
RAMSEY THEORY

Diana Piguet

May 7, 2007



Contents

Introduction 3

1 Regularity Lemma 6

1.1 Notion of Regularity . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Different versions of the Regularity Lemma . . . . . . . . . . . . . 8

1.3 Different formulations are equivalent . . . . . . . . . . . . . . . . 8

1.4 Cleaning the graph . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Properties of cluster graphs . . . . . . . . . . . . . . . . . . . . . 12

1.6 The proof of the Regularity Lemma . . . . . . . . . . . . . . . . . 15

1.6.1 Index of a partition . . . . . . . . . . . . . . . . . . . . . . 15

1.6.2 Refining the partition . . . . . . . . . . . . . . . . . . . . . 16

1.6.3 The Index Pumping Lemma . . . . . . . . . . . . . . . . . 18

1.6.4 Proof of the Regularity Lemma . . . . . . . . . . . . . . . 19

2 Embedding of Trees 20

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 A graph not not containing all trees with at most k edges . . . . . 21

2.3 The Loebl-Komlós-Sós Conjecture for paths . . . . . . . . . . . . 22

2.4 The Loebl-Komlós-Sós Conjecture for trees of small diameter . . . 28

2.5 The approximate version of the Loebl-Komlós-Sós Conjecture . . 34

2.5.1 Tools for the proof of the approximative version . . . . . . 35

2.5.2 Some simple embeddings . . . . . . . . . . . . . . . . . . . 41

2.5.3 Partitioning trees . . . . . . . . . . . . . . . . . . . . . . . 50

2.5.4 The proof of the approximate version . . . . . . . . . . . . 54

2.5.5 Simplified versions . . . . . . . . . . . . . . . . . . . . . . 58

2.5.6 Case 1 (non-simplified) . . . . . . . . . . . . . . . . . . . . 66

2.5.7 Case 2 (non-simplified) . . . . . . . . . . . . . . . . . . . . 72

2.5.8 A second proof for case 1 . . . . . . . . . . . . . . . . . . . 81

2.5.9 A second proof for case 2 . . . . . . . . . . . . . . . . . . . 84

1



2.5.10 A simple generalisation . . . . . . . . . . . . . . . . . . . . 89

Conclusion 93

Bibliography 95

2



Introduction

Ramsey Theory studies the appearance of some specific patterns in large struc-
tures. For example, Ben Green and Terence Tao proved that in the set of
primes (the structure), there is an arbitrarily long arithmetic progression (the
pattern) [9]. Another result in this area is Endre Szemerédi’s theorem on the
existence of an arbitrarily long arithmetic progression (the pattern) in subsets
of the natural numbers that have positive upper density [17]. Franklin Ramsey
classical theorem, reduced to the context of graphs, says that in any graph of
large order (the structure), there is either a relatively large independent set, or a
relatively large clique (the pattern) [16] (for the basic notions of graphs, see for
example Diestel [4]). As a last example, let us mention a result in combinatorial
geometry. Among many points in the plane that are in general position, there
is a large subset which forms a convex polygon (see [7]). There are many more
examples of Ramsey type theorems. For a good introduction on Ramsey Theory,
see for example [8].

In this thesis, we focus on the question of finding graphs (more particularly trees)
in larger graphs that satisfy certain conditions. We investigate the following con-
jecture by Martin Loebl, Jánós Komlós and Vera Sós.

Conjecture. If a graph G has at least half of its vertices of degree at least k,
then any tree with at most k edges embeds in G.

The topic is also related to the Ramsey number of a tree. Indeed, for the special
case of k = n

2
, the Loebl-Komlós-Sós Conjecture implies that the Ramsey number

r(T, 2) of a tree T is 2|E(T )|. This means that if we two-colour the edges of a
complete graph on 2n vertices, we find any tree with at most n edges in one of
the two colour classes.

There are two possible approaches how to investigate the Loebl-Komlós-Sós Con-
jecture. The first one is to reduce the problem only to certain classes of trees we
intend to embed into G. For example, it is easy to see that the Loebl-Komlós-Sós
Conjecture is true for the class of stars (a star of order k + 1 consists of a central
vertex of degree k connected to k vertices of degree 1).
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The second approach to the question consists in strengthening the condition on
the hosting graph, in particular to make it larger and denser. For example, if all
vertices of the graph G have degree at least k, it is easy to embed any tree on
k + 1 vertices.

In this thesis, we develop both approaches. The first result is the solution of
the Loebl-Komlós-Sós conjecture for the special class of trees with diameter at
most 5. By diameter of a tree T , we understand the length of the longest path
contained in T .

The second result is a solution of an approximate version of the Loebl-Komlós-Sós
Conjecture. The strengthening on the graph G is the following.

• The size k of the tree is linear with respect to the order of the graph.

• The graph G is large.

• The size of the set of vertices with high degree must be slightly larger than
n
2
.

• The degree of the vertices of the mentioned set has to be slightly more than
k.

This gives us the following theorem.

Theorem. For every γ, q > 0 there is an n0 ∈ N so that for all graphs G on
n ≥ n0 vertices the following is true.

If at least (1 + γ)n
2

vertices of G have degree at least (1 + γ)qn, then G contains,
as subgraphs, all trees with at most qn edges.

This result is based on a paper of Miklós Ajtai, Janós Komlós and Endre Sze-
merédi [1], where they proved the above stated theorem for the special case when
q = 1

2
. Their result can be easily generalised for q ≥ 1

2
, but the case when q < 1

2

needs new ideas.

The thesis is divided into two chapters. The first one, entitled Regularity Lemma,
contains background information on this powerful tool in modern graph theory.
It explains the notion of regularity, states the Regularity Lemma, gives a proof
of it and describe several properties we need in the second part. All the facts of
Chapter I are well-known. For a good survey on the topic, refer to [11].
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The second chapter, entitled Embedding of trees, contains mostly, but not exclu-
sively, new results. The solution of the Loebl-Komlós-Sós Conjecture for trees of
diameter at most 5 can be found in Section 2.4. This section is based on [15].
For completeness, we quote a result of Cristina Bazgan, Hao Li and Mariusz
Woźniak in Section 2.3 saying that the Loebl-Komlós-Sós Conjecture is true for
paths. This comparison is especially interesting, as it envolves completely differ-
ent classes of trees: one class contains trees with very small diameter, and the
other one with very large diameter.

In Section 2.5, we give a solution to an approximative version of the Loebl-
Komlós-Sos Conjecture, together with many tools for embedding trees using reg-
ularity. At the end of the section, we improve this result, extending it to a
class of graphs more general than trees. A shorter but more dense proof of the
approximate version of the Loebl–Komlós–Sós Conjecture can be found in [14].
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Chapter 1

Regularity Lemma

After introducing the notion of regularity in Section 1.1, we state several equiv-
alent formulations of the Regularity Lemma in Section 1.2 and we prove their
equivalence in Section 1.3.

Then, we discuss the usual procedure used after the application of the Regularity
Lemma in Section 1.4. The last section is devoted to some useful properties we
can deduct from regularity.

Most of the material in this chapter is from the notes [11] written by the author
during a course on Ramsey theory [13]. For a good survey on Regularity Lemma.

1.1 Notion of Regularity

For a graph G = (V, E) and for two disjoint sets X, Y ⊆ V , denote by e(X, Y )
the number |{{x, y} ∈ G, x ∈ X, y ∈ Y }|. Then the density is defined by

δ(X, Y ) :=
e(X, Y )

|X||Y | .

Given an ε > 0, call a pair (A, B) ε-regular, if for any subsets X ⊆ A and Y ⊆ B
with |X| ≥ ε|A| and |Y | ≥ ε|B|, we have

|δ(X, Y ) − δ(A, B)| < ε.

So, in a regular pair any the density between two significant subsets is about the
same as in the whole pair. If a pair is ε-regular, it gives us extra information,
because it can be approximated by a regular graph.
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In the definition of ε-regularity, the number ε represents two different things:
first, the portion of the set that forms a significant subset; and then, the differ-
ence of density allowed for significant sets. They have nothing in common, except
that they are small. Therefore, we bound them by ε.

In the next definition we differentiate these two meaning of ε and use α for the
portion of a set to be significant.

We say that a pair (A, B) is (ε, α)-regular if, for any subsets X ⊆ A and Y ⊆ B
with |X| ≥ α|A| and |Y | ≥ α|B|, it holds that |δ(X, Y ) − δ(A, B)| < ε.

A partition C = {V0, V1, . . . , VN} of a vertex set V (G) is called (ε; N)-equitable
(or equitable), if

• |Vi| = |Vj | for i, j ≥ 1,

• |V0| ≤ εn, where n = |V (G)|, and

• all but at most εN2 pairs (Vi, Vj) with i, j ≥ 1 are ε-regular.

Analogously, we we have the following definition.

A partition C = {V0, V1, . . . , VN} of a vertex set V (G) is called (ε, α; N)-equitable,
if

• |Vi| = |Vj | for i, j ≥ 1,

• |V0| ≤ εn, where n = |V (G)|, and

• all but at most εN2 pairs (Vi, Vj) with i, j ≥ 1 are (ε, α)-regular.

The sets Vi ∈ C are called clusters. The set V0 is called the exceptional set. The
only meaning of the exceptional set V0 is to have the rest of the clusters of the
same size. In this chapter, we formulate a version of Regularity Lemma that does
not consider equitable partition.

We say that a partition R′ refines a partition R, if, for any choice of an element
R′ ∈ R′, there exists an element R ∈ R such that R′ ⊆ R. Then, we write
R′ ≺ R.
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1.2 Different versions of the Regularity Lemma

Here is the first formulation of Szemerédi’s Regularity Lemma. We shall prove
this version in Section 1.6.

Theorem 1.2.1 (The Regularity Lemma). For any ε > 0 and any m ∈ N, there
exist M, n0 ∈ N such that every graph on n ≥ n0 vertices admits an (ε; N)-
equitable partition of its vertex-set that is ε-regular, with m ≤ N ≤ M .

The next formulation of the Regularity Lemma is the one we shall use in Sec-
tion 2.5.

Theorem 1.2.2 (Second formulation of the Regularity Lemma). For every ε, α >
0 and m ∈ N, there exist M, n0 ∈ N such that every graph G of order n ≥ n0

admits an equitable partition {V0, V1, . . . , VN} of its vertex-set with m ≤ N ≤ M .

In the following formulation of the Regularity Lemma, we do not require the
partition to be equitable, but only semi-equitable.

Theorem 1.2.3 (Third formulation of the Regularity Lemma). For every ε > 0
and every m ∈ N there exist M, n0 ∈ N such that every graph of order n ≥ n0

admits a partition {V1, . . . , VN} of its vertex set with m ≤ N ≤ M and

• ||Vi| − |Vj|| ≤ 1 for all i, j, and

• all but at most εN2 pairs (V − i, Vj) are ε-regular.

1.3 Different formulations are equivalent

In this section we prove the equivalence of the different formulations of the Reg-
ularity Lemma.

Proposition 1.3.1. Theorems 1.2.1, 1.2.2 and 1.2.3 are equivalent.

Proof. 1.2.1 ⇒ 1.2.2:
Suppose ε, α > 0 and m ∈ N are given. Set ε̃ := min{ε, α} and use Theorem 1.2.1
with values ε̃ and m. It gives us integers n0 and M .

We claim that if (Vi, Vj) is ε̃-regular, then it is also (ε, α)-regular. Let Ui ⊆ Vi

with |Uℓ| ≥ α|Vℓ| ≥ ε̃|Vℓ| for ℓ = i, j. Then,
∣
∣
∣
∣

e(Ui, Uj)

|Ui||Uj |
− e(Vi, Vj)

|Vi||Vj|

∣
∣
∣
∣
< ε̃ ≤ ε.

Also |V0| < ε̃n ≤ εn and at most ε̃N2 ≤ εN2 pairs (Vi, Vj) are not (ε, α)-regular.
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1.2.2 ⇒ 1.2.1:
Suppose an ε > 0 and a natural number m ∈ N are given. Then, set ε̃, α̃ := ε.
Theorem 1.2.2 with ε̃, α̃ and m implies Theorem 1.2.1 for ε and m.

1.2.1 ⇒ 1.2.3:
Suppose an m ∈ N and an ε > 0 are given. Choose ε̃ := ε2

16
and use Theorem 1.2.1

with the values m and ε̃. Then, for any graph G with at least n0(ε̃, m) vertices,
we get a vertex partition V (G) := C0 ∪ C1, . . . , CN such that |C0| < ε̃n, |Ci| =
|Cj| =: s for i, j = 1, . . .N , where m ≤ N ≤ M and all but at most ε̃N2 pairs
(Ci, Cj) are ε̃-regular.

Distribute the vertices of C0 between the sets C1, . . . , CN as evenly as possible.
We get sets V1, . . . , VN with |V1| ≤ |V2| ≤ · · · ≤ |VN | ≤ |V1| + 1 and no set V0.

We claim that, if a pair (Ci, Cj) is ε̃-regular, the corresponding pair (Vi, Vj) is
ε-regular.

Let Uℓ ⊆ Vℓ with |Uℓ| ≥ ε|Vℓ| for ℓ = i, j. Set V 0
ℓ := Vℓ ∩ C0, U0

ℓ := Uℓ ∩ C0, and
Sℓ := Uℓ \ U0

ℓ , i. e. Sℓ = Uℓ ∩ Cℓ. Then, Vℓ = V 0
ℓ ∪ Cℓ and Uℓ = U0

ℓ ∪ Sℓ.

We want to prove that |δ(Ui, Uj) − δ(Vi, Vj)| < ε. For this, we show that

(i) |δ(Si, Sj) − δ(Ci, Cj)| < ε̃,

(ii) |δ(Vi, Vj) − δ(Ci, Cj)| < 5ε̃,

(iii) |δ(Si, Sj) − δ(Ui, Uj)| < ε
2
.

To prove (i), observe that for ℓ = i, j,

|Sℓ| ≥ |Uℓ| − ε̃
n

N
≥ ε|Vℓ| − ε̃

n

N
≥ ε̃|Cℓ|.

As (Ci, Cj) is ε̃-regular, (i) holds.

We prove (ii) by contradiction. Assuming that (ii) does not hold, we get

5ε̃
n2

N2
≤ 5ε̃|Vi||Vj| ≤

∣
∣ e(Vi, Vj) − δ(Ci, Cj)(|Ci ∪ V 0

i ||Cj ∪ V 0
j |)

∣
∣

≤ |e(Vi, Vj) − e(Ci, Cj)| + δ(Ci, Cj)
(
|Ci||V 0

j | + |Cj||V 0
i | + |V 0

i ||V 0
j |

)

≤ (1 + δ(Ci, Cj))(2ε̃
n2

N2
+ ε̃2 n2

N2
) ≤ 2ε̃

n2

N2
(2 + ε̃)

< 5ε̃
n2

N2
,

a contradiction.
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We prove (iii) also by contradiction and assuming, without loss of generality, that
|Uj| ≥ |Ui|.

ε2

4

n

N
|Uj| <

ε

4
(ε − ε̃)

n

N
|Uj |

≤ ε

2
|Ui||Uj| ≤

∣
∣ δ(Si, Sj) · |U0

i ∪ Si||U0
j ∪ Sj| − e(Ui, Uj)

∣
∣

≤ e(Si, Sj) − e(Ui, Uj)| + δ(Si, Sj)
(
|Si||U0

j | + |Uj ||U0
i |

)

≤ (1 + δ(Si, Sj))
(

ε̃
n

N
(|Si| + |Uj|)

)

≤ 4ε̃
n

N
|Uj|

=
ε2

4

n

N
|Uj|,

a contradiction.

We have just shown that |δ(Ui, Uj)−δ(Vi, Vj)| ≤ |δ(Si, Sj)−δ(Ci, Cj)|+|δ(Vi, Vj)−
δ(Ci, Cj)| + |δ(Si, Sj) − δ(Ui, Uj)| < 6ε̃ + ε

2
< ε2

2
+ ε

2
< ε.

So, we have at most ε̃N2 < εN2 pairs (Vi, Vj) that are not ε-regular.

1.2.3 ⇒ 1.2.1:

Suppose an ε > 0 and an m ∈ N are given. Set ε̃ := ε
2
. Theorem 1.2.3, with ε̃

and m, gives us integers ñ0 and M . Set n0 := max{ñ0,
M
ε
}. Let G be a graph of

order n ≥ n0, and C1, . . . CN its (ε̃; N)-equitable partition with m ≤ N ≤ M .

In every cluster Ci with |Ci| > |C1|, choose some vertex vi ∈ Ci. Set V0 :=
{vi; |Ci| > |C1|}. Then |V0| < N ≤ εn. For each cluster Ci, set Vi := Ci \ V0.
Then, |V1| = |V2| = · · · = |VN |.

We claim that, if the pair (Ci, Cj) is ε̃-regular, then the corresponding pair (Vi, Vj)
is ε-regular. Let Uℓ ⊆ Vℓ with |Uℓ ≥ ε|Vℓ| for ℓ = i, j.

Observe that |Uℓ| ≥ ε|Vℓ| ≥ 2̃ε|Vℓ| ≥ ε̃|Cℓ|, for ℓ = i, j. By regularity of the pair
(Ci, Cj), we have

|δ(Ui, Uj) − δ(Ci, Cj)| < ε̃.
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As |Vℓ| ≥ |Cℓ| − 1 ≥ ε̃|Cℓ|, we have

|δ(Vi, Vj) − δ(Ci, Cj)| < ε̃,

implying the inequality

|δ(Ui, Uj) − δ(Vi, Vj)| < 2ε̃ = ε.

We have at most ε̃N2 < εN2 pairs (Vi, Vj) that are not ε-regular.

Hence the equivalence between Theorems 1.2.2, 1.2.1 and 1.2.3 is proved.

1.4 Cleaning the graph

The ε-regularity (or (ε, α)-regularity) of a pair gives us extra information on the
graph G. Indeed we can approximate this pair with a regular graph. We still
have some pairs of clusters that are not regular, and therefore, we have no control
on the degree of the vertices in this pair. We have also no information on the
edges incident to the set V0 and on the edges lying inside some cluster.

An other problem is when the density between a pair is very low (less than ε).
Then, it may happen that two significant subsets in the pair have no edge be-
tween them. This does not suit us, as we want to take profit of the non-zero
degree of the vertices to embed some graph in G.

Therefore, we will delete the undesirable edges to get a subgraph Gδ. We delete

• all edges incident to the set V0,

• all edges lying in a cluster,

• all edges in irregular pairs, and

• all edges in pairs with low density (≤ δ).

This procedure erases at most

εn2 + N
( n

N

)2

+ εN2
( n

N

)2

+ N2δ
( n

N

)2

≤ (2ε +
1

m
+ δ) n2 (1.1)

edges.

We shall call such a graph Gδ a cleaned graph (with minimal density δ).
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1.5 Properties of cluster graphs

After the cleaning procedure of Section 1.4 we got a subgraph Gδ of a graph G.
In the graph Gδ, all pairs are regular and have either density 0 or density at least
δ. On such a subgraph Gδ, we define a cluster graph H = H(Gδ) as follows. The
vertices of H are the clusters in Gδ and two vertices C, D in H are joined by an
edge, if the density in the pair (C, D) is positive.

We use the same notation to denote the cluster (set of vertices in Gδ) and the
vertex of the cluster graph.

In a cleaned graph, most of the vertices have a degree close to the average degree
of the cluster in which it lies. Throughout this section, suppose that Gδ is a
cleaned graph with minimal density δ and of order n with (α, ε)-regular pairs
and cluster’s size s.

Lemma 1.5.1. Let (C, D) be a pair of clusters in Gδ. Then, all but at most αs
vertices v in C have degD(v) > degD(C) − εs ≥ (δ − ε)s.

We call those (1 − α)s vertices typical vertices with respect to D.

Proof of Lemma 1.5.1. Suppose on the contrary that there is a set C ′ ⊆ C of size
> αs of vertices v with degD(v) ≤ degD(C)−εs. Then, degD(C ′) ≤ degD(C)−εs,
implying

e(C, D)

s2
− e(C ′, D)

|C ′|s ≥ ε,

a contradiction with the regularity of the pair (C, D).

In a similar way, we get the following lemma.

Lemma 1.5.2. Let (C, D) be a pair of clusters in Gδ. Then, all but at most αs

vertices v in C have degD(v) < degD(C) + εs := e(C,D)
s

+ εs.

Proof of Lemma 1.5.2. Similarly as before, denote by C ′ the set of vertices v with
degD(v) ≥ degD(C) + εs. If |C ′| ≥ αs, then

e(C ′, D)

|C ′|s − e(C, D)

s2
≥ ε.

This yields a contradiction.

Corollary 1.5.3. Let (C, D) be a pair of clusters in Gδ. Then all but at most
2αs vertices v in C1 have degD(v) ∈ (degD(C) − εs, degD(C) + εs).
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Now, instead of looking for the degree in the whole cluster D, we are interested
in the degree into a significant subset of D.

Lemma 1.5.4. Let (C, D) be a pair of clusters in Gδ and let D′ ⊆ D with
|D′| ≥ αs. Then, all but at most αs vertices v in C have degD′(v′) > degD′(C)−
ε|D′| ≥ (δ − ε)|D′| ≥ (δ − 2ε)s.

We call those (1 − α)s vertices typical vertices with respect to D′.

Proof of Lemma 1.5.4. First, observe that as D′ is a significant set, we have

e(D′, C)

|D′|s ≤ e(D, C)

s2
+ ε.

Denoting by C ′ the set of vertices v with degD′(v′) ≤ degD′(C)− 2ε|D′|, we have

e(D′, C ′)

|D′||C ′| ≤ e(D′, C)

|D′|s − 2ε ≤ e(D, C)

s2
− ε.

This implies
e(D, C)

s2
− e(D′, C ′)

|D′||C ′| ≥ ε,

a contradiction with the regularity of the pair (C, D).

Lemma 1.5.5. Let (C, D) be a pair of clusters in Gδ and let D′ ⊆ D with
|D′| ≥ αs. Then, all but at most αs vertices v in C have degD′(v′) < degD′(C) +
2ε|D′| ≤ degD′(C) + 2εs.

Proof of Lemma 1.5.5. Similarly as before, if C ′ denotes the set of vertices v with
degD′(v′) ≥ degD′(C) + 2ε|D′|, we get

e(D′, C ′)

|D′||C ′| ≥ e(D′, C)

|D′|s + 2ε ≥ e(D, C)

s2
+ ε,

again contradicting the regularity of the pair (C, D).

After studying the degrees into cluster D or a significant subset of D, we turn
our attention to the degree into a wider set. formulace

Lemma 1.5.6. Let C be a cluster of graph Gδ. Then,

1. all but at most αs vertices v of cluster C has degree at least degGδ
(v) ≥

degGδ
(C) − εn and

2. all but at most αs vertices v have degGδ
(v) ≤ degGδ

(C) + εn.
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Proof of Lemma 1.5.6. Let C ′ be the set of vertices v in cluster C that have
degGδ

(v) < degGδ
(C) − εn. Then, degGδ

(C ′) < degGδ
(C) − εn. On the other

hand, as |C ′| ≥ αs, we have

degGδ
(C ′) =

∑

D 6=C

degD(C ′) ≥
∑

D 6=C

degD(C) − εs > degGδ
(C) − εn,

a contradiction. The second case is proved similarly.

Lemma 1.5.7. Let D be a cluster of graph Gδ. Let C be a set of clusters. Let
C ′ ⊆ C with |C ′| ≥ αs, for each cluster C ∈ C. Denote by C′ =

⋃

C∈C C ′ the
union of those subsets. Then

1. all but at most αs vertices v of cluster D has degree at least degC′(v) >
degC′(D) − 2εs|C| and

2. all but at most αs vertices v of cluster D have degree at most degD′(v) <
degC′(D) + 2εs|C|.

We call those (1−α)s vertices typical vertices with respect to C′ (We use only the
first property).

Proof of Lemma 1.5.7. Let denote by D′ the set of vertices v with degC′(v) ≤
degC′(D) − 2εs|C|. If |D′| ≥ αs, then by regularity,

degC′(D′) =
∑

C∈C
degC′(D′) >

∑

C∈C
degC(D) − 2εs = degC′(D) − 2εs|C|.

On the other hand, by the definition of D′,

degC′(D′) ≤ degC′(D) − 2εs|C|,
a contradiction.

The second case is proved analogously.

Lemma 1.5.8. Let C be a cluster and let C ′ ⊆ C be the set of vertices in C that
has degree at least ∆ in the graph Gδ. If |C ′| ≥ αs, then degGδ

(C) ≥ ∆ − εn.

Proof of Lemma 1.5.8.

degGδ
(C) =

∑

D 6=C

degD(C) =
∑

D 6=C

δ(C, D)s

≥
∑

D 6=C

(δ(C ′, D) − ε)s ≥ degGδ
(C ′) − εn

≥ ∆ − εn
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Let us resume some of the properties we saw in the lemmas of this section. Let
C, D ∈ V (H) and C ⊆ V (H).

degC′(v) > degC′(D) − 2εs for all but at most αs vertices v ∈ D. (1.2)

degGδ
(v) > degGδ

(D) − εn for all but at most αs vertices v ∈ D. (1.3)

degC′(v) > degC′(D) − 2εs|C| for all but at most αs vertices v ∈ D. (1.4)

1.6 The proof of the Regularity Lemma

For any partition of a vertex-set, we define an index. This index is bounded by
1. In Lemma 1.6.1, we observe that refining the partition does not decrease its
index. In Lemma 1.6.2, we show how to take profit of the irregularity of a pair
to find a partition of the pair with higher index.

In the Index Pumping Lemma 1.6.3, on the base of those observations, we show
how to refine a non-regular partition to get its refinement with higher index.

The proof of the Regularity Lemma 1.2.1 consists of iterating the use of the Index
Pumping Lemma 1.6.3.

1.6.1 Index of a partition

For a graph G = (V, E) and for disjoint A, B ⊆ V , we define the index q(A, B)
of a pair (A, B) as follows.

q(A, B) :=
|A||B|

n2
d2(A, B) =

e(A, B)2

|A||B|n2
.

For a partition A of A and a partition B of B, let us define the index q(A,B) of
these partitions as follows.

q(A,B) :=
∑

A′ ∈ A
B′ ∈ B

q(A′, B′).

Note that for a partition P = {C1, . . . , Ck} of our vertex set V , we define

q(P) =
∑

i<j

q(Ci, Cj).
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For the partition of the vertex set with an exceptional set C0, we consider this set
as a set of singletons, instead of taking it as a whole. We can do that, because
we do not expect from the exceptional set nothing else than to be small, so we
treat it in the proof as singletons and at the end put these singeltons together to
form the exceptional set.

1.6.2 Refining the partition

To prove the Regularity Lemma, we need the following Cauchy-Schwartz inequal-
ity. For real numbers m1, . . . , mk > 0 and e1, . . . , ek > 0,

∑

i

e2
i

mi

≥ (
∑

i ei)
2

∑

i mi

. (1.5)

Lemma 1.6.1.

1. Let C, D ⊆ V be disjoint sets. If C is a partition of C and D is a partition
of D, then q(C,D) ≥ q(C, D).

2. If P,P ′ are partitions of V and P ′ refines P, then q(P ′) ≥ q(P).

Proof of Lemma 1.6.1.
1) Let C = {C1, . . . , Ck} and D = {D1, . . . , Dl}, then

q(C,D) =

k,l
∑

i,j=1

q(Ci, Dj) =

k,l
∑

i,j=1

|Ci||Dj|
n2

d2(Ci, Dj) =
1

n2

k,l
∑

i,j=1

e2(Ci, Dj)

|Ci||Dj|

≥
︸︷︷︸

(1.5)

(
∑k,l

i,j=1 e(Ci, Dj))
2

n2
∑k,l

i,j=1 |Ci||Dj|
=

1

n2

e2(C, D)

|C||D| = q(C, D)

2) Let P = {C1, . . . , Ck} and for i = 1, . . . , k let Ci be the partition of Ci induced
by P ′, then

q(P) =
∑

i<j

q(Ci, Cj) ≤
︸︷︷︸

1)

∑

i≤j

q(Ci, Cj) ≤
∑

i

q(Ci) +
∑

i<j

q(Ci, Cj) = q(P ′)

Assuming that the pair (C, D) is not regular allows us to strengthen the previous
lemma. Then, the irregularity allows us to increase the index.
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Lemma 1.6.2. Let ε > 0 and let C, D ⊆ V be disjoint sets. If (C, D) is not
regular, then there are partitions C = (C1, C2) of C and D = (D1, D2) of D such
that

q(C,D) ≥ q(C, D) + ε4 |C||D|
n2

. (1.6)

Proof of Lemma 1.6.2. If (C, D) is not a regular pair, then there exist C1 ⊆ C
and D1 ⊆ D with |C1| ≥ ε|C| and |D1| ≥ ε|D| such that |η| > ε, where
η := d(C1, D1)− d(C, D). The partitions C = (C1, C \C1) and D = (D1, D \D1)
satisfy (1.6).

To simplify the notation, set ei,j = e(Ci, Dj), e = e(C, D), ci = |Ci|, dj = |Dj|, c =
|C|, d = |D|. Now

q(C,D) =
1

n2

k,l
∑

i,j=1

e2
i,j

cidj

=
1

n2

e2
1,1

c1d1
+

1

n2

∑

i+j>2

e2
i,j

cidj

≥
︸︷︷︸

(1.5)

1

n2

e2
1,1

c1d1
+

1

n2

(
∑

i+j>2 ei,j)
2

∑

i+j>2 cidj

=
1

n2

(
e2
1,1

c1d1
+

(e − e1,1)
2

cd − c1d1

)

By definition, we have e1,1 = c1d1
e
cd

+ ηc1d1, inserting this into the equation, we
have

n2q(C,D) ≥
(

e2
1,1

c1d1
+

(e − e1,1)
2

cd − c1d1

)

=
1

c1d1

(

c1d1
e

cd
+ ηc1d1

)2

+
1

cd − c1d1

(

e − c1d1
e

cd
− ηc1d1

)2

= c1d1

( e

cd
+ η

)2

+ (cd − c1d1)

(
e

cd
− ηc1d1

cd − c1d1

)2

≥ e2

cd
+ c1d1η

2 ≥ e2

cd
+ ε2cd · ε2

So q(C,D) ≥ 1
n2

(
e2

cd
+ ε4cd

)

.

Hence, the partitions C and D satisfy (1.6)
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1.6.3 The Index Pumping Lemma

The following Lemma, is the key tool in the proof of the Regularity Lemma.

Lemma 1.6.3 (Index Pumping Lemma). Let 0 < ε < 1
4

and P = {C0, C1 . . . , Ck}
be a partition of V with exceptional set C0 and |Ci| = |Cj| for i, j ≥ 1. If P is not
ε-regular, then there is a partition P ′ = {C ′

0, C
′
1, . . . , C

′
l} of V with exceptional

set C ′
0 such that

1. k ≤ l ≤ k · 4k,

2. |C ′
0| ≤ |C0| + n

2k ,

3. |C ′
1| = |C ′

2| = · · · = |C ′
l |,

4. q(P ′) ≥ q(P) + ε5

2
.

Proof of Lemma 1.6.3. We have a non-regular partition P = {C0, C1, . . . , Ck}.
For all 1 ≤ i, j ≤ k, define a partition Cij of Ci and a partition Cji of Cj as follows.

If the pair (Ci, Cj) is ε-regular, then Cij = {Ci} and Cji = {Cj}, but if the pair
is not ε-regular, use the partition as in Lemma 1.6.2. Then |Cij | = |Cji| = 2 and

q(Cij , Cji) ≥ q(Ci, Cj) +
ε4|Ci||Cj |

n2 . Let C0 := {{v}, v ∈ C0}.

For each i = 1, . . . , k, let Ci be the unique maximal partition (with respect to ≺)
refining all Cij , with j = 1, . . . , k. Then, |Ci| ≤ 2k−1. Now, consider the partition

C = {C0} ∪
⋃k

i=1 Ci. We have C ≺ P and k ≤ |C| ≤ k · 2k−1.

The index of the partition C satisfies

q(C) =
∑

1≤i<j≤k

q(Ci, Cj) +
∑

1≤i

q(C0, Ci) +
∑

0≤i

q(Ci)

≥
∑

1≤i<j≤k

q(Ci, Cj) +
∑

1≤i

q(C0, Ci) + q(C0)

≥
︸︷︷︸

1.6.2

∑

1≤i<j≤k

q(Ci, Cj) + εk2 ε4c2

n2
+

∑

1≤i

q(C0, Ci) + q(C0)

= q(P) + ε5k2c2

n2

> q(P) +
ε5

2
.

The last inequality comes from c ≥ n(1−ε)
k

≥ 3
4

n
k
. So, k2c2

n2 ≥
︸︷︷︸

ε≤ 1

4

32

42 > 1
2
.
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Now, we modify the partition C to get a partition with all unexceptional clusters
of the same size. As |C| ≤ k · 2k−1 , the average size of a cluster is n

k·2k−1 . Set
d := c

4k . To construct the partition P ′, we divide each set into smaller sets of size
d and put the rest-over into the set C ′

0. For each cluster of C we put less then d
elements into C ′

0. We have

|C ′
0| ≤ |C0| + (d − 1)|C| ≤ |C0| +

n

k

1

4k
· k2k = |C0| +

n

2k
.

Then the set C ′
0 is not too big, as we promised. What about the index of P ′? We

did change the partition, but as we refined it we could only increase the index,
so

q(P ′) ≥ q(C′) ≥ q(P) +
ε5

2
.

This ends the proof of the Index Pumping Lemma.

1.6.4 Proof of the Regularity Lemma

Now, with an iterate use of the Index Pumping Lemma, we prove the Regularity
Lemma.

Proof of the Regularity Lemma 1.2.1. The main idea is to use the Index Pumping
Lemma 1.6.3 2

ε5 times. Let P0 be an initial partition with m clusters. If the given
partition is regular, we are done. If not, then use inductively the Index Pumping
Lemma 1.6.3. If a partition Pi is not regular, we find a partition Pi+1 such that
q(Pi+1) ≥ q(Pi) + ε5

2
. As the index is bounded by 1, we can repeat this step at

most 2
ε5 times.
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Chapter 2

Embedding of Trees

2.1 Introduction

Martin Loebl conjectured the following:

Conjecture 2.1.1 (Loebl Conjecture). If a graph G of order n has at least n
2

vertices of degree at least n
2
, then any tree with at most n

2
edges embeds into G.

Janós Komlós and Vera T. Sós generalised the Loebl Conjecture to the following
[6]:

Conjecture 2.1.2 (Loebl-Komlós-Sós Conjecture). If a graph G has at least half
of its vertices of degree k, then any tree with at most k edges embeds in the graph
G.

An other related conjecture comes from Paul Erdős and Vera T. Sós [5]. Instead
of considering graphs with high median degree, they considered graphs with high
average degree.

Conjecture 2.1.3 (Erdős-Sós Conjecture). Let G be a graph on n vertices with
more than n

2
(k − 1) edges. Then, any tree with at most k edges embeds into G.

If true, the Erdős-Sós Conjecture would imply an immediate bound on the Ram-
sey number for trees. Indeed, if we colour a complete graph on ℓk vertices with ℓ
colours, then in at least one colour, we have more than (k − 1)n

2
edges. Then by

the Erdős-Sós Conjecture, we would be able to embed any tree with at most k
edges in this colour-class. Ajtai, Komlós, Simonovits and Szemerédi are working
on a paper on the Erdős-Sós Conjecture for graphs on sufficiently many vertices
(see [2]). Andrew McLennan proved that the Erdős-Sós Conjecture is true for
trees of diameter at most four. The proof of this result can be found in [12].
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It is trivial to see that both the Loebl-Komlós-Sós and the Erdős-Sós Conjec-
ture are true for stars. Indeed, it is enough to find one vertex of degree k and
embed the center of the star on this vertex. We prove the simple fact that the
Loebl-Komlós-Sós Conjecture is true for dumbbells, (two stars with their centres
joined by an edge) in the beginning of Section 2.4. Then, in the rest of the sec-
tion, we prove that the conjecture is also true for any tree with diameter at most 5.

Cristina Bazgan, Hao Li and Mariusz Woźniak proved that the Loebl-Komlós-Sós
Conjecture is true for the class of trees consisting of paths and also for the class
of trees consisting of paths with one of its vertex identified with a centre of a star.
We insert the proof of their theorem in Section 2.3, and find some other classes
of trees for which the Loebl-Komlós-Sós Conjecture is true as an easy corollary
of their theorem.

In Section 2.2, by extending an argument of Zhao [19], we prove that condition
on the number of vertices with degree at least k can not be relaxed too much, for
k ≤ n

2
. Indeed, we can not replace n

2
by n

2
−√

n − 2.

Section 2.5 presents an approximation of the Loebl-Komlós-Sós Conjecture for
sufficiently large graphs; it is Theorem 2.5.1. This result is a joined work with
Maya Stein. It is greatly inspired by a preprint of Ajtai, Komlós and Szemerédi
[1]. In this thesis the proof of this result is divided in different independent lem-
mas, introducing many tools for the embedding of trees into sets of regular pairs.
Also we present two different proofs, using different embedding techniques. At
the end of the section, there is an easy generalisation of Theorem 2.5.1, extend-
ing the class of graphs that we can embed in G to a slightly wider class. This is
Theorem 2.5.31. A shorter, but denser version of the proofs of Theorems 2.5.1
and 2.5.31 can be found in [14].

2.2 A graph not not containing all trees with at

most k edges

In this section we show that, for k ≤ n
2
, there is a graph with n

2
−

√
n
q
− n

k
vertices

with degree k that does not contain a certain tree of order k + 1.

Construction 2.2.0.1. Let k = qn with q ≤ 12 and let G be a graph of order n with
a vertex set V1 ∪ · · · ∪ V 1

q
such that |Vi| = k for all i = 1, . . . , 1

q
. Let Ai ∪Bi = Vi

be a partition of the vertex set Vi, for all i ∈ [1
q
] such that |Ai| = qn

2
−√

qn − 1.
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Each vertex of the set Ai is adjacent to any vertex in Vi and sends exactly one edge
in Bi+1 (if i = 1

q
, then it sends to B1) in the following way. Partition Ai in subsets

A1
i , . . . , A

m
i , each of size at most

√
qn. We have that m =⌉|Ai|/√qn⌈≤

√
qn

2
− 1.

Choose some vertices vi+1
1 , . . . , vi+1

m in the set Bi+1. Now, each vertex from Aj
i is

adjacent to the vertex vi+1
j .

The vertices in
⋃

Ai have degree k and |⋃Ai| = 1
q
( qn

2
−√

qn−1) = n
2
−

√
n
q
− 1

q
.

Lemma 2.2.1. Let T be a tree of order k + 1 with one vertex v of degree k
2

and
all vertices in N(v) have degree 2. All other vertices are leaves. Then, G defined
in Construction 2.2.0.1 does not contain T as a subgraph.

Proof of Lemma 2.2.1. For contradiction, suppose that there is an embedding ϕ
of the tree T in G.

A vertex vi
j has at most

√
qn neighbours in Ai−1. Therefore, the degree of the

vertices in Bi is at most
√

qn + |Ai| < q n
2
. This implies that the vertex v ∈ V (T )

cannot be embedded in any vertex of
⋃

Bi, as deg(v) = qn

2
> deg(u) for any

u ∈ ⋃
Bi.

So ϕ(v) ∈ ⋃
Ai. By the symmetry of the construction of G, we may reduce

ourself to the study of the case when ϕ(v) is in one of the Aℓ.

Denote by B′ the set of vertices in
⋃

Bi that have positive degree in
⋃

Ai \ Aℓ.
The set B′ consists of one vertex in Bℓ−1 and m vertices of Bℓ. Therefore we have

|B′| ≤
√

qn

2
.

Now, the vertex ϕ(v) has degree at most
√

qn

2
in B′ and degree qn

2
−√

qn − 2 in
Aℓ. So we have that

degB′∪Aℓ
(ϕ(v)) ≤ qn

2
− 2.

The vertices in Bℓ \ B′ have neighbours only in Aℓ. This is a contradiction with
the fact that there is an embedding extending ϕ ↾ v.

2.3 The Loebl-Komlós-Sós Conjecture for paths

Next theorem says that the Loebl–Komlós–Sós Conjecture is true for paths.

Theorem 2.3.1 (Bazgan, Li, Woźniak). Any graph with at least half of its ver-
tices having degree at least k contains any path of length k.
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Corollary 2.3.2. The Ramsey number for paths r(P, 2) is 2 · |E(P )|.

Indeed, if we 2-colour the edges of a complete graph on 2n vertices, then, in one
of the two colours, we have at least n

2
vertices of degree at least n

2
. Theorem 2.3.1

implies then, that in this colour we can find any path of length at most n.

Proof of Theorem 2.3.1. The proof goes by contradiction. Let k be the smallest
integer such that Theorem 2.3.1 does not hold. Then k ≥ 3, as for k = 2 the the-
orem holds trivially. With this choice of k, let n be the smallest integer for which
there a graph G of order n such tat G satisfy the hypothesis of Theorem 2.3.1, but
not the conclusion. Also suppose that G is minimal, i. e. for each edge e ∈ E(G)
we have that G − e does not satisfy the hypothesis of 2.3.1 anymore. Denote by
L the set of vertices that have degree at least k. Observe that S := V (G) \ L is
an independent set.

By minimality of n, we have that G is connected, otherwise at least one of the
components satisfies the hypothesis of 2.3.1 and is of smaller order. Therefore, we
could embed the path in this component. Also we may assume that each vertex
v ∈ L has at most one neighbour of degree 1, otherwise if v1, v2 are neighbours
of some v ∈ L and deg(v1) = deg(v2) = 1, then the graph G−{v1, v2} is of order

n−2 and has at least |L\{v}| ≥ n
2
−1 = |V (G)\{v1 ,v2}|

2
vertices of degree at least k.

Therefore we can embed our path in G− {v1, v2}. Similarly we get the following
lemma.

Lemma 2.3.3. Let X ⊆ V \ L. Then |X| < 2|N(X)|.

Proof of Lemma 2.3.3. For contradiction suppose that |X| ≥ 2|N(X)|. Consider
the graph G′ := G − X. The order of G′ is at most n − 2|N(X)| =: n′. The set
L(G′) of vertices in G′ with degree at least k contains L \ N(X) and therefore
|L(G′)| ≥ n

2
−|N(X)| = n′

2
. By our assumption, n is the smallest integer for which

the Theorem 2.3.1 does not hold. Therefore we can embed a path of length k in
G′ ⊆ G, a contradiction.

Lemma 2.3.4. The graph G contains none of the following subgraphs

1) a path P of length k − 1 with one extremity in the set L,

2) a path P ′ of length k − 2 with both extremities in the set L,

3) a cycle C of length k,

4) a cycle C ′ of length k − 1,

5) a cycle C̃ of length k − 2.
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Proof of Lemma 2.3.4. 1) If v is the extremity of the path P that lies in L then
it has at least 1 neighbour u that does not lie in the path P . Then the path
V (P ) ∪ {u}, E(P ) ∪ {v, u} is a path of length k in the graph G, a contradiction.

2) Let v1, v2 ∈ L are the two extremities of the path P ′. Then v1 has at least one
neighbour u that does not lie in the path P ′. Then the path V (P ′)∪{u}, E(P ′)∪
{v1, u} is a path in G of length k − 1 with one extremity in L, a contradiction
with 1).

3) We have that |V (G)| ≥ k + 1 and as G is connected there exists a vertex v in
V (G) \ V (C) that is adjacent to our cycle C. Then we can find a path of size k
in the induced subgraph on V (C) ∪ {v}, a contradiction.

4) First suppose that there is a vertex v ∈ L \ V (C ′). As G is connected, we
can fin a path connecting v with the cycle C ′ such that all vertices except one
extremity lie in V (G) \ V (C ′). Then we can find a path of length k − 1 with one
extremity in L in the graph G, a contradiction with 1). Therefore we may sup-
pose that the cycle C ′ contains all vertices of the set L. If two vertices u, v ∈ L
are adjacent in C ′, then C ′−{u, v} is a path of length k−2 with both extremities
in L, a contradiction with 2). So there are no consecutive vertices from L on C ′.
As V (G) \ L is independent and |L| ≥ |V (G) \ L|, we have that C ′ goes through
all vertices from G and therefore is of length |V (G)| ≥ k + 1, a contradiction.

5) Suppose that there is a cycle of length k − 2 and choose between all cycles of
length k − 2, the one with the most vertices in L.

First suppose that there exists a vertex in L \ V (C̃). As G is connected, there
exists a path connecting this vertex with the cycle C̃. This path is of length at
most 1, otherwise we can find a path of length k − 1 with one extremity in L, a
contradiction to 1). So we have an edge {v, u} ∈ E(G), with v ∈ L \ V (C̃) and
u ∈ V (C̃).

If the neighbour u1 or u2 of u in the cycle C̃ is in L, then the path with vertex
set V (P )∪{v} and with edges E(P )∪{u, v}\{u, ui} is of length k−2 with both
extremities ui and v in L, a contradiction with 2). So any neighbour of v that
lies on the cycle C̃ is from L and its neighbours on the cycle are in V (G) \ V (C̃).

Consider w, the neighbour of u1 in the cycle C̃, different from u. If {v, w} ∈ E(G),
then the path {w, v, u} together with C̃−u1 forms a cycle of length k−2 with one
more vertex from L than C̃, a contradiction. But as u1 /∈ L, we have that w ∈ L
and therefore between two neighbours of v in C̃ we have at least three vertices (two
from V (G) \L and one from L between them). Hence |N(v)∩V (C̃)| ≤ (k−2)/4
and thus |N(v) \ V (C̃)| ≥ (3k + 2)/4 ≥ 2 for k ≥ 2. Observe that all neighbours
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of v, not lying on C̃, are in V (G)\L, otherwise we find a path of length k−1 with
one extremity, the neighbour of v, lying in L \ V (C̃). This contradicts 1). So,
by Lemma 2.3.3, at least one of these neighbours v1 have degree greater than 1.
All the neighbours of v1 are in V (C̃) ∪ {v}, otherwise there is a path of length k
formed by the path of length 3 containing this neighbour, and the vertices v1, v, u
and by C̃ −{u, u1}. So let v2 be its neighbour on the cycle C̃. Consider the path
formed by the path of length 2 on vertices v, v1, v2 and by C̃−e, where e is one of
the edges containing v2. This path has length k − 1 and has one extremity in L,
a contradiction. Therefore we may assume that the cycle C̃ contains all vertices

in L and thus k − 2 = |L|+ |YC |, where YC := V (C̃) \L. Consider an orientation
of our cycle C̃ and denote by S the set of vertices from L which has a successor
in C̃ also in L. The cardinality of S is equal to the number of edges in C̃ with
both extremities in L and thus is equal to

|S| = |E(C̃)| − 2|YC| = k − 2 − 2|YC| = |L| − |YC |. (2.1)

We claim that none of the vertices from S have a common neighbour in V (G) \
V (C̃). Indeed if u /∈ V (C̃) is a common neighbour to v1, v2 ∈ S then consider the
path formed by the path of length 2 containing v1, u, v2 together with C̃−{e1, e2},
where ei is an edge of C̃ with both extremities in L: vi and its successor in the
orientation of C̃. This path has length k − 2 and has its both extremities in
L, a contradiction with 2). Observe that each vertex from L has at least three

neighbours in V (G) \ V (C̃). So

|N(S) \ V (C̃)| =
∑

v∈S

|N(v) \ V (C̃)| ≥ 3|S|.

As all vertices that are not in C̃ are not vertices from L, we have by (2.1) that

3|L| = 3|S| + 3|YC | ≤ |V (G) \ L| + 2|YC |,

so n ≥ 4|L| − 2|YC| ≥ 2n − 2|YC|. This implies that |YC | ≥ n
2
, implying that the

cycle C̃ is of length at least n ≥ k + 1, a contradiction.

Let us turn back now to the proof of Theorem 2.3.1. By our assumption, the
theorem holds for any k′ < k. Therefore our graph G contains a path of length
k − 1. By 1), we know that both extremities of this path lie in V (G) \ L. We
shall consider a subpath P , by deleting these two extremities. The path P has
length k − 3 and has its two extremities v1, v2 ∈ L.

The vertices v1 and v2 have each at least 3 neighbours that are not contained
in V (P ) and any such neighbour is in L or we would get 2). Also remark that
by 5), denoting by W1 and W2 the sets of neighbours in V (G)\V (P ) of v1 and v2

respectively, we have W1 ∩ W2 = ∅. Remark that the neighbours of W1 and W2

must lie on P , otherwise we get 1). Set Ni := N(Wi)\{vi} and N := N1∪N2 ⊆ L.
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Let wi ∈ Wi and let ui ∈ Ni be any of its neighbour. Now consider the neighbour
w of ui on the subpath of P from ui to vi. If w ∈ L, then the path formed by
P − {w, ui} and by the path on vertices vi, wi, ui is of length k − 2 and has both
extremities in L, a contradiction with 2).

Denote by Si the set of such vertices w adjacent in P to some ui ∈ Ni and lying
on the subpath with extremities ui and vi. Set S := S1 ∪ S2. Any vertex in N
generates one vertex that is in S. We want to show now that different vertices
in N generates different vertices in S. So suppose that there exists w ∈ S1 ∩ S2

with neighbours ui ∈ Ni on P and ui = N(wi), for some wi ∈ Wi. The cycle
formed by P − w and by the paths on vertices vi, wi, ui is of length k − 1, what
contradicts 4). Thus we have

|S1| + |S2| = |S| = |N |. (2.2)

Now consider an edge e = {u, v} ∈ E(P ) such that u is on the path from v
to v1. If u is connected to v2 and at the same time v is connected to v1, then
P −{u, v} together with the edges {u, v2} and v, v1 from a cycle of length k−2, a
contradiction with 5). For the same reason, we have that {v1, v2} /∈ E(P ). This
implies that

|N(v1) ∩ V (P )| + |N(v2) ∩ V (P )| ≤ |V (P )| − 1 = k − 3.

As v1, v2 ∈ L, we have

|W1| + |W2| = |N(v1)| − |N(v1) ∩ V (P )| + |N(v2)| = |N(v2) ∩ V (P )| ≥ k + 3.

Now we use Lemma 2.3.3 for X := W1 ∪ W2 and get

2 + |N | ≥ |W1| + |W2|
2

≥ k + 3

2
.

Combining this result with (2.2), we get that |N | + |S| ≥ (k + 3) − 4 = k − 1.
N, S ⊆ V (P ) and N and S are disjoint, as N ⊆ L and S ∩ L = ∅. Therefore we
have that P is of length at least k − 2, a contradiction.

Corollary 2.3.5 (Bazgan, Li, Woźniak). Any graph with at least half of its ver-
tices having degree at least k contains any tree of order k + 1 consisting of a path
and a star with its centre on the path.

Proof of Corollary 2.3.5. Let H be a graph of order k + 1, consisting of a path
P of length k − s ≤ k − 1 with v, a vertex in P of degree s + 2 in H . We want
to embed H in G. First remember that we can assume that the set of vertices
with degree less that k from an independent set. By Theorem 2.3.1 we find an
embedding of a path of length at least k. There are two subpaths P1 and P2 of
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length k−1 that are shifted by 1 one from the other. Consider the path P1 embed
P on P1 and look at the vertex u := ϕ(v). If u is a vertex of degree at least k, we
can extend the embedding ϕ to V (H), as |N(u) \ϕ(V (P ))| ≥ s. So suppose that
u is a vertex with degree < k. Then its neighbours in the path P1 have degree at
least k. Consider then the shift T by one of ϕ(P ) such that T (ϕ(P )) embeds on
the path P2. Then T (ϕ(v)) is a vertex with degree at least k and the embedding
T ◦ ϕ can be extended to V (H).

Using the proof of Theorem 2.3.1 and pushing the argument in the proof of
the corollary 2.3.5 a little bit further, we found with Maya Stein the following
corollary.

Corollary 2.3.6. Let G be a graph with at least half of its vertices having degree
at least k. Let H be any tree of order k + 1 consisting of a path of length k − ℓ
and two stars with their centres anywhere on the path, but at even distance ≤ ℓ.

Proof of Corollary 2.3.6. Let H be a graph of order k + 1, consisting of a path
P of length k − ℓ ≤ k − 2 with v1 and v2, a vertices in P of degree s1 and s2

respectively in H such that the distance d(v1, v2) between v1 and v2 in P is even
and at most ℓ. We want to embed H in G.

Denote by L the set of vertices that have degree at least k and set S := V (G)\L.
Once again we assume that S is independent. By Theorem 2.3.1 we find an em-
bedding of a path P̃ of length at least k.

Consider the subpath P1 of length k−ℓ, containing one of the extremities u of P̃ .
Embed P on P1. Let u1 := ϕ(v1) and u2 := ϕ(v2). If both u1 and u2 are vertices
in L, we can extend ϕ to V (H).

Again we shall consider a shift T that shifts P1 by one (i. e. T (V (P1)) does not
contain any extremities of P̃ ). If u1 and u2 are both in S, then T ◦ϕ({u1, u2}) ⊆ L
and the embedding T ◦ ϕ can be extended to V (H).

Therefore we may suppose that u1 and u2 lie in different sets L and S. But as the
distance between u1 and u2 on the path is even and S is independent, this implies
that on the path going from u1 to u2 there are two consecutive vertices from L.
Denote this two consecutive vertices by w1 and w2 (with w1 closer to u1 than w2).

Observe that w1 = Tm(u1) for some m < ℓ. If Tm(u2) ∈ L, we are done,
because Tm ◦ ϕ can be extended to V (H). So, assume that Tm(u2) ∈ S. Then,
Tm+1(u2) ∈ L as well as Tm+1(ui) := w2, and the embedding Tm+1 ◦ ϕ can be
extended to V (H).
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Remark 2.3.7. If we had to extend the embedding T ℓ ◦ϕ, then one of the extrem-
ities of the path P is mapped on the extremity of P̃ different from u. Therefore
we cannot hope to have d(v1, v2) larger than ℓ with this approach.

2.4 The Loebl-Komlós-Sós Conjecture for trees

of small diameter

In this subsection, we prove that the Loebl-Komlós-Sós Conjecture 2.1.2 is true
for the class of trees of diameter at most five.

First, we show the easy fact that the Loebl-Komlós-Sós 2.1.2 is true for the trees
of diameter at most 3, i. e. for dumbbells.

Proposition 2.4.1. Let G be a graph such that at least a half of its vertices have
degree at least k, then any tree T of diameter at most 3 and with at most k edges
embeds in G.

Proof of Proposition 2.4.1. If there is an edge between two vertices of L, we can
embed the center of the tree on those vertices and embed the leaves without
any problem, as they are adjacent to vertices embedded in L. Suppose on the
contrary that there is no edges with both end-vertices in L. Counting the number
of edges between L and S we get

|L| k ≤ e(L, V \ L) < |V \ L| k,

a contradiction.

Theorem 2.4.2. Let G be a graph such that at least a half of its vertices have
degree at least k, then any tree T of diameter at most 5 and with at most k edges
embeds in G.

Proof of Theorem 2.4.2. Let G be a graph such that at least a half of its vertices
have degree at least k, and let T be a tree of order at most k +1 and of diameter
at most 5.

We denote by L the set of vertices in G with degree at least k and we set S :=
V (G)\L. We may assume that S is an independent set (we can delete any edge in
(

S

2

)
without changing the sets L and S). Also we may assume that |L| ≤ |S|+ 1.

Indeed, suppose this is not the case. Then, if there is an edge between L and
S, choose such an edge and delete it. Either L and S keep their cardinality or
the size of the set L decreases by one and the size of the set S increases by one.
Continue to delete such edges as long as |L| ≤ |S| + 1 or until there is no edge
between L and S. If e(L, S) = 0, we have no problem to embed any tree of order
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at most k + 1 in the set L. Indeed, in the induced graph G ↾ L, all vertices have
degree at least k.

We use the following notation.

B := {v ∈ L; degL(v) ≥ k
2
},

A := L \ B,
C := {v ∈ S; deg(v) = degL(v) ≥ k

2
},

D := S \ C,
X := {v ∈ L; degL∪C(v) ≥ k

2
} ⊇ B and

Y := L \ X = {v ∈ L; degL∪C(v) < k
2
} ⊆ A.

e(M, K) shall denote the number of edges between two given sets M and K and
NK(M) shall denote the set of all the neighbours of M lying in the set K.

For the tree T , we choose an edge containing the center (either the edge is the
centre or it contains the center in one of its endvertices), and denote this edge by
{r1, r2}. Let

P := N(r1) \ {r2},
Q := N(r2) \ {r1},
R := N(P ) \ {r1},
S := N(Q) \ {r2},
P ′ := {v ∈ P ; deg(v) ≥ 2},
Q′ := {v ∈ Q; deg(v) ≥ 2}.

Without loss of generality, we may assume that

|R ∪ Q| <
k

2
.

Remark 2.4.3. Along the whole proof, we use many times the fact that both
the degree of a vertex, as well as the cardinality of a set of vertices, are natural
numbers. So, if for a set U of vertices and for a vertex u, we have |U | < x + 1
with x ∈ R and deg(u) ≥ x, then |U | ≤ deg(u).

Lemma 2.4.4. If there exists an edge e = {u, v} ∈ E(G) such that u ∈ X and
v ∈ C, any tree T of order k + 1 and diameter at most 5 embeds in G.

Proof of Lemma 2.4.4. Let {u, v} ∈ E(G) with u ∈ X and v ∈ C. We define our
embedding ϕ as follows.

Embed r1 in u, r2 in v and P ′ in V (u) ∩ (L ∪ C). We can do so, as

|P ′| ≤ |R| < |R ∪ Q| <
k

2
.
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Set PQ to be the set of vertices in P ′ that are embedded in the set C. Set

RQ := N(PQ) ∩ R,

PL := P ′ \ PC ,

RL := R \ RC .

Embed RQ in N(ϕ(PC)) ⊆ L. Indeed, as each vertex in C has degree at least k
2

and

|RC ∪ (PL)| + 1 ≤ |R| + 1 <
k

2
.

Otherwise, Q = ∅, and by Proposition 2.4.1 we can embed T .

Embed Q in N(v) ⊆ L. Indeed, v has degree at least k
2

and

|Q ∪ RC ∪ PL| + 1 ≤ |Q ∪ R| + 1 <
k

2
+ 1

and, therefore, |Q ∪ RC ∪ PL| + 1 ≤ deg(v).

Now, we can embed P \ P ′, RL and S without any problem as they are adjacent
to vertices embedded in L.

Remark 2.4.5. By Lemma 2.4.4, we can assume that X = B. Therefore, A = Y
and there is no B–C edges.

Lemma 2.4.6. If there exists an edge e = {u, v} such that u, v ∈ B, then any
tree T of order k + 1 and diameter 5 embeds in G.

Proof of Lemma 2.4.6. Let {u, v} ∈ E(G) with u, v ∈ B. We define our embed-
ding ϕ as follows.

Embed r1 in u, r2 in v and P ′ in V (u) ∩ L. Indeed, |P ′| < k
2
. Now, embed Q in

N(v) ∩ L. We can do so, as |P ′ ∪ Q| + 1 ≤ |R ∪ Q| + 1 < k
2

+ 1 and, therefore,
|P ′ ∪ Q| + 1 ≤ degL(v).

Now, we can embed P \ P ′, R and S without any problem as they are adjacent
to vertices embedded in L.

Remark 2.4.7. By Lemma 2.4.6, we may assume that the set B is independent.

Lemma 2.4.8. If there exists a vertex v ∈ N(B) ∩ L such that degB(v) ≥ k
4
,

then any tree T of order k + 1 and diameter 5 embeds in G.

Proof of Lemma 2.4.8. First, observe that |P ′∪Q′| < k
2

and, therefore, the small-
est of |P ′| and |Q′| is smaller than k

4
. Suppose that the smallest is P ′. The case

when the smallest is Q′ is done analogously.

We shall define our embedding ϕ as follows. Embed r1 in the vertex v and
P ′ ∪ {r2} in N(v) ∩ B. We can do so as |P ′| + 1 < k

4
+ 1. Thus |P ′| ≤ degB(v).

30



Now, embed the set Q′ in N(ϕ(r2)) =: u. Indeed, B is independent by 2.4.7, and
therefore N(u) ∩ ϕ(P ′) = ∅ and |Q′| + 1 ≤ k

2
+ 1. Thus, |Q′| + 1 ≤ degL(u).

Now we can embed P \ P ′, Q \ Q′, R and S without any problem as they are
adjacent to vertices embedded in L.

Lemma 2.4.9. If there exists a vertex v ∈ N(B) ∩ L such that degL∪C(v) ≥ k
4
,

then any tree T of order k + 1, diameter 5 (with |R ∪ Q| < k
2
) and

|P ′| <
k

4
embeds in G.

Proof of Lemma 2.4.9. The proof goes along as the proof of Lemma 2.4.4, em-
bedding r1 in v, r2 in u ∈ N(v) ∩ B. Then, P ′ is embedded in L ∪ C, RC :=
ϕ−1(ϕ(P ′) ∩ C) is embedded in L, Q in N(u) ∩ L. At the end, we embed the
leaves of T .

Lemma 2.4.10. If there exists a vertex v ∈ N(B) ∩L such that degL∪C(v) ≥ k
4
,

then any tree T of order k + 1, diameter 5 (with |R ∪ Q| < k
2
) and

|P ′ ∪ S| <
k

2
embeds in G.

Proof of Lemma 2.4.10. By Lemma 2.4.9, we may assume that

k

4
≤ |P ′| ≤ |R|.

This implies that |Q| < k
4
. Embed r2 in vertex v and r1 in vertex u ∈ N(v) ∩ B.

Then, embed Q in N(v) ∩ (L ∪ C). This is possible, as |Q| + 1 < k
4

+ 1. Thus,
|Q| + 1 ≤ degL∪C(v). Denote by QC the vertices of Q embedded in the set C,
and set

QL := Q \ QC ,

SC := N(QC) ∩ S,

SL := N(QL) ∩ S = S \ SC .

Now, we can embed the set SC in N(ϕ(QC)). Indeed, |SC ∪QL| + 1 ≤ |S|+ 1 <
k
2
+1. Thus, |SC∪GL|+1 ≤ N(w), for any w ∈ C. Observe that by Remark 2.4.5,

there is no B − C edge, and therefore, u /∈ N(C).

Next, embed the set P ′ in N(u) ∩ L. This is possible, as |P ′ ∪ QL ∪ SC | + 1 ≤
|P ′ ∪ S| + 1 < k

2
+ 1. Thus, |P ′ ∪ QL ∪ SC | + 1 ≤ degL(u).

Now, we can embed the vertices in (P \ P ′) ∪ SL ∪ R without any problem, as
they are leaves adjacent to vertices embedded in L.
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Proposition 2.4.11. Let G be a graph such that at least a half of its vertices
have degree at least k, then any tree T of order at most k+1, of diameter 5 (with
|R ∪ Q| < k

2
) and with

|P ′| <
k

4
or |P ′ ∪ S| <

k

2

embeds in G.

Proof of Proposition 2.4.11. Suppose this is not the case. Lemmas 2.4.9 and 2.4.10
imply that there is no vertex v ∈ N(B) ∩ L with degL∪C(v) ≥ k

4
. We bring this

fact to a contradiction.

Any vertex v ∈ N := N(B) ∩ L has degD(v) ≥ 3k
4
. By a double edge-counting

argument, we have

|A \ N |k
2

+ |N |3k
4

≤ e(A, D) < |D|k
2
. (2.3)

Recall that by Remark 2.4.5, A = Y and thus, degD(v) ≥ k
2
, for v ∈ A.

Dividing (2.3) by k
4
, we get

2|A| + |N | < 2|D|. (2.4)

Once more, by a double edge-counting and using Remark 2.4.7 and Lemma 2.4.8,
we have

|B|k
2
≤ e(N, B) < |N |k

4
.

Then,

|N | > 2|B|. (2.5)

Giving (2.4) and (2.5) together, we find

2|D| > 2|A| + 2|B| ≥ n,

a contradiction with the fact that |S| ≤ n
2
.

Remark 2.4.12. We can assume now that |P ′| ≥ k
4

and |P ′ ∪ S| ≥ k
2
. If x ∈ (0, 1)

such that |P ′| = x · k
2
. Then,

|S| > (1 − x)
k

2
. (2.6)
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On the other hand, we have that |R| ≥ |P ′| = x · k
2
. This implies that

|Q ∪ S ∪ (P \ P ′)| < k − 2 · xk

2
= (1 − x)k.

Using 2.6, we get |Q ∪ (P \ P ′)| < (1 − x)k
2
. Then,

|Q ∪ P | = |Q ∪ (P \ P ′) ∪ P ′| <
k

2
.

The rest of the proof of Theorem 2.4.2 goes under this assumption.

Lemma 2.4.13. If there exists a vertex v ∈ N(B∪C)∩L such that degL(v) ≥ k
4
,

then any tree T of order k + 1 and diameter 5 (with |R ∪ Q| < k
2
, |P ′| ≥ k

4
and

|P ∪ Q| < k
2
) embeds in G.

Proof of Lemma 2.4.13. Embed r2 in vertex v and r1 in vertex u ∈ N(v)∩(B∪C).
Then, embed the set Q in N(v) ∩ L. Indeed, |Q| + 1 < k

2
− |P ′| ≤ k

4
+ 1, thus

|Q| + 1 ≤ degL(v). Next, embed the set P in N(u) ∩ L. We can do so, as
|Q ∪ P | + 1 < k

2
+ 1 and thus |Q ∪ P | + 1 ≤ degL(u).

Now, we can embed the rest of the tree, as they are leaves adjacent to vertices
embedded in the set L.

Proposition 2.4.14. Let G be a graph such that at least a half of its vertices
have degree at least k. Then any tree T of order at most k +1 and with diameter
5 (with |R ∪ Q| < k

2
, |P ′| ≥ k

4
and |P ∪ Q| ≥ k

2
) embeds in G.

Proof of Proposition 2.4.14. By Lemma 2.4.13, we may assume that there is no
vertex v ∈ N := N(B ∪C)∩L with degL(v) ≥ k

4
. By Remark 2.4.5 and a double

edge-counting, we get

|A \ N |k
2

+ |N |3k
4

− e(C, N) + |B|k − e(B, N) ≤ e(L, D) < |D|k
2
.

Using this fact in the next double edge-counting argument, we have

(|C|+ |B|)k
2

+ |N |k
4
≤ (|A|+ |B|−|D|)k

2
+ |B|k

2
+ |N |k

4
< (e(C∪B), N) < |N |k

2
.

Multiplying by k
4
, we get

|N | > 2|C| + 2|B|. (2.7)

A final double edge-counting gives us

(|A| + |B| + |C|)k
2

< |A|k
2

+ |N |k
4
≤ e(A, S) < |D|k

2
+ |C|k

2
= |S|k

2
+ |C|k

2
.
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This implies

|S| > |L|,
a contradiction.

Propositions 2.4.11 and 2.4.14 imply Theorem 2.4.2.

2.5 The approximate version of the Loebl-Komlós-

Sós Conjecture

In this section, we prove the following approximative version of the Loebl-Komlós-
Sós Conjecture.

Theorem 2.5.1 (An approximate version of the L-K-S Conjecture). For every
γ, q > 0 there is an n0 ∈ N so that for all graphs G on n ≥ n0 vertices the
following is true.

If at least (1 + γ)n
2

vertices of G have degree at least (1 + γ)qn, then G contains,
as subgraphs, all trees with at most qn edges.

The proof of this theorem is greatly inspired by a preprint of M. Ajtai, J. Komlós
and E. Szemerédi [1], where they proved the Theorem 2.5.1 for q := 1

2
.

Theorem 2.5.2 (Ajtai, Komlós, Szemerédi). For every π > 0, there is an n0 ∈ N

such that for all graphs G on n ≥ n0 vertices the following holds.

If at least (1 + π)n
2

vertices of G have degree at least (1 + π)n
2
, then any tree with

at most n
2

edges embeds in G.

Their approach can be generalised very easily for q ≥ 1
2

(see Remark 2.5.6), while
the case q < 1

2
needs a little different approach. We follow a hint given by Ajtai,

Komlós and Szemerédi in [1], but give here a slightly stronger lemma then the
original one. This is Lemma 2.5.5.

Before going into the details of the proof, we first state some useful tools as
embedding of specific trees. In this way we get in touch with problems one at a
time, making the reading easier. In Subsection 2.5.3, we show how to decompose
trees into a small set of vertices and small rooted subtrees. The main idea again
was taken in [1], and developed to other cases of configurations needed for the
proofs.

Also, some lemmas in Subsection 2.5.5 are not directly used in the proof of
Theorem 2.5.1, as Propositions 2.5.22, or 2.5.23. They follow the main lines
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of the proof of Theorem 2.5.1, giving a good idea how the proof goes through,
but letting aside some technical details making them not so general, but more
readable.

On page 80, we have a discussion on the main differences between the proofs of
Propositions 2.5.22, or 2.5.23 (i. e. the simplified versions) and Propositions 2.5.25
and 2.5.26 respectively (the non-simplified versions used in the proof of Theo-
rem 2.5.1). We show what makes the proof non-simplified versions longer and
more complicated.

We also give a variation of Poposition 2.5.25 and one of Proposition 2.5.26, that
one can also use for the proof of Theorem 2.5.1.

At the end of this section, we apply the techniques developed so far to prove
a stronger theorem. In a graph satisfying the hypothesis of Theorem 2.5.1, we
embed some graphs obtained from trees of order at most k + 1 by adding a few
(well chosen) edges. This gives Theorem 2.5.31.

2.5.1 Tools for the proof of the approximative version

The first tool for the proof of Theorem 2.5.1 is Szemerédi’s Regularity Lemma.
We already stated it in Chapter ??. We shall use the following version:

Theorem 1.2.2 (Szemerédi’s regularity Lemma).
For every ε, α > 0 and m ∈ N, there exist M, n0 ∈ N so that every graph G of
order n ≥ n0 admits a partition of its vertex set V (G) = V0 ∪ V1 ∪ . . . ∪ VN such
that

• m ≤ N ≤ M ,

• |V0| ≤ εn,

• |V1| = |V2| = · · · = |VN |,

• all but at most εN2 pairs (Vi, Vj) with i 6= j are (ε, α)-regular.

Next tool is a simplified version of Gallai-Edmonds Matching Theorem (see [4]).
Before stating the theorem, we shall introduce the notion of k-factor and factor
criticality.

A graph G has a k-factor if there exists a spanning subgraph H ⊆ G that is k-
regular. We shall say that a graph (or component) G = (V, E) is k-factor critical
if for any vertex v ∈ V the graph G − v has a k-factor. So G is 1-factor critical
if for any vertex v ∈ V (G), there exists a matching in E covering all vertices of
V \ v .
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Theorem 2.5.3 (Gallai-Edmonds Matching Theorem). Any graph H contains a
set S of vertices such that all components of H −S are 1-factor-critical and such
that there is a matching that matches each vertex of S with a different component
of H − S.

For a proof of this theorem see [4].

The next two lemmas were taken from [1]. Lemma 2.5.5 is here a little stronger
than the original one. For both lemmas we give a proof.

Lemma 2.5.4. Let I be a finite set, and let p, q, ζ > 0. For all i ∈ I, let
pi, qi ∈ (0, ζ ], so that

p
∑

i∈I pi

+
q

∑

i∈I qi

≤ 1. (2.8)

Then there is a partition of I into Ip and Iq such that
∑

i∈Ip
pi > p − ζ and

∑

i∈Iq
qi > q.

Proof. For i, j ∈ I set i � j if pi

qi
≤ pj

qj
. Let ℓ ∈ I be minimal in this (total)

ordering of I with p ≥ ∑

i≻ℓ pi.

Set Ip := {i ∈ I : i ≻ ℓ} and set Iq := I \ Ip. By the minimality of ℓ, we have
that p − ζ <

∑

i∈Ip
pi. So, all we have to show is that q <

∑

i∈Iq
qi.

Indeed, suppose otherwise. Then by (2.8), and by definition of ℓ, we have that

∑

i∈Iq
qi

∑

i∈I qi

<
p − ∑

i∈Ip
pi

∑

i∈I pi

+
q

∑

i∈I qi

≤ 1 −
∑

i∈Ip
pi

∑

i∈I pi

=

∑

i∈Iq
pi

∑

i∈I pi

.

Multiply with
∑

i∈I pi·
∑

i∈I qi, subtract
∑

i∈Iq
pi·

∑

i∈Iq
qi, and divide by

∑

i∈Ip
qi

∑

i∈Iq
qi

to obtain

pℓ

qℓ

≤
∑

i∈Ip
pi

∑

i∈Ip
qi

<

∑

i∈Iq
pi

∑

i∈Iq
qi

≤ pℓ

qℓ

,

a contradiction.

Lemma 2.5.5. Let H̄ be a weighted graph on N vertices, with some weight-
function ω. Let L be the set of all vertices v ∈ V (H) with deg(v) ≥ K, for some
K ∈ N. Suppose that |L| > N

2
.

Then there are two adjacent vertices A, B ∈ L, and a matching M in H−(A∪B)
such that one of the following holds.

(a) M covers all but at most one cluster in N(A ∪ B),

(b) M covers N(A), and degL∪M(B) ≥ K
2
. Moreover, every edge in M has at

most one endvertex in N(A).
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Proof of Lemma 2.5.5. We may suppose that Y := V (H) − L is independent.
Theorem 2.5.3 applied to the graph H (without considering the weights) yields
a separator S and a matching M . Among all such matchings, assume M to be
chosen so that it contains a maximal number of vertices of Y .

Clearly, if there is an edge AB with endvertices A, B ∈ L′ := L \ S, then A and
B lie in the same factor-critical component of H − S, thus, (a) holds. We may
thus assume that L′ is independent.

So, each edge that is not incident with S has one endvertex in L′, and one in Y .
Consider any component C of H − S. Since C is factor-critical, we have that
|(C − x) ∩ Y | = |(C − x) ∩ L′|, for every x ∈ V (C). Hence, C must be trivial.
Thus, all components of H − S are trivial.

Denote by X the set of those vertices of Y that are not covered by M . Set
L̃ := N(L′)∩L. Now, if there is a vertex B ∈ L̃ whose weighted degree into H−X
is at least K

2
, then B, together with any of its neighbours A in L′, satisfies (b).

So we may assume that for each B ∈ L̃,

degV (H)−X(B) <
K

2
, (2.9)

and hence degX(B) ≥ K
2
. Then, by double edge-counting of E(X, L̃), where we

sum the weights of the edges,

|X| ≥ |L̃|
2

. (2.10)

Furthermore, (2.9) implies that the weighted degree of S ′ := L̃ ∪ (S − L) into L′

is less than |L̃|K
2

+ |S −L|K, while each vertex of L′ has weighted degree at least
K into S ′. Thus, again by double edge-counting, and by (2.10),

|X| + |S − L| ≥ |L̃|
2

+ |S − L| > |L′|. (2.11)

On the other hand, since Y is independent, M matches S − L ⊆ Y to L′. Thus,
|L′| = |S − L| + |L − M |, and so, by (2.11),

|X| > |L − M |.
Hence, since |L| > N

2
, there is an edge AB ∈ M with both clusters A, B in L,

more precisely, with A ∈ L′, and B ∈ L̃. By (2.9), B has a neighbour D in X.
then, the matching M ∪{BD}−{AB} contains more vertices of Y than M does,
a contradiction to the choice of M .

Remark 2.5.6. Suppose that the weight function gives values ω(e) ≤ 1 for any
edge e, and suppose that K < N

2
. Then, we know that in lemma 2.5.5 case 1

occurs. This variant of the lemma is the one used in [1] to prove the approxi-
mation version of the Loebl Conjecture. In fact it can be used for the proof of
Theorem 2.5.1, as long as q ≥ 1

2
.
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Lemma 2.5.7. Let H̄ be a weighted graph on N vertices, with some weight-
function ω with ω(e) ≤ 1, for any e ∈ E(H). Let L be the set of all vertices
v ∈ V (H) with deg(v) ≥ K, for some K < N

2
. Suppose that |L| > N

2
.

Then there are two adjacent vertices A, B ∈ L, and a matching M in H−(A∪B)
such that M covers all but at most one cluster in N(A ∪ B).

Proof of Lemma 2.5.7. As in Lemma 2.5.5, we use the Gallai-Edmonds Matching
Theorem to get a separator S and a matching of H .

Observe that there is at least one component in H − S that contains at least a
vertex from L. Indeed, otherwise, we have L ⊆ S, so

N

2
< |L| ≤ |S| ≤ N

2
,

a contradiction.

Now, observe that there is at most one component in H−S that contains vertices
from L. Each component, containing some vertex from L, has cardinality greater
than N

2
− |S| + 1. So, if there are at least two such components, we have

|V (H) > 2|S| − 2 + 2(
N

2
− |S| + 1) = N,

a contradiction.

therefore, there is a a unique component K in H − S that contains vertices from
L. Now, we show that there is an edge in L ∩ K. If this is not the case, any
vertex in L ∩ K has neighbours only in S ∪ (K \ L). So, we have that

|S| + |K ∩ L| ≥ N

2
+ 1.

Now, as vertices from L are contained in S ∪ K only, we have

|S| + |K ∩ L| ≥ |L| ≥ N

2
+ 1.

Then,
|V (H)| ≥ |K ∩ L| + |K \ L| + 2|S| − 1 ≥ N + 1,

again a contradiction.

Lemma 2.5.8 (Partitioning the clusters). Let 0 < α, ε, σ < 1
2

such that ασ <
1
5
. Let H be a cluster graph with every edgeformed by an (ε, α)-regular pair of

clusters. Lest each cluster have size s. Let C ⊆ V (H). Let A,B be sets of clusters.
For clusters A ∈ A let NA ⊆ C such that

degNA
(A) :=

∑

C∈NA

e(A, C)

s
≥ |VA|

y
(1 + 2σ) + |NA|εs, (2.12)
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and for clusters B ∈ B let NB ⊆ Csuch that

degNB
(B) :=

∑

C∈NB

e(B, C)

s
≥ |VB|

1 − y
(1 + 2σ) + |NB|εs. (2.13)

Then there exists a partition CA ∪ CB of each cluster C in C with the following
properties.

If NA
A denotes the set

⋃

C∈NA
CA, then degNA

A
(A) ≥ |VA|(1 + σ2

y
), and

if NBB denotes the set
⋃

C∈NB
CB, then degNB

B
(B) ≥ |VB|(1 + σ2

1−y
), and

|CA|, |CB| ≥ αs for each cluster C ∈ C.

Proof of Lemma 2.5.8. Set

x :=







y + σ if y < σ
y if y ∈ [σ, 1 − σ]
y − σ if y > 1 − σ

For each cluster C ∈ C we shall choose any subset CA of size xs and set CB :=
C \ CA. We have that |CA|, |CB| ≥ σs. Then for clusters A ∈ A and NA

A , we
have

degNA
A
(A) ≥

∑

C∈NA

(δ(A, C) − ε)xs

≥ x · (degNA
(A) − |NA|εs)

≥ x
|VA|
y

(1 + 2σ).

First suppose that x = y ≥ σ, then

degNA
A
(A) ≥ |VA|(1 + 2σ

y

y
) ≥ |VA|(1 +

σ2

y
).

The second possibility is when x = y + σ, if y < σ. Then

degNA
A
(A) ≥ (y + σ)

|VA|
y

(1 + 2σ)

= |VA|(1 + 2σ) +
σ

y
|VA|(1 + 2σ)

≥ |VA|(1 + σ2).
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The last possibility is when x = y − σ, i. e. when y ≥ 1 − σ. This gives us

degNA
A
(A) ≥ (y − σ)

|VA|
y

(1 + 2σ)

≥ |VA|(1 + 2σ − σ

y
− 2σ2

y
)

≥ |VA|(1 +
σ

y
(2y − 1 − 2σ))

≥ |VA|(1 +
σ

y
(2 − 2σ − 1 − 2σ))

≥ |VA|(1 +
σ2

y
).

Now we shall check the degree for clusters B ∈ B into NB
B . We have

degNB
B
(B) ≥

∑

C∈ N)B

(δ(B, C) − ε)(1 − x)s

≥ (1 − x) · (degNB
(B) − |NB|εs)

≥ (1 − x)
|VB|

(1 − y)
(1 + 2σ).

For x = y, we have 1 − y ≥ σ and then

degNB
B
(B) ≥ |VB|(1 + 2σ

1 − y

1 − y
) ≥ |VB|(1 +

σ2

1 − y
).

For the case when x = y − σ, we have that

degNB
B
(B) ≥ (1 − y + σ)

|VB|
1 − y

(1 + 2σ)

= |VB|(1 + 2σ) +
σ

1 − y
|VB|(1 + 2σ)

≥ |VB|(1 +
σ2

1 − y
).

Now for x = y + σ (i. e. y < σ), we have
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degNB
B
(B) ≥ (1 − y − σ)

|VB|
1 − y

(1 + 2σ)

≥ |VB|(1 + 2σ − σ

1 − y
(1 + 2σ)

≥ |VB|(1 +
σ

1 − y
(2 − 2σ − 1 − 2σ)

≥ |VB|(1 +
σ2

1 − y
).

2.5.2 Some simple embeddings

In the next lemma we see how to use an edge, formed by a regular pair, to embed
a tree of small size in it. This lemma will be widely used in the proof of other
lemmas.

Lemma 2.5.9 (Embedding in an edge). Let 0 < ε, α, δ < 1. Let t be a rooted
tree and let (C, D) be an (ε, α)-regular pair with s := |C| = |D| and density

δ := e(C,D)
s2 . If C̄ ⊆ C and D̄ ⊆ D such that |C̄|, |D̄| ≥ (αs+|t|)

(δ−2ε)
, then we can

embed the tree t in C̄ ∪ D̄. Moreover we can choose in which of the two clusters
we want to embed the root of the tree.

Proof of Lemma 2.5.9. By (1.2) we have that all but at most αs vertices of C̄
are typical with respect to D̄. Choose any of those typical vertices to embed
the root r ∈ V (t) in. Because ϕ(r) is typical with respect to D̄, it has at least
(δ − 2ε) · |D̄| ≥ αs + |t| neighbours in D̄.

Between those neighbours of ϕ(r) we want to choose typical vertices with respect
to C̄ to embed the neighbours of r in. From αs + |t| vertices in D̄ (resp. in C̄),
at least |t| of them are typical with respect to C̄ (resp. to D̄).

We shall continue to embed the tree t levelwise. At each step, we shall choose
between the at least |t| typical vertices, from a neighbourhood N(v), some that
is not already used by the embedding ϕ and embed the neighbours of ϕ−1(v)
in.

The following two lemmas show us how to embd larger tree into a matching and
a cluster with high average degree into this matching.

First we bring some definitions. We say that (T, R) is a rooted τ -tree, if (T, R) is
a rooted tree with root R and if T −R decomposes into a forest of trees, each of
cardinality at most τ .
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A matching M is an (ε, α; δ)-matching of C, if M covers C and if each edge of M
is an (ε, α)-regular pair with density at least δ.

Lemma 2.5.10 (Embedding in a matching – I). Let 0 < ε, α, δ < 1 with 2ε < δ.
Let (T, R) be a rooted τ -tree. Let C be a set of clusters, each having size s. Let
N ⊆ C and U ⊆ ⋃

C∈C C. Let M be an ε, α; δ)-matching of C such that each
matching edge has at most one end vertex in N . Let αs ≤ s′ ≤ s. Then, for all
C ∈ C let C ′ ⊆ C be of size s′ and denote N ′ := ∪C∈NC ′ and C′ := ∪C∈CC

′. Let
A /∈ C be a cluster of size s and let v ∈ A such that

degN ′(v) ≥ |T | + |U | + |N | · ∆,

where ∆ = (2αs+τ)
(δ−2ε)

. Then, there is an embedding of the tree T such that R embeds

on v and T \{R} embeds in C′\U and such that any vertex of T with odd distance
to the root R is embedded on a vertex that has at least (δ−ε)s neighbours in cluster
A.

Proof of Lemma 2.5.10. We embed the root R of the tree T on vertex v ∈ A.
We shall then embed T \ {R} in ℓ steps, where ℓ is the number of components
in T \ {R}. In each step we embed the tree tj forming the j-th component. We
claim that for each step j, 1 ≤ j ≤ ℓ we find an edge e ∈ M such that

degC′(v) − |e ∩ Uj−1| − |U | ≥ ∆, (2.14)

for C := e ∩ N , where Uj−1 denotes the set of vertices already used by the
embedding before step j, i. e. Uj := ϕ(R) ∪ ⋃

i≤j ϕ(V (ti)). Indeed, suppose on
the contrary, that there is no such edge. Then,

|T | + |N | · ∆ − |Uj−1| ≤
∑

e∈M

dege∩N ′(v) − |U | − |e ∩ Uj−1| < |N |∆,

a contradiction.

So let e = {C, D}, with C := e ∩N , be a suitable edge with property (2.14).

Inequality (2.14) implies that

∆ ≤ s′ − |e ∩ (Ui−1 ∪ U)| ≤ |D′ \ (Uj−1 ∪ U)| =: |D̄|.

By (2.14), it is clear that |N(v) ∩ C ′ \ (Uj−1 ∪ U)| ≥ ∆. Denote by C̄ the set of
vertices in N(v)∩C ′ \ (Uj−1∪U) that are typical with respect to cluster A. Such

vertices have each degree at least (δ− ε)s in cluster A. We have that C̄ ≥ (αs+τ)
δ−2ε

.

Using Lemma 2.5.9, we embed the tree tj in C̄ ∪ D̄ choosing to embed the root
of tj in cluster C.
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Remark 2.5.11. In the proof of Theorem 2.5.1, the set U will be used for a set of
vertices used by the embedding in some previous step of the embedding process.
In the next lemma, we do not deal with such a set. Instead, we state and prove
Lemma 2.5.13 to take care of the used vertices.

Lemma 2.5.12 (Embedding in a matching – II). Let 0 < ε, α, δ < 1 with ε < δ.
Let (T, R) be a rooted τ -tree. Let C be a set of clusters, each having size s and
N ⊆ C. Let M be an (ε, α; δ)-matching of C. Let αs ≤ s′ ≤ s. Then, for each
C ∈ C let C ′ ⊆ C be of size s′. Denote by C′ := ∪C∈CC

′ and N ′ := ∪C∈NC ′. Let
A /∈ C be a cluster of size s and let v ∈ A such that

degN ′(v) ≥ |T | + |N | · ∆ + |M | · τ,

where ∆ = (2αs+τ)
(δ−2ε)

. Then, there is an embedding of the tree T such that R embeds

on v and T \{R} embeds in C′ and such that any vertex of T with odd distance to
the root R is embedded on a vertex that has at least (δ− ε)s neighbours in cluster
A.

Proof of Lemma 2.5.12. We embed the root R of the tree T on vertex v ∈ A.

We embed T \ {R} into ℓ steps, where ℓ is the number of components in T \ {R}.
In each step, we embed the tree tj , which is the j-th component of T \ {R}.
Define U j−1 as the set of vertices in the clusters used so far by the embedding.
We claim that there is an edge e ∈ M such that

dege′(v) − |e ∩ U j−1| ≥ |e ∩N| · ∆ + τ. (2.15)

Indeed, suppose for contradiction that this is not the case. Then,

|T | + |N | · ∆ + |M |τ − |U j−1| < |N |∆ + |M | · τ,

implying |V (tj)| < 0, a contradiction.

Therefore we have found a suitable edge for the embedding of tj . At each step
j ≥ 1, our embedding will satisfy the following conditions for edge e = {C, D}.

(a) If min{degC′\Uj−1(v), degD′\Uj−1(v)} ≥ ∆, then ||C ∩ U j | − |D ∩ U j || < τ

(b) If degD′\Uj−1(v) < ∆, then degD′(v) < |C ∩ U j−1| + ∆ + τ and
if degC′\Uj−1(v) < ∆, then degC′(v) < |D ∩ U j−1| + ∆ + τ .

Without loss of generality assume that degC′\Uj(v) ≥ degD′\Uj(v). Then, degC′\Uj (v) ≥
∆. We claim that |D′ \ U j−1| ≥ ∆.

If degD′\Uj−1(v) ≥ ∆, there is nothing to prove. So, assume that degD′\Uj−1(v) <
∆. Using Property (b), we have
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|e ∩ N| · ∆ + τ ≤ dege′\Uj−1(v)

≤ |C ∩ U j−1| + s′ − |e ∩ U j−1|
≤ |D′ \ U j−1|.

This implies the required inequality.

If degD′\Uj−1(v) < ∆, then we shall embed the root rt(tj) in cluster C. If
degD′\Uj−1(v) ≥ ∆, then we choose to embed the root rt(tj) of the tree tj , de-
pending on the following criteria.

Let L0(T
j) denote the set of vertices that are at even distance from the root

rt(tj). Set L1(t
j) := V (tj) \ L0(t

j).. We want to embed the largest of L0(t
j)

and L1(t
j) to the cluster with less used vertices, i. e. which has the smallest

|C∩U j−1|,|D∩U j−1|. We choose to embed the root rt(tj) according to this crite-
ria. To simplify the notation, we assume that the root embed in C ′ (Otherwise,
just interchange the C’s and the D’s).

Denote by C̄ the set of vertices in N(v)∩C ′ \U j−1 that are typical with respect
to cluster A and set D̄ := D′ \ U j−1. We have

|C̄|, |D̄| ≥ ∆ − αs >
αs + τ

δ − 2ε
.

We embed the tree tj in C̄ ∪ D̄ using Lemma 2.5.9 and choosing to embed the
root of tj in C̄.

Now, we check that the define embedding of tj fulfill Properties (a) and (b).

Property (a) follows from the facts that if min{} ≥ ∆, then (a) for i − 1 implies
that ||C ∩U j−1| − |D∩U j−1|| ≤ tau and that we have embedded the largest part
of tj to the cluster with less used vertices. Therefore, the difference ||C ∩ U j | −
|D ∩ U j || was kept under τ .

To see that Property (b) holds, first assume that degD′\Uj−2(v) < ∆. Then, (b)
for i − 1 implies (b) for i. So, assume now that degD′\Uj (v) ≥ ∆. Then (a) for
i − 1 implies that ||C ∩ U j−1| − |D ∩ U j−1|| ≤ τ . So,

degD′(v) < |D ∩ U j−1| + ∆ ≤ |C ∩ U j−1| + ∆ + τ.

After having embedded that last trees of T −R, we have defined ϕ for the whole
tree T . This ends the proof of Lemma 2.5.12.

In the proof of Theorem 2.5.1, we shall meet the situation when, for the embed-
ding of a rooted subtree, we will have to use a pair of clusters that was already
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used by an other rooted subtrees of the tree T . For this situation we shall use
next lemma.

Lemma 2.5.13 (Embedding in used edges). Let 0 < α, ε, δ < 1 with 2ε < δ.
Let A, C, D be 3 clusters of size s, each. The pairs of clusters from A, C, D
form (ε, α)-regular pairs. Let αs ≤ s′ ≤ s and let C ′ ⊆ C and D′ ⊆ D with
|C ′|, |D′| = s′. Moreover suppose that the density between the clusters C and D
is at least δ. Let T be a rooted tree with root R such that T − R decomposes
into components of size at most τ , each. Let U be a subset of C ′ ∪ D′ with the
following properties:

If ||C ∩ U | − |D ∩ U || > τ , then

min{degC′(A) − |U ∩ C|, degD′(A) − |U ∩ D|} < ∆ + 2εs′. (2.16)

Also

degC′(A) < |U ∩ C| + ∆ + 2εs′ ⇒ degC′(A) < |U ∩ D| + ∆ + 2εs′ + τ (2.17)

degD′(A) < |U ∩ D| + ∆ + 2εs′ ⇒ degD′(A) < |U ∩ C| + ∆ + 2εs′ + τ (2.18)

Let A′ ⊂ A be the set of vertices in A that are typical with respect to both C ′ and
D′. If

degC′∪D′(A) ≥ |T | + |U | + 2(∆ + 2εs′) + τ, (2.19)

where ∆ = 2αs+τ
δ−2ε

, then for any vertex v ∈ A′ we can embed the tree T into
A ∪ C ∪ D such that R embed onto v and T − R embeds into (C ′ ∪ D′) \ U
such that any vertex of T with odd distance to the root R has at least (δ − ε)s
neighbours in cluster A and that if we set Ũ := U ∪ ϕ(V (T )), then Ũ fulfill the
same conditions as U , i. e.

If ||C ∩ Ũ | − |D ∩ Ũ || > τ , then

min{degC′(A) − |Ũ ∩ C|, degD′(A) − |Ũ ∩ D|} < ∆ + 2εs′.

Also

degC′(A) < |Ũ ∩ C| + ∆ + 2εs′ ⇒ degC′(A) < |Ũ ∩ D| + ∆ + 2εs′ + τ (2.20)

degD′(A) < |Ũ ∩ D| + ∆ + 2εs′ ⇒ degD′(A) < |Ũ ∩ C| + ∆ + 2εs′ + τ (2.21)

Proof of Lemma 2.5.13. We are given a vertex v ∈ A′. Embed R in v, a typical
with respect to the set C ′ and with respect to the set D′. By (1.4) we have

degC′∪D′(v) ≥ degC′∪D′(A) − 4εs′ ≥ |T | + |U | + 2∆. (2.22)

For the components of T − R we shall proceed inductively, embedding one com-
ponent after the other. Suppose we are at step i ≥ 0. We have embedded all
the components tj of T − R, for j < i, and want to embed component ti. Set
V <i :=

⋃

j<i V (tj) and U<i := ϕ(V <i). Set Ui−1 := U ∪ U<i. For each step i ≥ 1
we have two possible cases.

45



(i) min{degC′\Ui−1
(v), degD′\Ui−1

(v)} ≥ ∆

(ii) min{degC′\Ui−1
(v), degD′\Ui−1

(v)} < ∆

Then our embedding will satisfy the following.

(a) If case (i) holds, then either

||C ∩ Ui| − |D ∩ Ui|| ≤ τ,

or
τ < ||C ∩ Ui| − |D ∩ Ui|| ≤ ||C ∩ Ui−1| − |D ∩ Ui−1|| .

Without loss of generality suppose that

degC′(A) − |C ∩ Ui−1| ≥ degD′(A) − |D ∩ Ui−1|.

Then by (2.22)
degC′(v) − |C ∩ Ui−1| ≥ ∆ (2.23)

We want to show that |D′ \ Ui−1| ≥ ∆. If degD′\Ui−1
(v) ≥ ∆, we are done. So

suppose that
degD′\Ui−1

(v) < ∆ (2.24)

We claim then that

degC′∪D′(A) − |Ui−1| ≤ |D′ \ Ui−1| + ∆ + 2εs′ + τ (2.25)

If |D ∩ Ui−1| ≤ |C ∩ Ui−1| + τ then we get immediately (2.25). So suppose we
have |C ∩ Ui−1| < |D ∩ Ui−1| + τ .

Let ℓ ≤ i − 1 be the minimal index with the property that degD′\Uℓ
(v) < ∆. If

ℓ = 0, then
degD′(A) − |U ∩ D| ≤ degD′\U(v) < ∆

and by (2.18), we get

degD′(A) < |U ∩ C| + ∆ + 2εs′ + τ ≤ |Ui−1 ∩ C| + ∆ + 2εs′ + τ (2.26)

implying at once (2.25). Now if ℓ > 0, we have that degD′\Ui−2
(v) ≥ ∆. Together

with (2.22), Property (a) we get

|C ∩ U | < |D ∩ U | + τ.

Now if we have (2.18), we get directly (2.25). If Case (2.17) occurs, then

46



degC′∪D(A) − |Ui−1| < degD′(A) + |U ∩ C| + ∆ + 2εs′ − |Ui−1|
≤ s′ + |Ui−1 ∩ C| − |Ui−1| + ∆ + 2εs′

≤ |D′| − |Ui−1 ∩ D| + ∆ + 2εs′,

leading to (2.25).

Now by (2.19) and (2.25), we get

2(∆ + 2εs′) + τ ≤ |D′ \ Ui−1| + ∆ + 2εs′ + τ,

which gives us finely that

|D′ \ Ui−1| ≥ ∆ + 2εs′ ≥ ∆. (2.27)

Denote by C̄ the set of vertices in NC\Ui−1
(v) that are typical with respect to

cluster A and by D̄ the set of vertices in D′ \ Ui−1 that are typical with respect
to cluster A. We have that (C̄ ∪ D̄) ∩ U = ∅ and by (2.23) and (2.27) that
|C̄|, |D̄| ≥ αs+τ

δ−2ε
. We may use Lemma 2.5.9 to embed tree ti.

Observe that if case (i), we may choose in which cluster we want to embed the
root of the tree ti. Therefore, we can guaranty that property (a) holds.

After having embedded all the components of T −R we have define the required
embedding.

We have now to check if properties (2.20) and (2.21) hold. So suppose that

degC′(A) < |Ũ ∩ C| + ∆ + 2εs′, (2.28)

but
degC′(A) ≥ |Ũ ∩ D| + ∆ + 2εs′ + τ (2.29)

The other case is proved analogously.

We have then |Ũ∩D|+τ < |Ũ∩C|. If ||U∩D|−|U∩C|| > τ , then properties (2.20)
and (2.21) hold from (2.17) and (2.18). So we may assume, by Property (a), that
Case (ii) holds.

Set ℓ to be the largest index for which min{degC′\Uℓ−1
(v), degD′\Uℓ−1

(v)} ≥ ∆.
Then ||Uℓ ∩ D| − |Uℓ ∩ C|| < τ . By maximality of ℓ, we have that

min{degC′\Uℓ
(v), degD′\Uℓ

(v)} < ∆.

Suppose that degC′(v) − |Uℓ ∩ C| < ∆ then

degc′(A) ≤ degC′(v) + 2εs′ < ∆ + 2εs′ + |Uℓ ∩ C|
≤ ∆ + 2εs′ + |Uℓ ∩ D| + τ

≤ ∆ + 2εs′ + |Ũ ∩ D| + τ,
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a contradiction with (2.29).

Therefore, we know that

degD′(A) − 2εs′ − |Uℓ ∩ D| ≤ degD′\Uℓ
(v) < ∆.

But then by (2.29)

degC′∪D′(A) < ∆ + 2εs′ + |Uℓ ∩ D| + |Ũ ∩ C| + ∆ + 2εs′

≤ |U | + |T | + 2∆ + 4εs′ + τ,

a contradiction with (2.19). This ends the proof of Lemma 2.5.13.

At least we have to check if

||C∩Ũ |−|D∩Ũ || > τ ⇒ min{degC′(A)−|Ũ∩C|, degD′(A)−|Ũ∩D|} < ∆+2εs′.

Either ||U ∩ C| − |U ∩ D|| > τ and then

min{degC′(A) − |Ũ ∩ C|, degD′(A) − |Ũ ∩ D|}
≤ min{degC′(A) − |U ∩ C|, degD′(A) − |U ∩ D|}
< ∆ + 2εs′,

or at some step ℓ we had min{degC′(v)− |Uℓ ∩C|, degD′(v)− |Uℓ ∩D|} < ∆, but
by the typicality of vertex v, we have that

min{degC′(A) − |Ũ ∩ C|, degD′(A) − |Ũ ∩ D|}
≤ min{degC′(A) − |Uℓ ∩ C|, degD′(A) − |Uℓ ∩ D|}
≤ min{degC′(v) − |Uℓ ∩ C|, degD′(v) − |Uℓ ∩ D|} + 2εs′

< ∆ + 2εs′,

In the next lemma, we see how to take profit of clusters with high average degree.

Lemma 2.5.14 (Embedding using clusters with high average degree). Let 0 <
α, ε, δ < 1 with 2ε < δ. Let T be a rooted tree with root R, such that T \ {R}
decomposes into a forest for which each component is a tree of size at most τ .
Let H be a cluster graph with clusters of size s each and in which each edge is
(ε, α)-regular with density at least δ.

Let αs ≤ s′ ≤ s and for each C ∈ V (H) let C ′ ⊆ C be of size s′. Then denote by
V ′ := ∪C∈V (H)C

′. Let L be a set of clusters of H with the property that if C ∈ L
then

degV ′(C) :=
∑

D∈V (H)

e(C, D′)

s
≥ |T | + |V (H)| · (∆ + 2εs′) + s′,

48



where ∆ = (2αs+τ)
(δ−2ε)

. If L′ denotes the set ∪C∈LC ′ and v ∈ A be such that

degL′(v) :=
∑

C∈N

e(A, C ′)

s
≥ |T | + |L| · ∆.

Then there is an embedding of the tree T such that R embeds on v and T \ {R}
embeds in V ′ \ A and such that any vertex of T with odd distance to the root R
is embedded on a vertex that has at least (δ − ε)s neighbours in cluster A.

Proof of Lemma 2.5.14. Embed the root R of the tree T in vertex v ∈ A. We
shall embed T \{R} into ℓ steps, where ℓ is the number of components in T \{R}.
In each step we embed the tree tj , which is the j-th component of T \{R}. Define
Uj−1 as the set of vertices in the clusters used so far by the embedding.

Suppose we are in step 1 ≤ j ≤ ℓ and we want to embed tj. We claim that there
is a cluster C ∈ L such that

degC′(v) − |C ′ ∩ Uj−1| ≥ ∆ (2.30)

Suppose this is not the case. Then

|L| · ∆ < |T | − |Uj−1| + |L| · ∆ ≤
∑

C∈L
degC′(v) − |Uj−1| < |L| · ∆,

a contradiction.

So assume that C ∈ L is a suitable cluster with property 2.30. Embed the root
of tj in a vertex u ∈ C ′ ∩ N(v) that is typical with respect to V ′ \ A. Then

degV ′\A(u) ≥ |T | + |V (H)| · ∆. (2.31)

We claim that there is a cluster D ∈ V (H) \ A such that

degD′(u) ≥ ∆.

If not, then by (2.31) we have that

|V (H)| · ∆ < |T | + |V (H)| · ∆ − |Uj−1| ≤ degV ′\A(v) < |V (H)| · ∆,

a contradiction.

Denote by C̄ ⊆ C ′\Uj−1 the set of vertices that are typical with respect to cluster
A. We have that |C̄ ≥ αs+τ

δ−2ε
. Set D̄ := N(u) ∩ D′ \ Uj−1. Then |D̄| ≥ αs+τ

δ−2ε
. The

sets C̄ and D̄ contain no vertices used by the embedding. Lemma 2.5.9 ensures
us the embedding of the rest of tree tj .
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2.5.3 Partitioning trees

On a rooted T with root R, we shall define a natural partial order (V (T ),�) as
follows: u � v if there exists a path from R to v containing vertex u. In this
ordering R is the smallest vertex and any leaf ( 6= R) is a maximal vertex. For any
subtree T ′ of the tree T and a vertex r ∈ V (T ′), we define T ′(r) as the subtree
of T ′ induced by all vertices in V (T ′) that are greater or equal to r in the partial
order �. Then r is the minimal vertex (or the root) of T ′(r). For any tree t
forming one of the components of T ′(r)− r, we shall denote by v(t) the maximal
vertex in T that is smaller than any vertex of the tree t, i. e. v(t) = r. We call
this vertex v(t) the seed of the tree t and say that t grows from v(t).

Lemma 2.5.15. Let 1 ≤ τ ≤ ϑ. Then for any rooted tree (T, R) of order ϑ + 1,
there exists a set R of vertices of T of size at most ϑ

τ
+ 1 such that T − R

decomposes into trees of order at most τ .

Proof of Lemma 2.5.15. We shall define the set R inductively. For i ≥ 0, Ri

shall denote a set of vertices of Ti, where Ti shall denote the subtree containing
the root R in T − Ri (if R ∈ Ri−1, then Ti = ∅ and the process ends). Now
set T0 := T . In each step i ≥ 1 define Ri as the set of vertices r which are
minimal in Ti−1 with the property that |V (Ti−1(r))| > τ . Then, by minimality,
Ti−1(r)− r decomposes into a component containing the root (if r 6= R) and into
components of size at most τ , containing vertices that are greater than r. If there
is no such vertex r, i. e. |V (Ti−1)| ≤ τ , then set Ri := R. Observe that Ti−1 −Ri

decomposes into subtrees of size at most τ and in Ti. At the end of the process,
set R :=

⋃

i Ri. We have to check that |R| ≤ ϑ
τ

+ 1.

Lemma 2.5.16. Let 1 ≤ τ ≤ ϑ. Then for any rooted tree (T, R) of order ϑ + 1,
there exist sets RA and RB of size at most ϑ

τ
+ 1 each, such that T − (RA ∪RB)

decomposes into TA∪TB, sets of subtrees of size at most τ and the following holds:

• For any tree tA ∈ TA we have that v(tA) ∈ RA and for any tree tB ∈ TB we
have that v(tB) ∈ RB.

• Any two vertices from the set RA have even distance between them and any
two vertices from the set RB have even distance between them.

• No vertex from a tree t ∈ TA is adjacent to a vertex from RB and analogously
no vertex from a tree t ∈ TB is adjacent to a vertex from RA.

Remark 2.5.17. This means that the subtrees in TA grow all from vertices in RA

and analogously the subtrees in TB grow from vertices in RB. The subtrees from
TA and TB are connected by edges between vertices in RA and vertices in RB.

Proof of Lemma 2.5.16. First we use Lemma 2.5.15 to get a set R of size at most
ϑ
τ

+1 such that T \R decomposes into subtrees of size at most τ . Let R′
A denote
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the set of vertices from R that are at even distance from the root and by R′
B

the set of vertices from R that have odd distance from the root R. Denote by
SA the set of vertices in some tree t from T with v(t) ∈ R′

A that is adjacent
to some vertex in R′

B. Observe that vertices in SA have even distance to the
root. Analogously define SB. Vertices in the set SB have odd distance to the
root. Now define RA := R′

A ∪ SA and RB := R′
B ∪ SB. Denote by TA the set of

components from T − (RA ∪RB) that contain a vertex adjacent to a vertex from
RA and analogously denote by TB the set of components from T − (RA ∪ RB)
that contain a vertex adjacent to a vertex from RB. Observe that TA ∩ TB = ∅.
The components of T − (RA ∪ RB) are subsets of components of T − R and
therefore are of size at most τ each.

Lemma 2.5.18. Let 1 ≤ τ ≤ ϑ. Then for any rooted tree (T, R) of order ϑ + 1,
there exist sets RA and RB of size at most 3(ϑ

τ
+1) each, such that T −(RA∪RB)

decomposes into TA ∪TB ∪TF , sets of subtrees of size at most τ and the following
holds:

• For any vertex v in a subtree t ∈ TA ∪ TB, if v is adjacent to some vertex
in u ∈ RA ∪RB, then u = v(t).

• For any tree tA ∈ TA∪TF we have that v(tA) ∈ RA and for any tree tB ∈ TB

we have that v(tB) ∈ RB.

• |⋃t∈TA
V (t)| ≥ |⋃t∈TB

V (t)|.

Remark 2.5.19. Again all subtrees from TF and TA grow from vertices in RA and
all subtrees from TB grow from vertices in RB and both parts are connected by
edges between sets RA and RB. Moreover subtrees from the sets TA and TB and
“end-subtrees”; this means that there are no vertices from RA ∪ RB that are
greater or equal to some vertex in a subtree from TA ∪ TB.

The idea of the proof is the following. After partitioning the set of components
into two sets TA and TB, using Lemma 2.5.16, we consider “end-components”,
that is the ones that do not lie between two or more other components. Those
shall define the set TF . We look which one of TA \TF and TF \TF is smaller. The
smaller shall be denoted by TB, the other one by TA and we shall “switch” all TF

on the side of TA. This switching shall enlarge the set R only by few vertices.

Proof of Lemma 2.5.18. Use Lemma 2.5.16 to get a vertex-cut R′
A ∪ R′

B of size
ϑ
τ

+ 1 each giving sets of components T ′
A and T ′

B. Denote by T ′
F the set of

components of T − (R′
A ∪ R′

B) for which more than one vertex from R′
A ∪ R′

B

is adjacent to some vertex of the given component. Without loss of generality
suppose that |⋃t∈T ′

B
\T ′

F
V (t)| ≤ |⋃t∈T ′

A
\T ′

F
V (t)| (otherwise interchange A’s and

B’s). Set TB := T ′
B \T ′

F and TA := T ′
A\T ′

F . Observe that any tree t from TA or TB

has only one vertex (the root of t) that is adjacent to some vertex v(t) ∈ R′
A∪R′

B .
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Now we want to “switch” T ′
F on the A side. We do this as follows. For any tree t

in T ′
F ∩T ′

B denote by St the set of vertices in t that are adjacent to some vertex in
R′

B. By those vertices we shall enlarge the set R′
A. Set RA := R′

A ∪⋃

t∈T ′
F
∩T ′

B
St.

Observe that |⋃t∈T ′
F
∩T ′

B
St| ≤ 2|R′

B| and therefore

|RA| ≤ |R′
A| + 2|R′

B| ≤ 3(
ϑ

τ
+ 1).

This switching changes the set T ′
F in a natural way, i. e.

TF := (T ′
F ∩ T ′

A) ∪
⋃

t∈(T ′
F
∩T ′

B
)

t − St,

where by t − St here we understand the union of components of t − St.

From Lemma 2.5.16 it is clear that for t ∈ TA we have v(t) ∈ RA and for t ∈ TB we
have v(t) ∈ RB . Now any tree t ∈ TF is adjacent to vertices from RA, therefore
v(t) ∈ RA. At the end observe that any component in T − (RA ∪RB) is a subset
of some component from T − (RA ∪ RB) and therefore by Lemma 2.5.16 their
size is at most τ .

Lemma 2.5.20. Let 1 ≤ τ ≤ ϑ. Let (T, R) be a rooted tree of order ϑ + 1. Let
S1 and S2 be subsets of V (T ) each of size c such that all vertices of S1 are at
odd distance to R and all vertices of S2 are of even distance from R. Then there
exist sets RA and RB of size at most ϑ

τ
+ 1 + 2c each, such that T − (RA ∪RB)

decomposes into TA∪TB, sets of subtrees of size at most τ and the following holds:

• S1 ⊆ RB and S2 ⊆ RA.

• For any tree tA ∈ TA we have that v(tA) ∈ RA and for any tree tB ∈ TB we
have that v(tB) ∈ RB.

• Any two vertices from the set RA have even distance between them and any
two vertices from the set RB have even distance between them.

• No vertex from a tree t ∈ TA is adjacent to a vertex from RB and analogously
no vertex from a tree t ∈ TB is adjacent to a vertex from RA.

Proof of Lemma 2.5.20. The proof is very similar to the proof of Lemma 2.5.16.
We use Lemma 2.5.15 to get a set R of size at most ϑ

τ
+ 1 such that T \ R

decomposes into subtrees of size at most τ . Let R′
A denote S2 union the set of

vertices from R that are at even distance from the root and R′
B denote S1 union

the set of vertices from R that have odd distance from the root R.

Denote by SA the set of vertices in some tree t from T with v(t) ∈ R′
A that

is adjacent to some vertex in R′
B. Analogously define SB. Now define RA :=

R′
A ∪ SA and RB := R′

B ∪ SB. We have S1 ⊆ R′
B ⊆ RB and S2 ⊆ R′

A ⊆ RA.
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Denote by TA the set of components from T − (RA ∪RB) that contain a vertex
adjacent to a vertex from RA and analogously denote by TB the set of components
from T −(RA∪RB) that contain a vertex adjacent to a vertex from RB . Observe
that TA ∩TB = ∅. The components of T − (RA ∪RB) are subsets of components
of T −R and therefore are of size at most τ each.

Lemma 2.5.21. Let 1 ≤ τ ≤ ϑ. Let (T, R) be a rooted tree of order ϑ + 1. Let
S1 and S2 be subsets of V (T ) each of size c such that all vertices of S1 are at odd
distance to R and all vertices of S2 are of even distance from R. Then there exist
sets RA and RB of size at most 3(ϑ

τ
+ 1 + 2c) each, such that T − (RA ∪ RB)

decomposes into TA ∪TB ∪TF , sets of subtrees of size at most τ and the following
holds:

• S1 ⊆ RB and S2 ⊆ RA.

• For any vertex v in a subtree t ∈ TA ∪ TB, if v is adjacent to some vertex
in u ∈ RA ∪RB, then u = v(t).

• For any tree tA ∈ TA∪TF we have that v(tA) ∈ RA and for any tree tB ∈ TB

we have that v(tB) ∈ RB.

• |⋃t∈TA
V (t)| ≥ |⋃t∈TB

V (t)|.

Proof of Lemma 2.5.21. The proof goes analogously to proof 2.5.18. We use
Lemma 2.5.20 to obtain vertex-sets R′

A and R′
B of size ϑ

τ
+ 1 + 2c each and

sets TA and TB ⊆ T − (R′
A ∪R′

B) of subtrees of size at most τ .

Denote by T ′
F the set of components of T − (R′

A ∪ R′
B) for which more than

one vertex from R′
A ∪ R′

B is adjacent to some vertex of the given component.
Without loss of generality suppose that |⋃t∈T ′

B
\T ′

F
V (t)| ≤ |⋃t∈T ′

A
\T ′

F
V (t)|. Set

TB := T ′
B \ T ′

F and TA := T ′
A \ T ′

F .

For any tree t in T ′
F ∩ T ′

B denote by St the set of vertices in t that are adjacent
to some vertex in R′

B. By those vertices we shall enlarge the set R′
A. Set RA :=

R′
A ∪ ⋃

t∈T ′
F
∩T ′

B
St. Observe that |⋃t∈T ′

F
∩T ′

B
St| ≤ 2|R′

B| and therefore

|RA| ≤ |R′
A| + 2|R′

B| ≤ 3(
ϑ

τ
+ 1 + 2c).

This switching changes the set T ′
F in a natural way, i. e.

TF := (T ′
F ∩ T ′

A) ∪
⋃

t∈(T ′
F
∩T ′

B
)

t − St,

where by t − St here we understand the union of components of t − St.
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By Lemma 2.5.20 we have that S1 ⊆ RB, S2 ⊆ RA, that any tree in t ∈ TA has
v(T ) ∈ RA, that any tree t ∈ TB has v(t) ∈ RB and that the only vertices in
TA∪TB adjacent to the set RA∪RB is the root of some subtree in TA∪TB. By our
construction we have that any tree t ∈ TF has v(t) ∈ RA. By our assumption we
have |⋃t∈TA

V (t)| ≥ |⋃t∈TB
V (t)| (in the opposite case we would have switched

the A’s and B’s).

2.5.4 The proof of the approximate version

Now that we have formulated the tools we need in the proof of the approximative
version of the Loebl-Komlós-Sós conjecture, we can prove the theorem. Before
doing so, let us recall the statement of the theorem.

Theorem 2.5.1. For every γ, q > 0 there is an n0 ∈ N so that for all graphs
G on n ≥ n0 vertices the following is true.

If at least (1 + γ)n
2

vertices of G have degree at least (1 + γ)qn, then G contains,
as subgraphs, all trees with at most qn edges.

The proof of Theorem 2.5.1 follows the main lines of the proof of Theorem 2.5.2
given by Ajtai, Komlós and Szemerédi (see [1]).

We first use the Regularity Lemma to partition the set of vertices of the graph
into clusters, such that most pairs of clusters are regular. Then, we clean the
graph deleting some edges and get a subgraph Gp in which we shall embed any
tree with at most k edges. The cluster graph H has a similar property as G, i. e.
that at least a little bit more than half of its clusters have average degree at least
a little bit more than k = q · n. We denote by L those clusters.

We use then the Gallai-Edmonds Matching Theorem to get a matching of the
cluster graph H . Then, we find two suitable clusters A and B in L, joined by an
edge in H , for which the neighbourhood is well covered by the matching and the
set of clusters L.

Then, we partition the tree T into small subtrees such that there are few vertices
connecting those subtrees.

Then, we embed the tree in the cluster graph. The vertices connecting the small
trees embed into the clusters A and B. Because there are few of them, we can
fit them in those two clusters. The small trees embed into the neighbourhood of
those two clusters. Having partitioned the tree T into small pieces, we can easily
embed each small subtree.
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Proof of Theorem 2.5.1:

Suppose 0 < γ, q < 1 are given. Then, set π := min{γ, q} and

α :=
π5q

25 · 107
, ε :=

π4q

5 · 105
and m :=

500

qπ2
.

Szemerédi’s Regularity Lemma gives us two natural numbers N0 and M0 such
that, for any graph G of order n ≥ N0, there exists an (ε, α; N)-equitable partition
with m ≤ N ≤ M . We set

β :=
ε

M
, a density δ :=

π2q

250

and

n0 := max{N0,
107 · M2

π4q2
}.

We claim that Theorem 2.5.1 holds for this choice of n0 ∈ N.

So, assume G is a graph of order n ≥ n0 which has at least (1 + γ)n
2
≥ (1 + π)n

2

vertices of degree at least (1 + γ)k ≥ (1 + π)k and we are given a tree T of order
at most k + 1. Regularity Lemma give us a partition of the vertices into clusters
C0, C1, . . . CN such that

1. m ≤ N ≤ M

2. |C0| ≤ εn

3. |Ci| = |Cj| for i, j ∈ {1, . . . , N}

4. all but at most εN2 pairs (Ci, Cj) with i 6= j ∈ {1, . . . , N} are (ε, α)-regular.

The density satisfies

4ε +
1

m
< δ <

π2

16
. (2.32)

Now, we clean the graph G such that we delete all edges between irregular pairs,
all edges between pairs with density smaller than δ, all edges that lies inside a
cluster and all edges that are incident to C0. Denote by Gδ the subgraph of
G we get after having deleted all these edges. We shall embed the tree T into
the subgraph Gδ. The subgraph Gδ has nearly as many edges as has graph G.
Indeed, by (1.1) we have deleted at most

(2ε +
1

2m
+

δ

2
) n2 < δn2 <

π2q

8
n2
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edges. This gives us that

|E(G \ Gδ)| ≤
π2q

8
n2.

Therefore, for all but at most πn
4

vertices v, we have degGδ
(v) ≥ degG(v) − πqn

2
.

Hence,

Gδ has at least (1 + π
2
)n

2
vertices of degree at least (1 + π

2
)k.

(2.33)

Let us calculate now how many clusters of the graph Gδ has more than αs vertices
with degree at least (1 + π

2
)k. Suppose we have only (1 + π

10
)N

2
such clusters. In

all those clusters, we have at most s · (1 + π
10

)N
2

vertices with degree at least
(1 + π

2
)k. In the rest of the clusters, we have at most αs · (1− π

10
)N

2
vertices with

degree at least (1 + π
2
)k. All together, we have

n

N
(1 +

π

10
)
N

2
+ α

n

N
(1 − π

10
)
N

2
≥ |{v ∈ V (Gδ); deg(v) ≥ (1 +

π

2
)k}|

≥ (1 +
π

2
)
n

2

vertices with degree at least (1 + π
2
)k. This implies that α ≥ 2

5
π, a contradiction

with the choice of α. So, we know we have more than (1 + π
10

)N
2

clusters with
more than αs vertices with degree at least (1+ π

2
)k. Denote by L the set of those

clusters. By Proposition 1.5.8, we know that a cluster C that contains more than
αs vertices with degree at least (1 + π

2
)k must itself have average degree at least

deg(C) > (1 +
π

2
)k − εn > (1 +

π

5
)k.

We set K := (1+ π
5
)k. If H denotes the cluster graph of Gδ, we apply Lemma 2.5.5

to H and K and obtain one of the following two cases:

1. H has a matching M ′, and an edge AB with A, B ∈ L such that M ′ covers
all but at most one neighbour of A ∪ B, or

2. H has a matching M ′, and an edge AB with A, B ∈ L, so that each cluster
in N(A) meets a different edge of M ′, and so that the degree of B into
M ′ ∪ L is at least (1 + π

5
)k

2
.

In both cases, we slightly modify the matching M ′ to get a matching M such
that V (M) ∩ (A ∪ B) = ∅. We delete any edges from the matching M ′ that are
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incident to the vertex A or B. We have taken out at most 2 edges {eA, eB} from
M ′. So, with the new matching M := M ′ \ {eA, eB}, we have for case 1

degM(A), degM(B) ≥ (1 +
π

5
)k − 3n

N
≥ (1 +

π

5
− 3

qm
)k ≥ (1 +

π

10
)k, (2.34)

and for case 2
degM(A)(1 +

π

10
)k

and

degM∪L\A(B) ≥ (1 +
π

5
)
k

2
− 3n

N
≥ (1 +

π

5
− 3

qm
)
k

2
≥ (1 +

π

10
)
k

2
. (2.35)

By the same argument, observe that for any cluster C ∈ L,

degV (H)\(A∪B)(C) ≥ (1 +
π

10
)k.

If case 1 occurs, we use Proposition 2.5.25. If case 2 occurs, we use Proposi-
tion 2.5.26.

We have to check if the conditions of the propositions are fulfilled. Set τ := βk,
ϑ := k and ∆ := 2αs+τ

δ−2ε
.

First, observe that

N(∆ + 2εs̃ + τ) ≤ N

(
2αs + βqn

δ − 2ε
+ 2ε(1 − 2α)s + βqn

)

≤ n

(
4(2α + εq)

3δ
+ 2ε + εq

)

≤ π2qn

900
.

For case 1, we have

2N(∆ + εs̃ + τ) + 2s ≤ π2qn

450
+

π2qn

250
<

πqn

10
.

Then
degM(A), degM(B) ≥ ϑ + 4|M |∆̄ + 2s,

satisfying the conditions of Proposition 2.5.25.

For case 2, we have

(ϑN(∆ + 2εs̃ + τ))
1

2 + Nεs ≤ (qn
π2qn

900
)

1

2 +
π4q

5 · 105
n <

πqn

20
.
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Thus,
degM(A) ≥ ϑ + 2(ϑN∆̄)

1

2 + Nεs

and

degM∪L(B) ≥ ϑ

2
+ (ϑN∆̄)

1

2 + Nεs.

Similarly, for C ∈ L, we have

degV (H)\(A∪B)(C) ≥ ϑ

2
+ (ϑN∆̄)

1

2 + Nεs.

At least,

ϑ = qn >
π2qn

100
> 8N(∆ + εs + τ).

This satisfy the conditions of Proposition 2.5.26.

Before stating and proving Propositions 2.5.25 and 2.5.26, let us introduce their
simplified versions. In this way, we can get in touch with the idea of the proof,
without considering some details.

2.5.5 Simplified versions

We have found two possible configurations of a cluster graph H of our graph
G and then using Lemma 2.5.25 and Lemma 2.5.26, each for a configuration of
H , we shall embed our tree T into G. In the following two lemmas we assume
a slightly stronger assumption on the possible two configurations of the cluster
graph H to get the same result: the embedding of the tree T .

The proofs of those two propositions give a good idea of the proofs of Lem-
mas 2.5.25 and 2.5.26 without bothering with some technical details. For a discus-
sion on why we cannot have similar simple proofs for Lemmas 2.5.25 and 2.5.26,
see Remark 2.5.27.

Suppose that after using Regularity Lemma on our graph G, you clean it as in
Section 1.4 to get a subgraph Gδ and let H be the cluster graph of Gδ. Denote
by L the set of clusters in H that have average degree at least (1 + π

5
)k, where

π := min{q, γ}. Suppose that there in an edge {A, B} ∈ E(H) with A, B ∈ L
and a matching M in H that do not cover A nor B, such that

(1’) N(A) and N(B) is covered by M or

(2’) N(A) is covered by M and the degree of B into M ∪ L is at least (1 + π
5
)k

2
,

and that each cluster in N(A) meets a different edge of M and each cluster in
N(B) meets also a different edge of M .
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Suppose that case (1’) occurs. Then we use Lemma 2.5.22. If case (2’) occurs,
then we use Lemma 2.5.23.

Case 1’ – (simplified version of case 1)

Proposition 2.5.22. Let 0 < α, ε, δ < 1 and τ, ϑ, s,∈ N with τ ≤ ϑ, s(δ − ε −
2α) > 4ϑ

τ
and 2ε < δ. Let H be the cluster-graph of a graph G with each cluster of

size s and such that for each {C, D} ∈ E(H) the pair (C, D) is an (ε, α)-regular
pair in G with density at least δ. Let {A, B} be an edge of the cluster graph H and
M a matching in H such that V (M)∩ (A∪B) 6= ∅ and each cluster neighbouring
cluster A (resp. cluster B) meets a different edge of the matching M . If

degM(A) ≥ ϑ + 4|M |∆̄ + 2s,

degM(B) ≥ ϑ + 4|M |∆̄ + 2s,

where ∆̄ := ∆ + 2εs and ∆ := 2αs+τ
δ−2ε

, then any tree T of order at most ϑ + 1
embeds in G.

Before entering the details of the proof, we give some sketch of it. First, we de-
composes the tree T into a vertex-cut R of small size and small rooted subtrees
of size at most τ . This set of small subtrees is partitioned into two sets TA and TB.

Depending on the size of those sets TA and TB, we partition our matching M into
MA and MB, such that the degree of cluster A into MA is large enough to be able
to embed TA and the degree of cluster B into MB is large enough to embed the
trees of TB.

Then, we define our embedding in |R| steps, where, in each of those steps, we
embed a vertex v from R together with all the trees in TA ∪ TB that grow from
v, i. e. trees with v(t) = r. For each of those trees, we choose a suitable edge
in MA or in MB, that has still enough free space and embed in it the small tree
levelwise.

Proof of Proposition 2.5.22. Choose any vertex R ∈ V (T ) as the root of the tree
T . We first partition the rooted tree (T, R) using Lemma 2.5.16. We get sets of
subtrees TA and TB and sets of vertices RA and RB with

|RA|, |RB| ≤
ϑ

τ
+ 1 ≤ 2

ϑ

τ
.

Set R := RA ∪RB and T := TA ∪ TB.
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We partition the matching M into disjoint matchings MA and MB as follows. We
set p := |VA| + 2|M |∆̄ + 2s, q := |VB| + 2|M |∆̄, pi := degei

(A), qi := degei
(B),

where ei are the edges of the matching M and ζ = 2s. We have

p
∑|M |

i=1 pi

+
q

∑|M |
i=1 qi

≤ |VA| + 2|M |∆̄ + ζ

degM(A)
+

|VB| + 2|M |∆̄
degM(B)

≤ 1.

Using Lemma 2.5.4, we get a partition MA = {e1, . . . ema
} and MB := {ema+1, . . . , e|M |}

of M with

degMA
(A) :=

ma∑

i=1

degei
(A) > |VA| + 2|M |∆̄, (2.36)

and

degMB
(B) :=

|M |
∑

i=ma+1

degei
(B) > |VB| + 2|M |∆̄.

We define our embedding ϕ in |R| steps. For step 1, set R0 := R. At each step
i > 1, choose a vertex Ri ∈ R that has a neighbour for which the embedding ϕ
is already defined. In each step, we embed Ri (in cluster A, if Ri ∈ RA; and in
cluster B ,otherwise) together with

Ti := {t ∈ T , v(t) = Ri}

(in MA and respectively in MB). Set

Vi := {Ri} ∪
⋃

t∈Ti

V (t),

and
Ui :=

⋃

ℓ≤i

ϕ(Vℓ).

So, the set Ui denotes the set of vertices used by the embedding ϕ after the step i.

At each step i ≥ 1, our embedding will satisfy the following two conditions.

(a) Any vertex v ∈ Vi that is a predecessor in our tree T of some vertex Rk ∈ R
has at least (δ − ε)s neighbours in cluster A, if Rk ∈ RA; or in cluster B, if
Rk ∈ RB.

(b) There are i vertices embedded in A ∪ B.

Without loss of generality, suppose that Ri ∈ RA. The case when Ri ∈ RB is
analogue. Embed the vertex Ri in an unused vertex of cluster A that is typical
with respect to cluster B and with respect to MA (formally we mean here typical
with respect to the union of all clusters contained in edges of MA). In the first
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step, we have (1 − 2α)s > 0 vertices to choose from. At step i > 1, the prop-
erty (a) ensures us that we have at least (δ − ε− 2α)s− i > 0 unused vertices to
choose from. Set vi := ϕ(Ri).

Then, we have

degMA
(vi) ≥ degMA

(A) − |MA|2εs ≥ |VA| + |MA|2∆.

Now, we use Lemma 2.5.10 to embed Ti in MA by setting C :=
⋃

{C,D}∈MA
C ∪D

and N := C ∩ N(A). Lemma 2.5.10 ensures us that Ri embeds on vi and Ti

embeds in MA \ Ui−1. Also, we can embed in such a way that all vertices at odd
distance from Ri have at least (δ − ε)s neighbours in cluster A. The latter prop-
erty implies that the definition of ϕ, at step i, fulfills (a). Property (b) follows
directly from the fact that at step i we embedded only the vertex Ri in cluster
A.

After |R| steps, we have defined the embedding ϕ of all vertices in V (T ).

Case 2’ – (simplified version of case 2)

Proposition 2.5.23. Let 0 < α, ε, δ < 1 and τ, ϑ, s ∈ N with τ ≤ ϑ, s(δ − εs −
7α) > 6ϑ

τ
and 2ε < δ. Let H be the cluster-graph of order N of a graph G with

each cluster of size s and such that for each {C, D} ∈ E(H) the pair (C, D) is
an (ε, α)-regular pair in G with density at least δ. Let {A, B} be an edge of the
cluster graph H and M a matching in H such that V (M) ∩ (A ∪ B) 6= ∅ and
each cluster neighbouring cluster A (resp. cluster B) meets a different edge of the
matching M . Let L be the set of clusters C in V (H) \ (V (M)∪A∪B) with high
average degree in V (H), i. e.

degV (H)\(A∪B)(C) ≥ ϑ

2
+

(
ϑN∆̄

) 1

2 + Nεs. (2.37)

Suppose that

degM(A) ≥ ϑ + 2
(
ϑN∆̄

) 1

2 + Nεs,

and

degM∪L(B) ≥ ϑ

2
+

(
ϑN∆̄

) 1

2 + Nεs,

where ∆̄ := ∆ + 2εs′ and ∆ := 2αs+τ
δ−2ε

. Suppose that ϑ ≥ 8N∆̄. Then, any tree T
of order at most ϑ + 1 embeds into G.

The idea of the proof is the following. First, we get some vertex-cut R = RA∪RB

of the tree T such that the components of T −R are subtrees of size at most τ
(See Remark 2.5.24 for more discussion on this decomposition of the tree). The
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set of components are partitioned into three sets TF , TA and TB.

After our tree decomposition, we reserve in each cluster C 6= A, B some part
CA for the embedding of TF , and some part CB, for the embedding of TB. The
components of TA will be embedded at the very end, after having finished to
embed all components of TF and TB. We can do so, as components in TA are
end-components, i. e. for any tree t ∈ TA the subgraph T − t is still connected.

Our embedding process will be defined in two phases. In the first phase, we shall
define our embedding ϕ reduced to the vertices in R and in TF ∪ TB, while, in
the second phase, we shall define ϕ on the rest of the tree T , i. e. on the vertices
of the components of TA. The first phase will be defined in |R| steps.

In each of these steps, we embed one vertex Ri of R together with all the com-
ponents in TF ∪ TB that grow from the seed Ri. The vertex Ri will be embedded
on a typical vertex of cluster A if Ri ∈ RA and on a typical vertex of cluster B
otherwise. Having embedded Ri, for each component t ∈ TF ∪TB that grows from
Ri, we shall find a suitable edge (either in the matching M or containing some
cluster C ∈ N(B) with large average degree) that is suitable for the embedding
of the component t.

At the end, we embed the components of TA, without taking care of any reserva-
tion anymore.

Proof of Lemma 2.5.23. Choose any vertex R ∈ V (T ) as the root of the tree T .
We first partition the rooted tree (T, R) using Lemma 2.5.18.

We get sets of subtrees TA, TB and TF , with |⋃t∈TB
V (t)| ≤ |⋃t∈TA

V (t)|, and

sets of vertices RA and RB with |RA|, |RB| ≤ 3(ϑ
τ

+ 1) ≤ 6ϑ
τ

with the following
properties.

• For each tree t ∈ TA ∪ TB, there is only one vertex v ∈ R := RA ∪RB that
is adjacent to some vertex of t.

• Trees from TF ∪ TF are adjacent only to seeds from RA.

• Trees from TB are adjacent only to seeds from RB.

Set R := RA ∪ RB, T ′ := TF ∪ TB are the components we shall embed first
and T := T ′ ∪ TA is the set of all components of T −R. Denote by VF the set
⋃

t∈TF
V (T ). Analogously, we have VB :=

⋃

T∈TB
V (t) and VA :=

⋃

t∈TA
V (t).

Let y ∈ R be such that |VF | = y · ϑ. Then, |VB| ≤ (1−y)
2

ϑ.
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Set

σ :=

(
N∆̄

ϑ

) 1

2

.

Set A := A, B := L∪B, NA := V (M), NB := V (M)∪L and NL := V (H)\(A∪B),
for any L ∈ L. By using Lemma 2.5.8, we get a σ-uniform partition CA ∪ CB of
each cluster C in V (H) \ (A ∪ B) such that

degNA
A
(A) ≥ |VF |(1 +

σ2

y
) ≥ |VF | + σ2ϑ ≥ |VF | + N∆̄,

degNB
B
(B) ≥ |VB|(1 +

σ2

1 − y
) ≥ |VB| + N∆̄,

and, for L ∈ L,

degNB
L
(L) ≥ |VB| + N∆̄,

where NA
D :=

⋃

C∈ND
CA and NB

D :=
⋃

C∈ND
CB, for D = A, B, L. Similarly, we

define CA, CB, MA , MB and LB.

Our embedding ϕ is defined in two phases. During the first one, we embed all
vertices in R and all components of T ′. In the second phase, we embed the
components of TA.

The first phase is defined in |R| steps. At each step i > 1, we choose a vertex
Ri ∈ R that has a neighbour for which the embedding ϕ is already defined. If
i = 1, set R0 := R. In each step, we embed Ri in cluster A if Ri ∈ RA; and in
cluster B, otherwise. Also, we embed

Ti := {t ∈ T ′, v(t) = Ri}
in edges of the matching M or adjacent to some cluster C ∈ L neighbouring
cluster B.

Set
Vi := Ri ∪

⋃

t∈Ti

V (t),

and
U i :=

⋃

ℓ≤i

ϕ(Vℓ).

In each step of the first phase of our embedding process, ϕ(Vi) will satisfy the
following properties.
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(a) Any vertex v ∈ Vi that is a predecessor of some vertex Rk ∈ R has at least
(δ − ε)s neighbours in cluster A, if Rk ∈ RA; and (δ − ε)s neighbours in
cluster B, if Rk ∈ RB.

(b) There are i vertices embedded in A ∪ B.

Now, suppose that we are at step i and want to embed Ri ∈ R together with Ti.
First, assume that Ri ∈ RA. We embed Ri in cluster A and the rest of Vi in MA.
Let us choose a vertex that is

• typical to the cluster B,

• typical to the set CA,

• typical to the set C.

Properties (a) and (b) ensure that there are at least (δ−ε−3α)s− i > 0 vertices
to choose from the the neighbourhood of vertex ϕ(v), where v is the predecessor
of Ri.

Set s′ := |CA|. Now, we use Lemma 2.5.10 to embed the components Ti in
G \ U i−1 such that Ri embeds on vi, Ti embeds in MA \ U i−1. We know that
we can ensure that all vertices at odd distance from Ri have at least (δ − ε)s
neighbours in cluster A. The latter property implies that the definition of ϕ,
at step i, fulfills (a). Property (b) follows directly from the fact that we have
embedded, at step i, only one vertex Ri in cluster A.

Now, suppose that Ri ∈ RB. We want to embed Ri in cluster A and the rest of
Vi in MB or some edge of H incident to some C ∈ L. Choose a vertex vi that is

• typical with respect to the cluster A,

• typical to MB,

• typical to LB,

By properties (a) and (b), we have at least (δ − ε − 3α)s − i > 0 vertices to
choose from the neighbours of vertex v, where v is the predecessor of Ri. Set
ϕ(Ri) := vi.

Let T 1 ⊆ Ti be maximal such that

degMB(B) − |N |∆̄ ≥
∑

t∈T 1

|V (t)| + |U j−1 ∩ MB|.
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Then,

degMB(vi) ≥
∑

t∈T 1

|V (t)| + |U j−1 ∩ MB| + 2|M |∆,

and
degLB(vi) ≥

∑

t∈Ti\T 1

|V (t)| + |U j−1 ∩ MB| + |L|∆.

Embed T 1 using Lemma 2.5.10 and Ti \ T 1 using Lemma 2.5.14. We can embed
Vi in G \U i−1 such that Ri embeds on vi, Ti embeds in CB \U i−1, and all vertices
at odd distance from Ri have at least (δ − ε)s neighbours in cluster B. The
latter property implies that the definition of ϕ, at step i, fulfills Property (a).
Property (b) follows directly from the fact that we embedded at step i only one
vertex Ri in cluster B.

The second phase defines the embedding ϕ for components of TA. We do not
care about any reservation anymore. This phase is defined in |RA| steps, where
in each step j ≥ 1 we embed all the trees in

Tj := {t ∈ TA, v(t) = Rj}
in edges of the matching M .

Set
Vj :=

⋃

t∈Tj

V (t),

and

U j := U ∪
⋃

ℓ≤j

ϕ(Vℓ),

where U := ϕ(R) ∪ ⋃

t∈T ′ ϕ(V (t)).

All vertices Rj ∈ RA were embedded on typical vertices with respect to M .
So, we can use Lemma 2.5.10 to define our embedding of Vj with s′ := s, and
N := C ∩ N(A). We embed Vj in G \ U j−1 such that Rj embeds on vj , and Vj

embeds in M \ U j−1.

We have defined ϕ for V (T ).This ends the proof of Proposition 2.5.23.

Remark 2.5.24. For case 2’ (and analogously for case 2), we need a more complex
tree decomposition than for case 1’.

If we use the same tree decomposition as in case 1’, we could embed the smallest
of VA and VB in the neighbourhood of cluster C, but we would need to embed
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the whole set VB, before to embed any vertex of VA.

We would eventually embed a forest, that we would maybe not be able to glue
together using R and TA.

In fact TF denotes the components that have to be embedded as first. We can
wait for the embedding of the components TA ∪ TB as long as we wish.

2.5.6 Case 1 (non-simplified)

Proposition 2.5.25 (Case 1). Let 0 < α, ε, δ < 1 and τ, ϑ, s ∈ N with τ ≤ ϑ,
s( δ

2
− 6α) > 4ϑ

τ
. Let H be the cluster-graph of a graph G such that for each

{C, D} ∈ E(H) the pair (C, D) is an (ε, α)-regular pair in G with density at least
δ. All clusters have size s each. Let {A, B} be an edge of the cluster graph H
and M a matching in H such that (A ∪ B) ∩ V (M) 6= ∅. If

degM(A) ≥ ϑ + 4|M |∆̄ + 2s,

degM(B) ≥ ϑ + 4|M |∆̄ + 2s,

where ∆̄ := ∆ + 2εs + τ and ∆ := 2αs+τ
δ−2ε

, then any tree T of order at most ϑ + 1
embeds into G.

Notation 2.5.25.1. Suppose that I is an ordered set of indices and let S =
⋃

i∈I′ Si,
where I ′ ⊆ I. We say that S has shadow I ′. For a partition of I into subsets IA

and IB, we denote by SA and by SB the subset of S that has its shadow in A
and in B, respectively. Formally SA :=

⋃

i∈I′∩IA
Si, and SB :=

⋃

i∈I′∩IB
Si. We

define S≤i :=
⋃

j≤i Sj and say that S≤i is the subset of S with shadow at most i.

Similarly define S<i, S≥i , and S>i. We can combine the just defined notations.
Then S≤i

A =
⋃

j≤i; j∈IA
Sj .

Before entering the details, we give an idea of the proof.

First, we shall find a set R = RA ∪ RB of special vertices in the tree T such
that T − R decomposes into small components. Each component t is growing
from a seed v(t) that is a vertex in R. If the seed of the small tree t is in RA,
then t is adjacent to vertices only in RA. Similarly trees t with v(t) ∈ RB are
adjacent to vertices in RB only. If T denotes the set of components in T −R, it
naturally partitions into TA and TB. So, the decomposition of the tree remembers
the shape of a dumbbell.
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We shall partition the matching M into two submatchings, MA for the set TA

and MB for TB.

The next step is to order the seeds in R and define submatchings (not necessarily
disjoint) of MA and MB, each submatching corresponding to the union of the
components growing from the corresponding seed in R. Then, we define the
embedding ϕ inductively, and in each step, we embed one vertex Ri ∈ R and the
components in T −R that grows from the seed Ri in the corresponding matching
Mi.

Proof of Proposition 2.5.25. As the proof is relatively long, we decompose it
into nine parts, each containing an underlined title, to make it more readable.

1. Decomposition of the tree:

Choose any vertex R ∈ V (T ) as the root of the tree T . We first partition the
rooted tree (T, R) using Lemma 2.5.16. We get sets of subtrees TA and TB and
sets of vertices RA and RB of vertices in V (T ) with |RA|, |RB| ≤ ϑ

τ
+ 1 ≤ 2ϑ

τ
.

Set R := RA ∪RB and T := TA ∪TB. We shall define VA as the set of vertices of
all the components in T that has shadow in TA, i. e. VA :=

⋃

t∈TA
V (t). Similarly

define VB.

2. Partition of the matching:

We partition the matching M into disjoint submatchings MA and MB, using
Lemma 2.5.4 in the same way as we did in the proof of Proposition 2.5.22. We
get MA = {e1, . . . ema

} and MB := {ema+1, . . . , em} of M with

degMA
(A) :=

ma∑

i=1

degei
(A) > |VA| + 2|M |∆̄,

and

degMB
(B) :=

m∑

i=ma+1

degei
(B) > |VB| + 2|M |∆̄.

3. Ordering of vertices in the vertex cut:

Inductively, we order the vertices of R and define submatchings of M for each
vertex of R. Define R1 := R. If Ri is defined, then choose Ri+1 among any of
the vertices of R \ ⋃

j≤i Rj that has a neighbour in a tree t ∈ T with v(t) = Rj ,
j ≤ i.

67



This defines an index set I := {1, . . . , |R|} with a natural partition IA := {i ∈
I; Ri ∈ RA} and IB := {i ∈ I; Ri ∈ RB}. Set V i :=

⋃

t∈T ;v(t)=Ri
V (t). Denote

by V ≤i the subset of V (T ) with shadow at most i ∈ I, i. e. V ≤i :=
⋃

j≤i V
j for

i ≥ 0. Set V ≤i
A := VA ∩ V ≤i. Analogously define V ≤i

B .

4. Definition of submatchings:

We define the submatchings Mi in such a way so that we can embed the subtrees
that grow from Ri in Mi. Set index a0 = 1, b0 = ma +1. Let ai and bi be minimal
with the property that

ai∑

ℓ=1

degeℓ
(A) ≥ |V ≤i

A | + ai∆̄, (2.38)

and
bi∑

ℓ=ma+1

degeℓ
(B) ≥ |V ≤i

B | + (bi − ma)∆̄.

For i < j, we have ai ≤ aj and bi ≤ bj . Now, if i ∈ IA, we define Mi :=
{eai−1

, . . . , eai
} ⊆ MA, and if i ∈ IB, Mi := {ebi−1

, . . . , ebi
} ⊆ MB.

5. The inductive step:

Our embedding ϕ will be defined in |R| steps. In each step, we first embed Ri in
cluster A, if Ri ∈ RA; and in cluster B, if Ri ∈ RB. Then, we embed all trees t
with v(t) = Ri (the trees that grow from the seed Ri) in the submatching Mi of M .

6. The properties of the embedding:

Let U i := ϕ(V ≤i ∪ {R1, . . . , Ri}). For each step i ≥ 0, our embedding ϕ will
satisfy the following.

(a) |(A ∪ B) ∩ U i| ≤ i.

(b) If v ∈ U i and ϕ−1(v) precedes (in the ordering of the tree) some vertex in
RA, resp. RB, then v has at least δ

2
s neighbours in A, resp. B.

(c) For CD = eai
,

||C ∩U i| − |D ∩U i|| > τ ⇒ min{degC(A)− |U i ∩C|, degD(A)− |U i ∩D|} <
∆ + 2ε.
Also, degC(A) < |U i ∩ C| + ∆ + 2εs ⇒ degC(A) < |U i ∩ D| + ∆̄,
and degD(A) < |U i ∩ D| + ∆ + 2εs ⇒ degD(A) < |U i ∩ C| + ∆̄.
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(d) For CD = ebi
,

||C ∩U i| − |D ∩U i|| > τ ⇒ min{degC(B)− |U i ∩C|, degD(B)− |U i ∩D|} <
∆ + 2εs.
Also, degC(B) < |U i ∩ C| + ∆ + 2εs ⇒ degC(B) < |U i ∩ D| + ∆̄,
and degD(B) < |U i ∩ D| + ∆ + 2εs ⇒ degD(B) < |U i ∩ C| + ∆̄.

(e) U i ∩ ej = ∅, for ai < j ≤ ma or bi < j ≤ m.

(f) |U i ∩ eai
| ≤ |V ≤i

A | − Σai−1
0 (A) and |U i ∩ ebi

| ≤ |V ≤i
B | − Σbi−1

0 (B),

where, for ℓ ∈ N, we define

Σℓ
i(A) :=

ℓ∑

j=ai

(
degej

(A)
)
− |eai

∩ U i| − 2(ℓ − ai + 1)∆̄,

and

Σℓ
i(B) :=

ℓ∑

j=bi

(
degej

(B)
)
− |ebi

∩ U i| − 2(ℓ − bi + 1)∆̄.

The symbols Σℓ
i(A) and Σℓ

i(B) express the size of a subtree of T for which there
is enough place in the edges eai

, . . . , eℓ and in the edges ebi
, . . . , eℓ, respectively.

Remark that

Σai−1
0 (A) + Σ

ai+1

i (A) = Σ
ai+1

0 (A) − |U i ∩ eai
|.

A similar equation holds for Σ(B). Observe that properties (a)–(f) clearly hold
for i = 0.

7. The embedding of R:

For each step i ≥ 1, we define the embedding as follows. Suppose that Ri ∈ RA

(The case when Ri ∈ RB is define analogously).

Define a vertex in A to be i-typical if it is

• typical to cluster B,

• typical to both C and D, for {C, D} = eai−1
,

• typical to both C and D, for {C, D} = eai
,

• typical to Mi \ (eai−1
∪ eai

),
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We embed Ri among the unused i-typical vertices of the neighbours of ϕ(v),
where v is the predecessor of Ri (if Ri = R1 = R, choose a i-typical vertex in the
cluster A without any other restrictions). Using the properties (a) and (b), we
know that we have at least ( δ

2
− 6α)s − i > 0 unused vertices to choose from.

8. The embedding of Ti:

Let T 1 ⊆ Ti be minimal such that

Σ
ai−1

i−1 (A) ≤
∑

t∈T 1

|V (t)|.

Then
degeai−1

(A) ≥
∑

t∈T 1

|V (t)| + |U i−1 ∩ eai−1
| + 2∆ + 4εs + τ.

Set U := U i−1∩eai−1
. Using Lemma 2.5.13, embed T 1 in the first edge eai−1

of Mi.
Properties (c) ensures that the conditions(2.16), (2.17) and (2.18) are fulfilled.
(If only one of the clusters that form the matching edge is neighbouring A, we
use Lemma 2.5.10 instead of Lemma 2.5.13.)

Now let T 2 ⊆ Ti \ T 1 be minimal such that

Σai−1
i−1 (A) − Σ

ai−1

i−1 (A) ≤
∑

t∈T 2

|V (t)|.

Then,

degMi\(eai−1
∪eai

)(vi) ≥
∑

t∈T 2

|V (t)| + (|Mi| − 2)(2∆ + τ).

Using Lemma 2.5.12, we embed T 2 in Mi \ (eai−1
∪ eai

), the “internal” edges of
Mi.

Observe that
Σai−1

i−1 (A) ≤
∑

t∈T 1∪T 2

|V (t)| (2.39)

Using Lemma 2.5.13 with U = U i−1 ∩ eai
, we embed the trees of Ti \ (T 1 ∪ T 2)

into ea1
, the last edge of Mi (U = ∅ if ai−1 6= ai, and if ai−1 = ai, then

Ti \ (T 1 ∪ T 2) = ∅). (If only one of the clusters that form the matching edge
is neighbouring A, we use Lemma 2.5.10 instead of Lemma 2.5.13.)

We claim that

degeai
(A) ≥

∑

t∈Ti\(T 1∪T 2)

|V (t)| + 2∆̄ (2.40)
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Indeed, using the definition of Σ(A), Property (f) for i− 1, (2.38), and (2.39), we
have

∑

t∈Ti\(T 1∪T 2)

|V (t)| = |V ≤i
A | − |V <i

A | −
∑

t∈(T 1∪T 2)

|V (t)|

≤
ai∑

j−1

degej
(A) − 2ai∆̄ − |U i−1 ∩ eai−1

| − (Σ
ai−1−1
0 (A) + Σai−1

i−1 (A))

= degeai
(A) − 2∆̄.

9. Checking the properties for step i:

Property (a) follows immediately from the fact that the only vertices we embed
in clusters A and B are vertices from R. Therefore, at the end of step i, we have
embedded at most i vertices in A ∪ B.

Vertices RA are embedded on vertices in cluster A that are typical with respect
to cluster B, and vertices RB on vertices in cluster B that are typical with
respect to cluster A. So, vertices v ∈ U i ∩ ϕ(R) satisfy Property (b). Now, by
Lemmas 2.5.12 and 2.5.13, all vertices from V ≤i

A that are from odd distance from
RA have at least (δ−ε)s ≥ δ

2
s neighbours in cluster A. A similar argument holds

for vertices in V ≤i
B .

Property (c) or (d) follows from Lemma 2.5.13.

Property (e) follows from the fact that we use only the edges from Mi to embed
V i.

If eai
6= eai−1

, then |U i ∩ eai
| =

∑

t∈Ti\(T 1∪T 2) |V (t)|. Using Properties (e) and (f)
for i − 1, we have

∑

t∈Ti\(T 1∪T 2)

|V (t)| = |V ≤i
A | − |V <i

A | −
∑

t∈(T 1∪T 2)

|V (t)|

≤ |V ≤i
A | − Σ

ai−1−1
0 (A) − |U i−1 ∩ eai−1

| − Σai−1
i−1 (A)

≤ |V ≤i
A | − Σai−1

0 (A),

leading to Property (f).

Now, if eai
= eai−1

, then |U i ∩ eai
| =

∑

t∈Ti
|V (t)| + |U i−1 ∩ eai

|
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∑

t∈Ti

|V (t)| = |V ≤i
A | − |V <i

A |

≤ |V ≤i
A | − Σ

ai−1−1
0 (A) − |U i−1 ∩ eai−1

|
≤ |V ≤i

A | − Σai−1
0 (A) − |U i−1 ∩ eai

|,

leading to Property (f).

After the last step |R|, we have embedded all the tree T . This ends the proof of
Proposition 2.5.25.

2.5.7 Case 2 (non-simplified)

Proposition 2.5.26 (Case 2). Let 0 < α, ε, δ < 1 and τ, ϑ, s ∈ N with τ ≤ ϑ,
s( δ

2
− 7α) > 6ϑ

τ
. Let H be the cluster-graph of order N of a graph G with each

cluster of size s and such that for each {C, D} ∈ E(H) the pair (C, D) is an
(ε, α)-regular pair in G with density at least δ. Let {A, B} be an edge of the
cluster graph H and M a matching in H such that V (M) ∩ (A ∪ B) 6= ∅. Let L
be the set of clusters C in V (H) \ (M ∪ A ∪ B) that has high average degree in
V (H), i. e.

degV (H)\(A∪B)(C) ≥ ϑ

2
+

(
ϑN∆̄

) 1

2 + Nεs, (2.41)

where ∆̄ := ∆ + 2εs + τ and ∆ := 2αs+τ
δ−2ε

. Suppose that ϑ ≥ 8N∆̄.

If

degM(A) ≥ ϑ + 2
(
ϑN∆̄

) 1

2 + Nεs,

and

degM∪L(B) ≥ ϑ

2
+

(
ϑN∆̄)

) 1

2 + Nεs,

then any tree T of order at most ϑ + 1 embeds into G.

Before entering the details, we give an idea of the proof.

First, we find a vertex-cut R = RA ∪RB of the tree T that decomposes the tree
into three parts: one middle part TF that contains components lying between at
least two vertices of the cut and two border parts TA and TB.

After decomposing the tree, we reserve a part in each cluster for the middle part
TF and leave the rest for TB. We do this proportionally to the size of TF . So, if the
size of TF is a portion x of our tree T , we reserve a portion x of each cluster for TF ,
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letting a (1 − x) portion for TB. This leaves an average degree from cluster B of
(1−x)k

2
to the the reserved part for TB, which is an upper bound for the size of TB.

We first embed TF and TB, each in its respective reserved part, letting the em-
bedding of TA at the very end. The embedding of TF is somehow easier, as it
uses only matching edges and each cluster in the neighbourhood of A meets a
different edge of the matching. For the embedding of TB, we define, for each set
of components growing from a vertex Ri ∈ R, a submatching Mi, similarly as in
case 1.We embed TB in the matching-edges, as long as the matching edges are
not full. Then we use the clusters with large average degree to embed the rest
of TB. Having embedded the sets TF and TB, we embed TA. The embedding is
defined as for TF , but not taking in account any reservation.

Proof of Proposition 2.5.26. We use the notations defined in 2.5.25.1. For
faster orientation, the proof is divided into eleven parts, each depicted by an
underlined title.

1. Decomposition of the tree.

We choose any vertex R ∈ V (T ) as the root of the tree T , and decompose the
rooted tree (T, R) using Lemma 2.5.18. We get sets of subtrees TA, TB and TF

such that |⋃t∈TB
V (t)| ≤ |⋃t∈TA

V (t)|, and sets of vertices RA and RB such that

|RA|, |RB| ≤ 3(ϑ
τ

+ 1) ≤ 6ϑ
τ

with the following properties.

• For each tree t ∈ TA ∪ TB, there is only one vertex v ∈ R := RA ∪RB that
is adjacent to some vertex of t,

• trees from TA ∪ TF are adjacent only to vertices from RA and

• trees from TB are adjacent only to vertices from RB .

Set T ′ := TF ∪ TB. These are the components we shall embed first and T :=
T ′∪TA is the set of all components of T −R. Set VA :=

⋃

t∈TA
V (t). Analogously

define VB and VF .

2. The reservation.

Let y ∈ R be such that |VF | = y · ϑ. We have then that |VB| ≤ (1−y)
2

ϑ.

Set

σ :=

(
N∆̄

ϑ

) 1

2

.
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We use Lemma 2.5.8, with A := A, B := L ∪ B, NA := M , NB := M ∪ L and
NL := V (H) \ (A ∪ B) for any L ∈ L; and we get a partition CA ∪ CB of each
cluster C in V (H) \ (A ∪ B) such that

degNA
A
(A) ≥ |VF |(1 +

σ2

y
) ≥ |VF | + σ2ϑ ≥ |VF | + N∆̄,

degNB
B
(B) ≥ |VB|(1 +

σ2

1 − y
) ≥ |VB| + N∆̄,

and for L ∈ L,

degNB
L
(L) ≥ |VB| + N∆̄,

where NA
D :=

⋃

C∈ND
CA and NB

D :=
⋃

C∈ND
CB, for D = A, B, L.

We define CA, CB, MA , MB, MB
i , and LB in a similar way.

3. Ordering of the vertices of R.

Inductively, we order the vertices of R and define submatchings of M for each
vertex of R. Define R1 := R. If Ri is defined, then choose Ri+1 among any of
vertices of R \ ⋃

j≤i Rj having a neighbour in a tree t ∈ T ′ with v(t) = Rj for
j ≤ i. Observe that we order all vertices in R. Indeed, the only vertex in R that
is adjacent to some tree t ∈ TA is the seed v(t) of t.

This defines an index set I := {1, . . . , |R|} with a natural partition IA := {i ∈
I; Ri ∈ RA} and IB := {i ∈ I; Ri ∈ RB}. Set Ti := {t ∈ T ′; v(t) = Ri}. and
V i :=

⋃

t∈Ti
V (t). Denote by V ≤i the subset of V (T ) with shadow ≤ i ∈ I, that

is V ≤i :=
⋃

j≤i V
j for i ≥ 0. Then V ≤i

F := V ≤i ∩ VF . Analogously define V ≤i
B .

4. Partitioning TB.

Now that we have ordered the vertices of R, we partition the set TB into subsets
T ′

B and TB \ T ′
B. The set T ′

B will contain those subtrees that will be embedded
using matching edges, and TB\T ′

B will contain the subtrees that will be embedded
using clusters with high average degree.

Index the trees in TB to satisfy the following condition. If tk ∈ Ti and tℓ ∈ Tj

with i < j, then k < ℓ. Then, let ℓ be the maximal index with

degMB(B) ≥
ℓ∑

j=1

|V (tj)| + 2|M |∆̄.

Now, T ′
B := {tj ∈ TB; j ≤ ℓ}. We denote by WB the set of vertices in T ′

B and
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define W≤i
B accordingly.

5. The definition of submatchings.

For each Ri, we define the submatchings Mi and embed the components of T ′
B

that grow from Ri (an empty set if Ri ∈ RA) in Mi. Set index b0 = 1. Let bi ≤ m
be minimal with the following property.

bi∑

ℓ=1

degeB
ℓ
(B) ≥ |W≤i

B | + 2bi∆̄. (2.42)

For i < j we have bi ≤ bj . Now define Mi := {ebi−1
, . . . , ebi

}.

6. The steps of the embedding.

We define the embedding ϕ in two phases. During the first phase we embed
all vertices in R and all components of T ′. In the second phase, we embed the
components of TA. The first phase shall be defined in |R| steps. In each step we
shall first embed Ri in cluster A, if Ri ∈ RA; and in cluster B, if Ri ∈ RB. Then
we embed all trees t ∈ T ′ with v(t) = Ri (the trees that grow from Ri, except for
the components of TA) in edges of the submatching Mi of M or adjacent to some
cluster C ∈ L that is neighbouring cluster B. The second phase shall define the
embedding ϕ for components of TA. In the second phase we shall not care about
any reservation anymore, nor the ordering of the vertices in R.

7. The properties of the embedding.

Let U i := ϕ(V ≤i ∪ {R1, . . . , Ri}). For each step i ≥ 0 our embedding ϕ will
satisfy the following:

(a) |(A ∪ B) ∩ U i| ≤ i.

(b) If v ∈ U i and ϕ−1(v) precedes some vertex in RA, resp. RB, then v has at
least δ

2
s neighbours in A, resp. B.

(c) For CD = ebi
,

||CB ∩ U i| − |DB ∩ U i|| > τ ⇒ min{degCB(B) − |U i ∩ CB|, degDB(B) − |U i ∩
DB|} < ∆ + 2εs.
Also degCB(B) < |U i ∩ CB| + ∆ + 2εs ⇒ degCB(B) < |U i ∩ DB| + ∆̄.
and degDB(B) < |U i ∩ DB| + ∆ + 2εs ⇒ degDB(B) < |U i ∩ C| + ∆̄.

(d) U i ∩ eBj = ∅ for bi < j ≤ m, and ϕ(WB) ∩ L = ∅.
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(e) |U i ∩ eBbi
| ≤ |W≤i

B | − Σbi−1
0 (B),

where for ℓ ∈ N we define

Σℓ
i(B) :=

ℓ∑

j=bi

(

degeBj
(B)

)

− |eBbi
∩ U i| − 2(ℓ − bi + 1)∆̄.

The symbol Σℓ
i(B) traduces the size of a subtree of T for which we have enough

place in the edges ebi
, . . . , eℓ, for its embedding. Remark that

Σbi−1
0 (B) + Σbℓ

i (B) = Σbℓ

0 (B) − |U i ∩ eBbi
|. (2.43)

8. The embedding of TF .

First, suppose that at step i we have Ri ∈ RA. Then, we embed Ri in cluster A
and V i in MA. If v is the predecessor of Ri, choose from the the neighbourhood
of vertex ϕ(v) a vertex that is

• typical to the cluster B,

• typical to the set MA,

• typical to the set M .

Using properties (a) and (b), we know that we have at least ( δ
2
−3α)s− i > 0 ver-

tices to choose from. Now, we use Lemma 2.5.10 and embed the components of Ti.

9. The embedding of RB:

Suppose, now, that, at step i, we have Ri ∈ RB . Define a vertex in B to be
i-typical if it is

• typical with respect to the cluster A,

• typical to the set LB,

• typical to both CB and DB, for {C, D} = ebi−1
,

• typical to both CB and DB, for {C, D} = ebi
,

• typical to MB
i \ (ebi−1

∪ ebi
).
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If v is the predecessor of vertex Ri, embed the vertex Ri in an unused neighbour
of ϕ(v) that is an i-typical vertex of cluster B. By properties (a) and (b), we
have at least ( δ

2
− 7α)s − i > 0 unused vertices to choose from.

10. Embedding T ′
B.

If Ti ∩ T ′
B 6= ∅, we define the embedding of T ′

i as follows.

Let T 1 ⊆ T ′
i be a maximal subset satisfying

Σ
bi−1

i−1 (B) ≥
∑

t∈T 1

|V (t)|. (2.44)

Then
degeB

bi−1

(B) ≥
∑

t∈T 1

|V (t)| + |Ui−1 ∩ ebi−1
| + 2∆̄.

Set U := Ui−1 ∩ ebi−1
and s′ := |CB|. Use Lemma 2.5.13 to embed T 1 in eBbi−1

—
the reserved part of the first edge of the matching Mi. Conditions (2.16), (2.17)
and (2.18) are satisfied by (c).

Now, let T 2 ⊆ T ′
i \ T 1 be a maximal set satisfying

Σbi−1
i−1 (B) − Σ

bi−1

i−1 (B) ≥
∑

t∈T 2

|V (t)|. (2.45)

Then, by (1.4),

degMB
i \(ebi−1

∪ebi
)(vi) ≥

∑

t∈T 2

|V (t)| + (|Mi| − 2)2∆ + τ.

Embed T 2 in the reserved part for TB of the matching Mi \ (ebi−1
∪ ebi

) using
Lemma 2.5.12.

Next, let T 3 ⊆ T ′
i \ (T 1 ∪ T 2) be a maximal set satisfying

Σbi

i−1(B) − Σbi−1
i−1 (B) ≥

∑

t∈T 3

|V (t)|. (2.46)

Then
degeB

bi

(B) ≥
∑

t∈T 3

|V (t)| + |Ui−1 ∩ ebi
| + 2∆̄.

Set U := Ui−1 ∩ ebi
and s′ := |CB| (Observe that if bi > bi−1, then property (d)

ensures that U = ∅). Now, use Lemma 2.5.13 to embed T 3 in eBbi
.

Observe that T 3 = T ′
i \ (T 1 ∪ T 2). Indeed, suppose on the contrary that

∑

t∈T ′
i \(T 1∪T 2)

|V (t)| > Σbi

i−1(B) − Σbi−1
i−1 (B).
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Then,
∑

t∈T ′
i

|V (t)| > Σbi

i−1(B).

On the other hand, using the definition of the index bi and Property (e), we have

∑

t∈T ′
i

|V (t)| = |W≤i
B | − |W <i

B |

≤
bi∑

j=1

degeBj
(B) − 2bi∆̄ − |U i−1 ∩ ebi−1

| − Σ
bi−1−1
0 (B)

=

bi∑

j=1

degeBj
(B) −

bi−1−1
∑

j=1

degeBj
(B) + 2(bi−1 − 1)∆̄ − 2bi∆̄ − |U i−1 ∩ ebi−1

|

= Σbi

i−1(B),

a contradiction.

11. Embedding using clusters with large average degree.

If Ti \ T ′
i 6= ∅, we define the embedding ϕ for the left-over trees in Ti. Observe

that L 6= ∅. Then,

degLB(B) = degLB∪MB(B) − degMB(B)

≥ |VB| + |N |∆̄ − |WB| − 2|M |∆̄ − τ

≥ |VB \ WB| + |L|∆̄ − τ

≥ |VB \ WB| + |L|(∆ + 2εs).

Then,

degLB(vi) ≥
∑

t∈Ti\T ′
i

|V (t)| + |U i−1 ∩ LB| + |L|∆. (2.47)

We use Lemma 2.5.14 to embed Ti \ T ′
i .

12. Controlling the properties of the embedding.

The definition of our embedding at step i satisfies the properties (a)–(e). In-
deed, (a) is true because we have embedded only the vertices Ri in A ∪ B.

Vertices RA are embedded on vertices in cluster A that are typical with respect to
cluster B and vertices RB on vertices in cluster B that are typical with respect to
cluster A. So vertices v ∈ Ui ∩ϕ(R) satisfy Property (b), Now, by Lemma 2.5.12
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and 2.5.13, all vertices from V ≤i
F that are from odd distance from RA have at

least (δ−ε)s ≥ δ
2
s neighbours in cluster A. A similar argument holds for vertices

in V ≤i
B .

Property (c) follows from Lemma 2.5.13.

Now, observe that WB is embedded in M only, and that W≤i
B is embedded in

⋃

ℓ≤i Mi. If bi < j, then ej /∈ ⋃

ℓ≤i Mℓ, and thus, U i ∩ eBj = ϕ(W≤i
B ) ∩ ej = ∅.

Thus, Property (d) is satisfied.

For Property (e), if ebi
6= ebi−1

, see that |U i ∩ eBbi
| = |U i−1 ∩ eBbi

| + ∑

t∈T 3 |V (t)|.
Then,

∑

t∈T 3

|V (t)| = |W≤i
B | − |W <i

B | −
∑

t∈(T 1∪T 2)

|V (t)|

≤ |W≤i
B | − |U i−1 ∩ eBbi−1| − Σ

bi−1−1
0 (B) − Σbi−1

i−1 (B)

= |WB ≤ i| − Σbi−1
0 (B).

If bi = bi−1, see that |U i ∩ eBbi
| = |U i−1 ∩ eBbi−1

| + ∑

t∈T ′
i
|V (t)|. Then

∑

t∈T ′
i

|V (t)| + |U i−1 ∩ eBbi−1
| = |W≤i

B | − |W <i
B | + |U i−1 ∩ eBbi−1

|

≤ |W≤i
B | − |U i−1 ∩ eBbi−1| − Σ

bi−1−1
0 (B) + |U i−1 ∩ eBbi−1

|
= |W≤i−1

B | − Σbi−1
0 (B).

Thus all properties are satisfied by the embedding defined at step i.

13. Embedding the last part on the A-side.

Now we begin the second phase of our embedding, i. e. the embedding of the tree
of TA. We embed those trees one after the other. We embed the trees t ∈ TA one
after the other. If U denotes the set of vertices in G that were used so far for the
embedding of T ′ and by the embedding of other components of TA, for vi = v(t),

degM(vi) ≥ degM(A) − εs

≥ ϑ +
(
8Nϑ∆̄

) 1

2 − εs

≥ |V (t)| + |U | + N∆̄ − εs

≥ |V (t)| + |U | + N∆.

We embed the tree t using Lemma 2.5.10. When we have embedded all trees in
TA, we have finished defining our embedding ϕ.
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Remark 2.5.27. As the reader noticed, the proof of Proposition 2.5.25 and of
Proposition 2.5.26 are longer and more complicated than the proof of their sim-
plified versions, the Propositions 2.5.22 and 2.5.23, respectively.

We would like to outline here why some configuration of the matching raises
some complications. The seed of the problem is the typicality of a vertex. With
typicality, we always refer to a some set of vertices to which a given vertex has
to be typical.

For each condition on typicality, we have some set of exceptional vertices in the
cluster that do not satisfy the required condition. This set is small, but if we have
many conditions on typicality, we cannot ensure that there is a vertex satisfying
all the required conditions.

In particular, we cannot expect to have a vertex in some cluster C to be typical
with respect to each cluster neighbouring cluster C. We can only choose a few
sets of clusters, and find a vertex in cluster C that is typical to those sets.

Such a typical vertex has some expected degree into each of those sets of clusters,
but we have no information on its degree to the clusters itself. This point is the
source of the complication. To see why, imagine the following situation.

Suppose that the matching edge {C, D} lies entirely in the neighbourhood of
cluster A and suppose we have embedded a vertex Ri on a typical vertex vi ∈ A.
As long as the vertex vi has enough unused neighbours in both clusters C and
D, we can balance the embedding of the trees in Ti such that the used part in
cluster C and the used part in cluster D is about the same. But eventually we
use nearly all neighbours in one side and we have no choice where to embed the
root of subtrees of Ti.

If the subtrees we embed next have a large difference between the size of the set
of vertices with odd distance to the root and the set with even distance to the
root, we may fill nearly completely one of the two clusters, say cluster C, letting
cluster D nearly empty.

At the time we embed an other vertex Rj in cluster A, it can have still big degree
in the edge {C, D}. We then believe that there is enough space to embed some
subtrees from Tj in this edge, but have no place in cluster C. If all neighbours of
ϕ(Rj) are contained in such balanced edges, we have no suitable edge to embed Tj .

This is the reason to take extra care when we embed Ri and Ti, making the proof
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longer and more complicated.

2.5.8 A second proof for case 1

In the proof of Theorem 2.5.1, we can use the following proposition, instead of
Proposition 2.5.25, if case 1 occurs. Indeed,

degM(A), degM(B) ≥ k(1+
π

10
) ≥ k+

(
qn · π2qn

900

) 1

2

+Nεs ≥ ϑ+2(ϑN∆̄)
1

2 +2εs.

Proposition 2.5.28. Let 0 < α, ε, δ < 1 and τ, ϑ, s ∈ N with τ ≤ ϑ, s( δ
2
−6α) >

4ϑ
τ
. Let H be the cluster-graph of a graph G with each cluster of size s and such

that for each {C, D} ∈ E(H) the pair (C, D) is an (ε, α)-regular pair in G with
density at least δ. Let {A, B} be an edge of the cluster graph H and M a matching
in H such that V (M) ∩ (A ∪ B) 6= ∅. If

degM(A) ≥ ϑ + 2
(
ϑN∆̄

) 1

2 + |N |εs,

and
degM∪L(B) ≥ ϑ + 2

(
ϑN∆̄

) 1

2 + |N |εs,
where ∆̄ := ∆ + 2εs + τ and ∆ := 2αs+τ

δ−2ε
, then any tree T of order at most ϑ + 1

embeds into G.

Proof of Proposition 2.5.28. We use the same notation as in 2.5.25.1. The proof
goes along the proof of Proposition 2.5.25, but instead of partitioning the match-
ing M into two parts, we partition its clusters into two parts. For a faster
orientation, we decompose the proof into nine parts, corresponding to parts in
Proposition 2.5.25. As many of those parts are identical or very similar to their
analogue in Proposition 2.5.25, we omit some details and just refer to the proof
of Proposition 2.5.25, instead.

1. Decomposition of the tree.

We decompose the tree T as in Proposition 2.5.25.

2. Partitioning the clusters.

Let y be such that |VA| = y · ϑ. Then |VB| ≤ (1 − y)ϑ.
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Set

σ :=

(
N∆̄

ϑ

) 1

2

.

Set A := A, B := B and NA, NB := M . Using Lemma 2.5.8, we get a partition
CA ∪ CB of C = V (H) \ {A, B} such that

degMA(A) ≥ |VA|(1 +
σ2

y
) ≥ |VA| + σ2ϑ ≥ |VA| + 2|M |∆̄,

degMB(B) ≥ |VB|(1 +
σ2

1 − y
) ≥ |VB| + 2|M |∆̄,

where MA :=
⋃

{C,D}∈M CA ∪ DA. We define MB, eA, eB analogously.

3. Ordering R.

The inductive ordering of the vertices in R is done as in Proposition 2.5.25 and
use the notation for V ≤i

A , V ≤i
B and Ti.

4. Defining the submatching.

For each i ∈ {1, . . . , |R|} we define a submatching Mi of the matching M as
follows.

Let ai and bi be the minimal indices with the property

ai∑

ℓ=1

degeA
ℓ
(A) ≥ |V ≤i

A | + 2ai∆̄,

and
bi∑

ℓ=1

degeB
ℓ
(B) ≥ |V ≤i

B | + 2bi∆̄.

For i < j, we have ai ≤ aj and bi ≤ bj . Now, if i ∈ IA, we set Mi :=
{eai−1

, . . . , eai
}; and if i ∈ IB, we set Mi := {ebi−1

, . . . , ebi
}. If i ∈ IA, then

we embed Ti in MA
i ; and if i ∈ IB, we embed Ti in MB

i , where MA
i :=

⋃

e∈Mi
eA

and analogously we define MB
i .

5. The steps of the embedding.

We define the embedding in |R| steps, where in each step i we embed vertex Ri

in cluster A and Ti in MA
i , if Ri ∈ RA; and we embed Ri in cluster B and Ti in

MB
i , if Ri ∈ RB. Let U i := ϕ(V ≤i ∪ {R1, . . . , Ri}).

82



6. The properties of the embedding.

At each step i ≥ 1, the embedding ϕ satisfies the following conditions.

(a) |(A ∪ B) ∩ U i| ≤ i.

(b) If v ∈ U i and ϕ−1(v) precedes some vertex in RA, or RB, then v has at least
δ
2
s neighbours in A and in B, respectively.

(c) For CD = eai
,

||CA ∩U i| − |DA ∩U i|| > τ ⇒ min{degCA(A)− |U i ∩CA|, degDA(A)− |U i ∩
DA|} < ∆ + 2εs.
Also degCA(A) < |U i ∩ CA| + ∆ + 2εs ⇒ degCA(A) < |U i ∩ DA| + ∆̄
and degDA(A) < |U i ∩ DA| + ∆ + 2εs ⇒ degDA(A) < |U ∩ CA| + ∆̄.

(d) For CD = ebi
,

||CB ∩ U i| − |DB ∩ U i|| > τ ⇒ min{degCB(B) − |U i ∩ CB|, degDB(B) − |U i ∩
DB|} < ∆ + 2εs.
Also degCB(B) < |U i ∩ CB| + ∆ + 2εs ⇒ degCB(B) < |U i ∩ DB| + ∆̄
and degDB(B) < |U i ∩ DB| + ∆ + 2εs ⇒ degDB(B) < |U i ∩ CB| + ∆̄.

(e) U i ∩ eAj = ∅ for ai < j ≤ |M | and U i ∩ eBj = ∅ for bi < j ≤ |M |,

(f) |U i ∩ eA
ai
| ≤ |V ≤i

A | − Σai−1
0 (A) and |U i ∩ eB

bi
| ≤ |V ≤i

B | − Σbi−1
0 (B),

where where for ℓ ∈ N we define

Σℓ
i(A) :=

ℓ∑

j=ai

(

degeAj
(A)

)

− |eAai
∩ U i| − 2(ℓ − ai + 1)∆̄,

and

Σℓ
i(B) :=

ℓ∑

j=bi

(

degeBj
(B)

)

− |eBbi
∩ U i| − 2(ℓ − bi + 1)∆̄.

7. Embedding R.

Suppose we are at step i of our embedding process, and that Ri ∈ RA (the other
case is similar).

Define a vertex in A to be i-typical if it is

• typical to cluster B,

• typical to both CA and DA, for {C, D} = eai−1
,

• typical to both CA and DA, for {C, D} = eai
,
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• typical to MA
i \ (eai−1

∪ eai
),

Properties (a) and (b) allows us to embed Ri among the unused i-typical vertices
of the neighbours of ϕ(v), where v is the predecessor of Ri .

8. Embedding Ti.

Similarly as in Proposition 2.5.25 we embed the subtrees from Ti in the matching
edges of M , but using only the respective reserved parts of the clusters.

9. Checking the properties.

This is done similarly as in Proposition 2.5.25.

This ends the proof of Proposition 2.5.28.

2.5.9 A second proof for case 2

In the proof of Theorem 2.5.1, we can use the following proposition, instead of
Proposition 2.5.26, if case 2 occurs. Indeed, for a cluster C ∈ L, we have

degV (H)\(A∪B)(C) ≥ (1 +
π

10
)k ≥ k +

π2qn

900
≤ ϑ

2
+ N∆̄.

Also,

(1 +
π

10
)k ≥ k + π2qn(

π2qn

180
+ 2

n

m
) ≥ ϑ + 5N∆̄ + 2s.

So,

degM(A) ≥ ϑ + 5N∆̄ + 2s ≥ ϑ + (6|M | + 2|L|)∆̄ + 2s

and

degM∪L(B) ≥ 1

2
(ϑ + 5N∆̄ + 2s) ≥ ϑ

2
+ (3|M | + |L|)∆̄ + 2.

Proposition 2.5.29. Let 0 < α, ε, δ < 1 and τ, ϑ, s ∈ N with τ ≤ ϑ, s( δ
2
−7α) >

6ϑ
τ
. Let H be the cluster-graph of order N of a graph G with each cluster of size

s and such that for each {C, D} ∈ E(H) the pair (C, D) is an (ε, α)-regular pair
in G with density at least δ. Let {A, B} be an edge of the cluster graph H and
M a matching in H such that V (M) ∩ (A ∪ B) 6= ∅. Let L be the set of clusters
C in V (H) \ (V (M) ∪ A ∪ B) that has high average degree in V (H), i. e.

degV (H)\(A∪B)(C) ≥ ϑ

2
+ N∆̄, (2.48)

84



where ∆̄ := ∆ + 2εs + τ and ∆ := 2αs+τ
δ−2ε

.

If
degM(A) ≥ ϑ + (6|M | + 2|L|)∆̄ + 2s,

and

degM∪L(B) ≥ ϑ

2
+ (3|M | + |L|)∆̄ + s,

then, any tree T of order at most ϑ + 1 embeds into G.

Proof of Proposition 2.5.29. We use the notation defined in 2.5.25.1. For faster
orientation, we decompose the proof in 14 parts, each depicted with an under-
lined title. As parts of the proof go along the proof of Proposition 2.5.26, we
omit some details, and refer to the proof of Proposition 2.5.26, instead.

1. Decomposition of the tree.

We decompose the tree as in Proposition 2.5.26.

2. Partition of M ∪ L.

Set p := |VF | + 2|M |∆̄ + 2s and q := |VB| + (2|M | + |L|)∆̄. Let m := |M | and
λ = |L|. Set

pi :=

{
degei

(A), for i ≤ m
degCi

(A) = 0, for i > m,

where ei are the edges of M and Ci are the clusters of L. Similarly we define

qi :=

{
degei

(B), for i ≤ m
degCi

(B), for i > m.

Set ζ := 2s. Observe that

p
∑m+λ

i=1 pi

+
q

∑m+λ

i=1 qi

≤ |VF | + 2|M |∆̄ + ζ

degM(A)
+

|VB| + (2|M | + |L|)∆̄
degM∪L(B)

≤ ϑ + (6|M | + 2|L|)∆̄ + 2s

ϑ + (6|M | + 2|L|)∆̄ + 2s

= 1.

Recall that |VF | = y · ϑ and |VB| ≤ (1−y)
2

ϑ.

Now, Lemma 2.5.4 gives us a partition (M ∪ L)F and (M ∪ L)B so that
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degMF
(A) = deg(M∪L)F

(A) ≥ |VF | + 2|M |∆̄, (2.49)

and

deg(M∪L)B
(B) ≥ |VB| + (2|M | + |L|)∆̄. (2.50)

3. Ordering R.

We order the vertices in R as in Proposition 2.5.26.

4. Partitioning TB.

We partition the set TB into the set T ′
B, the part that will be embedded in MB;

and into the set TB \ T ′
B, the part that will be embedded using clusters in L.

Index the trees in TB to satisfy the following condition. If tk ∈ Ti and tℓ ∈ Tj

with i < j, then k < ℓ. Let ℓ be the maximal index with

degMB
(B) ≥

ℓ∑

j=1

|V (tj)| + 2|M |∆̄. (2.51)

Now, T ′
B := {tj ∈ TB; j ≤ ℓ}. We denote by WB the set of vertices in T ′

B and
define W≤i

B accordingly.

5. Definition of the submatchings.

We need to define some submatchings Mi only for the embedding of TB, as each
cluster in the neighbourhood of cluster A meets a different edge of the matching.

For each Ri, we define the submatchings Mi and embed the components of T ′
B

that grow from Ri (an empty set if Ri ∈ RA) in Mi. Let MB := {e1, . . . , em}.
Set an index b0 = 1. Let bi ≤ m be minimal with the following property.

bi∑

ℓ=1

degeℓ
(B) ≥ |W≤i

B | + 2bi∆̄. (2.52)

For i < j we have bi ≤ bj . Now define Mi := {ebi−1
, . . . , ebi

}. By (2.51), such an
index bi always exists.

6. The steps of the embedding.
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The embedding is defined in two phases. In the first phase, we embed the trees
of TF in MF ; and the trees of T ′

B in MB; This phase is defined in |R| step, where
at each step we embed the vertex Ri ∈ R in cluster A or B, together with the
set T ′

i := {t ∈ TF ∪ T ′
B; v(t) = Ri} in the matching MF and MB, respectively.

In the second phase, we embed the trees from TB \ T ′
B and then, we embed the

trees from TA. Denote by T̄i := {t ∈ TB \ T ′
B; v(t) = Ri}.

We recall that V i :=
⋃

t∈Ti
V (t) and U i := ϕ(

⋃

j≤i{Rj} ∪ V j).

7. Properties of the embedding.

At each step i ≥ 1 of the first phase, our embedding satisfies the following
conditions.

(a) |(A ∪ B) ∩ U i| ≤ i.

(b) If v ∈ U i and ϕ−1(v) precedes (in the ordering of the tree) some vertex in
RA or RB, then v has at least δ

2
s neighbours in A and in B, respectively.

(c) For CD = ebi
,

||C ∩U i| − |D ∩U i|| > τ ⇒ min{degC(B)− |U i ∩C|, degD(B)− |U i ∩D|} <
∆ + 2εs.
Also, degC(B) < |U i ∩ C| + ∆ + 2εs ⇒ degC(B) < |U i ∩ D| + ∆ + 2εs + τ ,
and degD(B) < |U i ∩ D| + ∆ + 2εs ⇒ degD(B) < |U i ∩ C| + ∆ + 2εs + τ .

(d) U i ∩ ej = ∅ for bi < j ≤ m, and ϕ(WB) ∩ L = ∅.

(e) |U i ∩ ebi
| ≤ |W≤i

B | − Σbi−1
0 (B),

where

Σℓ
i(B) :=

ℓ∑

j=bi

(
degej

(B)
)
− |ebi

∩ U i| − 2(ℓ − bi + 1)∆̄.

8. Embedding TF .

First, suppose that we have Ri ∈ RA at step i. Then, we embed Ri in cluster A
and V i in MF . If v is the predecessor of Ri, choose from the the neighbourhood
of vertex ϕ(v) a vertex that is

• typical to the cluster B,

• typical to the set MF ,
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• typical to the set M .

Using properties (a) and (b), we know that we have at least ( δ
2
−3α)s− i > 0 ver-

tices to choose from. Now, we use Lemma 2.5.10 and embed the components of Ti.

9. Embedding RB.

Suppose, now, that, at step i, we have Ri ∈ RB . Define a vertex in B to be
i-typical if it is

• typical with respect to the cluster A,

• typical to the set L,

• typical to both C and D, for {C, D} = ebi−1
,

• typical to both C and D, for {C, D} = ebi
,

• typical to M \ (ebi−1
∪ ebi

).

If v is the predecessor of vertex Ri, embed the vertex Ri in an unused neighbour
of ϕ(v) that is an i-typical vertex of cluster B. By properties (a) and (b), we
have at least ( δ

2
− 7α)s − i > 0 unused vertices to choose from.

10. Embedding T ′
B.

The embedding of T ′
i := Ti ∩ T ′

B is defined in a similar way as in the proof of
Proposition 2.5.26, but using the whole clusters, instead of a reserved part only.

12. Checking the properties of the embedding after step i.

Checking the Properties (a) – (e) is done similarly as in Proposition 2.5.26.

13. Embedding the trees of TB \ T ′
B.

All the vertices of RB are embedded in vertices of cluster B that are typical with
respect to L. For such a typical vertex v,

degL\U(v) ≥ |VB| − |WB| − |U ∩ L| + |L|∆,

where U denotes the vertices used so far. We embed then T̄i in the graph using
Lemma 2.5.14.
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14. Embedding the trees of TA.

The embedding of the trees in TA is done in the same way as in Proposition 2.5.26.

Remark 2.5.30. There is a variation to the proof of Proposition 2.5.29. It goes
exactly along this proof, but at the time we have embedded all the vertices in
WB, we forget about the partition of M = MF ∪ MB. We embed then TB \ T ′

B

using Lemma 2.5.14, without waiting until the end of the embedding of the trees
of TF , and embed TF and TA in the whole matching M using Lemma 2.5.10.

2.5.10 A simple generalisation

Jan Foniok asked if the tools developed to prove Theorem 2.5.1 permits us to
embed other graphs than trees. Indeed, we proved, with Maya Stein, that we
can embed some graphs G̃, that we obtain from trees by adding some (carefully
chosen) edges. Then, we embed the spanning tree T of G̃, using the technique of
the proof of Theorem 2.5.1, with some extra precaution, to embed vertices that
are adjacent in G̃ \ T in vertices of G that are also adjacent.

In the proof of Theorem 2.5.1, we use the fact that any tree is bipartite. Indeed,
if we would like to embed a graph that is not bipartite, we surely would need
to find suitable triangles in the cluster graph H . Therefore the graph G̃ has to
be bipartite. Also, we require the circles of G̃ to be edge disjoint, so G̃ keeps
a tree-like structure. Maybe, this condition may be slightly relaxed to get some
stronger result. This would imply some changes in the values of δ, ε, α.

Theorem 2.5.31. For every γ, q > 0 and for every c ∈ N there is an n0 ∈ N so
that for all graphs G on n ≥ n0 vertices the following is true.

If at least (1+γ)n
2

vertices of G have degree at least (1+γ)qn, then any bipartite

graph G̃ with at most qn + c edges that contains c cycles, which are pairwise
edge-disjoint, embeds in G.

Sketch of the proof of Theorem 2.5.31
The proof goes along the proof of Theorem 2.5.1. Set

π := min{γ, q}, ε :=
π4q

5 · 105
, α :=

π5q

25 · 107
, and m0 := max{500

π2q
, l}.

Regularity Lemma applied to these values gives us two natural numbers N0 and
M0. Set

β :=
ε

M0
, δ :=

π2q

250
, and n0 := max{N0,

3 · 1012M2
0

π6q2
}.
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So, suppose G is a graph of order n ≥ n0 that satisfies the hypothesis of The-
orem 2.5.31. As in the proof of Theorem 2.5.1, we find an (α, ε; N)-equitable
partition of the vertex set V (G) with m0 ≤ N ≤ M0. We delete the undesirable
edges in G and get a subgraph Gδ. We define a cluster graph H on Gδ, and using
Lemma 2.5.5 on H , we find two adjacent clusters A, B and a matching M with
V (M) ∩ (A ∪ B) = ∅ such that one of the following holds.

1. degM(A), degM(B) ≥ (1 + π
20

)qn,

2. degM(A) ≥ (1 + π
20

)qn, degM∪L(B) ≥ (1 + π
20

) qn

2
and each cluster neigh-

bouring A meets a different edge of the matching.

Now, we find inductively a spanning tree T in G̃ and a matching M̃ that is edge
disjoint with T . Denote by Γ the set of all cycles in G̃. At each step 1 ≤ ℓ ≤ c,
we delete one edge eℓ of some cycle σℓ in such a way that the edges

⋃

k ek forms
a matching.

At step 1, choose any cycle in G̃ and denote it by σ1. Choose any edge e1 in σ1

and delete it.

Now, suppose that we have deleted the edges e1, . . . eℓ−1 in σ1, . . . σℓ−1, respec-
tively, such that

⋃

k<ℓ ek from a matching. Denote by Γℓ−1 the set of cycles
{σ1, . . . σℓ−1}. If there exists a cycle σ ∈ Γ \ Γℓ−1 that is adjacent to some of the
cycles in Γℓ−1, denote this cycle by σℓ. Otherwise, choose any cycle in Γ \ Γℓ−1

and denote it by σℓ.

Observe that, by our construction and the fact that the cycles are in Γ pairwise
edge-disjoint, |V (σℓ)∩

⋃

σ∈Γℓ−1
V (σ)| ≤ 1. As any cycle in Γ has length at least 4,

there exists an edge eℓ ∈ E(σℓ) that is vertex disjoint with
⋃

σ∈Γℓ−1
V (σ). Delete

this edge eℓ.

After |Γ| steps, we have found our spanning tree T and a matching M̃ that is
edge disjoint with T .

Now, we apply Lemma 2.5.20, if case 1. occurs; and Lemma 2.5.21, if case 2.
occurs. We get sets RA and RB ⊆ V (G̃), each of size at most 3( 2

β
+2c), and sets

TA and TB (and TF if we have case 2) of subtrees of T .

For an edge eℓ = {uℓ, vℓ} ∈ E(M̃ ∩ σℓ), ℓ ∈ {1, . . . , c}, we define the σ-
neighbourhood of the edge eℓ as the set {xu

ℓ , x
v
ℓ}, where
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xu
ℓ := N(uℓ) ∩ V (σℓ) \ {vℓ}

xv
ℓ := N(vℓ) ∩ V (σℓ) \ {uℓ}

The vertices xu
ℓ and xv

ℓ are the neighbours of the edge eℓ in the cycle σℓ.

As σℓ has length at least 4, we know that xu
ℓ 6= xv

ℓ . Observe that in our tree
ordering �, it hods that xu

ℓ ≺ uℓ and xv
ℓ ≺ vℓ.

The idea of the proof is to embed T ⊆ G̃ following the proof of Lemma 2.5.25,
for case 1.; or the proof of Lemma 2.5.26, for case 2.; but with small changes for
the vertices in M̃ and their σ-neighbourhood to make sure that vertices forming
the edges eℓ are embedded in adjacent vertices in graph G.

So, suppose that at some point of our embedding process, we want to embed the
first of the two vertices xu

ℓ , x
v
ℓ , for some edge eℓ ∈ M̃ . Without loss of generality,

suppose it is xu
ℓ . As xu

ℓ < uℓ and xv
ℓ < vℓ, the embedding ϕ is not defined for

any of the vertices xv
ℓ , uℓ and vℓ, yet. Embed xu

ℓ as usual, but in the rest of the
embedding process, we make sure that vℓ is embedded as the last of the vertices
xv

ℓ , uℓ, vℓ. This is possible, because xv
ℓ < vℓ, as it is on the path from R to vℓ,

and both vertices uℓ, vℓ are in R. So, after the step when we embed xu
ℓ , we can

choose uℓ as some Rj, as soon as we need, i. e. before chosing vℓ.

Denote by w1 the vertex from {uℓ, x
v
ℓ} we embed first and set w2 := {uℓ, x

v
ℓ}\w1.

Without loss of generality, assume that vℓ ∈ RA. Then, we shall embed w2

on a vertex that is typical with respect to N(w1) ∩ A. This is possible, as
|N(w1)∩A| ≥ (δ− ε)s ≥ αs. Then, at the time we want to embed vℓ, we have at
least ((δ−ε)2−7α)s−3( 2

β
+2c) > 0 unused typical vertices to choose ϕ(vℓ) from.

After having embedded vℓ, we continue our embedding process as usual, but
taking special care with the embedding of the other vertices vertices ui, vj , x

j
u

and xj
v. This ends the sketch for the proof of Theorem 2.5.31. 2

In this thesis, we investigated the Loebl-Komlós-Sós Conjecture. We brought
three contributions to this topic.

1. We brought a solution for the class of trees with diameter at most 5 (The-
orem 2.4.2).

2. We gave an approximate solution for large graphs strengthening the con-
dition on the degree for the graph into which we want to embed the tree
(Theorem 2.5.1).
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3. Another result consists in embedding bipartite graphs containing few edge-
dijoint cycles in a graph G satisfying the conditions of Theorem 2.5.1 (The-
orem 2.5.31).

The first result is an exact one, but only for a very restricted class of trees. It
seems that increasing the diameter of the trees rapidely increasses the number of
cases one has to consider. This makes our approach difficult to use for trees with
larger diameter.

The second result has no restriction on the structure of the tree, but, as any
result using the Regularity Lemma, the result applies only for large and dense
graphs. For sparse graphs, one may try to investigate the possibility of using the
Sparse Regularity Lemma (see Kohayakawa [10]).

An interesting question is to which extend Theorem 2.5.31 can be generalised.
We have showned that in a graph G satisfying the conditions of Theorem 2.5.31,
we can embed any bipartite graph H satisfying the followings:

• the spanning tree of H has order at most k + 1,

• any edge in E(H) is contained in at most one cycle,

• the number of cycles is constant with respect to n = |V (G)|.

How much can we strengthen one of the last two conditions?

An other direction of investigation is to take out the approximation in Theo-
rem 2.5.1. This would imply a solution of the Loebl-Komlós-Sós Conjecture for
large graphs. Indeed, this was done by Zhao in the special case of the Loebl
conjecture, i.e. when k = n

2
[19]. Ajtai, Komlós, Simonovits and Szemerédi

are working on a paper that deals with the same question in the context of the
Erdős-Sós conjecture [2].
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Conclusion

In this thesis, we investigated the Loebl-Komlós-Sós Conjecture. We brought
three contributions to this topic.

1. We brought a solution for the class of trees with diameter at most 5 (The-
orem 2.4.2).

2. We gave an approximate solution for large graphs strengthening the con-
dition on the degree for the graph into which we want to embed the tree
(Theorem 2.5.1).

3. Another result consists in embedding bipartite graphs containing few edge-
dijoint cycles in a graph G satisfying the conditions of Theorem 2.5.1 (The-
orem 2.5.31).

The first result is an exact one, but only for a very restricted class of trees. It
seems that increasing the diameter of the trees rapidely increasses the number of
cases one has to consider. This makes our approach difficult to use for trees with
larger diameter.

The second result has no restriction on the structure of the tree, but, as any
result using the Regularity Lemma, the result applies only for large and dense
graphs. For sparse graphs, one may try to investigate the possibility of using the
Sparse Regularity Lemma (see Kohayakawa [10]).

An interesting question is to which extend Theorem 2.5.31 can be generalised.
We have showned that in a graph G satisfying the conditions of Theorem 2.5.31,
we can embed any bipartite graph H satisfying the followings:

• the spanning tree of H has order at most k + 1,

• any edge in E(H) is contained in at most one cycle,

• the number of cycles is constant with respect to n = |V (G)|.

How much can we strengthen one of the last two conditions?
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An other direction of investigation is to take out the approximation in Theo-
rem 2.5.1. This would imply a solution of the Loebl-Komlós-Sós Conjecture for
large graphs. Indeed, this was done by Zhao in the special case of the Loebl
conjecture, i.e. when k = n

2
[19]. Ajtai, Komlós, Simonovits and Szemerédi

are working on a paper that deals with the same question in the context of the
Erdős-Sós conjecture [2].
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