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Abstrakt: Řešeńı problémů plánováńı prostřednictv́ım překlad̊u do splnitelnosti
(SAT) je jedńım z nejúspěšněǰśıch př́ıstup̊u k automatickému plánováńı. V této
práci poṕı̌seme několik zp̊usob̊u jak přeložit problém plánováńı reprezentovaný
v SAS+ formalismu do SAT. Přezkoumáme a přizp̊usob́ıme stávaj́ıćı kódováńı a
také zavedeme nové vlastńı zp̊usoby kódováńı. Porovnáme jednotlivá kódováńı
pomoćı výpočtu horńıch odhad̊u na velikosti formuĺı, které produkuj́ı, a po-
moćı spuštěńı rozsáhlých experiment̊u na referenčńıch problémech z Mezinárodńı
plánovaćı soutěže 2011. V experimentálńı části také porovnáme své kódováńı s
nejmoderneǰśımi kódováńımi z plánovače Madagascar. Experimenty ukazuj́ı, že
naše techniky dokažou překonat tato kódováńı. V předložené práci také řeš́ıme
speciálńı př́ıpad optimalizace plán̊u – odstraněńı redundantńıch akćı. Odstraněńı
všech redundantńıch akćı je NP-úplný problém. Prostudujeme existuj́ıćı polyno-
mialńı heuristické př́ıstupy a navrhneme vlastńı heuristický př́ıstup, který dokaže
eliminovat vyšš́ı počet a dražš́ı redundantńı akce než stávaj́ıćı techniky. Také
navrhneme zp̊usob kódováńı problému redundance plán̊u do SAT, který nám
za použit́ı MaxSAT řešič̊u umožńı optimálně vyřešit problém eliminace redun-
dantńıch akćı. Naše experimenty provedené s plány od nejmoderneǰśıch satisfic-
ing plánovač̊u pro referenčńı problémy prokázaly, že všechny námi navrhované
techniky funguj́ı v praxi velmi dobře.
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Abstract: Solving planning problems via translation to satisfiability (SAT) is
one of the most successful approaches to automated planning. In this thesis we
describe several ways of encoding a planning problem represented in the SAS+
formalism into SAT. We review and adapt existing encoding schemes as well as in-
troduce new original encodings. We compare the encodings by calculating upper
bounds on the size of the formulas they produce as well as by running exten-
sive experiments on benchmark problems from the 2011 International Planning
Competition (IPC). In the experimental section we also compare our encodings
with the state-of-the-art encodings of the planner Madagascar. The experiments
show, that our techniques can outperform these state-of-the-art encodings. In the
presented thesis we also deal with a special case of post-planning optimization
– elimination of redundant actions. The elimination of all redundant actions is
NP-complete. We review the existing polynomial heuristic approaches and pro-
pose our own heuristic approach which can eliminate a higher number and more
costly redundant actions than the existing techniques. We also propose a SAT en-
coding for the problem of plan redundancy which together with MaxSAT solvers
allows us to solve the problem of action elimination optimally. Experiments done
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1. Introduction

One of the most studied problems in computer science, both theoretical and
applied, is the Boolean satisfiability problem (SAT). SAT solvers have seen a lot
of progress in the last two decades which allowed SAT solving to become a core
component in many different applications. One of the first and most successful
applications of SAT was automated planning [28].

Planning [22] is the problem of finding a sequence of actions – a plan, that
transforms the world from some initial state to a goal state. In this thesis we will
consider only the simplest (most limited) definition of planning – often referred
to as classical or STRIPS planning. The constraints of classical planning are the
following.

• The world is fully-observable, deterministic and static (only the agent, that
we make the plan for can change the world).

• The number of the possible states of the world as well as the number of
possible actions is finite, though possibly very large.

• We will assume, that the actions are instantaneous (take a constant time)
and therefore we only need to deal with their sequencing.

Other kinds of planning such as temporal and probabilistic planning [22], which
remove these limitations, are also studied. Their advantage is that they model
the real world more faithfully and thus are more applicable. On the other hand,
solving these kinds of problems can be much harder and there are not many
efficient planners capable of solving them.

Actions have preconditions, which specify in which states of the world they
can be applied as well as effects, which dictate how the world will be changed after
the action is executed. The actions may have a cost assigned to them. A cost of
an action is a non-negative integer, and a cost of plan is the sum of the costs of
the actions in it. The general goal is to find plans with low costs. The task of
finding plans with the lowest cost (optimal plans) is called optimal planning. The
time required to find optimal plans is usually very high and we are often satisfied
with suboptimal plans that are ‘good enough’. The task of finding ‘good enough’
plans is referred to as satisficing planning.

The complexity difference between optimal and satisficing planning depends
on the planning problem instance. There are instances where a plan can be found
in polynomial time while finding an optimal plan is NP-hard [11]. However, in
many cases (and in general) already finding a plan of arbitrary quality (but with
polynomial length) is NP-complete [12]. Determining whether there is a solution
(a plan) for a given planning task is in general PSPACE-complete [12].

Despite the complexity results many ‘real world’ planning tasks can be suc-
cessfully solved by modern state-of-the-art planning systems. Satisficing planners
such as FF [25], Fast Downward [23] or LPG [21] are very efficient on a wide range
of problems. They are based on heuristic guided search of the state space of a

3



given planning problem. Another approach, formerly very successfully used for
optimal planning [27] and currently also for satisficing planning [33], is translat-
ing the planning task into a series of propositional satisfiability (SAT) formulas
and then using a SAT solver.

The method was first introduced by Kautz and Selman [27] and is still very
popular and competitive. This is partly due to the power of SAT solvers, which
are getting more efficient year by year. Since then many new improvements
have been made to the method, such as new compact and efficient encodings
[26, 33, 34], better ways of scheduling the SAT solvers [33] or modifying the SAT
solver’s heuristics to be more suitable for solving planning problems [31].

In this thesis we will deal with the problem of encoding a planning task to
SAT in order to efficiently find its solution (a plan). We will also show how
SAT and MaxSAT techniques can be used to improve the quality of an already
obtained plan by removing useless (redundant) actions.

1.1 Contributions

The main contribution of this thesis is the definition of new encoding schemes
for planning as SAT and their theoretical and experimental evaluation. These
encodings are used for two purposes. One is finding plans and the other is im-
proving plans found by other planning systems by removing redundant actions
from them.

For the first purpose we introduce two new encoding schemes. One is called
the Reinforced encoding and it slightly improves upon the existing so called ∀-
step semantics based encodings. The other is a new innovative encoding called
the Relaxed Relaxed ∃-step encoding which works well on planning problems that
were previously very difficult to solve using SAT based techniques. We also define
a simple rule, that given a planning problem instance can predict which encoding
scheme is more suitable for solving the instance. Parts of these results are already
published in a conference paper [2].

For the second purpose we introduce a propositional encoding for the problem
of plan redundancy. We use this encoding to generate SAT and MaxSAT formulas
which allows us to efficiently solve NP-hard plan optimization problems, which
were previously only addressed by using heuristic algorithms. We also introduce
our own heuristic algorithm which improves upon the existing ones. The results
are already accepted for publication [5] and submitted to a conference and being
reviewed at the time of writing of this thesis [6].

1.2 Overview by Chapters

The thesis is organized in the following way.

• The second chapter contains the preliminary definitions and basic proposi-
tions used in the rest of the text. Most of the definitions are well known
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but we also provide some new ones regarding redundant action elimination
and parallel plans.

• Chapter three deals with the problem of finding plans using a SAT solver.
We describe several ways of encoding a planning task into a series of SAT
formulas. We review a basic encoding scheme [27] and adapt it for the
SAS+ planning formalism. Then we describe the well known SASE en-
coding [26], which was the first planning encoding scheme using the SAS+
formalism. After that, as the main contribution of the chapter, we present
two new original encoding schemes and also provide a rule which helps us
to choose between them for a specific planning task. The chapter ends with
a theoretical and experimental comparison of the described encodings with
each other and state-of-the art encodings of Rintanen [33].

• The fourth chapter deals with post-planning optimization, i.e., improving
plans which were obtained by an arbitrary planning algorithm. We focus
on removing redundant actions from plans. First, we review a heuristic
algorithm used for this purpose [30]. Then we improve this algorithm and
provide several new algorithms for redundancy elimination based on using
SAT and MaxSAT solvers. Our new algorithms are capable of optimally
solving all the variants of the plan redundancy elimination problem, which
are all NP-hard. The chapter ends with an experimental comparison of the
proposed and existing methods.

• Finally, the conclusion contains a summary of the thesis and proposes some
research directions for future work.
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2. Preliminaries

In this Chapter we give the basic definitions and properties related to satisfiability,
maximum satisfiability and planning.

2.1 Satisfiability (SAT)

SAT is one the most important problems in computer science. It was the first
problem proven to be NP-hard [17]. Despite its complexity there are very effi-
cient SAT solvers [9] which make it possible to design successful algorithms for
hard problems by translating them to SAT. In this section we review the basic
definitions and properties related to satisfiability, which can be found in any SAT
related textbook (for example The Handbook of Satisfiability [10]).

The input of the SAT problem is a CNF formula. The definition follows.

Definition 1 (CNF Formula). A Boolean variable is a variable with two possible
values True and False. A literal of a Boolean variable x is either x or ¬x,
i.e., positive or negative literal. A clause is a disjunction (OR) of literals. A
conjunctive normal form (CNF) formula is a conjunction (AND) of clauses.

Next we define what is a satisfying assignment.

Definition 2 (Satisfying Assignment). A truth assignment φ of a formula F
assigns a truth value to its variables. The assignment φ satisfies

• a positive literal if it assigns the value True to its variable,

• a negative literal if it assigns the value False to its variable,

• a clause if it satisfies at least one of its literals,

• a CNF formula if it satisfies each one of its clauses.

If φ satisfies a CNF formula F , then φ is called a satisfying assignment of F .

The definition of satisfiability follows.

Definition 3 (Satisfiability). A formula F is said to be satisfiable if there is
a truth assignment φ that satisfies F , i.e. φ is a satisfying assignment of F .
Otherwise, the formula φ is unsatisfiable.

The problem of satisfiability (SAT) is to determine whether a given formula
F is satisfiable or unsatisfiable.

A SAT solver is a procedure that solves the SAT problem. For satisfiable
formulas we also expect a SAT solver to return a satisfying assignment. An
example of a satisfiable CNF formula with its satisfying assignment follows.
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Example 1. F = (x1 ∨ x2 ∨ ¬x4) ∧ (x3 ∨ ¬x1) ∧ (¬x1 ∨ ¬x2) is CNF for-
mula with 3 clauses {(x1 ∨ x2 ∨ ¬x4), (x3 ∨ ¬x1), (¬x1 ∨ ¬x2)} and 6 liter-
als {x1,¬x1, x2,¬x2, x3,¬x4} on 4 variables {x1, x2, x3, x4}. F is satisfiable with
φ = {x1 → False, x2 → True, x3 → True, x4 → True} being a satisfying truth
assignment of F .

The are some special kinds of clauses that are interesting. A clause with only
one literal is called a unit clause and with two literals a binary clause. A Horn
clause is clause with at most one positive literal. A CNF formula consisting of only
Horn clauses is called a Horn formula and a formula with only unit and binary
clauses is called a quadratic formula. The satisfiability of Horn and quadratic
formulas can be determined in polynomial time [10].

We will often need to express implications in our formula. It is easy to verify,
that an implication of the form x ⇒ (y1 ∨ · · · ∨ yk) is equivalent to the clause
(¬x ∨ y1 ∨ · · · ∨ yk).

2.2 Maximum Satisfiability (MaxSAT)

In this section we review the definitions of a family of SAT related optimiza-
tion problems called maximum satisfiability. The presented definitions and basic
properties are well know and can be found in any SAT related textbook [10].

Definition 4 (Maximum Satisfiability). The problem of Maximum Satisfiability
(MaxSAT) is the problem of finding a truth assignment of a given CNF formula
that satisfies the maximum number of its clauses.

A MaxSAT solver determines what is the maximum number of clauses that
can be satisfied in a given CNF formula and finds a truth assignment that satisfies
that many clauses. If the input CNF formula is satisfiable, then the MaxSAT
solvers returns a satisfying assignment.

In MaxSAT we have no control over which clauses are satisfied in an optimal
solution. It might be the case, that for some of the clauses it is essential, that
they are satisfied under the found assignment. This issue is addressed by the
Partial MaxSAT problem.

Definition 5 (Partial MaxSAT). A partial maximum satisfiability (PMaxSAT)
formula is a CNF formula consisting of two kinds of clauses called hard and soft
clauses. The partial maximum satisfiability problem (PMaxSAT) is to find a
truth assignment for a given PMaxSAT formula that satisfies all the hard clauses
and as many soft clauses as possible.

There are two special cases, one is that all the clauses are hard, the other is
that all the clauses are soft. In the first case PMaxSAT is equivalent to SAT, in
the second to MaxSAT.

In the situation, that not all the clauses are equally important, we can assign
weights to them and we obtain the weighted MaxSAT problem.

7



Definition 6 (Weighted MaxSAT). A Weighted CNF (WCNF) formula is a
CNF formula where each clause has a non-negative integer weight assigned to it.
The Weighted MaxSAT (WMaxSAT) problem is to find a truth assignment for a
given WCNF formula that maximizes the sum of the weights of satisfied clauses.

If all the clauses have the same weight, then WMaxSAT is equivalent to
MaxSAT. A WMaxSAT solver can also be used to solve PMaxSAT problems if
the weights of the clauses are properly chosen. This is achieved by setting the
weights of the soft clauses to 1 and the weights of the hard clauses to a value
higher than the number of soft clauses.

The last of the MaxSAT problems is the weighted partial MaxSAT problem
(WPMaxSAT). Although the situation it represents can be easily expressed as a
WMaxSAT problem, we define it separately for convenience.

Definition 7 (Weighted Partial MaxSAT). A weighted partial maximum satisfi-
ability (WPMaxSAT) formula is a CNF formula consisting of two kinds of clauses
called hard and soft clauses. Additionally, each soft clause has a non-negative
integer weight assigned to it. The Weighted Partial MaxSAT (WPMaxSAT) prob-
lem is to find a truth assignment for a given WPMaxSAT formula that satisfies
all its hard clauses and maximizes the sum of the weights of satisfied soft clauses.

2.3 Planning

In the introduction we briefly described what planning is, in this section we give
the formal definitions. We will use the multivalued SAS+ formalism [1] instead
of the classical STRIPS formalism [19] based on propositional logic.

Definition 8 (Planning Task). A planning task Π in the SAS+ formalism is
defined as a tuple Π = {X,O, sI , sG} where

• X = {x1, . . . , xn} is a set of multivalued variables with finite domains
dom(xi) ⊂ N.

• O is a set of actions (or operators). An action a ∈ O is a tuple (pre(a), eff(a))
where pre(a) is the set of preconditions of a and eff(a) is the set of effects of
a. Both preconditions and effects are of the form xi = v where v ∈ dom(xi).
The actions may have a non-negative integer cost assigned to them. We will
denote by C(a) the cost of an action a.

• A state is a set of assignments to the state variables. Each state variable
has exactly one value assigned from its respective domain. We denote by S
the set of all states. sI ∈ S is the initial state. sG is a partial assignment of
the state variables (not all variables have assigned values) and a state s ∈ S
is a goal state if sG ⊆ s.

An action can be applied to a state if it its preconditions are satisfied. For
example if xi = v is in the preconditions of an action, then the action can be
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applied only to states where the state variable xi is equal to v. Similarly, the
effects of an applied action change the world state. If xi = v is an effect of an
action, then after the application of this action the value of xi will become v. A
formal definition follows.

Definition 9 (Applicable Actions). An action a is applicable in a given state s
if pre(a) ⊆ s. By s′ = apply(a, s) we denote the state after executing the action
a in the state s, where a is applicable in s. All the assignments in s′ are the
same as in s except for the assignments in eff(a) which replace the corresponding
(same variable) assignments in s. If A = [a1, . . . , ak] is a sequence of actions,
then apply(A, s) = apply(ak, apply(ak−1 . . . apply(a2, apply(a1, s)) . . . )).

Now we are ready to give the definition of a plan, which is a solution for a
planning task.

Definition 10 (Sequential Plan). A sequential plan P of length k for a planning
task Π = {X,O, sI , sG} is a sequence of actions P = [a1, . . . , ak]; ai ∈ O such that
sG ⊆ apply(P, sI).

We will denote by |P | = k the length of a plan P and by P [i] we will mean
the i-th action of P , i.e., P [i] = ai. If P contains actions with costs, then we
define the cost of a plan, C(P ), to be the sum of the costs of the actions in it,
i.e., C(P ) =

∑
{C(P [i]); i ∈ 1 . . . |P |}.

The quality of a plan is measured by the number and the cost of its actions.
Shorter plans with lower cost actions are preferable. An optimal plan for a given
planning task is such a plan, that there exist no strictly better plans for that
task.

Definition 11 (Optimal Plan). A plan P for a planning task Π is called an
optimal plan if there is no other plan P ′ for Π such that |P ′| < |P |. Similarly, a
plan P is called cost optimal if there is no other plan P ′ such that C(P ′) < C(P ).

The following example illustrates the above defined terms.

Example 2. In this example we will model a simple package delivery scenario.
We have a truck that needs to deliver two packages to the location C from the
locations A and B. In the beginning the truck is located in A. The locations A, B,
and C are connected by roads (see Figure 2.1).

We will model the planning task using the following variables:

• Truck location T, dom(T ) = {A,B,C}

• Package locations P1 and P2, dom(P1) = dom(P2) = {A,B,C, L} (Pi = L
represents that the package i is inside the truck).

Now, having defined the variables X = {T, P1, P2} and their respective domains,
we can define the initial state sI and the goal conditions sG.

sI = {T = A,P1 = A,P2 = B} sG = {P1 = C,P2 = C}

Finally, we need to define the set of actions with their preconditions and ef-
fects. The action templates are described in the following table.
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     A              B               C             A                B              C

Figure 2.1: The initial and the goal state for the logistics planning example

Action Preconditions Effects Description
move(l1, l2) T = l1 T = l2 move the truck from location l1 to l2
loadP1(l) T = l, P1 = l P1 = L load P1 on the truck at location l
loadP2(l) T = l, P2 = l P2 = L load P2 on the truck at location l
unloadP1(l) T = l, P1 = L P1 = l unload P1 from the truck at location l
unloadP2(l) T = l, P2 = L P2 = l unload P2 from the truck at location l

To get the actual actions we need to substitute l, l1, l2 with A,B and C.
One of the possible solutions is the following plan P = [loadP1(A), move(A,C),

unloadP1(C), move(C,B), loadP2(B), move(B,C), unloadP2(C), move(C,A)].
The plan P is valid, but it is not an optimal plan. It contains 8 actions while
the following (optimal) plan has only 6 actions: P ∗ = [loadP1(A), move(A,B),
loadP2(B), move(B,C), unloadP1(C), unloadP2(C)].

2.3.1 Redundant Actions

Suboptimal plans often contain actions that can be removed without affecting
their validity. Such actions are called redundant. A plan reduction is a subse-
quence of a plan with some redundant actions removed. In this subsection we
review the definitions of redundancy related problems (first defined in [20, 30]).

Definition 12 (Plan Reduction). Let P be a plan for a planning task Π. Let
P ′ be a subsequence of P . We say that P ′ is a plan reduction of P denoted as
P ′ � P if and only if P ′ is also a plan for Π. The actions in P that are not
present in P ′ are called redundant actions.

Note, that adding new actions into the plan or reordering actions is not al-
lowed. Using these operations would in many cases allow us to improve plans
even further. Nevertheless, plan reduction is restricted to just removing redun-
dant actions.

Definition 13 (Redundant and Perfectly Justified Plans). We say that a plan
P for a planning task Π is redundant if and only if there exists a plan reduction
of P . A plan which is not redundant is called a perfectly justified plan.
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Example 3. Using the package delivery planning problem of Example 2 we can
observe, that the last action of P (move(C,A)) is redundant. By removing this
action from the plan we get a perfectly justified plan P ′ which is a plan reduction
of P (P ′ � P ). Nevertheless, P ′ is not optimal, since it contains 7 actions, while
the optimal plan P ∗ from Example 2 contains only 6 actions. Note, that P ∗ is
not a plan reduction of P , which means we could not get to P ∗ from P by just
removing actions.

From the example it is apparent, that a perfectly justified plan is not neces-
sarily an optimal plan. On the other hand, an optimal plan is always perfectly
justified. The example also shows, that an optimal plan may not be reachable
from a given plan just by removing redundant actions from it. The following
example demonstrates that even if an optimal plan is a plan reduction of the
input plan and we reach a perfectly justified plan, we might still end up with a
non-optimal plan.

Example 4. Let us have a simple path planning scenario on a graph with n
vertices v1, . . . , vn and edges (vi, vi+1) for each i < n and (vn, v1) to complete the
circle. We have one agent traveling on the graph from v1 to vn. We have two
move actions for each edge (for both directions), in total 2n move actions. The
optimal plan for the agent is a one action plan [move(v1, vn)].

Let us assume that we are given the following plan for redundancy elimination:
[move(v1, vn), move(vn, v1), move(v1, v2), move(v2, v3), . . ., move(vn−1, vn)].

The plan can be made perfectly justified by either removing all but the first ac-
tion (and obtaining the optimal plan) or by removing the first two actions (ending
up a with a plan of n actions).

Let us consider action costs and a case, where each move action has a cost 1
except for the move(v1, vn) action with a cost n+ 1. In this case the cost optimal
plan reduction is achieved by removing the first two actions.

The example shows, that it matters very much in what order we remove the
redundant actions and achieving perfect justification does not necessarily mean
we did a good job. What we actually want is to remove as many actions as
possible. We can formally define this problem in the following way.

Definition 14 (Minimal Length Plan Reduction). Let P be a plan for a planning
task Π. We say that P ′ is a minimal length plan reduction of P if and only if
P ′ � P and there is no P ′′ such that P ′′ � P and |P ′′| < |P ′|.

Analogously, we define the problem of minimal plan reduction, which is the
problem of removing the most costly subsequence of redundant actions from a
plan.

Definition 15 (Minimal Plan Reduction). Let P be a plan for a planning task
Π. We say that P ′ is a minimal plan reduction of P if and only if P ′ � P and
there is no P ′′ such that P ′′ � P and C(P ′′) < (P ′).
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The decision version of each of these problems (given a plan P and a number
L, is there a plan reduction of length/cost at most L?) is NP-complete [20, 30].
From this it also follows, that just checking if a given plan is perfectly justified
is NP-complete, which is equivalent to the question whether at least one action
can be removed.

2.3.2 Parallel Plans

One of the most important aspects of planning as SAT is the usage of parallel
plans. Intuitively, the idea of parallel plans is that the plan is a sequence of sets
of actions, such that the actions inside one set can be executed in parallel (at the
same time together) [26, 11]. These sets are called parallel steps and the number
of parallel steps in a parallel plan is called the makespan.

In modern SAT encodings [33, 38, 2] this concept is generalized, in particular,
the requirement, that actions inside a set can be executed in parallel is removed.
Our generalized definition follows.

Definition 16 (Action Ordering Function). An action ordering function E trans-
forms a set of actions A into a sequence of actions E(A) in a way that each action
of A appears exactly once in E(A).

Definition 17 (Parallel Plan). A sequence of sets of actions P = [A1, . . . , Ak]
is a parallel plan for a planning task Π if there is an action ordering function E
such that [E(A1)⊕· · ·⊕E(Ak)] is a (sequential) plan for Π, where ⊕ denotes the
concatenation of sequences. The sets Ai are called parallel steps and k is called
the makespan of P .

The reason, why parallel plans are important for SAT based planning, is that
it allows us to solve a planning task with fewer SAT solver calls. We will require
only as many solver calls as the makespan of the resulting plan instead of its
length (see Figure 3.1).

Various parallel plan semantics define which actions can be together inside a
parallel step. In the following set of definitions we will denote by sj the world
state in between the parallel steps Aj and Aj+1, which is obtained by applying
the sequence E(Aj) on sj−1 (except for s0 = sI).

Definition 18 (∀-Step semantics). A parallel plan P = [A1, . . . , Ak] satisfies the
∀-Step semantics [11, 33] if

• each action in Aj is applicable in the state sj,

• the effects of all the actions in Aj are applied in sj+1, and

• [E(A1)⊕ · · · ⊕E(Ak)] is a valid plan for each ordering function E.

We will show, that to ensure, that each ordering of the sets of actions in a
parallel plan leads to a valid sequential plan, it is sufficient to check that the ac-
tions in each set are pairwise independent. The definition of action independence
follows.
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Definition 19 (Independent Actions). We say that two actions a1 and a2 are
independent if they do not share common variables, i.e., scope(a1)∩ scope(a2) =
∅, where scope(a) ⊆ X is a set of all state variables that appear in pre(a) and
eff(a).

Proposition 1. Let A be a set of actions such that ∀ai 6= aj ∈ A the actions ai
and aj are independent. If there is an ordering E such that E(A) transforms the
state s1 to s2 then all the possible orderings of A transform s1 to s2.

Proof. The pair-wise independence of the actions in A implies, that each state
variable is both required and changed only once and only by one action during
any application of the actions in A. Therefore the actions are applicable in any
order and the resulting state is the same for each ordering.

Note, that the pairwise independence of actions is a sufficient but not a nec-
essary condition for the parallel steps in a ∀-Step semantics plan, as the following
examples demonstrates.

Example 5. Let a1 and a2 be two actions such that pre(a1) = pre(a2) = {x = 1},
eff(a1) = {y = 2}, and eff(a1) = {z = 2}. Clearly, a1 and a2 are not independent
(they share the variable x), however, they can be ordered arbitrarily to achieve
the same changes between two given states.

The following semantics – the ∃-Step[33] – weakens the requirement on the
ordering of the actions, and only requires, that there exists at least one ‘good’
action ordering function.

Definition 20 (∃-Step semantics). A parallel plan P = [A1, . . . , Ak] satisfies the
∃-Step semantics [33] if

• each action in Aj is applicable in the state sj,

• the effects of all the actions in Aj are applied in sj+1, and

• there exists an action ordering function E such that [E(A1)⊕ · · · ⊕E(Ak)]
is a valid sequential plan.

The next semantics is the Relaxed ∃-Step semantics [38], which removes the
requirement that the actions in Aj must be applicable in sj. Thus some of the
action in Aj might become applicable only after some other actions in Aj are
applied. However, the effects of all the action are still applied in the next state.

Definition 21 (Relaxed ∃-Step semantics). A parallel plan P = [A1, . . . , Ak]
satisfies the Relaxed ∃-Step semantics [38] if

• the effects of all the actions in Aj are applied in sj+1, and

• there exists an action ordering function E such that [E(A1)⊕ · · · ⊕E(Ak)]
is a valid sequential plan.
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Lastly, our newly defined semantics removes the last requirement which can
be removed, i.e., that the effects of the actions must be applied in the next state.
Therefore we only require, that the actions in a parallel step can be ordered
properly.

Definition 22 (Relaxed Relaxed ∃-Step semantics). A parallel plan P = [A1, . . . , Ak]
satisfies the Relaxed Relaxed ∃-Step (R2∃-Step) semantics if

• there exists an action ordering function E such that [E(A1)⊕ · · · ⊕E(Ak)]
is a valid sequential plan.

The following example demonstrates the differences between the four seman-
tics and how the more relaxed semantics can allow shorter makespan plans.

Example 6. Using the package delivery planning problem of Example 2 let us
examine the optimal sequential plan P ∗ = [loadP1(A), move(A,B), loadP2(B),
move(B,C), unloadP1(C), unloadP2(C)]. The four semantics allow four differ-
ent parallel plans:

• The R2∃-Step semantics allows the single step plan [{loadP1(A), move(A,B),
loadP2(B), move(B,C), unloadP1(C), unloadP2(C)}].

• The Relaxed ∃-Step semantics forbids having both move operations inside
one step, since the effect of the first move action is not applied after the
step. Therefore the shortest possible Relaxed ∃-Step plan is the following
two step parallel plan [{loadP1(A), move(A,B), loadP2(B)}, {move(B,C),
unloadP1(C), unloadP2(C)}].

• The ∃-Step semantics does not allow the second load action to be inside the
first step, since its precondition is not satisfied in the initial state. Sim-
ilarly, the unload actions cannot be in the same step as the second move
action. Therefore the plan needs to have three parallel steps [{loadP1(A),
move(A,B)}, {loadP2(B), move(B,C)}, {unloadP1(C), unloadP2(C)}].

• To satisfy the ∀-Step semantics all actions, except for the unload actions,
must be in separate parallel steps. The following five step plan is possible.
[{loadP1(A)}, {move(A,B)}, {loadP2(B)}, {move(B,C)}, {unloadP1(C),
unloadP2(C)}].
The two unload actions can be together in the last step despite the fact
that they are not independent. However, if we follow the rule, that only
independent actions can be together in a step, then the plan has to have six
parallel steps.
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3. Finding Plans using SAT

The basic idea of solving planning as SAT is the following [27]. We construct (by
encoding the planning task) a series of SAT formulas F1, F2, . . . such that Fi is
satisfiable if there is a parallel plan of makespan ≤ i. Then we solve them one
by one starting from F1 until we reach the first satisfiable formula Fk. From the
satisfying assignment of Fk we can extract a plan of makespan k. The pseudo-code
of this algorithm is presented in Figure 3.1

SP1 PlanningAsSat (Π)
SP2 k := 0
SP3 repeat
SP4 k := k + 1
SP5 F := encodePlanningTaskWithMakespan(Π, k)
SP6 until isSatisfiable(F )
SP7 P := extractPlan(getSatAssignment(F ))
SP8 return P

Figure 3.1: Pseudo-code of the basic planning as satisfiability algorithm.

The method was first introduced by Kautz and Selman [27] and is still very
popular and competitive. This is partly due to the power of SAT solvers, which
are getting more efficient year by year. Since then many new improvements have
been made to the method, such as new compact and efficient encodings [26, 33,
34], better ways of scheduling the SAT solvers [33] or modifying the SAT solver’s
heuristics to be more suitable for solving planning problems [31]. Clever ways of
solver scheduling [33] can significantly improve the performance of the planning
algorithm at the cost of possibly longer makespan plans. Nevertheless, we will
use the basic one-by-one scheduling since we are interested only in comparing the
properties of encodings, i.e., the construction of the formulas Fi.

The following four sections will each describe a way of encoding a planning task
into SAT. In the fifth section we will discuss how to select the proper encoding for
a given planning task. The sixth section will compare the encodings by examining
the properties of the formulas they produce. The last section of the chapter will
experimentally compare the encodings with each other and two state-of-the-art
encodings on benchmark problems from the international planning competition.

3.1 The Direct Encoding

The simplest and most straightforward way of encoding a planning task into SAT
is following the definition of the planning problem and translating it into proposi-
tional logic. This encoding was the first one used in SAT based planners [28, 11].
Originally it was described in the context of the propositional planning formalism
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(STRIPS [19]). Here we adapt it for the multivalued SAS+ formalism [1]. This
encoding will use the ∀-Step parallel planning semantics.

Our goal is to, given a planning task Π = {X,O, sI , sG} and an integer k,
construct a CNF formula Fk such that Fk is satisfiable only if there is a parallel
plan of at most k steps for Π. We also want to construct Fk in a way, that in the
case it is satisfiable, we can easily extract a plan from its satisfying assignment.

In the Direct encoding we will use two kinds of Boolean variables.

• Action variables ati indicating whether the i-th action is used in the t-th step.
We will have one such variable for each action a ∈ O from the description
of the planning task and each of the k parallel steps.

• Assignment variables btx=v indicating whether the value of the variable x
is equal to v in the beginning of the t-th step (before applying the actions
of the t-th step). We will have one such Boolean variable for each state
variable x ∈ X and each value v ∈ dom(x) for each of the k parallel steps
and one extra set for the special (k + 1)-th step which contains no actions
and is used to represent the goal state.

Now we will describe the clauses of Fk. The first two sets of clauses will ensure
that the assignment variables represent a valid planning state, i.e., each variable
has exactly one value. The following clauses ensure that each assignment variable
has at least one value.

(btx=v1
∨ btx=v2

∨ · · · ∨ btx=vd
)

∀x ∈ X, dom(x) = {v1, v2, . . . , vd}, ∀t ∈ {1, . . . , k + 1}
(3.1)

The next set of binary clauses will enforce, that at most one value is assigned to
each state variable x ∈ X.

(¬btx=vi
∨ ¬btx=vj

)

∀x ∈ X, vi 6= vj, {vi, vj} ⊆ dom(x), ∀t ∈ {1, . . . , k + 1}
(3.2)

These two sets of clauses guarantee, that any satisfying assignment of a formula
containing them represents a valid assignment of values to the state variables.

Next we will define the clauses that connect the assignment and action vari-
ables. Following the definition of ∀-Step semantics, we need to ensure, that if an
action is in the plan at step k, then all of its precondition assignments must hold
at the beginning of the k-th step.

(¬at ∨ btx=v)

∀a ∈ O, ∀(x =v) ∈ pre(a), ∀t ∈ {1, . . . , k}
(3.3)

Similarly, we add clauses to force the effects of the actions in the next time step.

(¬at ∨ bt+1
x=v)

∀a ∈ O, ∀(x =v) ∈ eff(a), ∀t ∈ {1, . . . , k}
(3.4)
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We also need to ensure, that the values of the state variables have not changed
between two neighboring parallel steps, unless some actions changed them.

(¬bt+1
x=v ∨ btx=v ∨ ats1 ∨ · · · ∨ a

t
sj

)

∀x ∈ X, ∀v ∈ dom(x), support(x = v) = {as1 , . . . , asj}, ∀t ∈ {1, . . . , k}
(3.5)

By support(x = v) ⊆ O we mean the set of supporting actions of the assignment
x = v, i.e., the set of actions that have x = v as one of their effects. The clause
(in 3.5) represents the implication, that if x has the value v at time t+ 1 then it
either already had the value v at time t or that one of the supporting actions of
the assignment x = v is in the k-th step.

Next we need to deal with the interfering actions inside a parallel step. Ac-
cording to Proposition 1 it is sufficient to ensure, that only pair-wise independent
actions are together in step. We will achieve this by disabling all pairs of non-
independent (interfering) actions. To extrude interfering actions from the parallel
steps we will add binary clauses for all the interfering action pairs.

(¬ati ∨ ¬atj)
∀{ai, aj} ⊆ O, ai, aj not independent, ∀t ∈ {1, . . . , k}

(3.6)

There might be a plenty of interfering action pairs producing a lot of clauses.
But if we look carefully at the clauses we have already described, we can see, that
most of the interfering actions cannot occur together anyway as we will show via
the following notion of compatible actions.

Definition 23 (Compatible Actions). Two sets of conditions (assignments) are
compatible if they assign the same values to the variables they share.

Two actions a1 and a2 are compatible if the preconditions of a1 are compatible
with the preconditions of a2 and also the effects of a1 are compatible with the effects
of a2.

Due to the clauses that enforce, that actions imply their preconditions 3.3
and effects 3.4, and the clauses that forbid a state variable to have more than one
value 3.2, actions that are not compatible cannot be in a parallel step together.
Therefore it is enough to only suppress compatible interfering action pairs.

(¬ati ∨ ¬atj)
∀{ai, aj} ⊆ O, ai, aj compatible and not independent, ∀t ∈ {1, . . . , k}

(3.7)

The last two sets of clauses we need to define are encodings of the initial
state and the goal conditions. Both of these sets consist of unit clauses on the
assignment variables. For the initial state we add unit clauses saying that the
variables are assigned to their initial values at the beginning of the first parallel
step.

(b1
x=v)

∀(x = v) ∈ sI
(3.8)
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Similarly, to express the goal conditions we require the corresponding assignments
after the last parallel step (at time k + 1).

(bk+1
x=v)

∀(x = v) ∈ sG
(3.9)

The final formula Fk is the conjunction of the clauses defined in the equations
3.1, 3.2, 3.3, 3.4, 3.5, 3.7, 3.8, and 3.9. If Fk is satisfiable, then a parallel plan Pφ
can be extracted from its satisfying truth assignment φ in the following way.

Definition 24 (Plan Extraction). Let φ be a satisfying assignment of Fk. Pφ is
a sequence of action sets such that its t-th set contains those actions ai ∈ O for
which φ(ati) = True.

We conclude this section by the following proposition about the correctness
of the encoding.

Proposition 2. If the formula Fk obtained using the Direct encoding of the plan-
ning task Π is satisfied by a truth assignment φ then Pφ is a valid ∀-Step parallel
plan of makespan k for the planning task Π.

Proof. The requirements for the action sets given by the ∀-Step semantics are
clearly satisfied:

• the preconditions of actions are satisfied due to 3.3

• the effects are propagated thanks to 3.4

• the actions can be ordered arbitrarily since non-independent pairs are dis-
abled due to 3.7 which is sufficient thanks to Proposition 1. Also the non-
compatible action pairs do not need to be disabled as discussed in the text
above.

It remains to prove that P S
φ = [E(A1) ⊕ · · · ⊕ E(Ak)] is a (sequential) plan

for Π, where ⊕ denotes the concatenation of sequences and E is an arbitrary
ordering of an action set.

A sequential plan is valid if all the actions are applicable in the given order
and the goal conditions are satisfied in the end.

First, let us observe, that the values of the state variables are consistent at
each step (due to 3.1 and 3.2) and do not change between two neighboring steps
without an action changing them (thanks to 3.5). Since the action variables imply
their precondition and effect variables (3.3, 3.4) the actions must be applicable if
their action variable is True and also their effects must hold in the next state.

Thanks to 3.8 the state variables are set to the initial state values before the
first action and due to 3.9 the goal conditions hold after the last set of actions.
This fact together with the consistency of the state variables during all the k
steps implies the validity of P S

φ for Π.
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The reversed implication, which is that if Pφ is a valid ∀-Step parallel plan of
makespan k, then φ satisfies Fk, does not hold. This is because Pφ may contain
a non-independent pair of actions in one of its steps and still be a valid ∀-Step
plan (see Example 5). Such a pair of actions would make one of the clauses of
type 3.7 unsatisfied.

3.2 The SASE Encoding

The encoding we review in this section was historically the first SAT encoding
of a planning task based on the SAS+ formalism [26]. The encoding we present
is slightly modified compared to the original SASE paper [26]. In particular,
we use a different encoding of the initial state and goal conditions as well as the
interference of transitions is defined in a more strict manner (see our recent paper
[4] for more information about transition interference). The encoding again uses
the ∀-step parallel planning semantics and we will again describe it by showing
how the formula Fk is constructed.

In contrast to the Direct encoding presented in the previous section, the SASE
encoding uses transition variables instead of assignment variables. The definition
of a transition follows.

Definition 25 (Transition). A transition represents a change of a state variable
x ∈ X from one value to another from its domain dom(x) or from an arbitrary
value to a specific value. There are the following three kinds of transitions.

• An active transition changes the value of the variable x from d to e such
that d 6= e, {d, e} ⊆ dom(x), it is denoted by δx: d→e. An action a has an
active transition δx: d→e if (x = d) ∈ pre(a) and (x = e) ∈ eff(a).

• A prevailing transition conserves the value of the variable x (if it was d,
then it remains d, d ∈ dom(x)), it is denoted by δx: d→d. An action a has a
prevailing transition δx: d→d if (x = d) ∈ pre(a) and there is no assignment
related to x in eff(a).

• A mechanical transition changes the value of the variable x from any value
to the value d (d ∈ dom(x)), it is denoted by δx: ∗→d. An action a has a
mechanical transition δx: ∗→d if (x = d) ∈ eff(a) and there is no assignment
related to x in pre(a).

Example 7. The action a with preconditions pre(a) = {x = 1, y = 3} and
effects eff(a) = {y = 1, z = 2} has one active transition (δy: 3→1), one prevailing
transition (δx: 1→1), and one mechanical transition (δz: ∗→2).

The transition set of an action a is the set of all transitions that a has, it is
denoted by ∆a. By ∆p we will mean the set of all possible prevailing transitions
of a planning task, i.e., ∆p = {δx: d→d | x ∈ X, d ∈ dom(x)}. The set of all
transitions ∆ is the union of all the prevailing transitions and the transition sets
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of all the actions ∆ = ∆p ∪ {∆a | a ∈ O}. By ∆x ⊆ ∆ where x ∈ X we will
denote the set of all transitions related to the variable x.

In the SASE encoding we will have one Boolean variable for each transition
in ∆ and one for each action a ∈ O. Therefore, we have the following two kinds
of Boolean variables.

• Action variables ati indicating whether the i-th action is used in the t-th
step (same as the action variables in the Direct encoding).

• Transition variables ctδ (or ctx: d→e where δ = δx: d→e) indicating whether the
transition δ occurred during the t-th step. We will have one such variable
for each δ ∈ ∆ for each of the k parallel steps.

Now, we will describe the clauses in Fk. We will start with clauses to ensure
that exactly one transition can happen for each variable at each time step. The
following clauses say that at least one transition for each variable must happen.
Bear in mind, that the sets ∆x contain all the prevailing transitions, therefore
the values of the variables do not have to change necessarily during each parallel
step.

(ctδ1 ∨ · · · ∨ c
t
δj

)

∀x ∈ X,∆x = {δ1, . . . , δj},∀t ∈ {1, . . . , k}
(3.10)

The following set of clauses ensures that at most one transition is allowed for
each state variable.

(¬ctδ1 ∨ ¬c
t
δ2

)

∀x ∈ X, ∀{δ1, δ2} ⊆ ∆x, δ1 6= δ2,∀t ∈ {1, . . . , k}
(3.11)

In the original SASE paper [26] a more complex and less strict definition of
interfering transitions was used. The difference is, that according to the original
definition, two transitions δ1, δ2 ∈ ∆x do not interfere if one of the transitions
is mechanical and both δ1 and δ2 transfer x to the same value. We have shown
in our paper [4] that this less strict definition is not consistent with the ∀-Step
parallel planning semantics and it slightly decreases the performance of the SASE
encoding. Therefore, we will use the simpler and more strict definition, that two
transitions interfere if they are on the same state variable.

Next we describe the clauses that connect the action variables with the tran-
sition variables. If an action a is selected, then all the transitions in its transition
set ∆a must be selected as well. This implication is expressed via the following
clauses.

(¬at ∨ ctδ)
∀a ∈ O, ∀δ ∈ ∆a,∀t ∈ {1, . . . , k}

(3.12)

Also we need to make sure, that transitions (except for prevailing transitions)
cannot happen without actions that have them in their transition sets. The
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following set of clauses will ensure this.

(¬ctδ ∨ ats1 ∨ · · · ∨ a
t
sm)

∀δ ∈ (∆ \∆p), support(δ) = {s1, . . . , sm},∀t ∈ {1, . . . , k}
(3.13)

By support(δ) we mean the set of indices of actions that have δ in their transition
set, i.e., support(δ) = {i | ai ∈ O; δ ∈ ∆ai}.

The next set of clauses connects the transitions of two neighboring parallel
steps and ensures that the values of state variables cannot change arbitrarily
between them. We will encode the property that if a transition δx: d→e happens
during the (t+ 1)-th step, then there has to be a transition in the t-th step that
changes x from some value to d.

(¬ct+1
δx: d→e

∨ ctδx: v1→d
∨ · · · ∨ ctδx: vm→d

)

∀x ∈ X, ∀δx: d→e ∈ ∆x, dom(x) = {v1, . . . vm} ∀t ∈ {1, . . . , k}
(3.14)

Similarly to the Direct encoding we need to disable the interfering action pairs.
The definition of interfering actions remains the same as well as the fact that only
compatible actions need to be suppressed explicitly. Therefore the clauses defined
in equation 3.7 will also work for the SASE formula.

Lastly, we add the clauses that enforce the initial state to hold in the beginning
and the goal conditions to be satisfied in the end. As for the initial state, we will
disable all the transitions that are not compatible with the initial state, i.e., if a
variable x has the value d in the initial state, then all the transitions that change
x from a value other than d are disabled by using a unit clause. Note, that
mechanical transitions are always compatible with the initial state (or any other
state) and therefore no mechanical transition is disabled.

(¬c1
δx: d→e

)

∀δx: d→e ∈ ∆, (x = d) /∈ sI
(3.15)

Similarly, we will disable all the transitions that change a variable to a value
different from its goal value. Here, we must be careful not to disable transitions
for variables that do not appear in the goal conditions.

(¬ckδx: d→e
)

∀δx: d→e ∈ ∆, (x = e) /∈ sG,∃v (x = v) ∈ sG
(3.16)

In the original SASE encoding [26] the initial state and the goal conditions
were encoded using one clause for each variable that represented the set of possible
transitions, i.e., transitions that change the state variable from its initial value
to some value or change from some value to a goal value. Thus the initial state
clauses would be the following.

(c1
δx: d→v1

∨ · · · ∨ c1
δx: d→vm

)

∀x ∈ X,(x = d) ∈ sI , dom(x) = {v1, . . . vm}
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Similarly, the goal condition clauses would be the following.

(ckδx: v1→d
∨ · · · ∨ ckδx: vm→d

)

∀x ∈ X,(x = d) ∈ sG, dom(x) = {v1, . . . vm}

Thus the original SASE encoded Fk contained no unit clauses at all. We believe it
is important to have unit clauses in Fk in order to speed up SAT solving. There
are even special preprocessing techniques for SAT that require the presence of
unit clauses in formulas [7].

We have described all the clauses required for the construction of Fk using the
SASE encoding. The formula Fk is the conjunction of the clauses in equations
3.10, 3.11, 3.12, 3.13, 3.14, 3.15, 3.16, and 3.7 (from the Direct encoding). A
parallel plan Pφ can be extracted from the satisfying assignment φ of Fk (if it
is satisfiable) in the same way as for the Direct encoding, i.e., as defined in
Definition 24. The following proposition (analogous to Proposition 2) holds for
the SASE encoding.

Proposition 3. If the formula Fk obtained using the SASE encoding of the plan-
ning task Π is satisfied by a truth assignment φ then Pφ is a valid ∀-Step parallel
plan of makespan k for the planning task Π.

Proof. This proof is very similar to the proof of Proposition 2. The only difference
is that the values of the state variables are not expressed directly using assignment
variables but via transitions.

The requirements for the action sets given by the ∀-Step semantics are clearly
satisfied:

• the preconditions of actions are satisfied due to 3.12

• the effects are propagated also due to 3.12

• the actions can be ordered arbitrarily for the same reasons as for the Direct
encoding, since the clauses 3.7 are also included in the SASE encoding (see
the proof of Proposition 2).

It remains to prove that P S
φ = [E(A1) ⊕ · · · ⊕ E(Ak)] is a valid (sequential)

plan for Π, where ⊕ denotes the concatenation of sequences and E is an arbitrary
ordering of an action set.

First, let us observe, that the transitions of the state variables are consistent
at each step, i.e., exactly one transition is allowed for each state variable (due
to 3.10 and 3.11) and a transition cannot happen without an action that has it
(thanks to 3.13). Furthermore, the transitions between the parallel steps must
be compatible due to 3.14.

Since the action variables imply the proper transition variables thanks to
3.12, the actions must be applicable if their action variable is True and also the
transition connected to the action must happen.

Thanks to 3.15 only transitions compatible with the initial state can happen
in the first step and because of 3.16 only transitions that change the variables
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to their goal values are allowed in the last step. This fact together with the
consistency of the transitions during all the k steps implies the validity of P S

φ for
the planning task Π.

Note, that the reversed implication does not hold for the same reasons as
for the Direct encoding (see the discussion in the last paragraph of the previous
section).

3.3 The Reinforced Encoding

In this section we introduce a new encoding which is a combination of the Direct
and SASE encodings described in the previous two sections. The encoding con-
tains all three kinds of variables (action, assignment, and transition) and shares
many of the clauses used in the Direct and SASE encodings. The name of the
encoding comes from the idea of reinforcing one encoding with the strengths of
the other. In other words, we are ‘reinforcing’ the direct encoding by using tran-
sition variables, or alternatively, we are ‘reinforcing’ the SASE encoding by using
assignment variables.

Using more variables will also reduce the number of clauses. For example,
there could be as many as O(

∑
x∈X | dom(x)|4) clauses in the SASE encoding

to ensure that only one transition is allowed for each variable (equation 3.11).
It follows from the fact, that if d = | dom(x)| then there could be as many as
O(d2) transitions on the variable x and we need to disable each pair, which leads
to O(d4) binary clauses (equation 3.11). The reinforced encoding avoids these
clauses by using assignment variables and clauses that connect transitions to
assignments.

Now we describe how the formula Fk is constructed using the Reinforced
encoding. The ∀-Step parallel planning semantics will be used again. As already
stated, Fk will have the following three kinds of Boolean variables, which are the
union of the variables used in the previous two encodings.

• Action variables ati indicating whether the i-th action is used in the t-th
step. We will have one such variable for each action from the description of
the planning task and for each of the k parallel steps.

• Assignment variables btx=v indicating whether the value of the variable x
is equal to v in the end of the t-th step (after applying the actions of the
t-th step). This is different from the Direct encoding, where these variables
described the beginning of the steps. We will have one such Boolean variable
for each state variable x ∈ X and each value v ∈ dom(x) for each of the t
parallel steps.

• Transition variables ctδ (or ctx: d→e where δ = δx: d→e) indicating whether the
transition δ occurred during the t-th step. We will have one such variable
for each δ ∈ ∆ for each of the k parallel steps.
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Many of the clauses in the reinforced encoding are recycled from the previous
encodings. In particular the following clauses are recycled.

• The initial state is encoded the same way as in the SASE encoding – using
the unit clauses defined in equation 3.15 that disable all the transitions that
are not compatible with the initial state.

• The clauses that ensure that each state variable has at most one value
(equation 3.2) are used from the Direct encoding.

• Action interference clauses are the same as in both the Direct and SASE
encodings (equation 3.7).

• The clauses enforcing that the actions imply their transitions (equation 3.12)
are recycled from the SASE encoding.

• Similarly, the clauses representing the implications, that all the non pre-
vailing transitions must be supported by their supporting actions (equa-
tion 3.13) are used from the SASE encoding.

Additionally, we need to add three new kinds of clauses that connect the
assignment variables with the transition variables. The first set of clauses ensures
that each transition δx: d→e (including prevailing transitions δx: e→e and mechanical
transitions δx: ∗→e) implies that x = e at the end of each step.

(¬ctδx: d→e
∨ btx=e)

∀δx: d→e ∈ ∆,∀t ∈ {1, . . . , k}
(3.17)

Similarly, we need to add clauses for each transition δx: d→e (except for mechanical
transitions) to enforce that x = d holds at the end of the previous step, except
for the first step, where we explicitly disable all the transitions that are not
compatible with the initial state (using the clauses from equation 3.15).

(¬ctδx: d→e
∨ bt−1

x=d)

∀δx: d→e ∈ ∆, d 6= ∗,∀t ∈ {2, . . . , k}
(3.18)

The third kind of clauses is needed to guarantee, that if a variable x has the value
v then there is a transition which changes the the value of x to v.

(¬btx=v ∨ ctδ1 ∨ · · · ∨ c
t
δm)

∀x ∈ X, v ∈ dom(x),δ1, . . . , δm transformx to v,∀t ∈ {1, . . . , k}
(3.19)

Finally we add a set of clauses to ensure that the goal conditions will hold in
the end. The goal conditions are encoded very similarly to the Direct encoding,
i.e., using unit clauses with assignment variables (equation 3.9). The difference
is that here we require these assignments in the end of the k-th step instead of
the beginning of the (k + 1)-th step.

(bkx=v)

∀(x = v) ∈ sG
(3.20)
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The formula Fk for the Reinforced encoding is a conjunction of the clauses
defined in equations 3.2, 3.7, 3.12, 3.13, 3.15, 3.17, 3.18, 3.19, and 3.20. A ∀-step
parallel plan can be extracted from any satisfying assignment of Fk exactly the
same way as in the case of Direct and SASE encodings – see Definition 24. As
we advertised in the beginning of this section, the clauses in equations 3.17, 3.18
and 3.2 allow us to get rid of the numerous transition interference clauses used in
SASE (equation 3.11). Similarly to Proposition 2 and 3 the following Proposition
holds for the Reinforced encoding.

Proposition 4. If the formula Fk obtained using the Reinforced encoding of the
planning task Π is satisfied by a truth assignment φ then Pφ is a valid ∀-Step
parallel plan of makespan k for the planning task Π.

Proof. This proof is again very similar to the proof of Proposition 2 and Propo-
sition 3.

The requirements for the action sets given by the ∀-Step semantics are clearly
satisfied:

• the preconditions of actions are satisfied due to 3.12, 3.17, and 3.18

• the effects are propagated also due to 3.12, 3.17, and 3.18

• the actions can be ordered arbitrarily for the same reasons as for the Direct
and SASE encoding, since the clauses 3.7 are again included. (see the proof
of Proposition 2).

It remains to prove that P S
φ = [E(A1) ⊕ · · · ⊕ E(Ak)] is a valid (sequential)

plan for Π, where ⊕ denotes the concatenation of sequences and E is an arbitrary
ordering of an action set.

Let us observe, that the transitions of the state variables are consistent at
each step, i.e., exactly one transition is allowed for each state variable (due to
3.17, 3.18, and 3.2) and a transition cannot happen without an action that has
it (thanks to 3.13). Furthermore, the transitions between the parallel steps must
be compatible due to 3.17, 3.18, 3.19 and 3.2.

Since the action variables imply the proper transition variables thanks to
3.12, the actions must be applicable if their action variable is True and also the
transition connected to the action must happen.

Thanks to 3.15 only transitions compatible with the initial state can happen
in the first step and because of 3.18 and 3.20 only transitions that change the
variables to their goal values are allowed in the last step. This fact together with
the consistency of the transitions during all the k steps implies the validity of P S

φ

for the planning task Π.

The reversed implication again does not hold for the same reasons as for the
Direct and SASE encoding (see the discussion below Proposition 2).
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3.4 The Exist Step Encoding

All the previous encodings of this chapter were connected to the ∀-Step parallel
planning semantics. In this section we present a R2∃-Step encoding of planning
into SAT, which was introduced in our recent paper [2]. Similarly to the previous
sections, we will construct a formula Fk such that if Fk is satisfiable and φ is its
satisfying assignment, then we can construct a R2∃-step parallel plan from φ.

In the encoding we will again explicitly represent which actions are in which
step of the parallel plan as well as the world states in between the parallel steps.
The first such state s1 will represent the initial state, the second s2 will represent
the world state after applying the actions of the first step (in a proper order) and
so on.

3.4.1 Variables and Plan Extraction

Similarly to the Reinforced encoding we have three kinds of Boolean variables.

• Action variables ati for each action ai ∈ O and time step t. We will require
that ati = True⇔ ai ∈ At, i.e., a is in the parallel plan in step t. We have
a set of such variables for each time step t ∈ {1 . . . k}.

• Assignment variables btx=v for each state variable x ∈ X, and each v ∈
dom(x). We will require that btx=v = True ⇔ st(x) = v, i.e., in the state
st at the beginning of time step t the variable x is assigned to the value v.
We have these variables for each of the k parallel steps and one extra set
for the time k + 1 representing the goal state.

• Auxiliary variables h t
i,j. More details about these variables will be provided

later.

By checking the truth values of all the action variables in a satisfying assign-
ment of the formula Fk, we can easily construct a parallel plan in the same way
as we did for the Direct, SASE, and Reinforced encodings (see Definition 24).

To prove that such a plan is a valid R2∃-Step parallel plan we will also need to
provide an ordering function E for the action sets. We will do this by assigning
a unique rank r(a) to each action a ∈ O and the ordering function E will then
simply sort the actions in the parallel steps according to their ranks. The ranks
will be used during the construction of the formula to ensure the correctness of this
method. The details of action ranking are discussed in the following subsection.

3.4.2 Action Ranking

The ranking of actions is the assignment of a unique integer rank r(a) to each
action a ∈ O. For the sake of correctness of the encoding the ranking can be
arbitrary, however the selection of the ranking affects the performance of the
planning process dramatically. Intuitively, the ranking should be such, that the
actions are ranked according to their order in a valid plan for the given planning

26



task. The problem is, of course, that we do not know the plan in advance.
Therefore, we should try to at least guess the order in which the given actions
could appear in a plan.

Another problem is the evaluation of rankings, i.e., deciding which of a given
set of rankings is better. We have been unable to identify an ‘easy-to-check’
property of a ranking which would indicate its quality. Having such a method
would be very useful. We could generate several rankings and select the best
one before encoding and solving the planning task. Currently, our only method
of comparing different rankings is to use them in our R2∃-Step encoding and
measure the time required to find a plan.

We have tested several ranking algorithms on the problems of the International
Planning Competition, the details of the experiment and its results can be found
in Subsection 3.7.2. We have compared the following ranking methods.

• Random Ranking. The ranks are assigned randomly to actions, each action
has a unique rank. The purpose of this method is to serve as baseline for
comparison with the other methods.

• Input Ranking. The ranks are assigned from 1 to n = |O| to the actions
in the order in which they are listed in the input, i.e., in the definition of
the planning task. The intuition behind this methods is, that the author
of the problem may have defined the actions in the order they are expected
to appear in the plans.

• Inverted Input ranking. First we run Input Ranking, then we invert the
ranks: r(a) := n−r(a), where n is the number of actions. If Input Ranking
is a ‘good’ ranking, then this ranking should be bad.

• Topological Ranking. This method is based on topologically ordering the
action enabling graph while ignoring cycles. It is explained in detail below.

• Inverted Topological Ranking. We invert the result of Topological Ranking
in the same way we invert Input Ranking.

The motivation behind Topological Ranking is that supporting actions should
be before (have a lower rank than) the actions they support. We are trying to
achieve this by topologically sorting the enabling graph of the set of actions.
First, let us define the enabling graph.

Definition 26 (Enabling Graph). The enabling graph G for a set of actions O
is a directed graph where vertices represent actions and there is an edge (a, a′) if
a supports a′, i.e., G = (O, {a→ a′|a, a′ ∈ O; eff(a) ∩ pre(a′) 6= ∅}).

An example of an enabling graph is displayed in Figure 3.2. The ∃-Step [33]
and the Relaxed ∃-Step [38] encodings use similar graphs called disabling and
disabling-enabling graphs.

As apparent from the example, the enabling graph may contain cycles and
therefore topological ordering is not defined. We break the cycles by randomly
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move (A , B) move (B , A)

loadP1(A)

unloadP1(A)

loadP1(B)

unloadP1(B)

Figure 3.2: The enabling graph for a subset of actions of the planning task from
Example 2. We selected the actions for the locations A and B and package P1.

topologicalRanking(O)
T1 global lastRank := 0
T2 global visited := {False, . . . , False}
T3 foreach a ∈ O do
T4 rankAction(a)

rankAction(a)
R1 if visited[a] = False then
R2 visited[a] := True
R3 foreach s ∈ supportingActions(a) do
R4 rankAction(s)
R5 r(a) := lastRank
R6 lastRank := lastRank + 1

Figure 3.3: Pseudo-code of the topological sorting based action ranking algorithm.

removing edges and use the topological ordering of the reduced enabling graph
to assign action ranks. This is implemented by modifying the depth-first-search
topological sorting algorithm [37] to ignore cycles. The pseudo-code of the topo-
logical ranking algorithm is displayed in Figure 3.3. Note, that the enabling graph
is constructed ‘on-the-fly’ during the procedure when the edges are needed.

The weakness of this ranking method is that only the actions of a planning
task are used. For example the initial state and the goal conditions are not
considered at all. Designing better ranking algorithms is a matter of future work
together with methods for comparing rankings.

3.4.3 Basic Clauses

Here we start defining the clauses that are contained in Fk. Many of the clauses
used here are the same as in the Direct (and Reinforced) encoding. In particular,
the following clauses are reused.
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• The unit clauses for the initial state (equation 3.8).

• The unit clauses for the the goal conditions (equation 3.9).

• The binary clauses enforcing the uniqueness of variable values (equation 3.2).

• The clauses ensuring that the values of the variables do not change, unless
some action changes them (equation 3.5).

Next we will describe the clauses connecting the action variables to assign-
ments. In the previous encodings we required that actions imply their precon-
ditions. This is also used in the ∃-Step encodings [33]. In our (and also in the
Relaxed-∃-Step [38]) encoding we require that the preconditions of actions are ei-
ther satisfied by the proper assignment or by some other action in the same time
step. If we encoded this idea in a straightforward way it would cause trouble,
since the actions could support each other in a cyclic manner with disregard to
the initial state of the time step. The solution is to use the action ranks (r(a)).
Then we can encode our relaxed condition by clauses requiring that each pre-
condition of an action is either satisfied by the assignment from the beginning
of this parallel step or by an action with a lower rank in this parallel step. The
action-precondition clauses will be the following.

(¬ati ∨ btx=v

∨
{atj | r(aj) < r(ai), (x = v) ∈ eff(aj)})

∀ai ∈ O, ∀(x = v) ∈ pre(ai),∀t ∈ {1 . . . k}
(3.21)

The ranking solves the problem of cyclic supporting, however there still remains
one problem. It may happen that an action is relying on another action (with
a lower rank) which sets its precondition but there may be another action be-
tween them which destroys the precondition. For example, if we have three
actions r(move(A,B)) < r(move(B,A)) < r(loadP1(B)) (from Example 2) and
loadP1(B) relies on move(A,B) then move(B,A) must not be in the plan. Ac-
tions like move(B,A) are referred to as threats in Plan Space Planning [22].
Dealing efficiently with threats is a bit more complicated and we will address it
separately in the next subsection.

Next we describe the clauses that distinguish our R2∃-Step encoding from the
Relaxed ∃-Step encoding and ensure that the effects of the actions are properly
propagated. The idea is similar as in the case of preconditions. We will add
clauses that ensure, that each effect (x = v) of an action is either projected to
the next parallel step or there is an action with a higher rank in this step, that will
take the responsibility of setting the value of the variable x for the next parallel
step.

(¬ati ∨ bt+1
x=v

∨
{atj | r(aj) > r(ai), x ∈ scope(aj)})

∀ai ∈ O, ∀(x = v) ∈ effprev(ai),∀t ∈ {1 . . . k}
(3.22)

By effprev(a) we mean the set of effects and prevailing assignments of a. Prevail-
ing assignments are such precondition assignments that have no matching effect
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assignment, e.g., an assignment to the same variable. For example the action
({x1 = 1, x2 = 1}, {x2 = 3}) has a prevailing assignment x1 = 1. A prevailing
condition must be treated like an effect, otherwise the value of its variable might
not propagate to the next parallel step which could lead to invalid plans. By
scope(a) we mean the set of state variables that appear in effprev(a).

3.4.4 Action Interference Clauses

The last and the most complicated set of clauses we need to add to our formula
are the clauses solving the above mentioned problem of lower ranking actions
destroying the preconditions of higher ranking actions in the same parallel step.
We start by some notation regarding the relationships between actions and as-
signments that will simplify the following descriptions.

The relationship status of an action a and an assignment x = v is one or more
of the following

• a is supporting (x = v) if (x = v) ∈ eff(a)

• a is opposing (x = v) if ∃v′ 6= v : (x = v′) ∈ eff(a)

• a is requiring (x = v) if (x = v) ∈ pre(a)

• a is unrelated to (x = v) if (x = v) 6∈ pre(a) ∪ eff(a)

Note that an action can be both requiring and opposing an assignment (that
precondition would be non-prevailing).

We want to ensure that if an opposing action a1 destroys an assignment then
there is no action with a higher rank a2 requiring it unless there is some supporting
action a3 between a1 and a2 that sets it up again. But then again there might be
an action between a3 and a2 that destroys the assignment again. The situation
seems to be quite intricate but fortunately there is an elegant solution. The
solution is inspired by the ∃-Step encoding [33], particularly their encoding of
action interference constraints (also used in the Relaxed ∃-Step encoding [38]).

In [33] and [38] the authors want to ensure that if an action destroys an
assignment then no other action with a higher rank requiring that assignment
can be in the same parallel step. Using auxiliary variables they build a chain of
implications for every possible assignment over the opposing and requiring actions
of that assignment. A formal description of such a chain for one assignment
follows.

Let a1, a2, . . . , ak be a list of all n opposing and m requiring actions of a given
assignment sorted by the ranks of the actions. Let o1, . . . on be the indices of the
opposing actions and r1, . . . , rm the indices of requiring actions (k ≤ m+n). Let
next(i) > i be the index of the closest requiring action after the i-th action in
the sequence a1, a2, . . . , ak. Let hr1 , hr2 , . . . , hrm be new auxiliary variables. The
chain is composed of the following implications.

• hj ⇒ hnext(j);∀j ∈ {r1, . . . , rm−1}
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a1 a2 a3 a4 a5 a6

h3 h4 h6

Figure 3.4: A graphic representation of the implications chain. In the example
on the picture a1, a2, a3, and a5 are opponents of the given assignment and a3, a4,
and a6 require it. Notice that a3 both requires and opposes the assignment. The
solid lines represent the implications and the dashed lines negative implications.

a1 a2 a3 a4 a5 a6

h2 h3 h5h4h1

Figure 3.5: A graphic representation of the extended implications chain. In the
example on the picture a1, a2, a3, and a5 are opponents of the given assignment,
a4 is a supporter and a3, and a6 require it. Being a supporter, a4 can break the
chain between h3 and h4. The solid lines represent the implications, the dashed
lines negative implications and the explosion denotes the chain breaking.

• hj ⇒ ¬aj; ∀j ∈ {r1, . . . , rm}

• aj ⇒ hnext(j);∀j ∈ {o1, . . . , on}

See Figure 3.4 for a graphic representation of an example. It is easy to see that
such a chain of implications will ensure the required constraints. Whenever an
opposing action gets selected into the plan it blocks all the actions with a higher
rank that require the given assignment.

We will extend the chain definition to accommodate the situation where an
intermediate action can restore the destroyed assignment. First we need to add
the supporting actions into the chain and then relax the corresponding hj ⇒
hnext(j) implications to allow the supporting actions to break the chain. A more
formal description follows.

Let a1, a2, . . . , ak be a list of all n opposing, m requiring, and l supporting
actions of a given assignment sorted by the ranks of the actions. Let o1, . . . on be
the indices of the opposing actions, r1, . . . , rm the indices of requiring actions, and
s1, . . . , sl the indices of supporting actions. Let h1, h2, . . . , hk−1 be new auxiliary
variables. The chain is composed of the following implications.

• hj−1 ⇒ hj;∀j ∈ {2, . . . , k − 1} \ {s1, . . . , sl}

• hj−1 ⇒ ¬aj;∀j > 1; j ∈ {r1, . . . , rm}

• aj ⇒ hj; ∀j ∈ {o1, . . . , on}
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• hj−1 ⇒ (hj ∨ aj);∀j > 1; j ∈ {s1, . . . , sl}

An example with a graphic representation of the extended implication chain is
given in Figure 3.5. The extended chain is very similar to the original one and it
is easy to verify from the definition of the implications that a supporting action
can indeed break the chain of implications which would prevent an action whose
precondition has been restored. Next we give the clausal representation of the
implications above.

(¬h t
x=v,prevN(i,x,v) ∨ h t

x=v,i); ∀i ∈ (Rx=v ∪Ox=v)

(¬h t
x=v,prevN(i,x,v) ∨ ¬ati); ∀i ∈ Rx=v

(¬ati ∨ h t
x=v,i); ∀i ∈ Ox=v

(¬h t
x=v,prevN(i,x,v) ∨ h t

x=v,i ∨ ati); ∀i ∈ Sx=v

∀x ∈ X, ∀v ∈ dom(x),∀t ∈ {1 . . . k}

(3.23)

Where

• h t
x=v,i are new auxiliary Boolean variables, i represents action indices.

• Rx=v is the set of indices of actions that require x = v

• Ox=v is the set of indices of actions that oppose x = v

• Sx=v is the set of indices of actions that support x = v

• prevN(i, x, v) is the index of the action preceding ai in Nx=v, where Nx=v is
the sorted list (by action ranks) of all supporting, opposing and requiring
actions of x = v.

The encoding of the chain can be improved by removing some of the auxiliary
variables and changing the related implications accordingly.

This concludes the description of our encoding. The final formula Fk is a
conjunction of all the clauses defined in equations 3.2, 3.5, 3.8, 3.9, 3.21, 3.22,
and 3.23.

3.4.5 Correctness

Following up on Propositions 2, 3, and 4 we now present a similar proposition for
the R2∃-Step encoding.

Proposition 5. Let Fk be a R2∃-Step encoded formula for a planning task Π =
(X,O, sI , sG). If Fk is satisfiable then a parallel plan of length k can constructed
from the satisfying assignment of Fk.
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Proof. Let Pφ = [A1, . . . , Ak] be a sequence of actions sets extracted from the
satisfying assignment of Fk as defined in Definition 24. Let E be an ordering
function, which orders the actions in A in the increasing order of their ranks. It
is enough to prove that each E(Ai); i ∈ {1, . . . , k} is a valid sequential plan for
a planning task (X,O, si, si+1), where s0 = sI and si+1 = apply(E(Ai), si). Then
E(A1)⊕· · ·⊕E(Ak) is a valid sequential plan for the task Π since s0 = sI (thanks
to the clauses 3.8 and 3.2), sk+1 ⊆ sG (thanks to the clauses 3.9 and 3.2), and
the values of state variables are correctly propagated between the end of Ai and
the beginning of Ai+1 (thanks to 3.5 and 3.22).

We are going to prove the validity of E(Ai); i ∈ {1, . . . , k} for the task
(X,O, si, si+1) by contradiction. Let us assume that E(Ai) is an invalid plan.
Then either the goal conditions are not satisfied or there is at least one action in
E(Ai) that cannot be applied because of unsatisfied precondition(s) in the given
state.

However, the goal conditions must be satisfied because of the clauses defined
in 3.2, 3.22 and 3.5 – they are either copied from the state si or set by an action
in Ai (thanks to 3.22 and 3.5) and no action later in E(Ai) (with a higher rank)
could set them to another value (thanks to 3.2 and 3.22).

A precondition of an action a in E(Ai) also cannot be unsatisfied, since thanks
to 3.21 they are either satisfied by the previous world state or another action a′

in E(Ai) which is before a (because of a lower rank) and thanks to 3.23 the
precondition is not destroyed by other action between a′ and a without being
restored by some other action.

Therefore E(Ai); i ∈ {1, . . . , k}must be valid sequential plans for the planning
tasks (X,O, si, si+1) and E(A1) ⊕ · · · ⊕ E(Ak) a valid sequential plan for the
planning task Π = (X,O, sI , sG).

The implication, that if there is an R2∃-Step parallel plan Pk of makespan k
then the formula Fk constructed as described above is satisfiable, does not hold.
The reason is that we would need to know the order of the actions in Pk and
use it to rank the actions properly for the construction of Fk. Since we cannot
guarantee that we will rank the actions properly, our Fk might be unsatisfiable
even if Pk is a valid R2∃-Step parallel plan of makespan k.

However, in general, if there exists a plan for a given planning task, then we
will eventually find it. Regardless of the ranking of actions there can always be
at least one action in each parallel step. Therefore, if there is a sequential plan
of length k for a given planning task, then the formula Fk constructed using our
encoding with any action ranking will be satisfiable.

3.5 Selective Encoding

While doing experiments with our new encodings we noticed, that on some prob-
lems the R2∃-Step encoding works very well and significantly outperforms the
other encodings. But there are also problems, where the situation is reversed,
i.e., the R2∃-Step encoding performs very poorly.
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Our goal is, of course, to have an encoding that works well for all the problems,
or at least for as many as possible. This can be achieved by combining two or
more different encodings into one to form a selective encoding.

A selective encoding consists of a set of encodings E and a selection rule. The
task of the selection rule is to select an encoding from E that should be used to
solve a given planning task based on the planning task itself and other available
information (for example the makespan of the formula that we want to construct).
A good selection rule should be simple, so it be can evaluated quickly and clever,
so it can select the proper encoding for a planning task.

Based on experimental observations we have constructed the following selec-
tive encoding which uses our two new encodings – the Reinforced and R2∃-Step
encoding. The selection rule is based on our observation, that the R2∃-Step en-
coding performs best, when the number of transitions is low. The selection rule
decides based on the number of transitions (|∆|) divided by the number of state
variables (|X|) in the given planning task. If |∆|/|X| > 10 then the Reinforced
encoding is selected, otherwise we select the R2∃-Step encoding. Furthermore,
when the R2∃-Step Encoding is used, we alternate between two action ranking
algorithms (see Subsection 3.4.2). For even makespans we use the Topological
Ranking method (see Figure 3.3) and for the odd makespans the Input Ranking
method (rank the actions in the order they are defined in the input problem).
The proposed rule can be evaluated very quickly and, as the experiments will
demonstrate, works very well on the available benchmark problems.

3.6 Properties of the Encoded Formulas

In this section we will examine the formulas Fk constructed by the four encodings
described in the previous sections. We will compute upper bounds on the number
of their variables and clauses. We will differentiate between unit (1 literal), binary
(2 literals), and Horn (at most one positive literal) clauses.

3.6.1 Planning Task Parameters

The size of the formulas will of course depend on the parameters of the plan-
ning task being encoded. We will use the following quantitative properties of a
planning task Π = (X,O, sI , sG) to compute the upper bounds.

• n - The number of actions (n = |O|).

• v - The number of state variables (v = |X|).

• d - The maximum domain size (d = maxx∈X{| dom(x)|}).

• p - The maximum number of preconditions or effects an action has
(p = maxa∈O{| pre(a)|, | eff(a)|})
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Typically, the number of actions is much higher than the other parameters. From
these values we can compute the following upper bounds related to the planning
task.

• The number of assignments is at most vd.

• The number of transitions is at most v(d2 + d) since there are at most
d(d−1) active, d prevailing, and d mechanical transitions for each variable.

• The number of auxiliary nodes in the implication chains used by the R2∃-
Step encoding is at most vdn since we have a chain for each assignment and
the total number of all supporting, opposing, and requiring actions of an
assignment is at most n.

3.6.2 Number of Variables

The following table contains an overview of the maximum number of Boolean
variables in Fk (a formula for makespan k) for the four described encodings.

Var. Type Direct SASE Reinforced R2∃-Step
action kn kn kn kn

assignment (k + 1)vd - kvd (k + 1)vd
transition - kv(d2 + d) kv(d2 + d) -

chain - - - kvdn

The values correspond to the maximum number of actions, assignments, tran-
sitions and implication chain nodes multiplied by k, except for the Direct and
R2∃-Step encodings, which have one extra set of assignment variables.

If we assume, that n > d, then the maximum number of variables is increasing
in the following order: Direct, SASE, Reinforced, and R2∃-Step.

3.6.3 Number of Clauses

We will examine the four encodings one by one and count the number of clauses
in them by their type.

The formula Fk obtained by the Direct encoding is the conjunction of the
clauses defined in equations 3.1, 3.2, 3.3, 3.4, 3.5, 3.7, 3.8, and 3.9.

• There are (k+ 1)v clauses of the type 3.1 – k+ 1 sets for for each variable.

• There are at most (k + 1)vd2 clauses of the type 3.2 – k + 1 sets for each
variable and two different values from its domain. These clauses are binary
and Horn.

• There are at most knp clauses of both type 3.3 and type 3.4 – one for each
step, action and each of its preconditions / effects. These clauses are binary
and Horn.
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• There are at most kvd clauses of the type 3.5 – one for each step, variable
and a value from its domain.

• There are at most kn2 clauses of the type 3.7 – one for each step, and each
pair of compatible interfering actions (at most each pair of actions). These
clauses are binary and Horn.

• There are at most v clauses of both type 3.8 and type 3.9 – one for each
variable value in the initial state / goal condition. These clauses are unit.

In total we have k(n2 + 2np+ vd2 + vd+ v) + vd2 + 3v clauses, from which 2v are
unit clauses and k(n2 + 2np+ vd2) + vd2 are both binary and Horn clauses.

The formula Fk obtained by the SASE encoding is the conjunction of the
clauses defined in equations 3.10, 3.11, 3.12, 3.13, 3.14, 3.15, 3.16, and 3.7.

• There are kv clauses of the type 3.10 – one for each variable and step.

• There are at most kv(d4 + 2d3 + d2) clauses of the type 3.11 – one for
each step and variable and all pairs of transitions related to this variable
((d2 + d)2 pairs since there are at most d2 + d transitions for each variable).
These clauses are binary and Horn.

• There are at most 2knp clauses of the type 3.12 – one for each step, action
and each of its transitions (there are at most 2p transitions connected to
each action). These clauses are binary and Horn.

• There are at most kv(d2 + d) clauses of both type 3.13 and type 3.14 – one
for each step and transition.

• There are at most v(d2 +d) clauses of both type 3.15 and type 3.16 – one for
each transition that is not compatible with the initial state / goal conditions
(at most all the transitions). These are unit clauses.

• There are at most kn2 clauses of the type 3.7 – one for each step, and each
pair of compatible interfering actions (at most each pair of actions). These
clauses are binary and Horn.

In total we have k(n2 + 2np+ vd4 + 2vd3 + 3vd2 + 2vd+ v) + 2vd2 + 2vd clauses,
from which 2vd2 + 2vd are unit clauses and k(n2 + 2np + vd4 + 2vd3 + vd2) are
both binary and Horn clauses.

The formula Fk obtained by the Reinforced encoding is the conjunction of the
clauses defined in equations 3.2, 3.7, 3.12, 3.13, 3.15, 3.17, 3.18, 3.19, and 3.20.

• There are at most kvd2 clauses of the type 3.2 – one for each step and
variable and two different values from its domain. These clauses are binary
and Horn.

• There are at most kn2 clauses of the type 3.7 – one for each step, and each
pair of compatible interfering actions (at most each pair of actions). These
clauses are binary and Horn.
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• There are at most 2knp clauses of the type 3.12 – one for each step, action
and each of its transitions (there are at most 2p transitions connected to
each action). These clauses are binary and Horn.

• There are at most kv(d2 + d) clauses of the type 3.13 – one for each step
and transition.

• There are at most v(d2 + d) clauses of type 3.15 – one for each transition
that is not compatible with the initial state (at most all the transitions).
These are unit clauses.

• There are at most kv(d2 + d) clauses of the both type 3.17 and type 3.18 –
one for each step and transition. These clauses are binary and Horn.

• There are at most kvd clauses of the type 3.19 – one for each step and
assignment.

• There are at most v clauses of the type 3.20 – one for each goal condition.
These clauses are unit.

In total we have k(n2 + 2np + 4vd2 + 4vd) + vd2 + vd + v clauses, from which
vd2 + vd+ v are unit clauses and k(n2 + 2np+ 3vd2 + 2vd) are both binary and
Horn clauses.

Finally, the formula Fk obtained by the R2∃-Step encoding is the conjunction
of the clauses defined in equations 3.2, 3.5, 3.8, 3.9, 3.21, 3.22, and 3.23.

• There are at most (k + 1)vd2 clauses of the type 3.2 – k + 1 sets for each
variable and two different values from its domain. These clauses are binary
and Horn.

• There are at most kvd clauses of the type 3.5 – one for each step, variable
and a value from its domain.

• There are v clauses of both type 3.8 and type 3.9 – one for each variable
value in the initial state / goal condition. These clauses are unit.

• There are 2knp clauses of both type 3.21 and type 3.22 – one for each step,
action and its precondition / effect / prevailing conditions (at most 2p in
total).

• There are 4knvd clauses of the types defined in Equation 3.23. This reflects
the worst case that each action requires, supports and also opposes each as-
signments. Since an action cannot both support and oppose an assignment
this is not a tight upper bound. Most of these clauses (3knvd ) are binary
and Horn.

In total we have k(4nvd+ 2np+ vd2 + vd) + vd2 + 2v clauses, from which 2v are
unit clauses and k(3nvd+ vd2) + vd2 are both binary and Horn clauses.

The following table contains a summary of the number of clauses.
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Encoding Number of Clauses
Direct k(n2 + 2np+ vd2 + vd+ v) + vd2 + 3v
SASE k(n2 + 2np+ vd4 + 2vd3 + 3vd2 + 2vd+ v) + 2vd2 + 2vd
Reinforced k(n2 + 2np+ 4vd2 + 4vd) + vd2 + vd+ v
R2∃-Step k(4nvd+ 2np+ vd2 + vd) + vd2 + 2v

Bear in mind, that these are all upper bounds for the worst-case scenario and
the number of actual clauses is usually much lower. The size of the R2∃-Step
formula will also depend on the action ranking. Some of the clauses which we
did not count as binary or Horn can be binary or Horn for a concrete planning
task. For example if an assignment has only one supporting action, then the
related clause defined in Equation 3.13 will be binary. We also did experimental
measurements of the formula sizes. For the results refer to Subsection 3.7.4.

3.7 Experiments

To compare the encodings to each other and to other state-of-the-art encodings we
did experiments using all the benchmark problems from the optimization track of
the 2011 International Planning Competition (IPC) [16]. We measured the time
required to solve the instances, the number of SAT solver calls (makespans), and
the number of problems solved within a given time limit. We also investigated
the size and composition of the encoded formulas.

First we compared five different ranking methods for our R2∃-Step encoding
with a 10 minutes runtime limit. Next, we run experiments with a 30 minutes
time limit using the following six encoding implementations.

• Direct Encoding (Dir). We implemented a Java encoder to encode the
planning task using the Direct encoding as described in Section 3.1

• SASE Encoding (SASE). Our Java encoder for the modified SASE encoding
described in Section 3.2

• Reinforced Encoding (Reinf). The Java implementation of our new Rein-
forced encoding from Section 3.3

• R2∃-Step Encoding (R2∃). The implementation for our new R2∃-Step en-
coding in Java as described in Section 3.4. We have used the topological
sorting based action ranking method (see Figure 3.3).

• Selective Encoding (Sel). This encoding is a combination of the two previous
encodings – the Reinforced and the R2∃-Step as defined in Section 3.5.

• Rintanen’s ∀-Step Encoding (R∀). An efficient C++ implementation of the
∀-Step semantics by Rintanen [33] used in his well known state-of-the-art
SAT based planning system Madagascar [32].

• Rintanen’s ∃-Step Encoding (R∃). An efficient C++ implementation of the
∃-Step semantics encoding by Rintanen [33] also used in Madagascar [32].
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We were unable to do experiments with the Relaxed ∃-Step encoding [38],
since there is no implementation compatible with the benchmark problems of the
2011 IPC.

3.7.1 Experimental Setting

To compare the performance of the encodings we created a simple script, which
iteratively constructed and solved the formulas for time steps 1, 2, . . . until a
satisfiable formula was reached (see Figure 3.1). For each encoding we used the
same SAT solver – Lingeling[9] (version ats).

The time limit was 5 or 30 minutes for the SAT solving part, i.e., the total
time the SAT solver could spend solving the formulas F1, F2, . . . for each problem
instance was 5 or 30 minutes. The time required for the generation of F1, F2, . . .
is ignored. Hence the overall planning time could exceed the time limit for a
problem instance.

The experiments were run on a computer with Intel i7 920 CPU @ 2.67 GHz
processor and 6 GB of memory. As already mentioned, our five encoding proce-
dures were implemented in Java. To obtain the state-of-the-art ∀-Step formulas
and ∃-Step formulas we used Rintanen’s planner Madagascar[32] (version 0.99999
21/11/2013 11:54:15 amd64 1-core).

The benchmark problems of the IPC are organized into domains. Each do-
main contains 20 problems and there are 14 domains which results in a total of
280 problems. The benchmark problems are provided in the PDDL format which
is accepted by Madagascar, however our encodings require input in the SAS+
format. We used Helmert’s translation tool, which is a part of the Fast Down-
ward planning system [23], to obtain the SAS+ files from the PDDL files. The
translation is very fast requiring only a few seconds for all domains.

3.7.2 Ranking Comparison

Before presenting the results of the main experiment let us look at the comparison
of the ranking methods described in Subsection 3.4.2. We have run the SAT
planning algorithm with our R2∃-Step encoding using the five different ranking
methods from Subsection 3.4.2 with a time limit of five minutes for SAT solving.

The number of solved problems and the total makespan of the found plans is
presented in Table 3.1. The total SAT solving time for the solved problems is in
Table 3.2.

The Topological Ranking (TSort) method solved the highest number of prob-
lems while the Inverted Input and Random methods were the least successful.
Nevertheless, there are five domains, where TSort was outperformed. Most no-
table among these is the openstacks domain, where the Input ranking solved
almost twice as many problems while its total makespan and also its runtime
remained low.

Focusing on the makespans, we can observe, that in several cases TSort main-
tains the smallest total makespan and total runtime while solving as many or more
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Table 3.1: The number of solved problems (#P) with their total makespan (Mks)
that were solved under 5 minutes by our R2∃-Step Encoding using different action
ranking methods.

Domain TSort TSort−1 Input Input−1 Random

#P Mks #P Mks #P Mks #P Mks #P Mks

barman 4 36 2 29 4 60 2 28 1 11

elevators 20 85 20 99 20 106 20 79 20 75

floortile 17 158 18 185 16 149 18 178 18 167

nomystery 3 14 4 20 3 13 6 33 3 14

openstacks 12 75 13 66 20 59 5 43 10 57

parcprinter 20 30 20 249 20 88 20 186 20 140

parking 0 0 0 0 0 0 0 0 0 0

pegsol 19 158 18 155 12 147 16 142 18 152

scanalyzer 6 11 9 16 7 12 6 13 6 12

sokoban 1 17 1 19 1 18 1 17 1 19

tidybot 1 1 1 1 1 1 1 1 1 1

transport 5 20 6 40 8 44 9 57 4 19

visitall 20 34 12 113 9 55 9 49 12 80

woodworking 20 33 20 57 20 58 20 30 20 40

Total 148 144 141 133 134

problems than the other methods. This is most apparent for the parcprinter and
visitall domains.

Low total makespan does not always correlate with good runtime. For example
in the elevators and woodworking domains, where all the methods solved all the
problems, we can observe, that TSort has a low total makespan, but high runtime
compared to the other methods.

Overall, we can conclude, that the action ranking affects the performance of
planning very significantly and different ranking methods work well for different
domains. Nevertheless, TSort appears to be the best choice in general and there-
fore we will use it when comparing the R2∃-Step encoding to other encodings.

3.7.3 Performance Results

In this subsection we analyze the results of the main experiment – the comparison
of the seven encoding methods on the IPC problems with a 30 minutes time limit
for each problem.

The number of solved instances in presented in Table 3.3. Looking at the
results from the perspective of the domains, we can observe, that the elevators,
parcrpinter, and woodworking domains are entirely solved by every encoding. On
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Table 3.2: The total SAT solving time required to solve the problems that were
solved under 5 minutes by our R2∃-Step Encoding using different action ranking
methods.

Domain TSort TSort−1 Input Input−1 Random

barman 641.64 1229.25 934.80 577.67 276.00

elevators 273.74 134.15 68.28 70.86 217.31

floortile 984.49 1259.40 1404.30 1380.39 1189.03

nomystery 293.92 954.26 278.33 409.84 173.22

openstacks 791.33 1417.90 440.23 499.20 508.37

parcprinter 4.35 54.97 7.44 59.44 28.42

parking 0 0 0 0 0

pegsol 817.88 1356.88 1632.52 837.86 937.63

scanalyzer 228.57 1390.03 262.36 151.30 274.30

sokoban 49.69 74.21 52.29 51.76 68.33

tidybot 1.63 1.92 1.42 1.73 2.13

transport 282.67 2377.54 656.24 912.33 300.06

visitall 13.98 564.88 23.21 23.58 255.73

woodworking 137.63 84.57 95.91 51.88 152.27

the other hand, the parking domain is so difficult that not even a single problem is
solved by any of the encodings. The openstacks domain is also very difficult for all
but our new R2∃-Step encoding (and Selective, which also uses it). The sokoban
and tidybot domains are very hard for all of our encodings, while the encodings
of Rintanen can handle them much better, especially the tidybot domain.

If we compare the encodings, we can observe that the best results are obtained
by the Selective encoding followed the two Rintanen encodings. The Selective
encoding very successfully combines the Reinforced and R2∃-Step encodings and
is never worse for any domain than any of its components. The strength of the
Selective encoding is that it can properly select the Reinforced encoding for the
domains and problems, where the R2∃-Step is not efficient. Also its ability to use
two action ranking methods instead of just one seems to be very helpful.

The Reinforced encoding itself succeeds in its goal to combine the strengths of
the Direct and SASE encodings. Except for the visitall domain it is newer worse
than the Direct or SASE encoding.

Comparing the two encodings of Rintanen we can notice, that they do not
differ too much from each other. In contrast, the variability of our encodings
appears to be much higher. We consider higher variability an advantage, since it
allows for techniques such as our Selective encoding to be more successful.

The times required to solve the problems are presented in Table 3.4. If we look
at the results for the domains, where each encoding solved all the problems, i.e.,
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Table 3.3: The number of problems in each domain that the encodings solved
within the time limit (30 minutes for SAT solving).

Domain Dir SASE Reinf R2∃ Sel R∀ R∃
barman 4 4 4 8 9 8 4

elevators 20 20 20 20 20 20 20

floortile 16 11 18 18 18 16 20

nomystery 20 10 20 6 20 20 20

openstacks 0 0 0 15 20 0 0

parcprinter 20 20 20 20 20 20 20

parking 0 0 0 0 0 0 0

pegsol 10 6 10 19 19 11 12

scanalyzer 14 12 15 9 15 17 18

sokoban 2 2 2 2 2 6 6

tidybot 2 2 2 2 2 13 15

transport 16 17 18 13 19 18 18

visitall 12 9 10 20 20 11 11

woodworking 20 20 20 20 20 20 20

Total 156 133 159 172 204 180 184

the elevators, parcprinter, and woodworking, we can notice, that except for the
parcprinter problems, the runtime of the R2∃-Step encoding is much higher than
the runtime of the other methods. If we also look at Table 3.5, which contains
the total makespan of the found plans, we can deduce, that lower makespan,
i.e., fewer SAT calls does not necessarily mean faster planning, especially not in
the case of these easy domains. Nevertheless, for the domains, where R2∃-Step
significantly outperformed the other methods (except for Selective) – openstacks,
pegsol, and visitall, the makespans are much lower than the makespans of the
other methods, despite the fact, that they solved fewer problems.

In Figure 3.6 we provide a so called cactus plot, that visually compares the
five strongest encodings. The plot represents how many problems can be solved
withing a given time limit. It is interesting, that the lines for the R2∃-Step
and the ‘Rintanen ∀’ encoding cross each other several times, which means, that
for certain time limits R2∃-Step would solve more instances than the ‘Rintanen
∀’ encoding. The cactus plot confirms, that the Selective method significantly
outperforms all the other methods, furthermore, this holds for any reasonable
time limit.
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Table 3.4: The time in seconds required to solve all the problems that were solved
within the time limit. The presented time is the sum of times the SAT solver
alone required, formula generation time is not included.

Domain Dir SASE Reinf R2∃ Sel R∀ R∃
barman 2041.44 1549.31 1680.53 2999.30 3562.01 4368.98 693.80

elevators 33.96 55.72 38.10 288.29 39.63 29.76 5.73

floortile 7327.15 2083.57 1206.18 1380.63 1070.39 2243.53 154.85

nomystery 3798.45 1377.23 1894.65 1927.40 1669.42 5104.46 494.10

openstacks - - - 2679.68 440.12 - -

parcprinter 10.07 28.25 12.15 4.24 6.12 5.32 5.51

parking - - - - - - -

pegsol 3796.11 2096.72 4971.97 830.72 824.83 5365.69 6965.38

scanalyzer 1401.21 831.80 1435.19 1118.89 938.14 575.33 843.79

sokoban 592.03 1337.87 857.04 550.18 441.44 4373.59 4255.80

tidybot 75.68 74.02 118.09 480.85 759.08 2953.78 4254.63

transport 1404.23 3554.90 3203.62 7418.01 4004.49 3373.99 366.83

visitall 2380.76 683.25 726.53 14.24 14.45 1606.21 1702.49

woodworking 2.57 2.04 3.84 138.61 180.07 0.66 0.77

3.7.4 Properties of the Formulas

In Section 3.6 we calculated upper bounds on the number of variables and clauses
in the encoded formulas. In this section we will examine the properties of the
formulas generated for the IPC benchmark problems by our four encodings as well
as by the two encodings of Rintanen. We generated the formulas for makespan
3, i.e., F3 for the first problem of each of the domains and counted the number
of variables, clauses and the percentage of binary and Horn clauses.

Table 3.6 contains the number of variables in F3 for each domain and encod-
ing. We can observe, that our R2∃-Step encoding has conspicuously the highest
number of variables in each case, followed by the Reinforced, SASE, and Direct
encoding. This is the same order as we would expect from the calculated upper
bounds on the number of variables. We can also observe, that the two Rintanen
encodings usually have fewer variables than our encodings. Overall, the num-
ber of variables is rather similar between our ∀-Step encodings and the Rintanen
encodings, except for the tidybot domain, where the Rintanen encodings have
much fewer variables. Tidybot is also the domain, where all our encodings are
significantly outperformed by R∀ and R∃ in the number of solved instances.

The number of clauses is presented in Table 3.7. Our R2∃-Step encoding has
the highest number of clauses in most of the cases, but for some domains, like
parking and tidybot, our ∀-Step encodings produce much more clauses. There
is again a big difference between our and Rintanen’s encodings for the tidybot

43



 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0  50  100  150  200  250

T
im

e
 i
n
 S

e
co

n
d
s

Problems

Problems Solved Within a Time Limit

Reinforced
R^2 Exists

Rintanen Forall
Rintanen Exists

Selective

Figure 3.6: This plot represents the number of problems that a SAT based planner
using the given encoding can solve under a given time limit. It is obtained by
sorting the SAT solving times for the solved problems for each encoding.

Table 3.5: The sum of makespans of the plans found within the time limit for
each domain.

Domain Dir SASE Reinf R2∃ Sel R∀ R∃
barman 121 121 121 84 102 282 100

elevators 190 190 190 85 190 190 130

floortile 302 181 344 169 344 290 230

nomystery 347 119 347 30 347 347 217

openstacks - - - 93 60 - -

parcprinter 261 261 261 30 40 261 261

parking - - - - - - -

pegsol 222 131 222 158 166 245 270

scanalyzer 83 61 95 17 91 114 119

sokoban 60 60 60 27 60 396 396

tidybot 14 15 15 6 7 310 344

transport 221 242 262 55 277 262 191

visitall 223 110 146 34 39 188 188

woodworking 68 68 68 33 40 66 66
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Table 3.6: Number of variables for makespan 3, first problem of each domain

Domain Dir SASE Reinf R2∃ R∀ R∃
barman 1606 2536 3068 16180 1226 1986

elevators 1394 2684 2992 25264 1394 1394

floortile 736 1360 1664 7872 688 688

nomystery 1270 2416 2636 54148 1171 1171

openstacks 904 1324 1568 13328 904 1664

parcprinter 513 836 1172 3944 393 393

parking 12824 32560 33720 412948 12304 12304

pegsol 955 1972 2372 29548 841 841

scanalyzer 1620 2336 2432 30688 1604 1604

sokoban 828 1648 2080 18000 748 748

tidybot 14881 20576 21684 253568 288 288

transport 2136 3552 3840 43136 2136 2136

visitall 64 116 156 208 52 52

woodworking 1293 1988 2420 14580 726 726

domain.
Table 3.8 contains the percentage of binary and Horn clauses in the generated

formulas. The percentage of Horn and binary clauses is very similar for each
encoding and each domain, there are usually slightly more Horn clauses. Our
R2∃-Step encoding tends to have the smallest percentage of both binary and
Horn clauses. The highest values for each encoding are for the parking domain,
which is the hard domain, where none of the encodings solved any of the problems.
This counters the hypothesis, that formulas with a high percentage of binary or
Horn clauses are easier to solve. Also the values for the tidybot domain and our
∀-Step encodings are very high, while the values for the Rintanen encoding are
much lower. Both Rintanen’s encodings significantly outperform our encodings
in solving the problems of this domain.

3.7.5 Discussion

The experimental results revealed, that our new R2∃-Step encoding is very effi-
cient for some domains, that other encodings cannot handle. On the other hand,
its performance highly depends on the ranking of actions and it does not perform
well on domains with a high number of transitions per variable. Fortunately, we
could design a simple selective approach which can decide when the R2∃-Step
encoding should be used and by trying several action rankings the problem of
proper ranking selection was partially solved. This selective encoding approach
could significantly outperform all the other methods including the state-of-the-art
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Table 3.7: Number of clauses for makespan 3 for the first problem of each domain.

Domain Dir SASE Reinf R2∃ R∀ R∃
barman 28249 34530 33855 36760 13127 11279

elevators 7981 34994 9918 54725 13046 9716

floortile 4107 13568 6035 17413 4261 3613

nomystery 7037 84868 8498 112541 13075 8179

openstacks 7104 9436 8020 27593 8057 6767

parcprinter 2111 5241 3257 8081 2043 2091

parking 2233859 5763267 2975355 890069 359197 109717

pegsol 6799 67402 8849 63150 7321 7411

scanalyzer 13916 12688 11156 69840 18544 18544

sokoban 5847 25377 9086 38943 6298 6298

tidybot 2124122 2742541 2742373 574056 1804 1780

transport 14676 33767 15019 94232 20332 19084

visitall 139 485 329 359 169 169

woodworking 9507 11332 10520 29218 4941 4869

Table 3.8: The percentage of binary (B) and Horn(H) clauses in the formula for
makespan 3 for the first problem of each domain.

Domain Dir SASE Reinf R2∃ R∀ R∃
B H B H B H B H B H B H

barman 98.4 98.6 95.6 96.0 96.6 97.0 57.9 58.1 96.0 96.6 95.4 96.1

elevators 97.0 97.1 94.6 95.8 88.9 91.7 84.3 84.3 95.8 96.5 94.4 95.2

floortile 93.8 94.4 92.7 94.0 89.5 91.8 78.3 78.5 91.2 93.0 89.7 91.7

nomystery 97.6 97.7 98.0 98.3 86.4 89.2 93.3 93.3 97.1 97.5 95.4 96.1

openstacks 97.8 98.3 94.1 95.2 95.0 96.0 83.0 83.1 96.4 97.3 95.8 96.8

parcprinter 90.0 92.0 88.1 90.1 86.4 89.4 80.5 81.1 87.8 91.0 88.1 91.2

parking 99.9 99.9 99.6 99.8 99.8 99.9 81.9 81.9 99.5 99.6 98.4 98.6

pegsol 94.6 95.6 97.5 97.9 88.6 91.4 89.9 90.0 92.9 92.0 92.9 92.1

scanalyzer 99.5 99.6 95.7 96.5 96.9 97.4 71.0 71.0 99.3 99.4 99.3 99.4

sokoban 94.0 94.5 94.7 95.5 89.9 92.3 87.1 87.1 91.3 92.8 91.3 92.8

tidybot 99.9 99.9 99.9 99.9 99.9 99.9 56.3 56.3 90.6 88.0 90.5 87.9

transport 98.4 98.5 94.3 95.6 92.1 93.8 82.3 82.3 97.5 97.9 97.3 97.7

visitall 79.9 84.9 81.9 84.9 83.3 87.8 69.4 71.3 74.6 80.5 74.6 80.5

woodworking 96.8 97.4 90.2 91.8 92.2 93.5 69.1 69.3 91.2 93.0 91.1 92.9
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encodings of Rintanen.
By looking at the quantitative properties of the formulas we learned, that our

encodings in many cases use much more variables and clauses than the state-of-
the-art encodings. We also noticed, that a high percentage of binary or Horn
clauses does not indicate that an encoding will be successful. This is interesting,
since formulas that contain only Horn clauses (Horn formulas) and formulas with
only binary clauses (2SAT formulas) can be solved in polynomial time [10].
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4. Improving Plans

With intelligent systems becoming ubiquitous there is a need for planning systems
to operate in almost real-time. Sometimes it is necessary to provide a solution in
a very little time to avoid imminent danger (e.g damaging a robot) and prevent
significant financial losses. Satisficing planning engines such as FF [25], Fast
Downward [23] or LPG [21] are often able to solve a given problem quickly,
however, quality of solutions might be low. Optimal planning engines, which
guarantee the best quality solutions, often struggle even on simple problems.
Therefore, a reasonable way how to improve the quality of the solutions produced
by satisficing planning engines is to use post-planning optimization techniques.

The first section of this chapter contains a review of the related work. In
the following sections we restrict ourselves to optimizing plans by only removing
redundant actions from them.

In the second section we review a polynomial heuristic algorithm called Action
Elimination, which often removes most of the redundant actions from a plan, but
cannot guarantee to remove them all, i.e., to achieve perfect justification. This
algorithm does not take into account action costs. We extend it into a new
polynomial heuristic algorithm called Greedy Action Elimination, which tries to
remove costly redundant actions from a plan in order to improve its cost.

In the third section we will introduce our propositional encoding of the prob-
lem of plan redundancy. This encoding will be used in the fourth and fifth sections
to construct SAT, Partial MaxSAT, and Weighted Partial MaxSAT formulas that
will be used to design algorithms that can achieve perfect justification and solve
the problems of minimal length plan reduction and minimal plan reduction.

The last section in this chapter will present experimental results proving the
practical usefulness of the proposed techniques on plans acquired by current state-
of-the-art satisficing planners for planning tasks from the 2011 International Plan-
ning Competition.

4.1 Related Work

Various techniques have been proposed for post-planning plan optimization. West-
erberg and Levine [39] proposed a technique based on Genetic Programming,
however, it is not clear whether it is required to hand-code optimization poli-
cies for each domain as well as how much runtime is needed for such a technique.
Planning Neighborhood Graph Search [30] is a technique which expands a limited
number of nodes around each state along the plan and then by applying Dijsktra‘s
algorithm finds a better quality (shorter) plan. This technique is anytime since
we can iteratively increase the limit for expanded nodes in order to find plans
of better quality. AIRS [18] improves quality of plans by identifying suboptimal
subsequences of actions according to heuristic estimation (distances between giv-
en pairs of states). If the heuristic indicates that states might be closer than they
are, then a more expensive (optimal) planning technique is used to find a better
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ActionElimination (Π, P )
AE01 s := sI
AE02 i := 1
AE03 repeat
AE04 mark(P [i])
AE05 s′ := s
AE06 for j := i+ 1 to |P | do
AE07 if applicable(P [j], s′) then
AE08 s′ := apply(P [j], s′)
AE09 else
AE10 mark(P [j])
AE11 if goalSatisfied(Π, s′) then
AE12 P := removeMarked(P )
AE13 else
AE14 unmarkAllActions()
AE15 s := apply(P [i], s)
AE16 i := i+ 1
AE17 until i > |P |
AE18 return P

Figure 4.1: Pseudo-code of the Action Elimination algorithm as presented in [30].

sequence of actions connecting the given states. In our previous work we have
used a similar approach for optimizing parallel plans [3]. A recent technique [36]
uses plan deordering into ‘blocks’ of partially ordered subplans which are then
optimized. This approach is efficient since it is able to optimize subplans where
actions might be placed far from each other in a totaly ordered plan.

Determining and removing redundant actions from plans is a specific sub-
category of post-planning plan optimization. An influential work [20] defines four
categories of redundant actions and provides complexity results for each of the
categories. One of the categories refers to Greedily justified actions. A greedily
justified action in the plan is, informally said, such an action which if it and
actions dependent on it are removed from the plan, the plan becomes invalid.
Greedy justification is used in the Action Elimination (AE) algorithm [30] which
is discussed in detail later in the text. Another of the categories refers to Perfectly
Justified plans, plans in which no redundant actions can be found. Minimal reduc-
tion of plans [30] is a special case of Perfectly Justified plans having minimal cost
of the plan. Both Perfect Justification and Minimal reduction are NP-complete
[20, 30]. Determining redundant pairs of inverse actions (inverse actions are those
that revert each other’s effects), which aims to eliminate the most common type
of redundant actions in plans, has been also recently studied [13, 14].
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evaluateRemove (Π, P , k)
E01 s := sI
E02 for i := 1 to k − 1 do
E03 s := apply(P [i],s)
E04 cost := C(P [k])
E05 for i := k + 1 to |P | do
E06 if applicable(P [i], s) then
E07 s := apply(P [i], s)
E08 else
E09 cost := cost+ C(P [i])
E10 if goalSatisfied(Π, s) then
E11 return cost
E12 else
E13 return −1

remove (P , k)
R01 s := sI
R02 P ′ := [ ] // empty plan

R03 for i := 1 to k − 1 do
R04 s := apply(P [i],s)
R05 P ′ := append(P ′,P [i])
R06 for i := k + 1 to |P | do
R07 if applicable(a[i], s) then
R08 s := apply(P [i], s)
R09 P ′ := append(P ′, P [i])
R10 return P ′

Figure 4.2: Pseudo-code of the evaluateRemove and remove functions used in the
Greedy Action Elimination algorithm (Figure 4.3).

4.2 Greedy Action Elimination

There are several heuristic approaches [13, 20, 30] , which can identify most of the
redundant actions in plans in polynomial time. One of the most efficient of these
approaches was introduced in [20] under the name Linear Greedy Justification.
It was reinvented in [30] and called Action Elimination. In this thesis we use the
latter name and extend the algorithm to take into account the action costs. We
begin by describing the original Action Elimination algorithm.

Action Elimination (see Figure 4.1) tests for each action if it is greedily jus-
tified. An action is greedily justified if removing it and all the following actions
that depend on it makes the plan invalid. One such test runs in O(np) time,
where n = |P | and p is the maximum number of preconditions and effects any
action has. Every action in the plan is tested, therefore Action Elimination runs
in O(n2p) time.
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greedyActionElimination (Π, P )
G01 repeat
G02 bestCost := 0
G03 bestIndex := 0
G04 for i := 1 to |P | do
G05 cost := evaluateRemove(Π, P, i)
G06 if cost > bestCost then
G07 bestCost := cost
G08 bestIndex := i
G09 if bestIndex 6= 0 then
G10 P := remove(P, bestIndex)
G11 until bestIndex = 0
G12 return P

Figure 4.3: Pseudo-code of the Greedy Action Elimination algorithm, an action
cost-aware version of the Action Elimination algorithm. It greedily removes the
most costly sets of redundant actions.

The Action Elimination algorithm ignores the cost of the actions and elim-
inates a set of redundant actions as soon as it discovers it. In this thesis we
modify Action Elimination to be less ‘impatient’. Before removing any set of
redundant actions, we will identify each such set and remove the one with the
highest sum of costs of the actions in it. We will iterate this process until no more
sets of redundant actions are found. We call this new algorithm Greedy Action
Elimination.

Greedy Action Elimination uses two functions: evaluateRemove and remove
(see Figure 4.2). The function evaluateRemove tests if the k-th action and the
following actions that depend on it can be removed, i.e., whether it is greedily
justified. It returns −1 if those actions cannot be removed, otherwise it returns
the sum of their costs. The remove function returns a plan with the k-th action
and all following actions that depend on it removed from a given plan. The
Greedy Action Elimination algorithm (see Figure 4.3) calls evaluateRemove for
each position in the plan and records the most costly set of redundant actions.
The most costly set is removed and the search for sets of redundant actions is
repeated until no such set is detected.

The worst-case time complexity of Greedy Action Elimination is O(n3p),
where n = |P | and p is the maximum number of preconditions or effects any
action in P has. This is due to the fact, that the main repeat cycle runs at
most n times (each time at least one action is eliminated) and each cycle calls n
times evaluateRemove and once remove. Both these functions run in O(np) time,
therefore the total runtime is O(n(n2p+ np)) = O(n3p).

There are plans, where Action Elimination cannot eliminate all redundant
actions [30]. This also holds for the Greedy Action Elimination. An interesting
question is how often this occurs for the planning domains used in the planning
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competitions [16] and how much do the reduced plans differ from the minimal
plan reduction, i.e., the best possible outcome of action elimination. To find out,
first we need to design an algorithm that can check perfect justification and also
an algorithm for solving minimal plan reduction. As already mentioned, these
problems are NP-complete and therefore we find it reasonable to solve them using
SAT and MaxSAT based approaches. In the next section we will introduce an
encoding of the problem of redundant actions into propositional logic.

4.3 Propositional Encoding of Plan Redundancy

This section is devoted to describing how a given planning task Π and a valid
plan P for Π can be encoded into a CNF formula FΠ,P , such that each satisfying
assignment of FΠ,P represents a plan reduction P ′ of P , i.e., P ′ � P .

We provide several definitions which are required to understand the concept
of our approach. An action a is called a supporting action for a condition c if
c ∈ eff(a). An action a is an opposing action for a condition c := xi = v if
xi = v′ ∈ eff(a) where v 6= v′. The rank of an action a in a plan P is its order
in the sequence P . We will denote by Opps(c, i, j) the set of ranks of opposing
actions of the condition c which have their rank between i and j (i ≤ j). Similarly,
by Supps(c, i) we will mean the set of ranks of supporting actions of the condition
c which have ranks smaller than i.

In our encoding we will have two kinds of Boolean variables. First, we will
have one variable for each action in the plan P , which will represent whether the
action is required for the plan. We will say that ai = True if P [i] (the i-th action
of P , i.e., the action with the rank i) is required. The second kind of variables
will be option variables, their purpose and meaning is described below.

The main idea of the translation is to encode the fact, that if a certain condi-
tion ci is required to be true at some time i in the plan, then one of the following
must hold:

• The condition ci is true since the initial state and there is no opposing
action of ci with a rank smaller than i.

• There is a supporting action P [j] of ci with the rank j < i and there is no
opposing action of ci with its rank between j and i.

These two kinds of properties represent the options for satisfying ci. There is at
most one option of the first kind and at most (i− 1) < |P | of the second kind for
each condition and each time i. For each one of them we will use a new option
variable yc,i,k, which will be true if the condition c at time i is satisfied using the
k-th option.

Now we demonstrate how to encode the fact, that we require a condition c to
hold at time i. If c is in the initial state, then the first option will be expressed
using the following conjunction of clauses.

Fc,i,0 =
∧

j∈Opps(c,0,i)

(¬yc,i,0 ∨ ¬aj) (4.1)

52



These clauses are equivalent to the implications below. The implications represent
that if the given option is true, then none of the opposing actions can be true.

(yc,i,0 ⇒ ¬aj);∀j ∈ Opps(c, 0, i)

For each supporting action P [j] (j ∈ Supps(c, i)) with rank j we will introduce
an option variable yc,i,j and add the following subformula.

Fc,i,j = (¬yc,i,j ∨ aj)
∧

k∈Opps(c,j,i)

(¬yc,i,j ∨ ¬ak) (4.2)

These clauses are equivalent to the implications that if the given option is true,
then the given supporting action variable is true and all the variables of opposing
actions located between them are false. Finally, for the condition c to hold at
time i we need to add the following clause, which enforces at least one option
variable to be true.

Fc,i = (yc,i,0
∨

j∈Supps(c,i)

yc,i,j) ∧ Fc,i,0
∧

j∈Supps(c,i)

Fc,i,j (4.3)

Using the encoding of the condition requirement it is now easy to encode the
dependencies of the actions from the input plan and the goal conditions of the
problem. For an action P [i] with rank i we will require that if its action variable ai
is true, then all of its preconditions must be true at time i. For an action variable
ai the following clauses will enforce, that if it is true, then all the preconditions
of P [i] must hold.

Fai =
∧

c∈pre(ai)

(¬ai ∨ Fc,i) (4.4)

We will need to add these clauses for each action in the plan. Let us call these
clauses FA.

FA =
∧
ai∈P

Fai (4.5)

For the goal we will just require all the goal conditions to be true in the end
of the plan. Let n = |P |, then the goal conditions are encoded using the following
clauses.

FG =
∧
c∈sG

Fc,n (4.6)

The whole formula FΠ,P is the conjunction of the goal clauses, and the action
dependency clauses for each action in P .

FΠ,P = FG ∧ FA (4.7)

From a satisfying assignment of this formula we can produce a plan reduction
of P . A plan obtained using a truth assignment φ will be denoted as Pφ. Its
formal definition follows.

Definition 27 (Subsequence Extraction). Let P be a plan for a planning task
Π. Let φ be a truth assignment for the formula FΠ,P . We define Pφ to be a
subsequence of P such that P [i] is present in Pφ if and only if φ(ai) = True.
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4.3.1 Correctness and Size

In this subsection we will prove the correctness of the encoding, i.e., that a a truth
assignment φ satisfies FΠ,P if and only if Pφ is a plan reduction of P (Pφ � P ).
We will also provide an upper bound on the size of the formula FΠ,P .

In order to prove the correctness we split the construction of Pφ from P and
φ into two steps. First, we replace each action P [i] such that φ(ai) = False in
P by a special dummy action denoted by t. A sequence obtained this way will
be called a sparse sequence and denoted by Ptφ . The dummy action t has no
preconditions or effects and its only purpose is to take up some positions in a
sequence. A formal definition follows.

Definition 28 (Dummy Action, Sparse Sequence). A dummy action t is an
action such that pre(t) = eff(t) = ∅.

Let P be a plan for a planning task Π. Let φ be a truth assignment for the
formula FΠ,P . A sparse sequence Ptφ is a sequence of length |P | of actions such
that

Ptφ [i] =

{
P [i] if φ(ai) = True

t if φ(ai) = False
(4.8)

The second step of the construction of Pφ is the removal of the dummy actions
from Ptφ . Clearly, Pφ obtained by this method is a plan for a planning task Π if
and only if Ptφ is a plan for Π. Therefore it is enough to prove the correctness
property for Ptφ . Let us start with the following lemma.

Lemma 1. Let P be a plan for a planning task Π. Let φ be a truth assignment
for the formula FΠ,P and Ptφ a sparse sequence as defined in Definition 28. Let si
be the state before the i-th action in Ptφ , i.e., s0 = sI , si+1 = apply(Ptφ [i], si). For
each assignment/condition c and each time i ∈ 1, . . . , |P | the clauses Fc,i defined
in Equation 4.3 are satisfied only if c holds in the i-th state during the execution
of Ptφ , i.e., c ∈ si.
Proof. In order to satisfy Fc,i at least one of the option variables yc,i,∗ must be
True. This option variable can either represent the option that the condition ci is
satisfied in si since the initial state or there is a supporting action for c with a rank
smaller than i and there is no opposing action in the way to destroy the condition.
In the first case, the clauses in Equation 4.1 will ensure that no opposing action
is in Ptφ with a rank smaller than i and therefore the condition still holds in si.
In the second case, the clauses in Equation 4.2 ensure that a supporting action
for c is present in Ptφ before the i-th step and there is no opposing action between
that supporting action and the state si. Therefore the condition c must hold in
si in both cases.

By applying this lemma on the goal conditions and the preconditions of the
effects we can prove the correctness of the encoding.

Proposition 6. Let P be a plan for a planning task Π. Let φ be a truth assign-
ment for the formula FΠ,P . The assignment φ satisfies FΠ,P if and only if Pφ is
a plan reduction of P , i.e., Pφ � P .
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Proof. From Definition 27 it is clear, that Pφ is a subsequence of P , therefore it
remains to prove that Pφ is a valid plan for Π if and only if φ satisfies FΠ,P .

Let us start by showing that if φ satisfies FΠ,P , then Pφ is valid plan for Π.
First, we prove, that the sequence Ptφ is a plan for Π. A plan is valid if its i-
th action is applicable in the state si (where s0 = sI and si+1 = apply(Ptφ , si))
and after the application of the last action the goal conditions are satisfied. The
clauses defined in Equation 4.6 ensure that the clauses Fc,n must be satisfied for
each goal condition c ∈ sG. Using Lemma 1, this implies, that the goal conditions
are satisfied after the execution of Ptφ . If an action Ptφ [i] is a dummy action, then
it is applicable in any state since it has no preconditions. Otherwise the Boolean
variable ai must be True under φ. Due to the clauses in Equation 4.4 the clauses
Fc,i must be satisfied for each c ∈ pre(P [i]). Again, using Lemma 1, this implies,
that the preconditions are satisfied in si, i.e., before the application of Ptφ [i].
Therefore we can conclude, that Ptφ is valid plan for Π which implies, that Pφ is
a valid plan for Π as well. This is due to the fact, that removing dummy actions
cannot affect the execution of any plan and Pφ can be obtained from Ptφ this way.

On the other hand, let Pφ be a plan reduction of P . We will prove that φ
satisfies FΠ,P , i.e., each clause is satisfied under φ. For the sake of contradiction
let us assume, that a clause C is not satisfied. We will show, that this leads to
a contradiction with the validity of the plan Pφ for Π. There are four kinds of
clauses in FΠ,P :

• (¬yc,i,k ∨ ¬aj) (used in 4.1 and 4.2). If this clause is unsatisfied it means
that both aj and yc,i,k are True, i.e., the option must be satisfied but the
opposing action is present.

• (¬yc,i,k∨aj) (used in 4.2). Similarly to the previous case, if this clause is not
satisfied it means that the option is true, but the corresponding supporting
action is not in the plan reduction.

• (yc,n,0∨· · ·∨yc,n,k) (used for goal conditions c ∈ sG). The clause is unsatisfied
if all the option variables are false, i.e., none of the options to satisfy c is
selected.

• (¬ai ∨ yc,i,0 ∨ · · · ∨ yc,i,k) (used for preconditions of actions). The clause is
unsatisfied if aj is True (P [i] is in the plan), but none of the options to
satisfy the precondition c of P [i] is selected.

We have shown that if any of the clauses in FΠ,P is unsatisfied under φ then Pφ
cannot be a valid plan.

The following observations follow directly from the Proposition. The formula
FΠ,P is always satisfiable for any planning task Π and its valid plan P . One
satisfying assignment φ has all variables ai set to the value True. In this case,
the plan Pφ is identical to the input plan P . If P is already a perfectly justified
plan, then there is no other satisfying assignment of FΠ,P since all the actions in
P are necessary to solve the planning task.
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Let us conclude this subsection by computing the following upper bound on
the size of the formula FΠ,P .

Proposition 7. Let p be the maximum number of preconditions of any action in
P , g the number of goal conditions of Π, and n = |P |. Then the formula FΠ,P

has at most n2p + ng + n variables and n3p + n2g + np + g clauses, from which
n3p+ n2g are binary clauses.

Proof. The are n action variables. For each required condition we have at most
n option variables, since there are at most n supporting actions for any condition
in the plan. We will require at most (g+np) conditions for the g goal conditions
and the n actions with at most p preconditions each. Therefore the total number
of option variables is n(np+ g).

For the encoding of each condition at any time we use at most n options. Each
of these options are encoded using n binary clauses (the are at most n opposing
actions for any condition). Additionally we have one long clause saying that at
least one of the options must be true. We have np required conditions because
of the actions and g for the goal conditions. Therefore in total we have at most
(np+ g)n2 binary clauses and (np+ g) longer clauses related to conditions.

4.4 Making Plans Perfectly Justified

In this section we describe how to use the encoding described in the previous
section to convert any given plan into a perfectly justified plan, i.e., a plan without
redundant actions.

The idea is very similar to the standard planning as SAT approach (from the
previous chapter), where we repeatedly construct formulas and call a SAT solver
until we find a plan. In this case we start with a plan, and keep improving it by
SAT calls until it is perfectly justified.

First we need to construct a CNF formula which is satisfiable if and only if
a plan P is redundant for the planning task Π. This can be achieved easily by
adding the following clause to the formula FΠ,P .

FR =

(∨
ai∈P

¬ai

)
This clause is satisfied if at least one of the actions in the plan is omitted.

Therefore it is easy to see (using Proposition 6), that the formula FΠ,P ∧ FR is
satisfied if and only if P is a redundant plan for Π.

The pseudo-code of the redundancy elimination algorithm is presented in Fig-
ure 4.4. It uses a SAT solver to determine whether a plan is perfectly justified
or it can be improved. It can be improved if the formula FΠ,P ∧ FR is satisfiable.
In this case a new plan is constructed using the satisfying assignment. The while
loop of the algorithm runs at most |P | times, since every time at least one action
is removed from P (in practice several actions are removed in each step).
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RedundancyElimination (Π, P )
I1 F := encodeRedundancy(Π, P )
I2 while isSatisfiable(F ) do
I3 φ := getSatAssignment(F )
I4 P := Pφ
I5 F := encodeRedundancy(Π, P )
I6 return P

Figure 4.4: Pseudo-code of the SAT based redundancy elimination algorithm. It
returns a perfectly justified plan.

IncrementalRedundancyElimination (Π, P )
II01 solver = new SatSolver
II02 solver.addClauses(encodeRedundancy(Π, P ))
II03 while solver.isSatisfiable() do
II04 φ := solver.getSatAssignment()
II06 C :=

∨
{¬ai| φ(ai) = True}

II07 solver.addClause(C)
II08 foreach ai ∈ P do if φ(ai) = False then
II09 solver.addClause({¬ai})
II10 P := Pφ
II11 return P

Figure 4.5: Pseudo-code of the incremental SAT based redundancy elimination
algorithm.

The algorithm can be implemented in a more efficient manner if we have
access to an incremental SAT solver. We need the simplest kind of incrementality
– adding clauses.

The incremental algorithm is presented in Figure 4.5. It adds a new clause C in
each iteration of the while loop. This clause is a redundancy clause for the actions
remaining in the current plan. It will enforce, that the next satisfying assignment
will remove at least one further action. The redundancy clauses added in the
previous iterations could be removed, but this is not necessary. The algorithm
also adds unit clauses to enforce that the already eliminated actions cannot be
reintroduced.

The worst-case time complexity of this algorithm is O(2n), where n is the
length of the input plan. This follows from the exponential worst-case time
complexity of the SAT solving part.

The algorithms presented in this section are guaranteed to produce plans that
are perfectly justified, i.e., it is not possible to remove any further actions from
them. Nevertheless, it might be the case, that if we had removed a different set
of redundant actions from the initial plan, we could have arrived at a shorter
perfectly justified plan. In other words, the elimination of redundancy is not
confluent, i.e., the result depends on the order in which the redundant actions
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MinimalLengthReduction (Π, P )
MRE1 F := encodeMinimalLengthReduction(Π, P )
MRE2 φ := partialMaxSatSolver(F )
MRE3 return Pφ

Figure 4.6: Pseudo-code of the minimal length plan reduction algorithm.

are removed (see Example 4). This issue is addressed in the next section.

4.5 Minimal Length Reduction and Minimal Re-

duction

In this section we describe how to do the best possible redundancy elimination for
a plan. By best we can either mean removing the maximum number of redundant
actions (minimal length plan reduction (MLR)) or removing redundant actions
with the maximal total cost (minimal plan reduction (MR)).

The plans resulting from MLR and MR are always perfectly justified, on the
other hand a plan might be perfectly justified and at the same time much longer
than a plan obtained by MLR or MR (see Example 4).

The solution we propose for MLR is also based on our redundancy encod-
ing, but instead of a SAT solver we will use a partial maximum satisfiability
(PMaxSAT) solver. We will construct a PMaxSAT formula, which is very similar
to the formula used for redundancy elimination.

A PMaxSAT formula consists of hard and soft clauses. The hard clauses will
be the clauses of FΠ,P .

HΠ,P = FΠ,P

The soft clauses will be unit clauses containing the negations of the action vari-
ables.

SΠ,P =
∧
ai∈P

(¬ai)

The PMaxSAT solver will find an assignment φ that satisfies all the hard clauses
(which enforces the validity of the plan Pφ due to Proposition 6) and satisfies as
many soft clauses as possible (which removes as many actions as possible).

The algorithm (Figure 4.6) is now very simple and straightforward. We just
construct the formula and use a PMaxSAT solver to obtain an optimal satisfying
assignment. Using this assignment we construct an improved plan the same way
as we did in the SAT based redundancy elimination algorithm (see Definition 27).

The problem of Minimal Reduction can be solved in a similar way to MLR.
The difference is that we need to construct a Weighted Partial MaxSAT (WP-
MaxSAT) formula and use a WPMaxSAT solver.

A WPMaxSAT formula also consists of two kinds of clauses – soft and hard.
The soft clauses have a non-negative integer weight assigned to them. The task
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MinimumReduction (Π, P )
MR1 F := encodeMinimumReduction(Π, P )
MR2 φ := weightedPartialMaxSatSolver(F )
MR3 return Pφ

Figure 4.7: Pseudo-code of the minimum reduction algorithm.

of a WPMaxSAT solver is to find a satisfying assignment that satisfies all the
hard clauses and maximizes the sum of the weights of satisfied soft clauses.

Our WPMaxSAT formula is very similar to the PMaxSAT formula used for
MLR. The hard clauses are again equal to FΠ,P and the soft clauses are unit
clauses containing the negations of the action variables. Each of these unit clauses
has an associated weight, which is the cost of the corresponding action. Therefore
the maximization of the total weight of these clauses is equivalent to removing
actions with a maximal total cost. The validity of the plan obtained from the
satisfying assignment is guaranteed thanks to Proposition 6 and the fact that all
the hard clauses must be satisfied. The algorithm is analogous to MLR, it is
displayed in Figure 4.7.

The worst-case time complexity of both MR and MLR is O(2n), where n is
the length of the input plan. This follows from the exponential worst-case time
complexity of the PMaxSAT and WPMaxSat solving part.

4.6 Experiments

In this section we present the results of our experimental study regarding elimi-
nation of redundant actions from plans. We implemented the Action Elimination
(AE) algorithm as well as its greedy variant and the SAT, PMaxSAT, and WP-
MaxSat based algorithms – SAT reduction, minimal length reduction (MLR) and
minimal reduction (MR). We used plans obtained by three state-of-the-art satis-
ficing planners for the problems of the 2011 International Planning Competition
[16] and compared the algorithms with each other and with a plan optimization
tool which focuses on redundant inverse actions elimination (IAE) [13].

4.6.1 Experimental Setting

Since, our tools take input in the SAS+ format, we used Helmert’s translation
tool, which is a part of the Fast Downward planning system [23], to translate the
IPC benchmark problems that are provided in PDDL.

To obtain the initial plans, we used the following state-of-the-art planners:
FastDownward [23], Metric FF [24], and Madagascar [32]. Each of these planners
was configured to find plans as fast as possible and ignore plan quality.

We tested six redundancy elimination methods:

• Inverse action elimination (IAE) is a polynomial heuristic redundancy elim-
ination algorithm that focuses on removing the most common set of redun-
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dant actions – pairs and groups of inverse actions [13]. It is implemented
in C++.

• Action Elimination (AE) is our own Java implementation of the Action
Elimination algorithm as displayed in Figure 4.1.

• Greedy Action Elimination (GAE) is our Java implementation of our new
Greedy Action Elimination algorithm as displayed in Figure 4.3.

• SAT Reduction (SAT) is our Java implementation of our new incremental
SAT reduction algorithm (see Figure 4.5). We used the Java SAT solver
Sat4j [8] since it is incremental and is very convenient to use in a Java
application. This algorithm guarantees to achieve perfect justification, i.e.,
it outputs a plan that contains no redundant actions.

• Minimal Length Plan Reduction (MLR) is a Partial MaxSAT reduction
based algorithm displayed in Figure 4.6. We implemented the translation in
Java and used the QMaxSAT [29] state-of-the-art MaxSAT solver written
in C++ to solve the instances. We selected QMaxSAT due to its good
availability and very good results in the 2013 MaxSAT competition. This
algorithm also guarantees to achieve perfect justification. Furthermore, it
guarantees to remove the highest possible number of redundant actions from
the initial plan.

• Minimal Reduction (MR) is a Weighted Partial MaxSAT reduction based
algorithm displayed in Figure 4.7. The translation is implemented in Java
and we used the Toysat [35] Weighted MaxSAT solver written in Haskell
to solve the instances. Although Toysat did not place very well in the 2013
MaxSAT competition, it was able to significantly outperform all the other
available solvers on our formulas. Like the previous two, this algorithm
guarantees to achieve perfect justification as well. Furthermore, it guar-
antees to remove the most costly set of redundant actions from the initial
plan.

For these methods we measured the total runtime and the total number and
total cost of removed redundant actions for each domain and planner.

All the experiments were run on a computer with Intel Core i7 960 CPU @ 3.20
GHz processor and 24 GB of memory. The planners had a time limit of 10 minutes
to find the initial plans. The runtime for the optimization was unlimited, however
it never took more than 5 minutes for any problem. The benchmark problems
are taken from the satisficing track of IPC 2011 [16].

4.6.2 Number of Removed Actions

First, let us take a look at the number of removed redundant actions. Looking
at the number of removed actions in Table 4.1 we can make several interesting
observations. For example, in the nomystery and pegsol domains no redundant
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Table 4.1: The number of removed actions. The table contains the number of
found plans, their total length and the total number of eliminated actions by the
six redundancy elimination methods.

Domain Plans Length IAE AE GAE SAT MLR MR

M
et

ri
c

F
F

elevators 20 4273 79 79 79 79 79 79

floortile 2 81 9 10 10 10 10 10

nomystery 5 107 0 0 0 0 0 0

parking 18 1546 118 124 124 124 124 124

pegsol 20 637 0 0 0 0 0 0

scanalyzer 18 571 0 30 30 30 30 30

sokoban 13 2504 0 6 6 6 6 6

transport 6 1329 145 164 165 164 165 165

F
as

t
D

ow
n
w

ar
d

barman 20 3749 400 528 555 596 629 629

elevators 20 4625 88 94 94 94 94 92

floortile 5 234 22 22 22 22 22 22

nomystery 13 451 0 0 0 0 0 0

parking 20 1494 4 4 4 4 4 4

pegsol 20 644 0 0 0 0 0 0

scanalyzer 20 823 0 26 26 26 26 26

sokoban 17 5094 0 244 236 458 460 414

transport 17 4059 235 289 290 289 290 290

M
ad

ag
as

ca
r

barman 8 1785 161 303 310 303 318 318

elevators 20 11122 1461 2848 2927 3021 3138 2952

floortile 20 1722 30 30 30 30 30 30

nomystery 15 480 0 0 0 0 0 0

parking 18 1663 152 152 152 152 152 152

pegsol 19 603 0 0 0 0 0 0

scanalyzer 18 1417 0 232 236 232 236 236

sokoban 1 121 22 22 22 22 22 20

transport 4 1446 246 508 535 532 553 553

actions were found in plans obtained by any planner. All the other domains
contain some redundant actions, most notably the plans found by Madagascar
for the elevators domain contain over three thousand redundant actions.

The performance of the IAE method is the poorest. Clearly, this is because
of the IAE method is specific, i.e., only pairs or pairs of nested inverse actions
are considered. Nevertheless, there are examples of domains, where this method
removes the same number of redundant actions as any other method (floortile
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Table 4.2: The number of times that AE and GAE achieve perfect justification,
#P denotes the number of found plans by the given planner/domain combination.
The cases where perfect justification is not achieved for each plan are emphasized
by bold text.

Domain Metric FF Fast Downward Madagascar

#P AE GAE #P AE GAE #P AE GAE

barman 0 0 0 20 17 17 8 8 8

elevators 20 20 20 20 20 20 20 11 14

floortile 2 2 2 5 5 5 20 20 20

nomystery 5 5 5 13 13 13 15 15 15

parking 18 18 18 20 20 20 18 18 18

pegsol 20 20 20 20 20 20 19 19 19

scanalyzer 18 18 18 20 20 20 18 18 18

sokoban 13 13 13 17 15 15 1 1 1

tidybot 17 17 17 16 16 16 16 16 16

transport 6 6 6 17 17 17 4 1 4

visitall 2 2 2 20 20 20 0 0 0

woodworking 19 19 19 20 20 20 20 20 20

and parking plans by Fast Downward and Madagascar).
The AE method outperforms IAE in 14 cases and achieves minimal length

plan reduction in 18 cases out of 26, which is a very good result for a polynomial
heuristic algorithm. GAE improves upon AE in 7 cases.

The SAT method has very similar results to the AE method. Although it
guarantees perfect justification, this is often (in 8 cases) not enough to remove
the highest number of redundant actions. For the transport problems (for each
planner) SAT is outperformed by the polynomial GAE. This is possible since
removing redundant actions is not confluent (see Example 4).

As expected, the MLR method removes the highest (or equal) number of
actions in each case. In 4 cases it gives shorter plans than the MR method. This
demonstrates, that when optimizing the cost of plans, not necessarily the highest
number of redundant actions needs to be removed (see also Example 4).

One of the questions we asked before in the text was how often AE and GAE
achieve perfect justification, i.e., a plan that has no redundant actions. We tested
the plans obtained by AE and GAE using our SAT encoding whether they are
still redundant. The results are displayed in Table 4.2. The data indicates that
in the majority of cases AE and GAE achieved perfect justification. There are
17 plans for AE and 11 for GAE where perfect justification was not achieved.
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Table 4.3: The cost of removed actions. The table contains the number of found
plans (#P), their total cost and the total cost of eliminated actions by the six
redundancy elimination methods.

Domain #P Cost IAE AE GAE SAT MLR MR

M
et

ri
c

F
F

elevators 20 25618 2842 2842 2842 2842 2842 2842

floortile 2 195 29 30 30 30 30 30

nomystery 5 107 0 0 0 0 0 0

parking 18 1546 118 124 124 124 124 124

pegsol 20 300 0 0 0 0 0 0

scanalyzer 18 1137 0 62 62 62 62 62

sokoban 13 608 0 2 2 2 2 2

transport 6 29674 2650 3013 3035 3013 3035 3035

F
as

t
D

ow
n
w

ar
d

barman 20 7763 436 753 780 893 926 926

elevators 20 28127 1068 1218 1218 1218 1218 1218

floortile 5 572 66 66 66 66 66 66

nomystery 13 451 0 0 0 0 0 0

parking 20 1494 4 4 4 4 4 4

pegsol 20 307 0 0 0 0 0 0

scanalyzer 20 1785 0 78 78 78 78 78

sokoban 17 1239 0 58 58 102 102 102

transport 17 74960 4194 5259 5260 5259 5260 5260

M
ad

ag
as

ca
r

barman 8 3360 296 591 598 591 606 606

elevators 20 117641 7014 24096 24728 26702 28865 28933

floortile 20 4438 96 96 96 96 96 96

nomystery 15 480 0 0 0 0 0 0

parking 18 1663 152 152 152 152 152 152

pegsol 19 280 0 0 0 0 0 0

scanalyzer 18 1875 0 232 236 232 236 236

sokoban 1 33 0 0 0 0 0 0

transport 4 20496 4222 6928 7507 7444 7736 7736

4.6.3 Cost of Removed Actions

The total cost of the removed actions by the six described methods is displayed
in Table 4.3. If we compare these results to the length results in Table 4.1 we can
observe that for the sokoban and pegsol problems the cost of the plans is smaller
than their length. This implies that they contain actions with zero cost. If we
look back at Table 4.1 we can indeed observe that for the sokoban problems MR
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removes less actions than the other methods, since redundant actions with zero
cost are ignored.

The IAE method is again the weakest followed by AE and GAE. The AE
algorithm, although it ignores the action costs, performs rather well. Except
for 8 planner/domain combinations it achieves minimal reduction, i.e., the best
possible result.

The GAE algorithm improves upon AE in 7 cases (the same as for length)
and achieves minimal reduction in all but 5 planner/domain pairs.

The MLR method is guaranteed to remove the maximum number of redundant
actions (not considering their cost) and this is also enough to achieve minimal
plan reduction in each case except for the Madagascar plans for the elevators
domain.

As expected, MR provides the best results, however these results are often
not strictly better than the results of the polynomial methods.

4.6.4 Runtime

Table 4.4 contains the total time required by the elimination algorithms to im-
prove the plans for each domain/planner combination.

We can immediately notice that the runtime of all of our methods is usually
very low. Most of the optimizations run under a second and none of the methods
takes more than two seconds on average for any of the plans except for MLR on
the Fast Downward plans for the sokoban domain.

Surprisingly, the runtime of IAE is high despite the complexity results [13].
This can be partially explained by the fact, that IAE takes input in the PDDL
format, which is much more complex to process than the SAS+ format.

The runtime of the GAE is not significantly increased compared to AE in
most of the cases except for the Madagascar plans for the elevators domain.
Considering the better results obtained by GAE we can say, that using GAE
instead of just AE pays off in most of the cases.

Note, that the runtime of the MLR method is often the smallest contrary
to the fact, that it is the only one which guarantees eliminating the maximum
number of redundant actions. This can be explained by the excellent performance
of the partial MaxSAT solver we used – QMaxSAT [29]. The runtime of this
method is very good, considering it is guaranteed to find an optimal solution for
an NP-hard problem.

The last and the strongest of the evaluated algorithms (MR) is guaranteed to
achieve minimal plan reduction. Nevertheless, its runtime is still very reasonable
for each planner/domain pair. Even the 250 seconds required to optimize the 17
sokoban plans from Fast Downward is negligible compared to the time planners
usually need to solve this difficult domain.

64



Table 4.4: The runtime of the elimination algorithms. The table contains the
number of found plans, and the total runtime for the entire domain of the six
redundancy elimination methods in seconds.

Domain Plans IAE AE GAE SAT MLR MR

M
et

ri
c

F
F

elevators 20 1,34 0,70 0,78 3,27 0,17 1,77

floortile 2 0,00 0,01 0,02 0,10 0,00 0,00

nomystery 5 0,17 0,01 0,01 0,18 0,00 0,00

parking 18 0,19 0,10 0,30 1,64 0,03 0,26

pegsol 20 0,00 0,06 0,06 1,23 0,02 0,29

scanalyzer 18 0,00 0,04 0,07 0,94 0,01 0,16

sokoban 13 0,72 0,31 0,31 2,62 0,36 9,07

transport 6 0,35 0,29 0,41 2,21 0,25 3,40

F
as

t
D

ow
n
w

ar
d

barman 20 1,04 0,50 0,94 7,57 0,44 10,60

elevators 20 1,58 0,70 0,93 3,57 0,19 2,00

floortile 5 0,00 0,03 0,07 0,29 0,00 0,02

nomystery 13 4,31 0,03 0,04 0,53 0,01 0,04

parking 20 0,03 0,10 0,10 1,35 0,03 0,21

pegsol 20 0,01 0,06 0,06 1,24 0,02 0,30

scanalyzer 20 0,00 0,07 0,08 1,40 0,03 0,49

sokoban 17 6,41 0,54 0,70 9,19 1,87 252,15

transport 17 1,15 0,56 0,90 3,03 0,18 1,90

M
ad

ag
as

ca
r

barman 8 1,02 0,22 0,44 3,71 0,27 5,88

elevators 20 6,86 1,19 9,07 18,38 1,90 31,06

floortile 20 0,07 0,30 0,33 1,38 0,03 0,24

nomystery 15 2,62 0,03 0,03 0,56 0,00 0,02

parking 18 0,14 0,13 0,33 1,86 0,05 0,32

pegsol 19 0,00 0,06 0,05 1,17 0,01 0,26

scanalyzer 18 0,06 0,20 0,45 1,67 0,04 0,31

sokoban 1 0,02 0,02 0,04 0,26 0,01 0,19

transport 4 0,24 0,21 0,49 1,69 0,16 8,14

4.6.5 Discussion

Clearly, the MR method is guaranteed to provide minimal reduction of plans and
therefore cannot be outperformed (in terms of quality) by the other methods.
Similarly, the MLR method cannot be outperformed in terms of plan lengths.
Despite the exponential worst-case time complexity of these methods, runtimes
are usually very low and in many cases even lower than the other polynomial
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methods we compared with. On the other hand, when the problem becomes hard-
er the runtimes can significantly increase (e.g in the sokoban domain). We have
observed that the problem of determining redundant actions (including minimal
reduction) is in most of the cases very easy. Therefore, the measured runtimes of-
ten depend more on the efficiency of implementation of particular methods rather
than the worst-case complexity properties.

Our results also show that in the most cases using the polynomial method
(AE or GAE) provides minimal reduction, so the MR method usually does not
lead to strictly better results. Guaranteeing in which cases (Greedy) AE provides
minimal reduction is an interesting open question.
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Conclusion

In this thesis we have shown how can satisfiability (SAT) and maximum satisfia-
bility (MaxSAT) solvers be efficiently used to both find plans and improve them.
Finding plans via SAT solving is not a new idea. It has been around for several
decades and it is one of the most successful approaches to automated planning.

Our main contribution to the topic of planning as SAT is the introduction of
two new encoding schemes, the Reinforced and the R2∃-Step encoding. These
two encodings work well for different sets of planning problems (domains) but
we were able to find a simple rule which allows the automatic selections of the
best encoding for a given planning task. Using this rule we designed a combined
encoding that can significantly outperform the existing state-of-the-art encodings.

As for the second problem – the improvement of plans we have focused on the
special case of removing redundant (unnecessary) actions from plans, which is an
NP-hard optimization problem. Prior to our work, there existed only heuristic
algorithms that are not guaranteed to remove all the redundant actions. The
most successful of these algorithms is called Action Elimination (AE). Based on
the ideas of AE we have introduced our own heuristic algorithm – Greedy Ac-
tion Elimination (GAE), which, contrary to AE, takes actions cost into account.
GAE outperformed AE and the other existing heuristic approaches on benchmark
problems.

Furthermore, we have introduced a SAT encoding for the problem of plan
redundancy. Using this encoding we have proposed three new methods which can
completely solve three optimization problems related to redundancy elimination.
The first method uses a SAT solver to produce perfectly justified plans, i.e., plans
without redundant actions. The second method uses a partial MaxSAT solver to
remove the highest possible number of redundant actions from plans. Finally, the
third method guarantees to remove the set of redundant actions with the highest
total cost and uses a weighted partial MaxSAT solver. Thanks to the existence
of powerful modern SAT and MaxSAT solvers, these methods work very well in
practice with the current state-of-the-art planners and benchmark problems.

Future Work

An important topic for future work is finding new and better methods for action
ranking, which is a key component of our new R2∃-Step encoding. The methods
which we proposed in this thesis are very simple and use only a part of the
information available for the planning problem. We believe, that there exist much
better methods of action ranking. Discovering such methods would immediately
improve the performance of the R2∃-Step encoding.

A related open problem is the evaluation of action rankings, i.e., deciding
whether a given ranking will allow us to solve the planning task quickly. The
evaluation method should be fast to be useful.
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Another potentially promising direction for future research might be the incor-
poration of the Counter-example Guided Abstraction Refinement (CEGAR) [15]
techniques into the area of planning as SAT.

As for the post-planning optimization, it would be interesting to modify our
encoding to allow replacing and/or adding actions into the plan. To maintain the
high performance of the method these replacement/addition operations should
be limited by some parameter, which would gradually increase and allow more
modifications. This idea is inspired by the plan neighborhood graph search
method [30].
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[13] Lukáš Chrpa, Thomas Leo McCluskey, and Hugh Osborne. Determining
redundant actions in sequential plans. In Proceedings of ICTAI, pages 484–
491, 2012.

69
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