rp)
decomposes into Ty UTg UTE, sets of subtrees of size at most T and the following
holds:

[ ] Sl QRB O/ﬂdSQ QRA

e For any vertex v in a subtree t € Ty U T, if v is adjacent to some vertex
inu € RaURE, then u = v(t).

o Forany treety € TyUTp we have that v(ta) € Ra and for any tree tg € Tp
we have that v(tg) € Rp.

o | UteTA V()| > | UteTB V(t)|.

Proof of Lemma[ZZ2Z1. The proof goes analogously to proof T8  We use
Lemma to obtain vertex-sets R/, and R'; of size £ + 1 + 2¢ each and
sets Ty and 7p C T — (R/y UR') of subtrees of size at most 7.

Denote by 7} the set of components of T'— (R/y U R;) for which more than
one vertex from Ry U R, is adjacent to some vertex of the given component.
Without loss of generality suppose that | UteTé\TIQ V()| < |UteTA\TI§ V(t)|. Set
Tp :=TL\T) and Ty = T4\ Tj.

For any tree ¢ in 7/ N 7} denote by S; the set of vertices in ¢ that are adjacent
to some vertex in R’;. By those vertices we shall enlarge the set R/,. Set R4 :=
R, U Ute%rﬁ/3 S;. Observe that | UteTngé Si| < 2|R’;| and therefore

)
[Ral < Rl +2[Rp| < 3(= + 1+ 2¢).
This switching changes the set 7/ in a natural way, i. e.

Tr = (ThnTHU | -8,

te(7,N7E)

where by t — S; here we understand the union of components of ¢ — S;.
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By Lemma we have that S; C Rp, Sy C R4, that any tree in t € 74 has
v(T) € Ra, that any tree t € T has v(t) € Rp and that the only vertices in
ToUTpg adjacent to the set R 4 UR g is the root of some subtree in 7,U7g. By our
construction we have that any tree t € 7p has v(t) € R4. By our assumption we
have [U,er, V(O] = [Uer, V(?)] (in the opposite case we would have switched
the A’s and B’s). O

2.5.4 The proof of the approximate version

Now that we have formulated the tools we need in the proof of the approximative
version of the Loebl-Komlds-Sés conjecture, we can prove the theorem. Before
doing so, let us recall the statement of the theorem.

Theorem 5.1l For every v,q > 0 there is an nyg € N so that for all graphs
G on n > ng vertices the following is true.

If at least (1+ )5 vertices of G have degree at least (1 +)qn, then G contains,
as subgraphs, all trees with at most gn edges.

The proof of Theorem EZ5.T] follows the main lines of the proof of Theorem
given by Ajtai, Komlés and Szemerédi (see [I]).

We first use the Regularity Lemma to partition the set of vertices of the graph
into clusters, such that most pairs of clusters are regular. Then, we clean the
graph deleting some edges and get a subgraph G, in which we shall embed any
tree with at most k edges. The cluster graph H has a similar property as G, i. e.
that at least a little bit more than half of its clusters have average degree at least
a little bit more than k = ¢ - n. We denote by L those clusters.

We use then the Gallai-Edmonds Matching Theorem to get a matching of the
cluster graph H. Then, we find two suitable clusters A and B in L, joined by an
edge in H, for which the neighbourhood is well covered by the matching and the
set of clusters L.

Then, we partition the tree 7" into small subtrees such that there are few vertices
connecting those subtrees.

Then, we embed the tree in the cluster graph. The vertices connecting the small
trees embed into the clusters A and B. Because there are few of them, we can
fit them in those two clusters. The small trees embed into the neighbourhood of
those two clusters. Having partitioned the tree T" into small pieces, we can easily
embed each small subtree.
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Proof of Theorem 2Z.5.Tk
Suppose 0 < 7,¢ < 1 are given. Then, set 7 := min{~, ¢} and

- mq - g ~ 500
©25-107 7 5-10° Cogn?’

Szemerédi’s Regularity Lemma gives us two natural numbers Ny and M, such
that, for any graph G of order n > Ny, there exists an (e, a; N)-equitable partition
with m < N < M. We set

2

6= %, a density § := %

and 07 A2
Ng = l'IlaX{N(], W}

We claim that Theorem EZ5T] holds for this choice of ng € N.

So, assume G is a graph of order n > ny which has at least (1 +v)5 > (1+7)5
vertices of degree at least (14 )k > (14 7)k and we are given a tree T of order

at most k + 1. Regularity Lemma give us a partition of the vertices into clusters
Cy, C4,...Cy such that

L. m<N<<M
2. |C(]‘§€n
3. |CZ|:|Cj|fOl"Z,j€{1,,N}

4. all but at most e N? pairs (C;, C;) with i # j € {1,..., N} are (¢, a)-regular.

The density satisfies

1 2
e+ — <6< —. 2.32
T 16 (2:32)
Now, we clean the graph G such that we delete all edges between irregular pairs,
all edges between pairs with density smaller than J, all edges that lies inside a
cluster and all edges that are incident to Cy. Denote by Gy the subgraph of
G we get after having deleted all these edges. We shall embed the tree T into
the subgraph Gs. The subgraph Gy has nearly as many edges as has graph G.
Indeed, by (ICII) we have deleted at most

1 ) 2

(284—%4'5) n2<5n2<un2
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edges. This gives us that

2
[B(G\ Gy)| < =

Therefore, for all but at most Z* vertices v, we have degg,(v) > dega(v) — ==,
Hence,
Gs has at least (1 + )% vertices of degree at least (1 + %)k.
(2.33)

Let us calculate now how many clusters of the graph GGs has more than ass vertices
with degree at least (1+ 3)k. Suppose we have only (1+ %)% such clusters. In
all those clusters, we have at most s - (1 + %)% vertices with degree at least
(1+ Z)k. In the rest of the clusters, we have at most as- (1 — %)% vertices with

degree at least (1 + 7)k. All together, we have

n

N

lN

T a1 =TT > o € V(Gs): deglv) > (14 5)H)]

2 "N 1002 —
> (14 =)

(1+

o

n
2

vertices with degree at least (1 + 7)k. This implies that o > %7?, a contradiction
with the choice of a. So, we know we have more than (1 + 75)3 clusters with
more than as vertices with degree at least (1+ 3)k. Denote by £ the set of those
clusters. By Proposition [L5.8, we know that a cluster C' that contains more than

as vertices with degree at least (1 + 7)k must itself have average degree at least
T T
deg(C) > (1 + §)k —en> (14 g)k‘

We set K := (1+%)k. If H denotes the cluster graph of G5, we apply Lemma EZ5.5]
to H and K and obtain one of the following two cases:

1. H has a matching M’, and an edge AB with A, B € L such that M’ covers
all but at most one neighbour of AU B, or

2. H has a matching M’, and an edge AB with A, B € L, so that each cluster
in N(A) meets a different edge of M’, and so that the degree of B into
M'U L is at least (1+ Z)%.

In both cases, we slightly modify the matching M’ to get a matching M such
that V(M) N (AU B) = 0. We delete any edges from the matching M’ that are
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incident to the vertex A or B. We have taken out at most 2 edges {e4, eg} from
M'. So, with the new matching M := M’ \ {e,ep}, we have for case 1

s 3n s 3 s
d A),d ByY>1+=2)k——>14+=-—-—")k>(1+—>)k 2.34

and for case 2

T
A1+ —
degui(A)(1+ Tk
and
.k 3n T 3 Kk T k
> 22 Z_ 22> 2 _
degmup\a(B) > (14 5)2 N 2 (1+ 5 qm)2 > (1+ 10)2 (2.35)

By the same argument, observe that for any cluster C' € L,

k.

degy i (aup) (C) > (1 + 0

If case 1 occurs, we use Proposition EE5. 28 If case 2 occurs, we use Proposi-
tion 2.5.26

We have to check if the conditions of the propositions are fulfilled. Set 7 := (k,
Y=k and A = 2957

6—2¢

First, observe that

2
N(A+25+7) <N (O‘;%@;’” +2¢(1 - 2a)s + 6qn)
4(2a + €q) m2qn
< —_ 1+ 2 < .
_n( 35 + 6—|—5q)_ 900

For case 1, we have

m2qgn  wqn  mwqn
2N (A S 25 < .
(A+es5+71)+2s< 150 + 550 10

Then B
degrr(A), degai(B) > 0+ 4|M|A + 25,

satisfying the conditions of Proposition EZR.20l

For case 2, we have

w2qn

900

4
m wqn
q < q

N(A + 263+ 7))% + Nes < : .
(UN(A +2e5+7))2 + Nes < ( ) t e 16" < 50
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Thus, .
degn(A) > 0+ 2(UNA)2 + Nes

and 9
degyoc(B) > 3 + (ﬁNA)% + Nes.
Similarly, for C' € L, we have
U !
degV(H)\(AuB)(C) > 5 + (ﬁNA)2 + Nes.
At least,
w2qn
= N(A )
¥ =qn > 00 >8N(A+es+7)

This satisfy the conditions of Proposition 22228

Before stating and proving Propositions 2228 and 2528, let us introduce their
simplified versions. In this way, we can get in touch with the idea of the proof,
without considering some details.

2.5.5 Simplified versions

We have found two possible configurations of a cluster graph H of our graph
G and then using Lemma and Lemma EZ5.20, each for a configuration of
H, we shall embed our tree T" into GG. In the following two lemmas we assume
a slightly stronger assumption on the possible two configurations of the cluster
graph H to get the same result: the embedding of the tree T'.

The proofs of those two propositions give a good idea of the proofs of Lem-
mas 22020 and ZE. 26 without bothering with some technical details. For a discus-
sion on why we cannot have similar simple proofs for Lemmas 2528 and 22026,
see Remark 2527

Suppose that after using Regularity Lemma on our graph G, you clean it as in
Section [[4l to get a subgraph G5 and let H be the cluster graph of Gs. Denote
by L the set of clusters in H that have average degree at least (1 + %)k, where
7 = min{q,v}. Suppose that there in an edge {A, B} € F(H) with A,B € L
and a matching M in H that do not cover A nor B, such that

(1’) N(A) and N(B) is covered by M or
(2') N(A) is covered by M and the degree of B into M U L is at least (1 + )%,

and that each cluster in N(A) meets a different edge of M and each cluster in
N(B) meets also a different edge of M.
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Suppose that case ([I) occurs. Then we use Lemma 522 If case ) occurs,
then we use Lemma 323

Case 1’ — (simplified version of case 1)

Proposition 2.5.22. Let 0 < a,e,6 < 1 and 7,9,s,€ N with 7 < 9, s(6 —e —
2a0) > 42 and 2e < §. Let H be the cluster-graph of a graph G with each cluster of
size s and such that for each {C, D} € E(H) the pair (C, D) is an (e, a)-reqular
pair in G with density at least 0. Let {A, B} be an edge of the cluster graph H and
M a matching in H such that V(M)N(AUB) # 0 and each cluster neighbouring
cluster A (resp. cluster B) meets a different edge of the matching M. If

degar(A) > 9+ 4| M|A + 2s,

degyr(B) > 9 + 4| M|A + 2s,

where A == A + 2es and A := ZXT then any tree T of order at most ¥ + 1
embeds in G.

Before entering the details of the proof, we give some sketch of it. First, we de-
composes the tree T into a vertex-cut R of small size and small rooted subtrees
of size at most 7. This set of small subtrees is partitioned into two sets 74 and 7p.

Depending on the size of those sets 74 and 7g, we partition our matching M into
M4 and Mp, such that the degree of cluster A into M is large enough to be able
to embed 74 and the degree of cluster B into Mpg is large enough to embed the
trees of 73.

Then, we define our embedding in |R| steps, where, in each of those steps, we
embed a vertex v from R together with all the trees in 74 U 7 that grow from
v, 1. e. trees with v(¢) = r. For each of those trees, we choose a suitable edge
in M4 or in Mg, that has still enough free space and embed in it the small tree
levelwise.

Proof of Proposition [Z22.23. Choose any vertex R € V(T') as the root of the tree
T. We first partition the rooted tree (T, R) using Lemma Z5.T6. We get sets of
subtrees 74, and 75 and sets of vertices R4 and Rp with

v v
Ral, | Rp| < —+1<2—.
T T

Set R :=Rs4URpand 7 := T4 U7Tpg.
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We partition the matching M into disjoint matchings M4 and Mp as follows. We

set p := |Va| + 2|M|A + 2s, q := |V| + 2|M|A, p; = deg,(A), ¢; := deg.,(B),

where e; are the edges of the matching M and ¢ = 2s. We have
p ¢ [Val+2MA+C VB[ +2IM]A

+ < <1
Z‘Zfll Di Z‘Zfll qi degnr(A) degy (B)

Using Lemma L5, we get a partition My = {e1, ... e, } and Mp := {em, 41, .-, €m|}
of M with

degi, (A) = dege,(A) > |Va| +2|M|A, (2.36)
i=1
and
| M| )
degury (B) == Z dege,(B) > [Vp| + 2| M|A.
i=mqg+1

We define our embedding ¢ in |R| steps. For step 1, set Ry := R. At each step
1 > 1, choose a vertex R; € R that has a neighbour for which the embedding ¢
is already defined. In each step, we embed R; (in cluster A, if R; € R4; and in
cluster B ,otherwise) together with

T,:={teT,v(t) =R}

(in M4 and respectively in Mp). Set

Vi={R}ulJ V@),

teT;

and

U = Je(V2).

0<i

So, the set U; denotes the set of vertices used by the embedding ¢ after the step .

At each step ¢ > 1, our embedding will satisfy the following two conditions.

(a) Any vertex v € V; that is a predecessor in our tree T of some vertex Ry € R
has at least (6 — €)s neighbours in cluster A, if R, € Ra; or in cluster B, if
R, € Rg.

(b) There are i vertices embedded in AU B.
Without loss of generality, suppose that R; € R4. The case when R; € Rp is
analogue. Embed the vertex R; in an unused vertex of cluster A that is typical

with respect to cluster B and with respect to M4 (formally we mean here typical
with respect to the union of all clusters contained in edges of M4). In the first
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step, we have (1 — 2a)s > 0 vertices to choose from. At step i > 1, the prop-
erty (@) ensures us that we have at least (§ — e — 2a)s — i > 0 unused vertices to
choose from. Set v; := p(R;).

Then, we have
degnr, (v;) > degnr, (A) — |[Ma|2es > |Va| + | Ma|2A.

Now, we use Lemma to embed T; in M4 by setting C := U{C’D}GMA cubD
and N := CN N(A). Lemma 5T ensures us that R; embeds on v; and T;
embeds in M4 \ U;_;. Also, we can embed in such a way that all vertices at odd
distance from R; have at least (§ — ¢)s neighbours in cluster A. The latter prop-
erty implies that the definition of ¢, at step 4, fulfills (@). Property (D) follows

directly from the fact that at step ¢ we embedded only the vertex R; in cluster
A.

After |R| steps, we have defined the embedding ¢ of all vertices in V(T').

Case 2’ — (simplified version of case 2)

Proposition 2.5.23. Let 0 < a,e,0 < 1 and 7,9,s € N with 7 < 9, s(6 — es —
Ta) > 62 and 2e < §. Let H be the cluster-graph of order N of a graph G with
each cluster of size s and such that for each {C,D} € E(H) the pair (C,D) is
an (g, a)-regular pair in G with density at least 6. Let {A, B} be an edge of the
cluster graph H and M a matching in H such that V(M) N (AU B) # () and
each cluster neighbouring cluster A (resp. cluster B) meets a different edge of the
matching M. Let L be the set of clusters C in V(H)\ (V(M)U AU B) with high
average degree in V(H), i. e.

+ (JNA)? + Nes. (2.37)

| B

degymn\aum) (C) >
Suppose that
degri(A) > 9 +2 (INA)? + Nes,
and 9
degyruc(B) > B + (19NA)E + Nes,

where A := A+ 2es’ and A := 25T Suppose that 9 > 8NA. Then, any tree T

of order at most ¥ + 1 embeds into G.

The idea of the proof is the following. First, we get some vertex-cut R = RoURp
of the tree T such that the components of T'— R are subtrees of size at most 7
(See Remark 2524 for more discussion on this decomposition of the tree). The
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set of components are partitioned into three sets 7p, 74 and 7p.

After our tree decomposition, we reserve in each cluster C' # A, B some part
C4 for the embedding of 7z, and some part CB, for the embedding of 7. The
components of 74 will be embedded at the very end, after having finished to
embed all components of 7r and 7. We can do so, as components in 7, are
end-components, i. e. for any tree t € 74 the subgraph T — t is still connected.

Our embedding process will be defined in two phases. In the first phase, we shall
define our embedding ¢ reduced to the vertices in R and in 7p U 7g, while, in
the second phase, we shall define ¢ on the rest of the tree 7', i. e. on the vertices
of the components of 74. The first phase will be defined in |R| steps.

In each of these steps, we embed one vertex R; of R together with all the com-
ponents in 7z U 7 that grow from the seed R;. The vertex R; will be embedded
on a typical vertex of cluster A if R; € R4 and on a typical vertex of cluster B
otherwise. Having embedded R;, for each component ¢t € 7rU7g that grows from
R;, we shall find a suitable edge (either in the matching M or containing some
cluster C' € N(B) with large average degree) that is suitable for the embedding
of the component ¢.

At the end, we embed the components of 74, without taking care of any reserva-
tion anymore.

Proof of Lemma[ZZ2Z3. Choose any vertex R € V(T') as the root of the tree T'.
We first partition the rooted tree (7, R) using Lemma

We get sets of subtrees Ta, Tp and Tr, with |U,cr, V()] < [Uer, V(#)], and
sets of vertices R4 and Rp with |Ral,|Rp| < 3(£ + 1) < 62 with the following
properties.

e For each tree t € T4 U 7g, there is only one vertex v € R := R, URp that
is adjacent to some vertex of t.

e Trees from 7r U T are adjacent only to seeds from R 4.

e Trees from 7p are adjacent only to seeds from Rp.

Set R := R4 URp, 7' := Tr U Ty are the components we shall embed first
and 7 := 7' U7, is the set of all components of T'— R. Denote by Vp the set
Uier, V(T). Analogously, we have Vg 1= Uper, V(t) and Vi := ;7 V(1)

Let y € R be such that |Vp| =y - 9. Then, |Vp| < (1;?/)19,
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Set

_(NAY?
o = 9 .

Set A:= A, B:= LUB, Ny :=V (M), Ng :=V(M)UL and Ny, := V(H)\(AUB),
for any L € £. By using Lemma EZ5.8 we get a o-uniform partition C4 U C® of
each cluster C'in V(H) \ (AU B) such that

2 —_
d@MﬂA)ZH@KL+%)ZH@M+ﬁﬁz|%ﬂ+NA,

2

) > Vel + NA,

o
degug(B) > [V|(1+ -
and, for L € L,

degys(L) > |V + NA,

where N7} := Ucen, CA and N5 = Ucen, CB, for D = A, B, L. Similarly, we
define CA, CB, MA |, M"® and L.

Our embedding ¢ is defined in two phases. During the first one, we embed all
vertices in R and all components of 7’. In the second phase, we embed the
components of 7y.

The first phase is defined in |R| steps. At each step i > 1, we choose a vertex
R; € R that has a neighbour for which the embedding ¢ is already defined. If
1 =1, set Ry := R. In each step, we embed R; in cluster A if R; € R4; and in
cluster B, otherwise. Also, we embed

T, :={teT v(t)=R;}

in edges of the matching M or adjacent to some cluster C' € L neighbouring
cluster B.

Set
Vi=RrulJV@®).

teT;

and

U = Je(Va).

<1

In each step of the first phase of our embedding process, ¢(V;) will satisfy the
following properties.

63



(a) Any vertex v € V; that is a predecessor of some vertex Ry € R has at least
(0 — €)s neighbours in cluster A, if Ry € Ra; and (0 — €)s neighbours in
cluster B, if R, € Rp.

(b) There are i vertices embedded in AU B.

Now, suppose that we are at step ¢ and want to embed R; € R together with T;.
First, assume that R; € R4. We embed R; in cluster A and the rest of V; in M.
Let us choose a vertex that is

e typical to the cluster B,
e typical to the set CA,

e typical to the set C.

Properties (@) and () ensure that there are at least (6 —e —3a))s —i > 0 vertices
to choose from the the neighbourhood of vertex ¢(v), where v is the predecessor
of RZ

Set s’ := |C4|. Now, we use Lemma to embed the components 7; in
G\ U'~! such that R; embeds on v;, T; embeds in M“\ U~1. We know that
we can ensure that all vertices at odd distance from R; have at least (6 — ¢)s
neighbours in cluster A. The latter property implies that the definition of ¢,
at step 4, fulfills (@). Property (L)) follows directly from the fact that we have
embedded, at step 7, only one vertex R; in cluster A.

Now, suppose that R; € Rg. We want to embed R; in cluster A and the rest of
V; in Mp or some edge of H incident to some C' € L. Choose a vertex v; that is

e typical with respect to the cluster A,
e typical to M5,
e typical to L5,

By properties (@) and (D)), we have at least (§ — e — 3a)s — i > 0 vertices to
choose from the neighbours of vertex v, where v is the predecessor of R;. Set

o(R;) == v;.
Let T' C T, be maximal such that

degys(B) — [N|A =" [V ()| + U7 N Mp|.

teT?!
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Then,
degys(v:) > > V(O] + [U771 0 M| + 2| M|A,
teT!
and
deges(vi) > > V()] + U770 Mp| +|L|A.

tETi\Tl

Embed T using Lemma 510 and T; \ 7" using Lemma EZ5. T4 We can embed
Vi in G\ U1 such that R; embeds on v;, T; embeds in C®\ U1, and all vertices
at odd distance from R; have at least (6 — ¢)s neighbours in cluster B. The
latter property implies that the definition of ¢, at step ¢, fulfills Property (@).
Property (D)) follows directly from the fact that we embedded at step ¢ only one
vertex R; in cluster B.

The second phase defines the embedding ¢ for components of 74. We do not
care about any reservation anymore. This phase is defined in |R 4| steps, where
in each step j > 1 we embed all the trees in

T; .= {t € T4,v(t) = R;}

in edges of the matching M.
Set

V= J Vv,

tETj

and

U =Uul o),
4]
where U := p(R) U U, @(V(1)).
All vertices R; € R4 were embedded on typical vertices with respect to M.
So, we can use Lemma Z0T0 to define our embedding of V; with s’ := s, and
N :=CNN(A). We embed V; in G\ U/~! such that R; embeds on v;, and V;
embeds in M \ U7~

We have defined ¢ for V(7").This ends the proof of Proposition 22523
U

Remark 2.5.24. For case 2’ (and analogously for case 2), we need a more complex
tree decomposition than for case 1’.

If we use the same tree decomposition as in case 1’, we could embed the smallest
of V4 and V3 in the neighbourhood of cluster C, but we would need to embed
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the whole set Vg, before to embed any vertex of Vj4.

We would eventually embed a forest, that we would maybe not be able to glue
together using R and 74.

In fact 7r denotes the components that have to be embedded as first. We can
wait for the embedding of the components 74 U 75 as long as we wish.

2.5.6 Case 1 (non-simplified)

Proposition 2.5.25 (Case 1). Let 0 < a,e,0 < 1 and 7,9,s € N with 7 < 1,
s(% — 6a) > 4% Let H be the cluster-graph of a graph G such that for each
{C,D} € E(H) the pair (C, D) is an (e, a)-regular pair in G with density at least
d. All clusters have size s each. Let {A, B} be an edge of the cluster graph H
and M a matching in H such that (AU B)NV (M) # 0. If

degar(A) > 9+ 4| M|A + 2s,

degyr(B) > 9 + 4| M|A + 2s,

where A = A +2es+71 and A = %’ then any tree T of order at most ¥ + 1
embeds into G.

Notation 2.5.25.1. Suppose that [ is an ordered set of indices and let S' = {J,., S,
where I’ C I. We say that S has shadow I'. For a partition of I into subsets 4
and Ig, we denote by S4 and by Sg the subset of S that has its shadow in A
and in B, respectively. Formally S, := Uig,mA S;, and Sp = Uig,mB S;. We
define S=' := J;; Sj and say that S=' is the subset of S with shadow at most 4.
Similarly define S<%, S2  and S>?. We can combine the just defined notations.
Then S5’ = U S;.

J<i; jela

Before entering the details, we give an idea of the proof.

First, we shall find a set R = R4 U Rp of special vertices in the tree T" such
that T' — R decomposes into small components. Each component ¢ is growing
from a seed v(t) that is a vertex in R. If the seed of the small tree ¢ is in R4,
then t is adjacent to vertices only in R4. Similarly trees ¢ with v(t) € Rp are
adjacent to vertices in Rpg only. If 7 denotes the set of components in T'— R, it
naturally partitions into 74 and 75. So, the decomposition of the tree remembers
the shape of a dumbbell.
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We shall partition the matching M into two submatchings, M, for the set T4
and Mp for Tg.

The next step is to order the seeds in R and define submatchings (not necessarily
disjoint) of M, and Mpg, each submatching corresponding to the union of the
components growing from the corresponding seed in R. Then, we define the
embedding ¢ inductively, and in each step, we embed one vertex R; € R and the
components in T'— R that grows from the seed R; in the corresponding matching
M;.

Proof of Proposition 2.5.28. As the proof is relatively long, we decompose it
into nine parts, each containing an underlined title, to make it more readable.

1. Decomposition of the tree:

Choose any vertex R € V(T') as the root of the tree T. We first partition the
rooted tree (7, R) using Lemma Z5.T0. We get sets of subtrees 74 and 75 and
sets of vertices R4 and Rp of vertices in V(T) with [Ral,|Rp| < £+ 1 < 22,
Set R := R4URp and T := T4, UTg. We shall define V4 as the set of vertices of
all the components in 7 that has shadow in 7, i. e. Va 1= o7, V(). Similarly
define V3.

2. Partition of the matching:

We partition the matching M into disjoint submatchings M4 and Mp, using
Lemma 254 in the same way as we did in the proof of Proposition We
get My ={ey,...en,} and Mg :={e, 11, .,em} of M with

degar,(A) =Y _ dege,(A) > [Va| +2|M|A,
i=1
and .
degar,(B) == Y deg.,(B) > |Vs| +2|M|A.

i=mq+1

3. Ordering of vertices in the vertex cut:

Inductively, we order the vertices of R and define submatchings of M for each
vertex of R. Define R; := R. If R; is defined, then choose R;;; among any of
the vertices of R \ |J;; R; that has a neighbour in a tree t € 7 with v(t) = R,
J<i
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This defines an index set I := {1,...,|R|} with a natural partition I, := {i €
I; Ry € Ra}and Ig :={i € I;R; € Rp}. Set V' := UteT;v(t):Ri V(t). Denote
by V=" the subset of V(T') with shadow at most i € I, i. e. V=" := (J,, V/ for
i > 0. Set V' := V4N V= Analogously define V5"

4. Definition of submatchings:

We define the submatchings M; in such a way so that we can embed the subtrees
that grow from R; in M;. Set index a9 = 1, by = m,+ 1. Let a; and b; be minimal
with the property that

> dege,(A) > [VE| + ai, (2.38)
/=1

and .
> dege,(B) > V5| + (b — ma)A.
l=mq+1

For i < j, we have a; < a; and b; < b;. Now, if i € Iy, we define M; :=
{€a; 1y v€a;} T Ma, and if i € Ip, M; :={ep, ,,..., €5, } € Mp.

5. The inductive step:

Our embedding ¢ will be defined in |R| steps. In each step, we first embed R; in
cluster A, if R; € R4; and in cluster B, if R; € Rp. Then, we embed all trees ¢
with v(f) = R; (the trees that grow from the seed R;) in the submatching M; of M.

6. The properties of the embedding:

Let U' := o(V='U{Ry,...,R;}). For each step i > 0, our embedding ¢ will
satisfy the following.

(2) [(AUB)NU| <i.

(b) If v € U’ and ¢ !(v) precedes (in the ordering of the tree) some vertex in
R4, resp. Rp, then v has at least %s neighbours in A, resp. B.

(¢) For CD = e,
|CNU —|DNUY| > 7= min{degc(A) — U NC|,degp(A) — |[U" N D|} <
A+ 2¢.
Also, dege(A) < |U'NC|+ A+ 2es = dege(A) < |[U'ND| + A,
and degp(A) < |[U'ND|+ A + 2es = degp(A) < |U'NC| + A.
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(d) For CD = e,
[|CNU| —|DNUY| > 7= min{degc(B) — |[U'NC|,degp(B) — |U'N D|} <
A+ 2es.
Also, dege(B) < U N C| + A + 2es = dege(B) < |U'N D| + A,
and degp(B) < |U'N D| 4+ A + 2es = degp(B) < |[U' N C| + A.

(e) U'nej=0,fora; <j<mgorb <j<m.
() U Neq,| < VE'| =571 (A) and U Ney | < V5| =571 (B),

where, for ¢ € N, we define
¢
SHA) =) (dege,(A)) = lea, NU| = 2(¢ = a; + 1A,
Jj=a;

and

¢
=Y (dege,(B)) — ey, NU'| = 2(£ — b + 1)A,
Jj=b;

The symbols Xf(A) and ©f(B) express the size of a subtree of T' for which there

is enough place in the edges e,,, ..., e, and in the edges e, ..., ey, respectively.
Remark that

S THA) + D (A) = S0 (A) — U Neg, .

A similar equation holds for ¥(B). Observe that properties (@)—(l) clearly hold
for ¢ = 0.

7. The embedding of R:

For each step i > 1, we define the embedding as follows. Suppose that R; € R4
(The case when R; € Rp is define analogously).

Define a vertex in A to be i-typical if it is

e typical to cluster B,

e typical to both C' and D, for {C, D} =e,, .,
e typical to both C' and D, for {C, D} =e,,,
e typical to M; \ (eq_, Uey,),
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We embed R; among the unused i-typical vertices of the neighbours of ¢(v),
where v is the predecessor of R; (if R; = Ry = R, choose a i-typical vertex in the
cluster A without any other restrictions). Using the properties (@) and (), we
know that we have at least (% — 6a)s — ¢ > 0 unused vertices to choose from.

8. The embedding of T;:

Let T' C T, be minimal such that

B (A) < YOIVl

teT!

Then '
dege, (A) =D [V + U™ Neq, | +2A +4es + 7.
teT?!
Set U := U""'Ne,,_,. Using Lemma 513, embed 7" in the first edge e,, , of M;.
Properties (@) ensures that the conditions(ZI0), ([2I7) and (ZI8) are fulfilled.
(If only one of the clusters that form the matching edge is neighbouring A, we
use Lemma instead of Lemma ZZ0T3)

Now let 7% C T; \ T" be minimal such that

BN A) - ZEHA) < YOIVl
teT?
Then,
degMi\(eaFerai)(fUi) > Z |V(t>| + (|MZ| - 2)<2A + T)'
teT?
Using Lemma EZZ5.T2 we embed T2 in M; \ (e, , Ue,,), the “internal” edges of
M;.
Observe that

StA) < Y vl (2.39)

teT1uT?

Using Lemma with U = U™ Ne,,, we embed the trees of T; \ (T' U T?)
into e,,, the last edge of M; (U = 0 if a;_1 # a;, and if a;_1 = a;, then
T;\ (T*UT?) = (). (If only one of the clusters that form the matching edge
is neighbouring A, we use Lemma instead of Lemma ZRT3.)

We claim that

dege, (A) > Y |V(t)]+2A (2.40)

teT;\(TTuT?)
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Indeed, using the definition of 3(A), Property () for i — 1, (Z38), and ([Z39), we
have

Yoo WV@I=IVEI=IVEl= Y V)l

teT;\(TTUT?) te(TTuT?)
<Y dege,(A) =20, A — U Mg, | = (5577 (A) + 5571 (A))
j—1

= dege,, (A) — 2A.

9. Checking the properties for step :

Property (@) follows immediately from the fact that the only vertices we embed
in clusters A and B are vertices from R. Therefore, at the end of step ¢, we have
embedded at most ¢ vertices in AU B.

Vertices R 4 are embedded on vertices in cluster A that are typical with respect
to cluster B, and vertices Rp on vertices in cluster B that are typical with
respect to cluster A. So, vertices v € U’ N ¢(R) satisfy Property (H). Now, by
Lemmas and EZ5.13, all vertices from V' that are from odd distance from
R 4 have at least (6 —¢)s > gs neighbours in cluster A. A similar argument holds

for vertices in Vgi.

Property (@) or (d) follows from Lemma 2513

Property (@) follows from the fact that we use only the edges from M; to embed
Ve

If €4, # €q, 1, then |U' Neq,| = 3, cp purey [V (1)]. Using Properties (@) and ()
for ¢ — 1, we have

Yoo W@I=IVEI=IVEl= Y V)l

teT;\(TTuT?) te(T1uT?)
<VE =07 T A) = U e, | — S071(A)
< VE' =25 H(A),

leading to Property (fl).
Now, if e,, = €,,_,, then |U* N e,

=2 ter, VO + U N,
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DIV = Vi = Vi

teT;
<|VE =S5 A - U Neg, |
< |VE=S571(A) = U Ne,l,

leading to Property (fl).

After the last step |R|, we have embedded all the tree T'. This ends the proof of
Proposition O

2.5.7 Case 2 (non-simplified)

Proposition 2.5.26 (Case 2). Let 0 < a,e,6 < 1 and 7,9,s € N with T < 9,
s(g — Ta) > 6%, Let H be the cluster-graph of order N of a graph G with each
cluster of size s and such that for each {C,D} € E(H) the pair (C,D) is an
(e, a)-regular pair in G with density at least §. Let {A, B} be an edge of the
cluster graph H and M a matching in H such that V(M)N (AU B) # 0. Let L
be the set of clusters C' in V(H) \ (M U AU B) that has high average degree in
V(H), i e.

1

s _
degymn(aus) (C) > 5+ (UNA)? + Nes, (2.41)
where A :== A +2es + 7 and A := zg‘f—;;. Suppose that 9 > SNA.

If
degn(A) > 9+ 2 (INA)? + Nes,

and 9
degMug(B) > 5 + (ﬁNA))§ + N&?S,

then any tree T' of order at most ¥ + 1 embeds into G.

Before entering the details, we give an idea of the proof.

First, we find a vertex-cut R = R4 U Rp of the tree T' that decomposes the tree
into three parts: one middle part 7 that contains components lying between at
least two vertices of the cut and two border parts 74 and 7g.

After decomposing the tree, we reserve a part in each cluster for the middle part
7Tr and leave the rest for 7g. We do this proportionally to the size of 7. So, if the
size of Tr is a portion x of our tree T', we reserve a portion x of each cluster for 7,
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letting a (1 — x) portion for 7. This leaves an average degree from cluster B of
(1 —x)g to the the reserved part for 7z, which is an upper bound for the size of 75.

We first embed 7 and 7p, each in its respective reserved part, letting the em-
bedding of 74 at the very end. The embedding of 7r is somehow easier, as it
uses only matching edges and each cluster in the neighbourhood of A meets a
different edge of the matching. For the embedding of 73, we define, for each set
of components growing from a vertex R; € R, a submatching M;, similarly as in
case 1.We embed 73 in the matching-edges, as long as the matching edges are
not full. Then we use the clusters with large average degree to embed the rest
of 7p. Having embedded the sets 7 and 7z, we embed 74. The embedding is
defined as for 7, but not taking in account any reservation.

Proof of Proposition 2Z5.26. We use the notations defined in EZR257. For
faster orientation, the proof is divided into eleven parts, each depicted by an
underlined title.

1. Decomposition of the tree.

We choose any vertex R € V(T') as the root of the tree 7', and decompose the
rooted tree (T, R) using Lemma We get sets of subtrees 7y, 7p and Tp
such that |J,cr, V()| < [U,er, V(1)], and sets of vertices R4 and Rp such that

IRal, |R5| <3(2+1) <62 with the following properties.

e For each tree t € T4 U 7g, there is only one vertex v € R := R, URp that
is adjacent to some vertex of t,

e trees from 74 U 7 are adjacent only to vertices from R4 and

e trees from 7p are adjacent only to vertices from Rp.
Set 7' := Tr U 7p. These are the components we shall embed first and 7 :=

T'UT, is the set of all components of T'—R. Set Vi := [ e, V(¢). Analogously
define Vg and V.

2. The reservation.

Let y € R be such that |Vp| =y - . We have then that |Vg| < (1;3’)19,
Set o
[ NA\2
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We use Lemma 208 with A := A, B:= LUB, Ny := M, Ng := M UL and
Ny, :=V(H)\ (AU B) for any L € L; and we get a partition C* U CP of each
cluster C'in V(H) \ (AU B) such that

2

degy4(A) = Vel (1 + %) > |Vi| + 029 > [Vie| + NA,

2

o
deguy(B) = [Vil(1+ -

) > |Vg| + NA,
and for L € L,

degys(L) = |Vp| + NA,

where N7 := Ugey, C* and N := Ugey,, CF, for D = A, B, L.
We define CA, CB, M4 | MB, M5, and £P in a similar way.

3. Ordering of the vertices of R.

Inductively, we order the vertices of R and define submatchings of M for each
vertex of R. Define Ry := R. If R; is defined, then choose R;;; among any of
vertices of R\ ,, i; having a neighbour in a tree t € 7" with v(t) = R; for
7 <. Observe that we order all vertices in R. Indeed, the only vertex in R that
is adjacent to some tree t € Ty is the seed v(t) of t.

This defines an index set I := {1,...,|R|} with a natural partition I, := {i €
I; R € Ra} and Ig := {1 € I;R; € Rp}. Set T, :== {t € T";v(t) = R;}. and
V' = Uer, V(t). Denote by V= the subset of V(T') with shadow < i € I, that
is V== J,;; V’ for i > 0. Then V&' = V=N Ve Analogously define V5.

4. Partitioning 7p.

Now that we have ordered the vertices of R, we partition the set 7z into subsets
7} and T \ 7}. The set T} will contain those subtrees that will be embedded
using matching edges, and 75\ 7} will contain the subtrees that will be embedded
using clusters with high average degree.

Index the trees in 73 to satisfy the following condition. If t* € T; and t* € T;
with ¢ < j, then & < £. Then, let ¢ be the maximal index with

¢
degys(B) > > |V (#)| +2|M|A.
j=1
Now, T} = {t/ € Tp; j < {}. We denote by Wy the set of vertices in 7}, and
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define WBSi accordingly.

5. The definition of submatchings.

For each R;, we define the submatchings M; and embed the components of 7}
that grow from R; (an empty set if R; € R4) in M;. Set index by = 1. Let b < m
be minimal with the following property.

b;
> deg.s(B) > [W5'| + 2b:A. (2.42)
(=1
For i < j we have b; < b;. Now define M, := {ep, ,,..., e}

6. The steps of the embedding.

We define the embedding ¢ in two phases. During the first phase we embed
all vertices in R and all components of 7’. In the second phase, we embed the
components of 74. The first phase shall be defined in |R| steps. In each step we
shall first embed R; in cluster A, if R; € Ry4; and in cluster B, if R; € Rp. Then
we embed all trees ¢t € 7' with v(t) = R; (the trees that grow from R;, except for
the components of 7) in edges of the submatching M; of M or adjacent to some
cluster C' € L that is neighbouring cluster B. The second phase shall define the
embedding ¢ for components of 74. In the second phase we shall not care about
any reservation anymore, nor the ordering of the vertices in R.

7. The properties of the embedding.

Let U" := @o(V="U{Ry,...,R;}). For each step i > 0 our embedding ¢ will
satisfy the following:

(a) [(AUB)NU| <i.

(b) If v € U" and ¢~ !(v) precedes some vertex in R4, resp. Rp, then v has at
least %s neighbours in A, resp. B.

(¢) For CD = ¢,,
[|CBN U — |DBNUY| > 7= min{deges(B) — |U' N CB|, degps(B) — U N
DB|} < A + 2es.
Also deges(B) < U N CP| + A + 2es = deges(B) < U N DB + A,
and degps(B) < |U* N DB+ A + 2es = degps(B) < |[U' N C| + A.

(d) U'nef =0 forb; <j<m,and o(Wg)NL=0.
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(e) U NeB| < |W5'| — 57 1(B),
where for ¢ € N we define

V4
Z(dege ) B AU — 20 — b + DA,

Jj=b;

The symbol X¢(B) traduces the size of a subtree of T' for which we have enough
place in the edges ey,, . .., e/, for its embedding. Remark that

6N (B) + 2 (B) = 5'(B) — [U Nef|. (243)

8. The embedding of 7.

First, suppose that at step ¢ we have R; € R4. Then, we embed R; in cluster A
and V* in M. If v is the predecessor of R;, choose from the the neighbourhood
of vertex p(v) a vertex that is

e typical to the cluster B,
e typical to the set M4,

e typical to the set M.

Using properties (@) and (), we know that we have at least (£ —3a)s—i > 0 ver-
tices to choose from. Now, we use Lemma[Z5. Tl and embed the components of T;.

9. The embedding of Rp:

Suppose, now, that, at step ¢, we have R; € Rp. Define a vertex in B to be
i-typical if it is

e typical with respect to the cluster A,

typical to the set L5,

typical to both C® and D%, for {C, D} = ¢,

i—17

typical to both C® and D?, for {C, D} = ey,

typical to MP \ (ep,_, Uep,).
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If v is the predecessor of vertex R;, embed the vertex R; in an unused neighbour
of p(v) that is an i-typical vertex of cluster B. By properties (@) and (L), we
have at least (g — Ta)s — 1 > 0 unused vertices to choose from.

10. Embedding 7}.

If T, N T} # 0, we define the embedding of T as follows.
Let T C T/ be a maximal subset satisfying

SI(B) = Y V()] (2.44)

teT?!

Then _
deg.s (B) > Z V()| + |Ui—1 Nep,_, | + 2A.
bi—1
teT?
Set U := Uiy Ney,_, and s' := |CF|. Use Lemma 53 to embed T" in ef  —
the reserved part of the first edge of the matching M;. Conditions (216), [17)
and ([ZIR) are satisfied by (@).

Now, let T? C T} \ T" be a maximal set satisfying

SN B) -5 (B) = Y IV, (2.45)

teT?

Then, by (L4),

degars\ey ey (V) = S IV + (1M] — 2)24 + 7.

teT?

Embed T2 in the reserved part for 7g of the matching M; \ (ey,_, U €,) using
Lemma Z5.T2A

Next, let 7% C T/ \ (T* UT?) be a maximal set satisfying

S (B) =0 N(B) = ) V(). (2.46)

teTs

Then B
deg.s (B) = Y [V(£)| + [Uimy Nep,| + 24

teTs

Set U := U;_; Ney, and s := |CB| (Observe that if b; > b;_1, then property (d)
ensures that U = ()). Now, use Lemma to embed 7% in ef .
Observe that T3 = T/ \ (T* UT?). Indeed, suppose on the contrary that

Y. IVI> T (B) -5 (B).

teT/\(T1UT?)
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Then,
V)] > B (B).

teT)]

On the other hand, using the definition of the index b; and Property (&), we have

DIV = W5 = Wi
teT]

b;
A i— bi—1—
<Y degs(B) = 20,A = [U Ney, | =0 (B)
j=1

i—1—1

b; b
= degs(B)— > degs(B) +2(bisi — DA = 2b,A — U Ney,_,|
= i=1 ’

a contradiction.

11. Embedding using clusters with large average degree.

If T, \ T! # 0, we define the embedding ¢ for the left-over trees in T;. Observe
that £ # (). Then,

degrs(B) = degrsuns(B) — degns(B)
> |Vp| + |N|A — [Wg| — 2|M|A — 1
> Ve \ Wa| + [L|A -7
> [Vp \ Wg| + |L[(A + 2es).

Then,
deges(vi) > Y [V()| + U™ 0 LB+ |L]A. (2.47)

teT\T,

We use Lemma EZ5.T4 to embed T; \ ;.

12. Controlling the properties of the embedding.

The definition of our embedding at step i satisfies the properties (@)—(@@). In-
deed, (@) is true because we have embedded only the vertices R; in AU B.

Vertices R 4 are embedded on vertices in cluster A that are typical with respect to
cluster B and vertices R on vertices in cluster B that are typical with respect to
cluster A. So vertices v € U; Np(R) satisfy Property (L), Now, by Lemma
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and EZ5T3, all vertices from V' that are from odd distance from R4 have at
least (6 —¢)s > gs neighbours in cluster A. A similar argument holds for vertices

in Vgi.

Property (@) follows from Lemma 2Z5T3

Now, observe that Wpg is embedded in M only, and that ng is embedded in
Upe; Mi. If b; < j, then e; ¢ U,o; My, and thus, U' N e? = o(W5") Ne; = 0.
Thus, Property (d) is satisfied.

For Property (@), if ey, # €,_,, see that [U'Neg| = [U ' Nep |+ > ,cqa [V(E)].
Then,

YoIVOI=WE = W5 = Y V()

teTs te(T1uT?)
< W= U nef | =57 (B) - 521 (B)
=Wy <i| - 5571(B).

If b; = b1, see that [U'Ne | = [U" ' Nep |4+ > ,c0 [V(E)]. Then

SV + U neE | = W - W5+ U ned |

teT)]
< W5 = Ut nep | =507 B) + U e
= W5 == (B).

Thus all properties are satisfied by the embedding defined at step 1.

13. Embedding the last part on the A-side.

Now we begin the second phase of our embedding, i. e. the embedding of the tree
of T,. We embed those trees one after the other. We embed the trees t € 74 one
after the other. If U denotes the set of vertices in G that were used so far for the
embedding of 7" and by the embedding of other components of Ty, for v; = v(t),

degnr(vi) > degn(A) — s
> 9+ (SNﬁA)% — €5
> V()| + U+ NA —¢s
> |V(t)| + |U| + NA.

We embed the tree t using Lemma 5. T0. When we have embedded all trees in
T4, we have finished defining our embedding .

O
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Remark 2.5.27. As the reader noticed, the proof of Proposition EZ.28 and of
Proposition are longer and more complicated than the proof of their sim-
plified versions, the Propositions 2.5.22 and EL5.23, respectively.

We would like to outline here why some configuration of the matching raises
some complications. The seed of the problem is the typicality of a vertex. With
typicality, we always refer to a some set of vertices to which a given vertex has
to be typical.

For each condition on typicality, we have some set of exceptional vertices in the
cluster that do not satisfy the required condition. This set is small, but if we have
many conditions on typicality, we cannot ensure that there is a vertex satisfying
all the required conditions.

In particular, we cannot expect to have a vertex in some cluster C' to be typical
with respect to each cluster neighbouring cluster C. We can only choose a few
sets of clusters, and find a vertex in cluster C that is typical to those sets.

Such a typical vertex has some expected degree into each of those sets of clusters,
but we have no information on its degree to the clusters itself. This point is the
source of the complication. To see why, imagine the following situation.

Suppose that the matching edge {C, D} lies entirely in the neighbourhood of
cluster A and suppose we have embedded a vertex R; on a typical vertex v; € A.
As long as the vertex v; has enough unused neighbours in both clusters C' and
D, we can balance the embedding of the trees in 7T; such that the used part in
cluster C' and the used part in cluster D is about the same. But eventually we
use nearly all neighbours in one side and we have no choice where to embed the
root of subtrees of Tj.

If the subtrees we embed next have a large difference between the size of the set
of vertices with odd distance to the root and the set with even distance to the
root, we may fill nearly completely one of the two clusters, say cluster C, letting
cluster D nearly empty.

At the time we embed an other vertex R; in cluster A, it can have still big degree
in the edge {C, D}. We then believe that there is enough space to embed some
subtrees from 7 in this edge, but have no place in cluster C'. If all neighbours of
©(R;) are contained in such balanced edges, we have no suitable edge to embed 7.

This is the reason to take extra care when we embed R; and T;, making the proof
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longer and more complicated.

2.5.8 A second proof for case 1

In the proof of Theorem P25l we can use the following proposition, instead of
Proposition EER.27, if case 1 occurs. Indeed,

o

qn - qn

900

degno(A).degus(B) > K1+ 55) > ot

) +Nes > 9+2(NA)2 +2es.

Proposition 2.5.28. Let 0 < a,e,0 < 1 and 7,9,s € N with 7 < 9, s(g —6a) >
42. Let H be the cluster-graph of a graph G with each cluster of size s and such
that for each {C, D} € E(H) the pair (C, D) is an (e, a)-reqular pair in G with
density at least 6. Let {A, B} be an edge of the cluster graph H and M a matching
in H such that V(M)N (AU B) # 0. If

degar(A) > 0 +2 (INA)? + | Nles,

and
1

degrruc(B) >0+ 2 (UNA)? + |Nles,

where A = A +2es+71 and A = 2;1_8;;, then any tree T of order at most ¥ + 1
embeds into G.

Proof of Proposition [Z22.28. We use the same notation as in 25251l The proof
goes along the proof of Proposition 25,25, but instead of partitioning the match-
ing M into two parts, we partition its clusters into two parts. For a faster
orientation, we decompose the proof into nine parts, corresponding to parts in
Proposition EZ2.280 As many of those parts are identical or very similar to their
analogue in Proposition L0228 we omit some details and just refer to the proof
of Proposition 2525, instead.

1. Decomposition of the tree.

We decompose the tree T' as in Proposition 22520

2. Partitioning the clusters.

Let y be such that |V4| =y - 9. Then |Vz| < (1 —y)¥.
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Set

_ (NA\®
o= :
Set A:= A, B:= B and N4, Ng := M. Using Lemma 5.8, we get a partition

CAUCB of C=V(H)\ {A, B} such that

2
dega(A) > [Val(1+ %) > |Val + 020 > [Va| + 2| MA,

2

degys(B) > [Vi|(1+ =
where M#A = U{QD}EM CAU DA, We define M?, e#, €8 analogously.
3. Ordering R.

The inductive ordering of the vertices in R is done as in Proposition 2528 and

use the notation for VASi, VBSi and T;.

4. Defining the submatching.

For each i € {1,...,|R|} we define a submatching M; of the matching M as
follows.

Let a; and b; be the minimal indices with the property
> deg.a(A) = [VE| + 2aA,
=1

and

b;
> deg,s(B) > |V5'| + 2b:A.
=1

For i < j, we have a;, < a; and b; < b;. Now, if ¢ € 4, we set M; =
{€a, 1y y€q,}; and if i € Ip, we set M; := {ep, ,,...,ep,}. If i € 4, then
we embed T in M*; and if i € I, we embed T; in MB, where M := Ueens, et
and analogously we define MP.

5. The steps of the embedding.

We define the embedding in |R| steps, where in each step ¢ we embed vertex R;
in cluster A and 7T} in M;“, if R; € Ra; and we embed R; in cluster B and T} in
MiB, if RZ € RB. Let UvZ = QO(VSZ U {Rl, .. >Rz})
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6. The properties of the embedding.

At each step ¢ > 1, the embedding ¢ satisfies the following conditions.

(2) [(AUB)NU| <i.

(b) If v € U’ and ¢~ *(v) precedes some vertex in R4, or Rp, then v has at least

gs neighbours in A and in B, respectively.

(¢) For CD = e,,,
[|CANUY — | DANUY| > 7 = min{degca(A) — U N CA|, degpa(A) — U N
DA} < A + 2es.
Also degea(A) < U N CA| + A + 2es = degoa(A) < |U'N DA+ A
and degpa(A) < |[U' N DA| + A + 2es = degpa(A) < |UNCA| + A.

(d) For CD = e,,
[|CENUY| — |DPNUY|| > 7 = min{deges(B) — |U' N CB|,degps(B) — |U' N
DB|} < A + 2es.
Also deges(B) < [UNCP| + A + 2es = deges(B) < U N DB+ A
and degps(B) < |U' N DB+ A + 2es = degps(B) < |[U' N CB| + A.

(e) U'neft =0 fora; < j<|M|and U'Ned =0 for b; < j < |M]|,
() [0 ned| <VE' =257 (A) and [UFnep| < [V = 2071(B),

where where for ¢ € N we define

L
SH(A) = Y (degea(4)) = e VU] = 2(¢ — ai + DA,

Jj=a;
and ,
S(B) =Y (dege?(3)> —[eB AU = 2(f - b; + 1A
Jj=b;

7. Embedding R.

Suppose we are at step i of our embedding process, and that R; € R4 (the other
case is similar).

Define a vertex in A to be i-typical if it is

e typical to cluster B,
e typical to both C* and D4, for {C, D} = e,, |,
e typical to both C* and D4, for {C, D} = e,,,

83



e typical to M;4 \ (€q,_, Ueg,),

Properties (@) and () allows us to embed R; among the unused i-typical vertices
of the neighbours of ¢(v), where v is the predecessor of R; .

8. Embedding T;.

Similarly as in Proposition 25,25 we embed the subtrees from 7T; in the matching
edges of M, but using only the respective reserved parts of the clusters.

9. Checking the properties.

This is done similarly as in Proposition EZR.20
This ends the proof of Proposition 22528 O

2.5.9 A second proof for case 2

In the proof of Theorem P25l we can use the following proposition, instead of
Proposition EE5.28, if case 2 occurs. Indeed, for a cluster C' € £, we have

s w2qn U -
d C)>(1+—=)k>k < — + NA.
egvmn\aus)(C) = ( +10) Z Rkt 900 = 2+
Also,
s w2qn n -
1+ —)k> 2 2—) > NA + 2s.
( +10)k_k:+7rqn( T m)_ﬁ+5 + 25
So,
degn(A) > 9 +5NA + 25 > 0+ (6| M| + 2|L))A + 2s
and

degruc(B) > =(9 4+ 5NA + 2s) > — + (3|M| + |L))A + 2.

DO | =
N B

Proposition 2.5.29. Let 0 < a,e,0 < 1 and 7,9, s € N with 7 < 1, s(g —Ta) >
62. Let H be the cluster-graph of order N of a graph G with each cluster of size
s and such that for each {C, D} € E(H) the pair (C, D) is an (e, a)-regular pair
in G with density at least 6. Let {A, B} be an edge of the cluster graph H and
M a matching in H such that V(M) N (AU B) # (. Let L be the set of clusters
CimV(H)\ (V(M)UAUB) that has high average degree in V(H), 1. e.

9 _
degv (m(au) (C) > 5+ NA, (2.48)
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where A == A+ 2es+ 7 and A := %.

If

degni(A) > 9 + (6| M| + 2|L]))A + 2s,
and 9

deguoe(B) > 5+ (8IM] + [£)A + 5,
then, any tree T of order at most ¥ + 1 embeds into G.

Proof of Proposition [ZZ2.2Z9. We use the notation defined in EER2511 For faster
orientation, we decompose the proof in 14 parts, each depicted with an under-
lined title. As parts of the proof go along the proof of Proposition EE0.28, we
omit some details, and refer to the proof of Proposition 2526l instead.

1. Decomposition of the tree.

We decompose the tree as in Proposition 22526l

2. Partition of M U L.

Set p := |Vp| +2|M|A + 2s and ¢ := |Vp| + (2|M]| + |£])A. Let m := |M| and
A= |L]. Set

7 .

dege,(A), fori <m
dege,(A) =0, fori>m,

where e; are the edges of M and C; are the clusters of £. Similarly we define

i { degei(B), for ¢ S m

degc,(B), fori > m.
Set ¢ := 2s. Observe that

P, 4 <|VF|+2|M|A+< [Vs| + (2|M] + |£])A
Z?:{Api Z?:{qu' B degpr(A) degnuc(B)

9+ (6| M| + 2|L])A + 2s
~ 9+ (6|M] +2|L))A + 25
=1

Recall that |Vp| =y -9 and |Vp| < (1;—”19.
Now, Lemma 54 gives us a partition (M U L)r and (M U L£)p so that
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degMF(A) = deg(Muﬁ)F(A> Z ‘VF| + Q‘M‘A, (249)

and

degoucy s (B) > [Vs| + (2|M| + |L])A. (2.50)
3. Ordering R.

We order the vertices in R as in Proposition 2526

4. Partitioning 7p.

We partition the set 75 into the set 7}, the part that will be embedded in Mpg;
and into the set 75 \ 7}, the part that will be embedded using clusters in L.

Index the trees in 75 to satisfy the following condition. If t* € T; and t* € T;
with ¢ < j, then k < £. Let ¢ be the maximal index with

¢
degary(B) > > [V (#)| +2|M|A. (2.51)

Now, T} := {t/ € Tg; j < {}. We denote by Wp the set of vertices in 73 and
define W5" accordingly.

5. Definition of the submatchings.

We need to define some submatchings M; only for the embedding of 75, as each
cluster in the neighbourhood of cluster A meets a different edge of the matching.

For each R;, we define the submatchings M; and embed the components of 7}

that grow from R; (an empty set if R; € R4) in M;. Let Mp := {e1,...,en}.
Set an index by = 1. Let b; < m be minimal with the following property.

b;
> dege,(B) > [W5'| + 2bA. (2.52)
{=1

For i < j we have b; < b;. Now define M; := {ep, ,,...,ep}. By 1), such an
index b; always exists.

6. The steps of the embedding.
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The embedding is defined in two phases. In the first phase, we embed the trees
of Tr in Mp; and the trees of 7}, in Mp; This phase is defined in |R| step, where
at each step we embed the vertex R; € R in cluster A or B, together with the
set T) := {t € Tp UT}; v(t) = R;} in the matching Mg and Mp, respectively.

In the second phase, we embed the trees from 7p \ 7} and then, we embed the
trees from 74. Denote by T; := {t € Tp \ T};v(t) = R;}.

We recall that V* := ,cp, V(t) and U* := (U, { R} U V7).

7. Properties of the embedding.

At each step ¢ > 1 of the first phase, our embedding satisfies the following
conditions.

(a) [(AUB)NU| <i.

(b) If v € U® and ¢ !(v) precedes (in the ordering of the tree) some vertex in
R4 or Rp, then v has at least %s neighbours in A and in B, respectively.

(¢) For CD = ¢,,
|CNU| - |DNUY| > 7 = min{degc(B) — [U'NC|,degp(B) — |U' N D|} <
A+ 2es.
Also, dege(B) < |U'NC| 4+ A+ 2es = dege(B) < |[U' N D|+ A+ 2es+ T,
and degp(B) < |U'ND|+ A+ 2es = degp(B) < |U'NC|+ A +2es+ .

(d) U'nej=0for b, <j<m,and o(Wg)NL=10.
() [U* Ney| < [W5'| =257 (B),

where

l
=Y (dege,(B)) — ey, NU'| = 2(£ — b + 1)A,
Jj=bi

8. Embedding 7p.

First, suppose that we have R; € R4 at step i. Then, we embed R; in cluster A
and V% in Mp. If v is the predecessor of R;, choose from the the neighbourhood
of vertex p(v) a vertex that is

e typical to the cluster B,

e typical to the set Mp,
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e typical to the set M.

Using properties (@) and (), we know that we have at least (3 —3a)s—i > 0 ver-
tices to choose from. Now, we use Lemma L3I0 and embed the components of T;.

9. Embedding Rp.

Suppose, now, that, at step i, we have R; € Rp. Define a vertex in B to be
1-typical if it is

e typical with respect to the cluster A,

typical to the set L,

typical to both C' and D, for {C, D} = ¢,

i—1)

typical to both C' and D, for {C, D} = ¢,,

typical to M \ (ep,_, U ep,).

If v is the predecessor of vertex R;, embed the vertex R; in an unused neighbour
of p(v) that is an i-typical vertex of cluster B. By properties (@) and (L), we
have at least (§ — 7a)s — i > 0 unused vertices to choose from.

10. Embedding 7.

The embedding of T/ := T; N 7} is defined in a similar way as in the proof of
Proposition EZ5.26, but using the whole clusters, instead of a reserved part only.

12. Checking the properties of the embedding after step i.

Checking the Properties (@) — (&) is done similarly as in Proposition 22520

13. Embedding the trees of 75 \ 7p.

All the vertices of Rp are embedded in vertices of cluster B that are typical with
respect to L. For such a typical vertex v,

degeyu(v) 2 [Vi| = [Ws| = [UN L]+ |£]|A,

where U denotes the vertices used so far. We embed then T in the graph using

Lemma 22514
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14. Embedding the trees of 74.

The embedding of the trees in 74 is done in the same way as in Proposition ZZ5.20.

O

Remark 2.5.30. There is a variation to the proof of Proposition EER.29 It goes
exactly along this proof, but at the time we have embedded all the vertices in
Wg, we forget about the partition of M = Mr U Mp. We embed then 75 \ 7}
using Lemma 2014 without waiting until the end of the embedding of the trees
of 7T, and embed 7r and 74 in the whole matching M using Lemma EZ5.T0.

2.5.10 A simple generalisation

Jan Foniok asked if the tools developed to prove Theorem AT permits us to
embed other graphs than trees. Indeed, we proved, with Maya Stein, that we
can embed some graphs G, that we obtain from trees by adding some (carefully
chosen) edges. Then, we embed the spanning tree T of G, using the technique of
the proof of Theorem L0, with some extra precaution, to embed vertices that
are adjacent in G \ T" in vertices of G that are also adjacent.

In the proof of Theorem EZ5.T], we use the fact that any tree is bipartite. Indeed,
if we would like to embed a graph that is not bipartite, we surely would need
to find suitable triangles in the cluster graph H. Therefore the graph G has to
be bipartite. Also, we require the circles of G to be edge disjoint, so G keeps
a tree-like structure. Maybe, this condition may be slightly relaxed to get some
stronger result. This would imply some changes in the values of 6, ¢, a.

Theorem 2.5.31. For every v,q > 0 and for every ¢ € N there s an ng € N so
that for all graphs G on n > ng vertices the following is true.

If at least (1+)% vertices of G have degree at least (14 y)qn, then any bipartite
graph G with at most qn + ¢ edges that contains ¢ cycles, which are pairwise
edge-disjoint, embeds in G.

Sketch of the proof of Theorem Z5.3Tl
The proof goes along the proof of Theorem EE5Tl Set

€ 77r4q a 77r5q and m ma {500 [}
= = = X1~ .
5105 25107 0 2q

Regularity Lemma applied to these values gives us two natural numbers Ny and
MQ. Set

7 = min{~, ¢},

2 3101202
3= S - B, and  ng := max{Ny, 0

1.

7T6q2
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So, suppose G is a graph of order n > ny that satisfies the hypothesis of The-
orem Z53T  As in the proof of Theorem ZRJl, we find an («a, e; N)-equitable
partition of the vertex set V(G) with mg < N < My. We delete the undesirable
edges in GG and get a subgraph Gs. We define a cluster graph H on Gy, and using
Lemma 5.0 on H, we find two adjacent clusters A, B and a matching M with
V(M)N (AU B) = 0 such that one of the following holds.

1. degn(A), degy(B) > (1+ 55)qn,

2. degy(A) > (1 + 55)qn, degruc(B) > (1 + 55)% and each cluster neigh-

bouring A meets a different edge of the matching.

Now, we find inductively a spanning tree T in G and a matching M that is edge
disjoint with 7. Denote by I the set of all cycles in G. At each step 1 < £ < ¢,
we delete one edge e, of some cycle o, in such a way that the edges | J, e, forms
a matching.

At step 1, choose any cycle in G and denote it by o;. Choose any edge e; in oy
and delete it.

Now, suppose that we have deleted the edges eq,...e,1 in oq,...00_1, Tespec-
tively, such that (J,_,er from a matching. Denote by I',—; the set of cycles
{o1,...00_1}. If there exists a cycle 0 € I'\ I',_; that is adjacent to some of the
cycles in I'y_, denote this cycle by o,. Otherwise, choose any cycle in I' \ T'y_;
and denote it by oy.

Observe that, by our construction and the fact that the cycles are in I' pairwise
edge-disjoint, [V (0¢) NU,ep, , V()] < 1. As any cycle in I" has length at least 4,
there exists an edge e, € E(0y) that is vertex disjoint with [ J V(o). Delete

this edge ¢e.

oely_1

After |I'| steps, we have found our spanning tree 7" and a matching M that is
edge disjoint with 7.

Now, we apply Lemma 520, if case 1. occurs; and Lemma EZ52T] if case 2.
occurs. We get sets R4 and Rp C V(G), each of size at most 3(% + 2¢), and sets
T4 and 7p (and 7 if we have case 2) of subtrees of T'.

For an edge ¢, = {up, v} € E(M Noy), { € {1,...,c}, we define the o-
neighbourhood of the edge e, as the set {z}, x}}, where
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zy = N(ug) N V(o) \ {ve}
zy = N(ve) NV (op) \ {ur}

The vertices x} and x} are the neighbours of the edge e, in the cycle oy.

N
N

As o0y has length at least 4, we know that =} # . Observe that in our tree
ordering <, it hods that z}} < u, and zj < v,.

The idea of the proof is to embed T C G following the proof of Lemma 2520,
for case 1.; or the proof of Lemma EZ5.20, for case 2.; but with small changes for
the vertices in M and their o-neighbourhood to make sure that vertices forming
the edges e, are embedded in adjacent vertices in graph G.

So, suppose that at some point of our embedding process, we want to embed the
first of the two vertices zj, xj, for some edge e, € M. Without loss of generality,
suppose it is . As z} < u, and xj < v, the embedding ¢ is not defined for
any of the vertices zj,u, and v,, yet. Embed z} as usual, but in the rest of the
embedding process, we make sure that v, is embedded as the last of the vertices
xy,up,ve. This is possible, because z}] < vy, as it is on the path from R to vy,
and both vertices us, v, are in R. So, after the step when we embed zj, we can
choose u, as some R, as soon as we need, i. e. before chosing v,.

Denote by w; the vertex from {uy, 2} } we embed first and set wy := {uy, 2} } \ w;.
Without loss of generality, assume that v, € R,4. Then, we shall embed ws
on a vertex that is typical with respect to N(w;) N A. This is possible, as
|IN(wy) NA| > (0 —€)s > as. Then, at the time we want to embed vy, we have at
least ((0 —¢)?—7a)s —3(% +2¢) > 0 unused typical vertices to choose ¢(v;) from.

After having embedded wv,, we continue our embedding process as usual, but
taking special care with the embedding of the other vertices vertices u;, v;, a7
and 7. This ends the sketch for the proof of Theorem EZ5311 a

In this thesis, we investigated the Loebl-Komlés-Sés Conjecture. We brought
three contributions to this topic.

1. We brought a solution for the class of trees with diameter at most 5 (The-

orem A7)

2. We gave an approximate solution for large graphs strengthening the con-
dition on the degree for the graph into which we want to embed the tree

(Theorem ZAT)).
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3. Another result consists in embedding bipartite graphs containing few edge-
dijoint cycles in a graph G satisfying the conditions of Theorem EZ5T] (The-

orem EZ53T]).

The first result is an exact one, but only for a very restricted class of trees. It
seems that increasing the diameter of the trees rapidely increasses the number of
cases one has to consider. This makes our approach difficult to use for trees with
larger diameter.

The second result has no restriction on the structure of the tree, but, as any
result using the Regularity Lemma, the result applies only for large and dense
graphs. For sparse graphs, one may try to investigate the possibility of using the
Sparse Regularity Lemma (see Kohayakawa [10]).

An interesting question is to which extend Theorem EZ5.3T] can be generalised.
We have showned that in a graph G satisfying the conditions of Theorem Z5.3T],
we can embed any bipartite graph H satisfying the followings:

e the spanning tree of H has order at most k + 1,
e any edge in E(H) is contained in at most one cycle,

e the number of cycles is constant with respect to n = |V(G)|.

How much can we strengthen one of the last two conditions?

An other direction of investigation is to take out the approximation in Theo-
rem Z5.Jl This would imply a solution of the Loebl-Komlés-Sés Conjecture for
large graphs. Indeed, this was done by Zhao in the special case of the Loebl
conjecture, i.e. when k£ = § [[9]. Ajtai, Komlés, Simonovits and Szemerédi
are working on a paper that deals with the same question in the context of the

Erdés-Sés conjecture [2].
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Conclusion

In this thesis, we investigated the Loebl-Komlés-Sés Conjecture. We brought
three contributions to this topic.

1. We brought a solution for the class of trees with diameter at most 5 (The-

orem A7)

2. We gave an approximate solution for large graphs strengthening the con-
dition on the degree for the graph into which we want to embed the tree

(Theorem Z07T).

3. Another result consists in embedding bipartite graphs containing few edge-
dijoint cycles in a graph G satisfying the conditions of Theorem EZ5T] (The-

orem EZ53T]).

The first result is an exact one, but only for a very restricted class of trees. It
seems that increasing the diameter of the trees rapidely increasses the number of
cases one has to consider. This makes our approach difficult to use for trees with
larger diameter.

The second result has no restriction on the structure of the tree, but, as any
result using the Regularity Lemma, the result applies only for large and dense
graphs. For sparse graphs, one may try to investigate the possibility of using the
Sparse Regularity Lemma (see Kohayakawa [10]).

An interesting question is to which extend Theorem EZ5.3T] can be generalised.
We have showned that in a graph G satisfying the conditions of Theorem ZH.3T],
we can embed any bipartite graph H satisfying the followings:

e the spanning tree of H has order at most k + 1,
e any edge in F(H) is contained in at most one cycle,

e the number of cycles is constant with respect to n = |V(G)]|.

How much can we strengthen one of the last two conditions?
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An other direction of investigation is to take out the approximation in Theo-
rem Z5.Jl This would imply a solution of the Loebl-Komlés-Sés Conjecture for
large graphs. Indeed, this was done by Zhao in the special case of the Loebl
conjecture, i.e. when k£ = § [[9]. Ajtai, Komlés, Simonovits and Szemerédi
are working on a paper that deals with the same question in the context of the
Erdés-Sés conjecture [2].
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