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Introduction

This thesis consists of this introduction and two chapters. The first chapter concerns the
notion of σ-porosity and it contains an introductory section and two sections based each
on one of these papers:

• Characterization of σ-porosity via an infinite game.
Fund. Math. 216 (2012), no. 2, 109-118.

• Infinite games and σ-porosity.
Submitted.
(with M. Zelený)

The second chapter concerns unitary group representations realizable by an action and it
is based on the following paper:

• Unitary representations of finite abelian groups realizable by an action.
Submitted.

The aim of this introduction is to give the basic background to the studied topics, to
briefly outline the content of the individual sections and to introduce the main results of
the thesis.

There are many reasonable notions of ‘small sets’ in mathematical analysis. For ex-
ample, meager subsets of a topological space are usually considered to be small in the
sense of Baire categories and Lebesgue measure zero subsets of Rn are usually considered
to be small in the sense of Lebesgue measure. Such notions of smallness are frequently
used to show that every point of a given space has a certain property, except points from
an exceptional set of ‘singular points’ which is ‘small’. In both chapters of this thesis,
we are interested in some kind of smallness. In the first chapter, we investigate so called
σ-porosity which is a useful notion of smallness for subsets of metric spaces. In the second
chapter, we answer the question whether one particular subset of the space of all unitary
representations of a finite abelian group on a given infinite-dimensional separable complex
Hilbert space is meager or comeager.

One can find many similar definitions of porosity and σ-porosity throughout the litera-
ture. Their common idea is that a subset M of a metric space is porous if there exist ‘big
pores in M ’ (i.e. open sets disjoint with M) arbitrarily near to every point x ∈ M . Here
we give one of the most frequently used definitions.

Definition. Let (X, d) be a metric space. Let M ⊂ X, x ∈ X, and R > 0. Then we
define

γ(x,R,M) = sup{r > 0: there exists z ∈ B(x,R)

such that B(z, r) ∩M = ∅},

p(x,M) = lim sup
R→0+

γ(x,R,M)

R
.
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We say that M ⊂ X is porous at x ∈ X if p(x,M) > 0.
We say that M is porous if it is porous at each x ∈ M .
We say that M is σ-porous if it is a countable union of porous sets.

This porosity is sometimes called ‘ordinary porosity’ to avoid confusion since there are
also many other variants of porosity such as symmetric porosity in R, left and right porosity
in R or strong porosity. In many cases, it is convenient to use a more general definition
of a so called ‘porosity-like relation’ which is a relation between points and subsets of a
given metric space with three basic properties which are common for virtually all known
porosities.

The term ‘porosity’ was introduced in 1967 by E. P. Dolženko in [5] and it is possible
to say that Dolženko started a systematic investigation of σ-porosity. In [5], he studied
boundary behavior of complex functions and proved that certain exceptional sets of his
interest are σ-porous. He observed that in an Euclidean space, σ-porous sets are meager
and have Lebesgue measure zero. He also stated without proof that there is a meager set
which has Lebesgue measure zero but which is not σ-porous (but it was first proved only
later by L. Zaj́ıček in [20] and all known proofs of this basic fact are relatively difficult).
From the last two facts, it follows that σ-porosity of certain exceptional sets turns out to
be a very interesting property since it is a strictly stronger property than being small in
the sense of both Baire category and measure. Moreover, it is frequently easier to prove σ-
porosity of a given set than to provide two different proofs of its smallness, one on category
and one on the measure.

Since then the porosity has been widely used, especially in the differentiation theory
and in Banach space theory. The first such case is a paper of C. L. Belna, M. J. Evans
and P. D. Humke from 1978 [1]. They proved that for every measurable and symmetrically
differentiable function f : R → R, the set of points x ∈ R at which f ′(x) does not exist
(i.e. the set of exceptional points with respect to differentiation) is σ-porous. In Banach
space theory, σ-porosity was used for the first time in 1984 by D. Preiss and L. Zaj́ıček
in [15]. They showed that if f is a real-valued continuous convex function on a real Banach
space with a separable dual, then the set of points at which f is not Fréchet differentiable
is σ-porous. Another example is a paper of J. Lindenstrauss and D. Preiss from 2003 [12].
Among other things, they investigated a relationship between σ-porous and so called Γ-null
subsets of Banach spaces. They showed that in some Banach spaces (namely in C(K) with
K countable compact, in the Tsirelson space and in all subspaces of c0), every σ-porous
set is Γ-null. They used this fact to prove that every countable collection of real-valued
Lipschitz functions on one of these spaces has a common point of Fréchet differentiability.
Some results in the differentiation theory of real functions of a real variable concerning
porosity and σ-porosity are presented in the monograph [19] written by B. S. Thomson.
Many results concerning porosity and σ-porosity in Banach space theory can be found
in the monograph [13] written by J. Lindenstrauss, D. Preiss and J. Tǐser. An interested
reader can also consult two extensive topical surveys [21], [23] about porosity and σ-porosity
written by L. Zaj́ıček. All of the mentioned examples show that the structural properties
of the σ-ideal of σ-porous sets deserve further investigation which is the motivation for the
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results presented in the first chapter of this thesis.
Let us look at the content of the first chapter of the thesis a little closer. We consider

the following question.

Question. Let A be an analytic subset of a metric space X and let I be a σ-ideal of subsets
of X. Suppose that A /∈ I. Does there exist a closed set F ⊂ A which is not in I?

This question was posed by L. Zaj́ıček in [21] (for a Borel set A) for a σ-ideal I of σ-
porous subsets of X. An affirmative answer was given independently by J. Pelant (for
any topologically complete metric space X) and M. Zelený (for any compact metric space
X). Their results are demonstrated in a joint paper [25] which combines the original idea
of J. Pelant (giving an explicit construction of the set F ) and techniques developed by
M. Zelený. The case of some other types of porosity (including the ordinary one in a
locally compact metric space X but also 〈g〉-porosity in a locally compact metric space X
or symmetrical porosity in R) was solved (also affirmatively) by M. Zelený and L. Zaj́ıček
in [26]. They offer a less complicated method of construction of F using porosity-like
relations mentioned earlier. Their nonconstructive proof uses tools from descriptive set
theory. However, the authors admitted that their method cannot be easily applied to
strong porosity and so Question for strong porosity still remained open (even in a compact
metric space X).

Our main tasks are:

(a) to find a suitable characterization of σ-P -porous subsets of X where P is a porosity-
like relation on a metric space X,

(b) to apply this characterization to answer Question for the σ-ideal I of σ-P -porous
subsets of X where P and X are as much general as possible.

The first section of the first chapter contains the necessary introduction. Here, we
recall the definition of a porosity-like relation. We also remind the terminology concerning
infinite games as well as some known results which will be used later.

The second section is based on the paper [3]. This paper was inspired by the infinite
game of Farah and Zapletal from [8] which characterizes σ-porous subsets of the Cantor
space {0, 1}N and by its generalization by D. Rojas-Rebolledo who found similar games
which characterize σ-porous, resp. σ-strong porous subsets of any zero-dimensional com-
pact metric space (see [16]). (In both papers [8] and [16], the relevant infinite games were
used to answer Question affirmatively in the corresponding settings.) Given a metric space
X and an arbitrary porosity-like relation P on X, we associate an infinite game G(A) with
any subset A of X. We characterize σ-P -porous subsets of X via this infinite game by
proving the following theorem.

Theorem. The second player has a winning strategy in the game G(A) if and only if A is
σ-P -porous.

The third section is based on the paper [4]. Here, we generalize the results of [8], [16]
and [26] concerning Question in two directions. We give an affirmative answer to Question
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in spaces which are more general than those considered in [8] and [16] and also for σ-ideals
of σ-porous type which are not included in [26]. Since the precise formulation of the main
result is a little bit technical, let us formulate it only in an informal way for now.

Let X be a compact metric space and let Q be a porosity-like relation on X satisfying
some additional conditions. Then every analytic non-σ-Q-porous subset A of X contains
a compact non-σ-Q-porous subset.

We apply this result to concrete porosities and obtain an (affirmative) answer to several
different variants of Question. Namely, we deal with ordinary porosity, strong porosity,
strong right porosity and 1-symmetrical porosity. As it is described earlier, the first result
has been already known but the method used in our work (based on an infinite game)
aspires to be more elegant and easier than the known proofs. The other results are new.
Finally, we apply this theorem to show that there exists a closed set in R which is σ-(1−ε)-
symmetrically porous for every ε ∈ (0, 1) but which is not σ-1-symmetrically porous. This
answers a question posed by M. J. Evans and P. D. Humke in [7].

The second chapter of the thesis is based on the paper [2]. Here, we investigate the
topological space of all unitary representations of a finite abelian group on a given infinite-
dimensional separable complex Hilbert space. More specifically, we try to find out ‘how
many’ of these representations are realizable by an action where the phrase ‘how many’
refers to Baire categories.

If H is a separable infinite-dimensional complex Hilbert space, we endow U(H), the
unitary group of H, with the strong topology, i.e. the topology generated by the maps
T ∈ U(H) 7→ T (x) ∈ H, x ∈ H. The group U(H) endowed with this topology is a
Polish group. If Γ is a countable group, we denote by Rep(Γ, H) the set of all group
homomorphisms from Γ to the unitary group U(H). Every element of Rep(Γ, H) is called
a unitary representation of Γ on H. The set Rep(Γ, H) is a closed subspace of the Polish
space U(H)Γ and so it is also a Polish space.

Now, if (X,µ) is a standard probability space (i.e. a standard Borel space X together
with a non-atomic probability Borel measure µ on X) and L2

0(X,µ) is the Hilbert space of
all complex-valued square-integrable (with respect to µ) functions on X with zero integral,
every action a of the group Γ on X which preserves the measure µ induces in a canonical
way so called Koopman unitary representation κa

0 of Γ on L2
0(X,µ) associated with the

action a. This representation is defined by the formula

κa
0(γ)(f)(x) = f(a(γ−1, x)), γ ∈ Γ, f ∈ L2

0(X,µ), x ∈ X.

Finally, we say that a unitary representation π of a countable group Γ on a separable
infinite-dimensional complex Hilbert spaceH is realizable by an action if there is a standard
probability space (X,µ) and a measure preserving action a of Γ on (X,µ) such that π is
unitarily equivalent to the Koopman representation κa

0 of Γ on L2
0(X,µ) associated with

the action a.
Some interesting facts concerning the notion of realizability by an action can be found

in [10, Appendix H, (F)]. Among other things, it is stated there that the set of realizable
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by an action representations is either meager or comeager in Rep(Γ, H) since it is invariant
under conjugacy by elements of the unitary group U(H). And it is shown there that if Γ is
torsion-free abelian then the set is meager. However, there are no other examples. Instead,
the following question is formulated there.

Question. Let Γ be an infinite countable group and let H be an infinite-dimensional sep-
arable complex Hilbert space. Is the set of realizable by an action π ∈ Rep(Γ, H) meager in
Rep(Γ, H)?

Although the author of this thesis tried to answer this question for some infinite count-
able groups that are non-abelian or which have a torsion element he did not succeed.
However, we consider the corresponding question for an arbitrary finite abelian group Γ
and show that in this case, the realizable by an action representations form a comeager
subset of Rep(Γ, H).
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1. Infinite games and σ-porosity

This chapter is based on the papers [3] and [4].
Section 1.1 contains some preliminaries which are common for both these papers.
Section 1.2 is based on [3]. It contains two subsections. Subsection 1.2.1 corresponds to

Section 1 (Introduction) of [3] but it is slightly shortened here, such that we do not repeat
some facts stated already in Section 1.1. Section 2 (Preliminaries) of [3] is entirely left out
here, for the same reason. Subsection 1.2.2 is almost identical with Section 3 (Proof of the
main theorem) of [3].

Section 1.3 is based on [4]. It contains three subsections. Similarly as above, subsection
1.3.1 corresponds to Section 1 (Introduction) of [4] but is shortened and Section 2 (Prelim-
inaries) of [4] is entirely left out here. Subsections 1.3.2 and 1.3.3 are almost identical with
Sections 3 (Main result) and 4 (Applications to concrete porosities) of [4], respectively.

1.1 Introduction

In this section, we recall the definition of an abstract porosity-like relation. We remind
that σ-porosity is a local property. We also recall that every metrizable topological space
has a σ-discrete open basis. Finally, we remind the notation concerning infinite games used
in descriptive set theory as well as the well known and very difficult Martin’s theorem.

Let (X, d) be a metric space. An open ball with center x ∈ X and radius r > 0 is
denoted by B(x, r). Since an open ball (considered as a set) does not uniquely determine its
center and radius, we will identify every open ball with the pair (center, radius) throughout
this chapter. Therefore two different open balls (i.e., two different pairs (center, radius))
can still determine the same subset of X. Now, for p > 0 and an open ball B with center
x ∈ X and radius r > 0, we can define p ⋆ B as an open ball with center x and radius pr.
The closed ball with center x ∈ X and radius r > 0 is denoted by B(x, r). We employ
the same identification of closed balls with the pairs (center, radius) as for open balls. If
A ⊂ X is nonempty and r > 0 then B(A, r) = {x ∈ X : dist(x,A) < r}. We also set
B(∅, r) = ∅. Finally, for a nonempty subset B of X, we set

diam B = sup{d(a, b) : a, b ∈ B}.

Definition 1.1.1 (porosity-like relation). Let X be a metric space and let P ⊆ X × 2X

be a relation between points of X and subsets of X. Then P is called a point-set relation
on X. The symbol P (x,A) where x ∈ X and A ⊆ X means that (x,A) ∈ P .

A point-set relation P on X is called a porosity-like relation if the following conditions
hold for every A ⊆ X and x ∈ X:

(P1) if B ⊆ A and P (x,A) then P (x,B),

(P2) we have P (x,A) if and only if there exists r > 0 such that P (x,A ∩B (x, r)),
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(P3) we have P (x,A) if and only if P
(

x,A
)

.

If P is a porosity-like relation on X, A ⊆ X and x ∈ X, we say that

• A is P -porous at x if P (x,A),

• A is P -porous if it is P -porous at every point x ∈ A,

• A is σ-P -porous if it is a countable union of P -porous sets.

Definition 1.1.2 ((ordinary) porosity). Let X be a metric space. Let A ⊆ X, x ∈ X and
R > 0. Let us define

γ(x,R,A) = sup{r > 0: there exists z ∈ B(x,R)

such that B(z, r) ∩ A = ∅},

p(x,A) = lim sup
R→0+

γ(x,R,A)

R
.

We say that

• A is porous at x if p (x,A) > 0,

• A is porous if it is porous at every point x ∈ A,

• A is σ-porous if it is a countable union of porous sets.

Remark 1.1.3. To be exact, if we speak about ordinary porosity as a particular case of
a porosity-like relation, we mean the following. Let us define the point-set relation P on
a metric space X by posing (x,A) ∈ P if and only if A is porous at x. Then P is a
porosity-like relation on X, as can be easily verified.

We will need the following theorem.

Theorem 1.1.4 ([22, Lemma 3]). Let X be a metric space, P be a porosity-like relation
on X and A ⊆ X. Then A is σ-P -porous if and only if for every x ∈ A there exists r > 0
such that B (x, r) ∩ A is σ-P -porous.

Definition 1.1.5 (σ-discrete system). Let X be a topological space. A system V of subsets
of X is said to be

• discrete if for every x ∈ X there exists a neighborhood of x which intersects at most
one set from the system V ,

• σ-discrete if it is a countable union of discrete systems.

We will use the existence of a σ-discrete basis of open sets in a metric space. This is
guaranteed by the following well known theorem.
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Theorem 1.1.6. Let X be a metrizable topological space. Then X has an open basis which
is σ-discrete.

It is also necessary to remind some basic definitions which concern infinite games.
Let M be a nonempty set and n ∈ N. We denote by Mn the set of all sequences s =
(s0, s1, . . . , sn−1) of length n from M . We also set M0 = {∅} where ∅ is the empty sequence
(of length 0). We denote by M<N (resp. MN∪{0}) the set of all finite (resp. infinite)
sequences from M . This means that

M<N =
∞
⋃

n=0

Mn.

The length of a finite sequence s is denoted by length (s). If s ∈ M<N and n ∈ N∪{0} are
such that n ≤ length (s) then s|n = (s0, s1, . . . , sn−1) ∈ Mn. If s, t ∈ M<N then we say that
s is an initial segment of t and t is an extension of s if there exists n ∈ N ∪ {0} such that
n ≤ length (t) and s = t|n. If s = (s0, s1, . . . , sn−1) ∈ Mn and t = (t0, t1, . . . , tm−1) ∈ Mm,
then the concatenation of s and t is the sequence s∧t = (s0, s1, . . . , sn−1, t0, t1, . . . , tm−1) ∈
Mn+m. In the obvious way, we also understand the infinite concatenation s1

∧s2
∧s3

∧ . . . of
a sequence (sn)

∞
n=1 of elements of M<N. If x = (xj)

∞
j=0 ∈ MN∪{0} and n ∈ N ∪ {0} then

x|n = (x0, x1, . . . , xn−1) ∈ Mn. If s ∈ M<N and x ∈ MN∪{0} then we say that s is an initial
segment of x and x is an extension of s if s = x|n for some n ∈ N ∪ {0}.

A subset T ⊆ M<N is called a tree on M if for every t ∈ T and every initial segment s
of t, we have s ∈ T . A sequence x ∈ MN∪{0} is called an infinite branch of T if x|n ∈ T for
every n ∈ N∪ {0}. The body of T is the set of all infinite branches of T and is denoted by
[T ]. This means that

[T ] = {x ∈ MN∪{0} : x|n ∈ T for every n ∈ N ∪ {0}}.

A tree T is called pruned if every s ∈ T has a proper extension in T , i.e. for every s ∈ T
there exists t ∈ T such that t is an extension of s and t 6= s.

Let M be a nonempty set and X ⊆ MN∪{0}. We associate X (which is called a payoff
set then) with the following game:

I a0 a2 a4
· · ·

II a1 a3 a5

Player I plays a0 ∈ M , then player II plays a1 ∈ M , I plays a2 ∈ M , etc. Player I wins if
(an)

∞
n=0 ∈ X, II wins in the opposite case. We denote this game by G (M,X).
A strategy for player I in the game G (M,X) is a tree ρ ⊆ M<N on M such that

• ρ is nonempty,

• if i ∈ N ∪ {0} and (a0, a1, . . . , a2i) ∈ ρ then (a0, a1, . . . , a2i, a2i+1) ∈ ρ for every
a2i+1 ∈ M ,
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• if i ∈ N∪{0} and (a0, a1, . . . , a2i−1) ∈ ρ then there exists a unique a2i ∈ M such that
(a0, a1, . . . , a2i−1, a2i) ∈ ρ.

If we say that player I follows the strategy ρ, we mean the following. Player I starts with
the unique a0 ∈ M such that (a0) ∈ ρ. If II replies by a1 ∈ M then (a0, a1) ∈ ρ and I plays
the unique a2 ∈ M such that (a0, a1, a2) ∈ ρ, etc.

A strategy for player I is winning in the game G (M,X) if for every run (an)
∞
n=0 ∈

MN∪{0} of the game, in which I follows the strategy, we have (an)
∞
n=0 ∈ X (and so I wins

the run).
A (winning) strategy for II is defined in an analogous way.
The game G (M,X) is determined if one of the players has a winning strategy.
In the game G (M,X), both players play arbitrary elements of a given nonempty set

M . In many cases, it is more convenient to let them obey some rules which are represented
by a nonempty pruned tree T ⊆ M<N (which determines so called legal positions). Let
X ⊆ [T ] (X is called a payoff set again), then we define the game G (T,X) as follows:

I a0 a2 a4
· · ·

II a1 a3 a5

Again, I plays a0 ∈ M , II plays a1 ∈ M , etc. But both players have now to choose their
moves such that (a0, a1, . . . , an) ∈ T for every n ∈ N∪{0}. Player I wins if (an)

∞
n=0 ∈ X, II

wins in the opposite case. The notions of (winning) strategy and determinacy are defined
analogously as before. However, the game G (T,X) is only a particular case of the previous
game. Indeed, it is easy to see that if we denote

X ′ = {x ∈ MN∪{0} :
(

there exists n ∈ N such that x|n /∈ T

and the smallest such n is even
)

or (x ∈ [T ] ∩X)},

then I (resp. II) has a winning strategy in the game G (T,X) if and only if I (resp. II) has
a winning strategy in the game G (M,X ′).

Now, we can formulate the well known (and very deep) Martin’s theorem. Its proof
can be found in [9, Theorem 20.5]. In this Theorem, we consider the discrete topology
on the nonempty set M , the product topology on MN∪{0} and the derived topology on
[T ] ⊆ MN∪{0} where T is a nonempty pruned tree on M .

Theorem 1.1.7 ([14]). Let T be a nonempty pruned tree on a nonempty set M and let
X ⊆ [T ] be a Borel set. Then the game G (T,X) is determined.

1.2 Characterization of σ-porosity via an infinite game

This section is based on the paper [3]. It contains two subsections. Subsection 1.2.1 corre-
sponds to Section 1 (Introduction) of [3] but it is slightly shortened here, such that we do
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not repeat some facts stated already in Section 1.1. Section 2 (Preliminaries) of [3] is en-
tirely left out here, for the same reason. Subsection 1.2.2 is almost identical with Section 3
(Proof of the main theorem) of [3]. The only changes are made in the hierarchy of sections
and subsections and cross-referencing between them.

1.2.1 Introduction.

The connection between σ-porosity and infinite games was first shown by M. Zelený in [24].
He defined an infinite game which is very similar to the well known Banach-Mazur game
and using this game, he characterized both sets which can be covered by countably many
closed uniformly porous sets and σ-very porous sets. He also found a sufficient condition
for σ-porosity in the terminology of games.

For this work, very inspirational was the infinite game H(A) of Farah and Zapletal
(see [8, Example 4.20]). Let us endow the Cantor space {0, 1}N with the metric d(x, y) =
1
k
where k is the least such that x(k) 6= y(k). For n ∈ N and t ∈ {0, 1}n, let Ut =

{y ∈ {0, 1}N : y is an extension of t}. The Farah-Zapletal game associated with a set A ⊆
{0, 1}N is defined as follows:

Lasker (S1
1) (S1

2 , S
2
2) (S1

3 , S
2
3 , S

3
3)

· · ·
Steinitz x1 x2 x3

On the first move, Lasker plays a system S1
1 (possibly empty) consisting of some sets of the

form Ut where t ∈ {0, 1}. Then, Steinitz plays x1 ∈ {0, 1}. On the second move, Lasker
plays two systems S1

2 and S2
2 , both of them consisting of some sets of the form Ut where

t ∈ {0, 1}4. Again, Steinitz plays x2 ∈ {0, 1}. On the nth move, Lasker plays systems
S1
n, S

2
n, . . . , S

n
n consisting of some sets of the form Ut where t ∈ {0, 1}n

2

and Steinitz plays
xn ∈ {0, 1}. After a run of this game, we obtain a point x = (xn)

∞
n=1 ∈ {0, 1}N constructed

by Steinitz and a σ-porous set

C =
∞
⋃

k=1

(

{

y ∈ {0, 1}N : {0, 1}N \
∞
⋃

n=k

⋃

Sk
n is porous at y

}

\
∞
⋃

n=k

⋃

Sk
n

)

constructed by Lasker. Steinitz wins if x ∈ A \C, Lasker wins in the opposite case. There
is a claim [8, Claim 4.21] saying that Lasker has a winning strategy in the game H(A) if
and only if the set A is σ-porous.

Later, D. Rojas-Rebolledo generalized the ideas from [8] and managed to find a similar
game which characterizes σ-porosity and also σ-strong porosity in any zero-dimensional
compact metric space (see [16]).

Let (X, d) be a nonempty metric space and let P be a porosity-like relation on X. In
this subsection, we associate an infinite game G (A) (inspired by the game from [8]) with
any subset A of X. This is a game between Boulder and Sisyfos (by using these names, we
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follow the original terminology of J. Zapletal) where Boulder has a similar role to Steinitz
in the game above and Sisyfos corresponds with Lasker. The game is defined as follows:

Boulder B1 B2 B3

· · ·
Sisyfos (S1

1) (S1
2 , S

2
2) (S1

3 , S
2
3 , S

3
3)

On the first move, Boulder plays a nonempty open set B1 ⊆ X such that diam B1 < ∞
and Sisyfos plays an open set S1

1 ⊆ B1. On the second move, Boulder plays a nonempty
open set B2 such that B2 ⊆ B1 and diam B2 ≤ 1

2
diam B1 and Sisyfos plays open sets

S1
2 ⊆ B2 and S2

2 ⊆ B2. On the nth move, n > 1, Boulder plays a nonempty open
set Bn such that Bn ⊆ Bn−1 and diam Bn ≤ 1

2
diam Bn−1 and Sisyfos plays open sets

S1
n ⊆ Bn, S

2
n ⊆ Bn, . . . , S

n
n ⊆ Bn. Sisyfos wins the run if at least one of the following two

conditions is satisfied:

(i)
∞
⋂

n=1

Bn ∩ A = ∅,

(ii)
∞
⋂

n=1

Bn = {x} and there exists m ∈ N such that x ∈ X \
∞
⋃

n=m

Sm
n

and P

(

x,X \
∞
⋃

n=m

Sm
n

)

.

Boulder wins in the opposite case.
In Section 1.2.2, we characterize σ-P -porous sets in X via this game by proving the

following theorem.

Theorem 1.2.1. Sisyfos has a winning strategy in the game G (A) if and only if A is a
σ-P -porous set.

Since virtually all types of porosities can be considered as porosity-like relations (namely
ordinary porosity, symmetric porosity in R, strong porosity, right and left porosity in R),
this is a more general result than in [8] and [16] in the assumptions both on the metric
space X and on the porosity-like relation P .

1.2.2 Proof of the main theorem.

In this subsection, we prove Theorem 1.2.1. Let us fix a nonempty metric space (X, d), a
porosity-like relation P on X and A ⊆ X throughout this subsection.

We say that a finite (also empty) sequence (B1, B2, . . . , Bi) of nonempty open sets in
X is good if Bn+1 ⊆ Bn, diam B1 < ∞ and diam Bn+1 ≤

1
2
diam Bn, n = 1, 2, . . . , i− 1. So

a finite sequence of nonempty open sets in X is good if and only if Boulder can play the
set Bn on his nth move, n = 1, 2, . . . , i (this is clearly independent of Sisyfos’ moves). If
T = (B1, B2, . . . , Bi) is a good sequence of nonempty open sets, we say that a run of the
game G (A) is T -compatible if Boulder played the sets B1, B2, . . . , Bi in sequence on his
first i moves.

12



If Boulder played the sets Bn, n ∈ N, in a run of the game G(A) and
∞
⋂

n=1

Bn = {x}

then x is called an outcome of the game. If Sisyfos wins the game by satisfying (ii) for
some m ∈ N, then every such m is called a witness of Sisyfos’ victory.

Let ρ be a strategy for Sisyfos in the game G (A). For m ∈ N∪{0} and a good sequence
T = (B1, B2, . . . , Bi), we denote by MT

m the set of all

x ∈

{

A if i = 0,

A ∩ Bi if i > 0

such that in every run V of the game G (A) such that

• the outcome of V is x,

• V is T -compatible,

• Sisyfos followed the strategy ρ,

all the witnesses of Sisyfos’ victory (if there exist any) are greater than m. The set MT
m

depends also on the strategy ρ. This will not cause any difficulties since if we speak about
this set later, the strategy ρ is fixed.

Let Boulder and Sisyfos play a run of the game G (A). Let

V = (B1,S1, B2,S2, . . .) ,

Sn =
(

S1
n, S

2
n, . . . , S

n
n

)

, n ∈ N,

where Boulder played the set Bn and Sisyfos played the sets S1
n, S

2
n, . . . , S

n
n on the nth move

of the run. Then we will refer to the run itself by V and if we speak about the set Bn or
about the set Sm

n , m ∈ {1, 2, . . . , n}, n ∈ N, we just use the symbols Bn (V ) and Sm
n (V ),

respectively.
First of all, we prove the following two lemmata. Lemma 1.2.2 is well known at least

for ordinary porosity.

Lemma 1.2.2. Let V be a σ-discrete system of σ-P -porous sets in X. Then
⋃

V is also
σ-P -porous.

Proof. Let V =
∞
⋃

n=1

Vn where Vn is a discrete system for every n ∈ N. Let us fix n ∈ N

and x ∈ X. There exists r > 0 such that B (x, r) intersects at most one set from the
system Vn. Therefore B (x, r)∩

⋃

Vn is a σ-P -porous set. By Theorem 1.1.4, the set
⋃

Vn

is σ-P -porous. Finally,
⋃

V =
∞
⋃

n=1

⋃

Vn

is σ-P -porous as well.
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Lemma 1.2.3. Let ρ be a strategy for Sisyfos in the game G (A). Let

T0 = (B1, B2, . . . , Bi)

be a good sequence of nonempty open sets and let m ∈ N∪{0}. Then there exist a P -porous
set NT0

m and a σ-discrete system E of subsets of X such that

(a) MT0

m = NT0

m ∪
⋃

E ,

(b) for every E ∈ E , there exists a finite sequence T of nonempty open sets in X such
that T0

∧T is good and E ⊆ MT0
∧T

m+1 .

Proof. Whenever we speak about a run of the game G (A) in this proof, we suppose that
Sisyfos followed the strategy ρ in the run. Let us denote

Z =
⋃

{

Sm+1
n (V ) : n ≥ m+ 1, V is a T0-compatible run of the game G (A)

}

.

For every x ∈ Z, let us fix n (x) ≥ m+1 and a T0-compatible run V (x) of the game G (A)
such that x lies in the open set Sm+1

n(x) (V (x)). For x ∈ Z, let us denote

T (x) =
(

Bi+1 (V (x)) , Bi+2 (V (x)) , . . . , Bn(x) (V (x))
)

.

Now, whenever y ∈ Sm+1
n(x) (V (x)) for some x ∈ Z and V ′ is a T0

∧T (x)-compatible run

giving y as its outcome then V ′ coincides with V (x) in its first n (x) moves, in particular

Sm+1
n(x) (V

′) = Sm+1
n(x) (V (x)), and so y /∈ X \

∞
⋃

n=m+1

Sm+1
n (V ′) and m+ 1 is not a witness of

Sisyfos’ victory in the run V ′. Thus, if y ∈ Sm+1
n(x) (V (x)) ∩MT0

m then also y ∈ M
T0

∧T (x)
m+1 , so

we have
Sm+1
n(x) (V (x)) ∩MT0

m ⊆ M
T0

∧T (x)
m+1 . (1.1)

Now, if B is a σ-discrete basis of open sets in X (whose existence is guaranteed by Theorem
1.1.6) then the system

E ′ =
{

G ∈ B : G ⊆ Sm+1
n(x) (V (x)) for some x ∈ Z

}

is a σ-discrete covering of Z. We define

E =
{

MT0

m+1

}

∪ {G ∩MT0

m : G ∈ E ′}

and
NT0

m = MT0

m \
(

Z ∪MT0

m+1

)

.

The system E is obviously σ-discrete and MT0

m = NT0

m ∪
⋃

E . Moreover, if E ∈ E then
either E = MT0

m+1 = MT0
∧∅

m+1 or E = G ∩ MT0

m for some G ∈ E ′. In the latter case, there
exists x ∈ Z such that

G ⊆ Sm+1
n(x) (V (x))
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and so
E ⊆ Sm+1

n(x) (V (x)) ∩MT0

m ⊆ M
T0

∧T (x)
m+1

where the last inclusion is due to (1.1).
It only remains to show that the set NT0

m is P -porous. Let us choose x ∈ NT0

m arbitrarily.
Then x ∈ MT0

m \MT0

m+1 and so there exists a T0-compatible run V of the game G (A) giving
x as its outcome such that m+1 is a witness of Sisyfos’ victory in the run V , in particular

P

(

x,X \
∞
⋃

n=m+1

Sm+1
n (V )

)

.

But we have

NT0

m ⊆ X \ Z ⊆ X \
∞
⋃

n=m+1

Sm+1
n (V ) ,

and so it follows from (P1) (see Definition 1.1.1) that P
(

x,NT0

m

)

.

Proof of Theorem 1.2.1. First, let us assume that A =
∞
⋃

n=1

An where An is a P -porous set

for every n ∈ N. On his nth move, let Sisyfos play Sj
n = ∅ for j < n and Sn

n = Bn \An. Let
Boulder and Sisyfos play a run of the game G (A) such that Sisyfos follows the described

strategy. We may assume that
∞
⋂

n=1

Bn = {x} and x ∈ A because otherwise Sisyfos wins by

(i). Then there exists m ∈ N such that x ∈ Am. We have

X \
∞
⋃

n=m

Sm
n = Am ∪ (X \Bm) (1.2)

and therefore

x ∈ Am ⊆ X \
∞
⋃

n=m

Sm
n .

Further, P -porosity of Am implies that P (x,Am). But this is equivalent to P
(

x,Am

)

by

(P3) (see Definition 1.1.1) and by (P2), this is equivalent to P
(

x,Am ∪ (X \Bm)
)

since

x ∈ Bm. So we have P

(

x,X \
∞
⋃

n=m

Sm
n

)

by (1.2). Therefore, Sisyfos wins by (ii) with m

as a witness and the described strategy is winning.
Now, let us assume that Sisyfos has a winning strategy ρ in the game G (A). Let us

denote E0 = A. By Lemma 1.2.3, we have

A = E0 = M∅
0 = N∅

0 ∪
⋃

E (1.3)

where N∅
0 is P -porous and E is a σ-discrete system of subsets of X such that for every

E1 ∈ E , there exists a good sequence T (E1) such that E1 ⊆ M
T (E1)
1 . Now, for every E1 ∈ E

we have
E1 ⊆ M

T (E1)
1 = N

T (E1)
1 ∪

⋃

EE1 (1.4)
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where N
T (E1)
1 is P -porous and EE1 is a σ-discrete system of subsets of X such that for

every E2 ∈ EE1 , there exists a finite sequence T (E1, E2) of nonempty open sets such

that T (E1)
∧T (E1, E2) is good and E2 ⊆ M

T (E1)∧T (E1,E2)
2 . Suppose that for some k ∈ N,

we already have E1 ∈ E , E2 ∈ EE1 , . . . , Ek ∈ EE1,E2,...,Ek−1 and finite sequences T (E1),
T (E1, E2), . . . , T (E1, E2, . . . , Ek) such that

H := T (E1)
∧T (E1, E2)

∧ . . . ∧T (E1, E2, . . . , Ek)

is good and Ek ⊆ MH
k . Then we have

Ek ⊆ MH
k = NH

k ∪
⋃

EE1,E2,...,Ek

where NH
k is P -porous and EE1,E2,...,Ek is a σ-discrete system of subsets of X such that for

every Ek+1 ∈ EE1,E2,...,Ek , there exists a finite sequence T (E1, E2, . . . , Ek+1) of nonempty
open sets such that the sequence

H∧T (E1, E2, . . . , Ek+1) = T (E1)
∧T (E1, E2)

∧ . . . ∧T (E1, E2, . . . , Ek+1)

is good and

Ek+1 ⊆ M
T (E1)∧T (E1,E2)∧...∧T (E1,E2,...,Ek+1)
k+1 .

By iterating this process, we get a system of P -porous sets

U =
{

N
T (E1)∧T (E1,E2)∧...∧T (E1,E2,...,Ek)
k ∩

k
⋂

i=0

Ei :

k ∈ N ∪ {0}, E1 ∈ E , E2 ∈ EE1 , . . . , Ek ∈ EE1,E2,...,Ek−1

}

.

We show that A ⊆
⋃

U . Suppose that this is not true and so there exists x ∈ A \
⋃

U .

By (1.3), there exists E1 ∈ E such that x ∈ E1 ⊆ M
T (E1)
1 . By (1.4), there exists E2 ∈ EE1

such that x ∈ E2 ⊆ M
T (E1)∧T (E1,E2)
2 . Next, there exists E3 ∈ EE1,E2 such that x ∈ E3 ⊆

M
T (E1)∧T (E1,E2)∧T (E1,E2,E3)
3 . Continuing in this way, we get that there exists a sequence

(Ek)
∞
k=1 where E1 ∈ E and Ek ∈ EE1,E2,...,Ek−1 for k > 1 such that

x ∈ Ek ⊆ M
T (E1)∧T (E1,E2)∧...∧T (E1,E2,...,Ek)
k

for every k ∈ N. Therefore Boulder can play a run of the game G (A) in the following
way. He plays all the sets from T (E1) in sequence on his first moves, then all the sets
from T (E1, E2) and so on. (If there exists k0 ∈ N ∪ {0} such that all the sequences
T (E1, E2, . . . , Ek), k > k0, are empty then the sequence

T (E1)
∧T (E1, E2)

∧ . . . = T (E1)
∧T (E1, E2)

∧ . . . ∧T (E1, E2, . . . , Ek0)

is finite. Then Boulder can finish the run arbitrarily such that the outcome of the run
is x.) After such a run, x is its outcome and any m ∈ N cannot be a witness of Sisyfos’
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victory since x ∈ M
T (E1)∧T (E1,E2)∧...∧T (E1,E2,...,Em)
m for every m ∈ N. This is a contradiction

with the assumption that the strategy ρ is winning for Sisyfos.
By (P1), it suffices to show that

⋃

U is a σ-P -porous set. For k ∈ N ∪ {0} and
E1 ∈ E , E2 ∈ EE1 , . . . , Ek ∈ EE1,E2,...,Ek−1 , let us denote

Q(E1, E2, . . . , Ek) = N
T (E1)∧T (E1,E2)∧...∧T (E1,E2,...,Ek)
k ∩

k
⋂

i=0

Ei.

Then we have
⋃

U =
∞
⋃

k=0

⋃

Uk where

Uk =
{

Q(E1, E2, . . . , Ek) : E1 ∈ E , E2 ∈ EE1 , . . . , Ek ∈ EE1,E2,...,Ek−1

}

.

It is obviously sufficient to prove that
⋃

Uk is a σ-P -porous set for every k ∈ N∪ {0}. For
k = 0 we know that

⋃

U0 = N∅
0 which is a P -porous set. Now suppose that k > 0. To

finish the proof, it suffices to prove the following claim and use it for j = 1.

Claim 1.2.4. For every j ∈ {1, 2, . . . , k} and for every E1 ∈ E , E2 ∈ EE1 , . . . , Ej−1 ∈
EE1,E2,...,Ej−2 , the set

⋃

Ej∈E
E1,E2,...,Ej−1

⋃

Ej+1∈E
E1,E2,...,Ej

. . .
⋃

Ek∈E
E1,E2,...,Ek−1

Q(E1, E2, . . . , Ek)

is σ-P -porous.

Proof. For j = k and for every E1 ∈ E , E2 ∈ EE1 , . . . , Ek−1 ∈ EE1,E2,...,Ek−2 , the set

⋃

Ek∈E
E1,E2,...,Ek−1

Q(E1, E2, . . . , Ek)

is a union of a σ-discrete system (since EE1,E2,...,Ek−1 is σ-discrete) of P -porous sets (since

N
T (E1)∧T (E1,E2)∧...∧T (E1,E2,...,Ek)
k is P -porous). By Lemma 1.2.2, this set is σ-P -porous.
Let us assume that the assertion holds for j + 1 where j ∈ {1, 2, . . . , k − 1} and let

E1 ∈ E , E2 ∈ EE1 , . . . , Ej−1 ∈ EE1,E2,...,Ej−2 be given. Then

⋃

Ej∈E
E1,E2,...,Ej−1





⋃

Ej+1∈E
E1,E2,...,Ej

. . .
⋃

Ek∈E
E1,E2,...,Ek−1

Q(E1, E2, . . . , Ek)





is a union of σ-discrete system (since EE1,E2,...,Ej−1 is σ-discrete) of σ-P -porous sets (the
assumption for j + 1). By Lemma 1.2.2, it is also σ-P -porous.
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1.3 Compact non-σ-porous subsets of non-σ-porous

sets

This section is based on the paper [4]. It contains three subsections. Subsection 1.3.1
corresponds to Section 1 (Introduction) of [4] but is shortened here, such that we do not
repeat some facts stated already in previous sections. Section 2 (Preliminaries) of [4] is
entirely left out here, for the same reason. Subsections 1.3.2 and 1.3.3 are almost identical
with Sections 3 (Main result) and 4 (Applications to concrete porosities) of [4], respectively.
The only changes are made in the hierarchy of sections and subsections, cross-referencing
between them, refining one argument in the proof of Lemma 1.3.3 and correcting one typo.

1.3.1 Introduction

Here we are interested in structural properties of σ-ideals of σ-porous type. More precisely,
the main question we will consider is the following one.

Question. Let A be an analytic subset of a metric space X and I be a σ-ideal of subsets
of X. Suppose that A /∈ I. Does there exist a closed set F ⊂ A which is not in I?

This question was posed by L. Zaj́ıček in [21] (for a Borel set A) for a σ-ideal I of σ-porous
subsets of X. An affirmative answer was given independently by J. Pelant (for any topo-
logically complete metric space X) and M. Zelený (for any compact metric space X). Their
results are demonstrated in a joint paper [25] which combines the original idea of J. Pelant
(giving an explicit construction of the set F ) and techniques developed by M. Zelený. The
case of some other types of porosity (including the ordinary one in a locally compact metric
space X but also 〈g〉-porosity in a locally compact metric space X or symmetrical porosity
in R) was solved (also affirmatively) by M. Zelený and L. Zaj́ıček in [26]. They offer a less
complicated method of construction of F using so called ‘porosity-like’ relations. Their
non-constructive proof uses tools from Descriptive Set Theory. However, the authors ad-
mitted that their method cannot be easily applied to strong porosity and so Question for
strong porosity still remained open (even in a compact metric space X).

Later on, J. Zapletal characterized σ-porous sets in 2N via an infinite game (which was
already reminded in Section 1.2). This game was used to reprove the positive answer to
Question in this particular case ([8, Example 4.20]). The only attempt to answer Question
for strong porosity (and ordinary porosity once again) was made by D.Rojas-Rebolledo,
who generalized in [16] the ideas from [8]. He managed to give an affirmative answer to
Question in any zero-dimensional compact metric space X.

Our aim is to generalize results of [8, 16, 26] in two directions. We give an affirmative
answer to Question in spaces which are more general than those considered in [8, 16] and
also for σ-ideals of σ-porous type which are not included in [26]. The main result of this
section is Theorem 1.3.11. The complete formulation is a little bit technical so let us
formulate the result in an informal way.
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Let X be a compact metric space and Q be a porosity-like relation on X satisfying
some additional conditions. Then every analytic non-σ-Q-porous subset A of X contains
a compact non-σ-Q-porous subset.

To prove this we proceed as follows. We modify the infinite game G(A) from Section
1.2 (now for a subset A of a compact metric space) to a more complicated form such that
this modified game still characterizes σ-Q-porosity. Now consider non-σ-Q-porous analytic
subset A of X. By the result of Farah and Zapletal ([8, Theorem 4.16]), we may assume
that A is non-σ-Q-porous and Borel. Then we show that our game with A is determined
using Martin Determinacy Theorem. The set A is non-σ-Q-porous and thus the second
player does not have a winning strategy. By determinacy the first player has to have a
winning strategy. Using a winning strategy of the first player we find a compact subset
K of A such that the first player still has a winning strategy in the game played with
K. This means that the second player does not have a winning strategy and so K is not
σ-Q-porous, which will complete the proof.

In Subsection 1.3.3, we apply the last result to concrete porosities and obtain an (af-
firmative) answer to several different variants of Question. Namely, we deal with ordinary
porosity, strong porosity, strong right porosity, and 1-symmetrical porosity. As it is de-
scribed earlier, the first result has been already known but the method used in our work
(based on an infinite game) aspires to be more elegant and easier than the known proofs.
The other results are new. Finally, we show that there exists a closed set in R which is
σ-(1 − ε)-symmetrically porous for every ε ∈ (0, 1) but which is not σ-1-symmetrically
porous. This answers a question posed by M. J. Evans and P.D.Humke in [7].

1.3.2 Main result

The class Q

Now we define the class of porosity-like relations for which we prove affirmative answer to
our Question in compact metric spaces. This class includes many interesting cases. The
definition is technical but verification of conditions in concrete cases is straightforward.

Definition 1.3.1. Let (X, d) be a nonempty metric space. We say that a point-set relation
Q on X belongs to the class Q(X) if there are point-set relations Qs and Qs,q

r on X, s ∈ N,
r > 0, q ∈ (0, 1), such that the following conditions are satisfied:

(R1) Qs =
⋂

0<q<1

⋂

R>0

⋃

0<r<R

Qs,q
r and Q =

⋃

s∈N

Qs,

(R2) if Qs,q
r (x,A) and 0 < w < q

2s
then Qs,q−2sw

r (x,B(A, rw)),

(R3) if B ⊂ A and Qs,q
r (x,A) then Qs,q

r (x,B),

(R4) we have Qs,q
r (x,A) if and only if Qs,q

r (x,A ∩B(x, 2r)),

(R5) the set {(x, r) ∈ X × (0,∞) : Qs,q
r (x,A)} is open in X × (0,∞).

19



Convention 1.3.2. Throughout this subsection we will work with a fixed compact metric
space K with a fixed point-set relation Q ∈ Q(K). The corresponding point-set relations
Qs,q

r , Qs witnessing Q ∈ Q(K) are fixed as well. We also fix a set A ⊂ K.

Lemma 1.3.3. Let s ∈ N and r > 0. Then we have:

(M) if 0 < q1 < q2 < 1 and Qs,q2
r (x,A), then Qs,q1

r (x,A), in particular Qs,q1
r (x,A),

(P) Qs is a porosity-like relation; consequently, Q is a porosity like-relation.

Proof. (M) By (R2) applied to w = q2−q1
2s

, we get Qs,q1
r

(

x,B
(

A, r(q2−q1)
2s

))

. By (R3), we

have Qs,q1
r (x,A). Using (R3) we also get Qs,q1

r (x,A).
We verify (P1)–(P3) from Definition 1.1.1 for P = Qs to prove (P).
(P1) This property is an immediate consequence of (R1) and (R3)
(P2) Suppose that Qs(x,A ∩B(x, r0)) for some r0 > 0. By (R1), there exist sequences

(qk)
∞
k=1 of real numbers from (0, 1) and (rk)

∞
k=1 of real numbers from (0,∞) such that

limk→∞ qk = 1, limk→∞ rk = 0, and Qs,qk
rk

(x,A ∩ B(x, r0)) for every k ∈ N. There exists
k0 ∈ N such that 2rk ≤ r0 for every k ≥ k0. Then Qs,qk

rk
(x,A ∩ B(x, 2rk)) for k ≥ k0 by

(R3) and so Qs,qk
rk

(x,A) for k ≥ k0 by (R4). Using (R1) and (M), we get Qs(x,A). The
opposite implication follows by (P1).

(P3) Suppose that Qs(x,A). Choose q ∈ (0, 1) and R > 0. By (R1), there exists

0 < r̃ < R such that Qs,q
r̃ (x,A). By (M) we have Qs,q′

r̃ (x,A) for every 0 < q′ < q. Using
(R1) we get Qs(x,A). The opposite implication follows by (P1).

The fact that Q is a porosity-like relation follows directly from (R1).

Boulder-Sisyfos game

For the rest of this subsection, let us fix sequences

(Rn)
∞
n=1 and (an)

∞
n=1 (1.5)

of real numbers from (0,∞) such that for every n ∈ N we have

Rn+1 ≤ 2−(n+2)Rn (1.6)

and
lim
n→∞

an
Rn+2

= 0. (1.7)

Let Dn, n ∈ N, be a finite an-net in K, i.e., a finite subset of K such that K =
⋃

{B(y, an) : y ∈ Dn}. Let Mn = {B(y, an) : y ∈ Dn}.
We define a game H(A) for two players, who will be called Boulder and Sisyfos. These

names were used by J. Zapletal in the original version of his game. The game is played as
follows:

Boulder B1 B2 B3

· · ·
Sisyfos (S1

1) (S1
2 , S

2
2) (S1

3 , S
2
3 , S

3
3)
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On the first move, Boulder plays an open ball B1 ⊂ K with radius R1 and Sisyfos plays
an open set S1

1 ⊂ B1 where S1
1 is a union (possibly empty) of some balls from the system

M1 introduced in the previous paragraph. On the second move, Boulder plays an open
ball B2 with center in 1

2
⋆B1 and radius R2 and Sisyfos plays two open sets S1

2 and S2
2 such

that S1
2 ∪ S2

2 ⊂ B2 where S
j
2 is a union of some balls from M2, j = 1, 2. On the nth move,

n > 1, Boulder plays an open ball Bn with center in (1 − 2−(n−1)) ⋆ Bn−1 and radius Rn

and Sisyfos replies by playing open sets S1
n, S

2
n, . . . , S

n
n such that

⋃n

j=1 S
j
n ⊂ Bn where Sj

n

is a union of some balls from Mn, j = 1, 2, . . . , n.
We use the above notation in the next lemma.

Lemma 1.3.4. For every n ∈ N, we have Bn+1 ⊂
(

1− 1
2n+1

)

⋆ Bn.

Proof. Suppose that xn is the center of Bn, xn+1 is the center of Bn+1, and z ∈ Bn+1. Then
we have

d(z, xn) ≤ d (z, xn+1) + d (xn+1, xn) < Rn+1 +
(

1− 2−n
)

Rn

≤
(

2−(n+2) + 1− 2−n
)

Rn =
(

1− 3 · 2−(n+2)
)

Rn <
(

1− 2−(n+1)
)

Rn.

By (1.6), we have limn→∞ diamBn = 0. Using this fact, Lemma 1.3.4, and the compact-
ness of K, when a run of the game is over, we get a unique point x lying in the intersection
of the balls Bn, n ∈ N, played by Boulder. We call this point an outcome of the run.
Sisyfos wins if at least one of the following conditions is satisfied:

(a) x /∈ A,

(b) there exists m ∈ N such that one can find s ∈ N, sequences (nk)
∞
k=1 of integers from

{m,m+1, . . .}, (qk)
∞
k=1 of real numbers from (0, 1), and (rk)

∞
k=1 of real numbers from

(0,∞) such that

• x ∈ K \
⋃∞

n=m Sm
n ,

• limk→∞ nk = ∞,

• limk→∞ qk = 1,

• rk ≤ 2−(nk+3)Rnk
, k ∈ N,

• Qs,qk
rk

(x,K \ Sm
nk
), k ∈ N.

Boulder wins in the opposite case. If condition (b) is satisfied for some m ∈ N, then m is
called a witness of Sisyfos’ victory.

At first sight, condition (b) looks very complicated. For a better understanding, we
can observe that it is stronger than the assertion that Qs(x,K \

⋃∞
n=m Sm

n ) by (R1), (R3),
and (M).
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Characterization of σ-Q-porosity via the infinite game

In this subsubsection we show that the notion of σ-Q-porosity, whereQ is the fixed porosity-
like relation belonging to the class Q, can be characterized by existence of a winning
strategy for Sisysfos in our game. To this end we will need a couple of auxiliary notions.

We say that a finite (also empty) sequence of open balls (B1, B2, . . . , Bi) is good if Bn+1

is centered at (1− 2−n) ⋆Bn, n = 1, . . . , i− 1, and the radius of Bn equals Rn, n = 1, . . . , i.
That is, a finite sequence of open balls is good if the rules of the game H(A) allow Boulder
to play the ball Bn on his nth move, n = 1, 2, . . . , i.

For n,m ∈ N we define

dmn =

{

1− 2−n+m−1 if m ≤ n,
1
4

if m > n.

Let σ be a strategy for Sisyfos in the game H(A). If k ∈ N ∪ {0} and l ∈ N then we
say that a good sequence of open balls (B1, B2, . . . , Bi) is (k, l)-good (with respect to the
strategy σ) if there exists a run of the game H(A) such that the following conditions hold:

• Sisyfos followed the strategy σ,

• Boulder played the ball Bn on his nth move, n = 1, 2, . . . , i,

• if k < i then the following conditions are satisfied for every positive n ∈ {k, k +
1, . . . , i− 1}:

(H1) if
[

l > n or
(

l ≤ n and Sl
n ∩

(

dln ⋆ Bn

)

= ∅
)]

then the center of Bn+1 lies in
dl+1
n ⋆ Bn,

(H2) if
[

l ≤ n and Sl
n ∩

(

dln ⋆ Bn

)

6= ∅
]

then the center of Bn+1 lies in dln ⋆ Bn.

Let Boulder and Sisyfos play a run of the game H(A). Let V = (B1,S1, B2,S2, . . .),
and Sn = (S1

n, S
2
n, . . . , S

n
n), n ∈ N, where Boulder played the ball Bn and Sisyfos played

the sets S1
n, S

2
n, . . . , S

n
n on the nth move of the run. Then we will refer to the run itself by

V and if we talk about the ball Bn or about the set Sm
n , we just use the symbols Bn(V )

and Sm
n (V ), respectively.

We say that a run V of the game H(A) is (k, l)-good if Sisyfos followed the strategy σ
and the sequence (B1(V ), B2(V ), . . . , Bj(V )) is (k, l)-good for every j ∈ N.

It is easy to see that if a finite sequence of open balls is (k, l + 1)-good then it is also
(k, l)-good since dl+2

n ⋆ Bn ⊂ dl+1
n ⋆ Bn ⊂ dln ⋆ Bn. It follows that if l1 > l2 and a finite

sequence of open balls (a run of the game H(A), respectively) is (k, l1)-good then it is also
(k, l2)-good.

If T = (B1, B2, . . . , Bi) is a good sequence of open balls, we say that a run V of the
game H(A) is T -compatible if Bn(V ) = Bn for every n ∈ {1, 2, . . . , i}.
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For m ∈ N∪{0} and a good sequence of open balls T = (B1, B2, . . . , Bi), we denote by
Mm(T ) the set of all

x ∈

{

A if T = ∅, i.e., i = 0,

A ∩
(

1
4
⋆ Bi

)

if i > 0

such that in every T -compatible (i,m + 1)-good run of the game H(A) giving x as its
outcome, all the witnesses of Sisyfos’ victory (if there exist any) are greater than m. The
set Mm(T ) also depends on the set A and on the strategy σ but these will be always fixed.

Lemma 1.3.5. Let σ be a strategy for Sisyfos in the game H(A). Let T0 = (B1, B2, . . . , Bi)
be a good sequence of open balls and m ∈ N ∪ {0}. Then there exist a Q-porous set
Nm(T0) and an at most countable collection T of finite sequences of open balls such that
the concatenation T0

∧T is (i,m+ 1)-good for every T ∈ T and

Mm(T0) ⊂ Nm(T0) ∪
⋃

{Mm+1(T0
∧T ) : T ∈ T }.

Proof. Define Nm(T0) as the set of all x ∈ Mm(T0) such that

(I) there exists a T0-compatible (i,m + 2)-good run of the game H(A) giving x as its
outcome such that m+ 1 is a witness of Sisyfos’ victory,

(II) for every T0-compatible (i,m + 2)-good run V of the game H(A) and for every
n ≥ max{i,m+ 1}, we have x /∈ Sm+1

n (V ) ∩ (dm+1
n ⋆ Bn(V )).

Suppose that x ∈ Mm(T0) \
(

Mm+1(T0)∪Nm(T0)
)

. By definition of Mm+1(T0) there exists
a T0-compatible (i,m + 2)-good run with the outcome x and with a witness less or equal
m + 1. Since x ∈ Mm(T0) and the run is also (i,m + 1)-good, the witness is equal m + 1.
Thus condition (I) holds for x. Therefore condition (II) cannot be true by the definition
of Nm(T0), and so there exist a T0-compatible (i,m+2)-good run V (x) of the game H(A)
and n(x) ≥ max{i,m+ 1} such that

x ∈ Sm+1
n(x) (V (x)) ∩

(

dm+1
n(x) ⋆ Bn(x)

(

V (x)
)

)

.

Denote Bj(x) = B(x,Rj) for j > n(x) where Rj were fixed in (1.5). Find N(x) > n(x)
such that BN(x)(x) ⊂ Sm+1

n(x) (V (x)) and denote

T (x) =
(

Bi+1(V (x)), . . . , Bn(x)(V (x))
)

∧
(

Bn(x)+1(x), . . . , BN(x)(x)
)

.

Then the sequence T0
∧T (x) is (i,m+ 1)-good. Indeed, the sequence

T0
∧
(

Bi+1(V (x)), . . . , Bn(x)(V (x))
)

is even (i,m+2)-good (as it is an initial segment of Boulder’s moves in the (i,m+2)-good
run V (x)) and the fact that

Sm+1
n(x) (V (x)) ∩

(

dm+1
n(x) ⋆ Bn(x)

(

V (x)
)

)

6= ∅
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allows Boulder to use condition (H2) and play the ball with center x ∈ dm+1
n(x) ⋆ Bn(x)(V (x))

on his (n (x) + 1)st move. Since BN(x)(x) ⊂ Sm+1
n(x) (V (x)), we see that m+1 cannot become

a witness of Sisyfos’ victory in any T0
∧T (x)-compatible run of the game H(A). Therefore

we have
Mm(T0) ∩

(

1
4
⋆ BN(x)(x)

)

⊂ Mm+1(T0
∧T (x)),

and so x ∈ Mm+1(T0
∧T (x)). By Lindelöf’s property, there exists an at most countable set

{xj : j ∈ N} ⊂ Mm(T0) \ (Mm+1(T0) ∪Nm(T0))

such that Mm(T0)\
(

Mm+1(T0)∪Nm(T0)
)

is covered by the system
{

1
4
⋆ BN(xj)(xj) : j ∈ N

}

of open sets and so it is also covered by the countable system {Mm+1(T0
∧T (xj)) : j ∈ N}.

Now, we can define T = {∅} ∪ {T (xj) : j ∈ N}. Then we obviously have

Mm(T0) ⊂ Nm(T0) ∪
⋃

{Mm+1(T0
∧T ) : T ∈ T }.

It remains to show that Nm(T0) is Q-porous. Suppose that x ∈ Nm(T0) and V is a
T0-compatible (i,m+2)-good run of the game H(A) such that x is its outcome and m+1
is a witness of Sisyfos’ victory. By condition (b) (see p. 21), this means that there exist
s ∈ N and sequences (nk)

∞
k=1 of integers from {m + 1,m + 2, . . .}, (qk)

∞
k=1 of real numbers

from (0, 1), and (rk)
∞
k=1 of real numbers from (0,∞) such that

• x ∈ K \
⋃∞

n=m+1 S
m+1
n (V ),

• limk→∞ nk = ∞,

• limk→∞ qk = 1,

• rk ≤ 2−(nk+3)Rnk
, k ∈ N,

• Qs,qk
rk

(

x,K \ Sm+1
nk

(V )
)

, k ∈ N.

We may assume that nk ≥ max{i,m + 2} for every k ∈ N. We know that the center of
Bn+1(V ) lies in dm+2

n ⋆Bn(V ) for every positive n ≥ i by conditions (H1) and (H2). Let us
fix k ∈ N. By condition (R4), we have

Qs,qk
rk

(

x,
(

K \ Sm+1
nk

(V )
)

∩B(x, 2rk)
)

. (1.8)

Since
(

K \ Sm+1
nk

(V )
)

∩ B(x, 2rk) =
(

K \
(

Sm+1
nk

(V ) ∩ B(x, 2rk)
))

∩ B(x, 2rk),

using (1.8) and (R4) again we get

Qs,qk
rk

(

x,K \
(

Sm+1
nk

(V ) ∩ B(x, 2rk)
))

. (1.9)

By condition (II), we have

Nm(T0) ⊂ K \
(

Sm+1
nk

(V ) ∩
(

dm+1
nk

⋆ Bnk
(V )
))

. (1.10)
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Now, let ynk
be the center of Bnk

(V ), ynk+1 be the center of Bnk+1(V ), and let us take
z ∈ B(x, 2rk). Then we have

d(z, ynk
) ≤ d(z, x) + d(x, ynk+1) + d(ynk+1, ynk

) < 2rk +Rnk+1 + dm+2
nk

Rnk

≤ 2−(nk+2)Rnk
+ 2−(nk+2)Rnk

+ dm+2
nk

Rnk
=
(

2−(nk+1) + 1− 2−nk+m+1
)

Rnk

≤
(

1− 2−nk+m
)

Rnk
= dm+1

nk
Rnk

.

Therefore we have B(x, 2rk) ⊂ dm+1
nk

⋆ Bnk
(V ), and so

K \
(

Sm+1
nk

(V ) ∩
(

dm+1
nk

⋆ Bnk
(V )
))

⊂ K \
(

Sm+1
nk

(V ) ∩B(x, 2rk)
)

. (1.11)

Finally, we have Qs,qk
rk

(x,Nm(T0)) by (1.9), (1.10), (1.11), and (R3). Therefore also

Qs(x,Nm(T0))

by (R1) and (M), and we have Q(x,Nm(T0)).

Theorem 1.3.6. Sisyfos (i.e., the second player) has a winning strategy in the game H(A)
if and only if the set A is σ-Q-porous.

Proof. Suppose first that A =
⋃∞

n=1 An such that An is Q-porous for every n ∈ N. We
define a strategy for Sisyfos as follows. For n ∈ N and m ∈ {1, 2, . . . , n}, Sisyfos plays Sm

n

as the union of all open balls B ∈ Mn for which B ⊂ Bn \Am, where Bn is the nth move
of Boulder.

We show that this strategy is winning. Let Boulder and Sisyfos play a run of the game
H(A) such that Sisyfos follows this strategy. Let x be an outcome of this run. If x /∈ A
then Sisyfos satisfies condition (a) (see p. 21) and wins. If x ∈ A then there exists m ∈ N

such that x ∈ Am. Then we have x /∈
⋃∞

n=m Sm
n . Further, since Q(x,Am), there exists

s ∈ N such that Qs(x,Am), and so we know by condition (R1) that there exist sequences
(qk)

∞
k=1 of real numbers from (0, 1) and (rk)

∞
k=1 of real numbers from (0,∞) such that

• limk→∞ qk = 1,

• limk→∞ rk = 0,

• Qs,qk
rk

(x,Am), k ∈ N.

There also exists n0 ≥ m such that

s
2n+6an
Rn+1

≤ inf{qk : k ∈ N} (1.12)

for n ≥ n0 (where the numbers Rn+1 and an were fixed in (1.5)) since the expression on
the right hand side is strictly positive and the expression on the left hand side tends to
zero which follows from (1.7) and the estimate (derived from (1.6))

0 < s
2n+6an
Rn+1

≤ s
8an
Rn+2

. (1.13)
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We may assume that rk ≤ 2−(n0+3)Rn0
for every k ∈ N. Let us choose k ∈ N arbitrarily

and define nk as the greatest integer such that

rk ≤ 2−(nk+3)Rnk
. (1.14)

Obviously, we have nk ≥ n0 and limk→∞ nk = ∞. Since (1.14) does not hold for nk + 1
instead of nk, we get

rk > 2−(nk+4)Rnk+1 ≥ s
4ank

qk
(1.15)

using the estimate (1.12) for n = nk in the second inequality. It follows that qk
2s

>
2ank

rk
> 0.

By condition (R2) applied to w =
2ank

rk
, we have

Q
s,qk−s

4ank
rk

rk (x,B (Am, 2ank
)) . (1.16)

Let us denote q̃k = qk − s
4ank

rk
. Using the first inequality from the estimate (1.15), we get

0 ≤ s
4ank

rk
≤ s

2nk+6ank

Rnk+1

. (1.17)

By (1.7), (1.13), and (1.17), we have

lim
k→∞

s
4ank

rk
= 0

and so

lim
k→∞

q̃k = lim
k→∞

qk − lim
k→∞

s
4ank

rk
= 1.

To verify condition (b), it suffices to show that Qs,q̃k
rk

(

x,K \ Sm
nk

)

, k ∈ N. Fix k ∈ N and
suppose that z ∈ B (x, 2rk) \B(Am, 2ank

). Then

B(z, 2ank
) ⊂ K \ Am (1.18)

by the definition of B(Am, 2ank
). Denote the center of the ball Bnk

played by Boulder by
xnk

. If we use

• Lemma 1.3.4 and the fact that x ∈ Bnk+1 (in the second inequality of (1.19)),

• an immediate consequence of (1.15) saying that ank
≤ rk (in the third inequality of

(1.19)),

• estimate (1.14) (in the fourth inequality of (1.19)),
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then we have for arbitrary y ∈ B (z, 2ank
) the following:

d(y, xnk
) ≤ d(y, z) + d(z, x) + d(x, xnk

) < 2ank
+ 2rk +

(

1− 2−(nk+1)
)

Rnk

≤ 4rk +
(

1− 2−(nk+1)
)

Rnk
≤ 2−(nk+1)Rnk

+
(

1− 2−(nk+1)
)

Rnk
= Rnk

.
(1.19)

This gives us the inclusion
B (z, 2ank

) ⊂ Bnk
. (1.20)

By putting (1.18) and (1.20) together, we get B(z, 2ank
) ⊂ Bnk

\Am. By the definition of
Dnk

, there exists y ∈ Dnk
such that d(z, y) < ank

. Then the ball B(y, ank
), which is in the

systemMnk
and which contains z, is also a subset of Bnk

\Am. By definition of the strategy
for Sisyfos, it follows that z ∈ B(y, ank

) ⊂ Sm
nk
. So we have B(x, 2rk) \B(Am, 2ank

) ⊂ Sm
nk

and thus
B(x, 2rk) \ S

m
nk

⊂ B(Am, 2ank
). (1.21)

By (1.16), (1.21), and (R3), we get Qs,q̃k
rk

(x,B(x, 2rk)\S
m
nk
). By (R4), this gives Qs,q̃k

rk
(x,K \

Sm
nk
) as we wanted.
Now, let us assume that Sisyfos has a winning strategy σ in the game H(A) and that

he follows this strategy in every run of the game H(A). We have A = M0(∅) and, by
Lemma 1.3.5, it follows

A = M0(∅) ⊂ N0(∅) ∪
⋃

{M1(T1) : T1 ∈ T } , (1.22)

where N0(∅) is Q-porous and T is an at most countable collection of (0, 1)-good sequences
of open balls. Now, for every T1 ∈ T we have

M1(T1) ⊂ N1(T1) ∪
⋃

{M2(T1
∧T2) : T2 ∈ T (T1)} , (1.23)

where N1(T1) is Q-porous and T (T1) is an at most countable collection of finite sequences
of open balls such that T1

∧T2 is (length(T1), 2)-good for every T2 ∈ T (T1). By iterating
this process, we get a countable system of Q-porous sets

U = {Nk(T1, T2, . . . , Tk) : k ∈ N ∪ {0}, T1 ∈ T , T2 ∈ T (T1), . . . , Tk ∈ T (T1, . . . , Tk−1)}

such that for every k ∈ N ∪ {0} and T1 ∈ T , T2 ∈ T (T1), . . . , Tk ∈ T (T1, T2, . . . , Tk−1),
the sequence T1

∧T2
∧ . . . ∧Tk is (length(T1

∧T2
∧ . . . ∧Tk−1), k)-good. It suffices to show that

A ⊂
⋃

U . Suppose that this is not true and so there exists x ∈ A \
⋃

U . By (1.22),
there exists T1 ∈ T such that x ∈ M1(T1). By (1.23), there exists T2 ∈ T (T1) such that
x ∈ M2(T1

∧T2). In this way, we get that there exists a sequence (Tk)
∞
k=1 where T1 ∈ T and

Tk ∈ T (T1, T2, . . . , Tk−1) for k > 1 such that x ∈ Mk(T1
∧T2

∧ . . . ∧Tk) for every k ∈ N.
We use the sequence (Tk)

∞
k=1 to construct a special run of the game H(A). Set S =

T1
∧T2

∧ . . . The sequence S is either finite or infinite. In the first case there exists k0 ∈
N ∪ {0} such that S = T1

∧T2
∧ . . . ∧Tk0 and Tk = ∅ for every k > k0. Then Boulder plays

balls from S and then he continues by playing open balls centered at x. Sisyfos follows his
winning strategy σ. The outcome of such a run is x. Moreover, since x ∈ Mk0(S), we have
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x ∈ 1
4
⋆Blength(S). It follows that the run is (length(S),m+1)-good for every m ∈ N. If the

sequence S is infinite, then Boulder plays open balls following the sequence S and Sisyfos
follows his winning strategy σ.

In both cases the point x is the outcome of the run and anym ∈ N cannot be a witness of
Sisyfos’ victory since x ∈ Mm(T1

∧T2
∧ . . . ∧Tm) and the run is (length(T1

∧T2
∧ . . . ∧Tm),m+

1)-good for every m ∈ N. This is a contradiction since the strategy σ is winning for
Sisyfos.

Lemma 1.3.7. If the set A is Borel then the game H(A) is Borel.

Proof. Denote by B and G the family of all open balls in K and the family of all open
subsets of K respectively. Denote the tree of all legal positions of the game H(A) by T.
Let [T] denote the set of all infinite branches of T. Then the payoff set P for the game
H(A) is the set of all V ∈ [T] of the form V = (B1, (S

1
1), B2, (S

1
2 , S

2
2), . . .) such that Sisyfos

satisfied neither (a) nor (b) in the run V . Then [T] is a subset of
∏∞

n=1(B × (G)n), which
will be considered as a topological space with the product topology, where each factor is
equipped with the discrete topology as usual.

We define mappings f : [T] → K and hj
n : [T] → G, n ∈ N, j ∈ {1, 2, . . . , n}, by

• {f(V )} =
⋂∞

n=1 Bn(V ), i.e., f(V ) is the outcome of V ,

• hj
n(V ) = Sj

n(V ).

It is easy to check that the mappings f and hj
n are continuous. Next, we define

Wm = {V ∈ [T] : m is a witness of Sisyfos’ victory in the run V }. (1.24)

Then we have

P = f−1(A) \
∞
⋃

m=1

Wm.

The set f−1(A) is a continuous preimage of a Borel set and so it is Borel. To finish the
proof, it remains to show that Wm is a Borel set for every m ∈ N. Fix m ∈ N. After taking
into consideration (R5) and (M), we have V ∈ Wm if and only if

(i) f(V ) ∈ K \
⋃∞

n=m hm
n (V ) and

(ii) there exists s ∈ N such that for every k ∈ N there exist nk ≥ max{m, k}, qk ∈
(1− 1

k
, 1) ∩Q, and rk ∈ (0, 2−(nk+3)Rnk

] ∩Q such that Qs,qk
rk

(

f(V ), K \ hm
nk
(V )
)

.

Further, we have V ∈ [T] satisfies (i) if and only if

V ∈
∞
⋂

n=m

⋃

G is a union
of some balls
from Mn

(

(hm
n )

−1 ({G}) ∩ f−1(K \G)
)

.
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The set Mn is finite, so it is easy to see that the set on the right hand side is closed in [T].
Finally, we have Qs,qk

rk
(f(V ), K \ hm

nk
(V )) if and only if

V ∈
⋃

G is a union
of some balls
from Mnk

(

(

hm
nk

)−1
({G}) ∩ f−1

(

{y ∈ K : Qs,qk
rk

(y,K \G)}
)

)

.

The set {y ∈ K : Qs,qk
rk

(y,K \ G)} is open by (R5). Thus a straightforward verification
gives that Wm is Borel and we are done.

We will need the following result of J. Zapletal. To state it we need another notion of
abstract porosity.

Definition 1.3.8 ([8]). Let X be a Polish space and U be a countable collection of its
Borel subsets. An abstract porosity is a mapping por from the family of all subsets of U to
the family of all Borel subsets of X such that A ⊂ B ⊂ U implies por(A) ⊂ por(B). The
porosity σ-ideal associated with the porosity por is σ-generated by sets por(A) \

⋃

A, as
A runs through all subsets of U .

Theorem 1.3.9. [8, Theorem 4.16] Let X be a Polish space and I be a porosity σ-ideal of
subsets of X and A ⊂ X be analytic. If A /∈ I, then there exists a Borel set B ⊂ A with
B /∈ I.

Lemma 1.3.10. The σ-ideal I of all σ-Q-porous subsets of K forms a porosity σ-ideal.

Proof. Let U be a countable open basis of the space K. We define the mapping por by

por(A) =
{

x ∈ K : Q(x,K \
⋃

A)
}

, A ⊂ U .

Using (R1), (R5), and (M), we get that por(A) is Borel for every A ⊂ U . The monotonicity
of por is obvious. The verification that I is σ-generated by sets of the form por(A) \

⋃

A,
A ⊂ U , is straightforward.

Theorem 1.3.11. Let (K, d) be a nonempty compact metric space, Q ∈ Q(K), and let
A ⊂ K be an analytic set which is not σ-Q-porous. Then there exists a compact set F ⊂ A
which is not σ-Q-porous.

Proof. Using Lemma 1.3.10 and Theorem 1.3.9 we may assume that A is Borel. Sisyfos
does not have a winning strategy in the game H(A) by Theorem 1.3.6. But by Lemma 1.3.7
and Martin Determinacy Theorem ([14]), the game is determined and so Boulder has a
winning strategy µ. We consider µ as a subset of T (cf. [9, 20.A]) and denote by [µ]
the set of all infinite branches of µ. The fact that Sisyfos has only finitely many possible
choices on each of his moves of the game H(A) easily implies that [µ] is compact in the
topology derived from the topological space

∏∞
n=1(B × (G)n). Each run V ∈ [µ] is a run

of the game H(A) won by Boulder. Let f : [T] → K be the mapping from the proof of
Theorem 1.3.7, that is the mapping assigning to V ∈ [T] its outcome. Recall that the
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mapping f is continuous. Define F = f([µ]). Then F is compact and a subset of A by
condition (a) because the strategy µ is winning for Boulder.

It remains to show that F is not σ-Q-porous. Since satisfaction of condition (b) does
not depend on the set which the game is played with, it is obvious that µ is a winning
strategy for Boulder also in the game H(F ). Therefore Sisyfos does not have a winning
strategy in the game H(F ) and using Theorem 1.3.6 again, we get the conclusion.

1.3.3 Applications to concrete porosities.

Using Theorem 1.3.11 we prove inscribing theorems for σ-porosity, σ-strong porosity, σ-
strong right porosity, and σ-1-symmetrical porosity. It will be clear that Theorem 1.3.11
can be applied to many other types of porosity. First of all we recall definitions of the
mentioned porosities.

Let (X, d) be a metric space. Let M ⊂ X, x ∈ X, and R > 0. Then we define

θ(x,R,M) = sup{r > 0: there exists an open ball B(z, r)

such that d(x, z) < R and B(z, r) ∩M = ∅},

p(x,M) = lim sup
R→0+

θ(x,R,M)

R
.

We say that M ⊂ X is

• porous at x ∈ X if p(x,M) > 0,

• strongly porous at x ∈ X if p(x,M) ≥ 1.

Let M ⊂ R, x ∈ R, and R > 0. Then we define

θ+(x,R,M) = sup{r > 0; there exists an open ball B(z, r), z > x,

such that |x− z| < R, and B(z, r) ∩M = ∅},

p+(x,M) = lim sup
R→0+

θ+(x,R,M)

R
,

θs(x,R,M) = sup{r > 0; there exists an open ball B(z, r),

such that |x− z| < R, and (B(z, r) ∪B(2x− z, r)) ∩M = ∅},

ps(x,M) = lim sup
R→0+

θs(x,R,M)

R
.

Let c > 0. We say that M ⊂ X is

• right porous at x ∈ R if p+(x,M) > 0,

• strongly right porous at x ∈ R if p+(x,M) ≥ 1,

• c-symmetrically porous at x ∈ R if ps(x,M) ≥ c.
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Theorem 1.3.12 (cf. [25, Theorem 3.1]). Let (X, d) be a locally compact metric space.
Let A ⊂ X be a non-σ-porous analytic set. Then there exists a non-σ-porous compact set
F ⊂ A.

Proof. First, suppose that the space (X, d) is compact. Let s ∈ N, q ∈ (0, 1), and r > 0.
We define a point-set relation Qs,q

r on X by

Qs,q
r (x,M) ⇔ there exists a ball B(y, r̃) such that x ∈

(

B(y, r) \B(y, 1
2
r)
)

∩ B(y, sr̃
q
)

and B(y, r̃) ∩M = ∅.

We set
Qs =

⋂

q∈(0,1)

⋂

R>0

⋃

0<r<R

Qs,q
r and Q =

⋃

s∈N

Qs.

To show that Q ∈ Q(X), we need to verify that the relations Qs,q
r , s ∈ N, r > 0,

q ∈ (0, 1), satisfy conditions (R1)–(R5). Let us verify only (R2) and (R4), the other
conditions are easy to check.

(R2) Let s ∈ N, r > 0, q ∈ (0, 1), M ⊂ X, x ∈ X, 0 < w < q

2s
, and suppose that

Qs,q
r (x,M). There exists an open ball B(y, r̃) such that

x ∈
(

B(y, r) \B(y, 1
2
r)
)

∩ B(y, sr̃
q
) and B(y, r̃) ∩M = ∅.

So we have
sr̃

q
> d(x, y) >

r

2
(1.25)

and so r̃ − rw > r
(

q

2s
− w

)

> 0. Clearly, B(y, r̃ − rw) ∩ B(M, rw) = ∅ and by (1.25) we
have

s
r̃ − rw

q − 2sw
> s

r̃(1− 2sw
q
)

q − 2sw
=

sr̃

q
> d(x, y).

Thus x ∈ B
(

y, s r̃−rw
q−2sw

)

and we can conclude that Qs,q−2sw
r (x,B(M, rw)).

(R4) Let s ∈ N, r > 0, q ∈ (0, 1), M ⊂ X, and x ∈ X be such that Qs,q
r (x,M∩B(x, 2r)).

Then there exists an open ball B(y, r̃) such that

x ∈
(

B(y, r) \B(y, 1
2
r)
)

∩B(y, sr̃
q
) and B(y, r̃) ∩M ∩ B(x, 2r) = ∅.

First, let us assume that r̃ ≤ r. If z ∈ B(y, r̃) then

d(z, x) ≤ d(z, y) + d(y, x) < r̃ + r ≤ 2r.

So we have B(y, r̃) ⊂ B(x, 2r) and therefore B(y, r̃)∩M = B(y, r̃)∩M ∩B(x, 2r) = ∅. It
follows that Qs,q

r (x,M). Now, let us assume that r̃ > r. Then we have

B(y, r) ∩M = B(y, r) ∩M ∩B(x, 2r) ⊂ B(y, r̃) ∩M ∩B(x, 2r) = ∅

and the open ball B(y, r) witnesses that Qs,q
r (x,M). The opposite implication in (R4) is

obvious.
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It is also straightforward to verify that M ⊂ X is porous at x ∈ X if and only if M
is Q-porous at x. Therefore, A is not σ-Q-porous and by Theorem 1.3.11, there exists a
non-σ-Q-porous (and thus also non-σ-porous) compact set F ⊂ A.

Now, suppose that (X, d) is an arbitrary locally compact metric space. Since A is a non-
σ-porous subset of X, there exists x ∈ X such that A∩B(x, r) is a non-σ-porous subset of
X for every r > 0 by Theorem 1.1.4. Let us take r0 > 0 such that B(x, r0) is compact and
denote A′ = A∩B(x, r0). Since porosity is a local property, every M ⊂ B(x, r0) is σ-porous
in X if and only if M is σ-porous in the compact metric space B(x, r0). Therefore, A′ is
non-σ-porous in B(x, r0). Due to the previous part of the proof, there exists a non-σ-porous
(in B(x, r0) and therefore also in X) compact set F ⊂ A′ ⊂ A.

Theorem 1.3.13. Let (X, d) be a locally compact metric space. Let A ⊂ X be a non-σ-
strongly porous analytic set. Then there exists a non-σ-strongly porous compact set F ⊂ A.

Proof. Similarly as in the previous proof we may assume that X is compact. Let q ∈ (0, 1)
and r > 0. We define a point-set relation Qq

r on X by

Qq
r(x,M) ⇔ there exists a ball B(y, r̃) such that x ∈

(

B(y, r) \B(y, 1
2
r)
)

∩ B(y, r̃
q
)

and B(y, r̃) ∩M = ∅.

We set
Q =

⋂

q∈(0,1)

⋂

R>0

⋃

0<r<R

Qq
r.

One can easily check that Q ∈ Q(X). Then M ⊂ X is σ-strongly porous if and only if A
is σ-Q-porous. Applying Theorem 1.3.11, we get the conclusion.

Theorem 1.3.14. Let A ⊂ R be a non-σ-strongly right porous analytic set. Then there
exists a non-σ-strongly right porous compact set F ⊂ A.

Proof. Without any loss of generality, we may assume that A ⊂ (0, 1). Let q ∈ (0, 1) and
r > 0. We define a point-set relation Qq

r on [0, 1] by

Qq
r(x,M) ⇔ there exist y ∈ R, r̃ > 0 such that y > x, x ∈

(

B(y, r) \B(y, 1
2
r)
)

∩ B(y, r̃
q
)

and B(y, r̃) ∩M = ∅.

We set
Q =

⋂

q∈(0,1)

⋂

R>0

⋃

0<r<R

Qq
r.

One can easily check that Q ∈ Q([0, 1]). Then M ⊂ (0, 1) is σ-strongly right porous if and
only if M is σ-Q-porous. Applying Theorem 1.3.11 we get the conclusion.

Remark 1.3.15. Theorem 1.3.14 has been already used in [11].

Theorem 1.3.16. Let A ⊂ R be a non-σ-1-symmetrically porous analytic set. Then there
exists a non-σ-1-symmetrically porous compact set F ⊂ A.
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Proof. Without any loss of generality, we may assume that A ⊂ (0, 1). Let q ∈ (0, 1) and
r > 0. We define a point-set relation Qq

r on [0, 1] by

Qq
r(x,M) ⇔ there exist y ∈ R, r̃ > 0 such that x ∈

(

B(y, r) \B(y, 1
2
r)
)

∩ B(y, r̃
q
)

and
(

B(y, r̃) ∪ B(2x− y, r̃)
)

∩M = ∅.

We set
Q =

⋂

q∈(0,1)

⋂

R>0

⋃

0<r<R

Qq
r.

We can easily verify that Q ∈ Q([0, 1]) and that M ⊂ (0, 1) is σ-1-symmetrically porous if
and only if M is σ-Q-porous. The rest of the proof follows from Theorem 1.3.11.

Finally, we apply Theorem 1.3.16 to answer a question posed by M. J. Evans and
P. D. Humke in [7]. This is the following question.

Question 1.3.17. Does there exist an Fσ set in [0, 1] which is σ-(1 − ε)-symmetrically
porous for every 0 < ε < 1 but which is not σ-1-symmetrically porous?

We answer this question affirmatively by proving the next theorem.

Theorem 1.3.18. There exists a closed set F ⊂ [0, 1] which is σ-(1 − ε)-symmetrically
porous for every 0 < ε < 1 but which is not σ-1-symmetrically porous.

Proof. There exists a Borel set A ⊂ (0, 1) which is σ-(1−ε)-symmetrically porous for every
0 < ε < 1 but which is not σ-1-symmetrically porous ([6]). By Theorem 1.3.16, there exists
a compact non-σ-1-symmetrically porous set F ⊂ A. Since F is a subset of A, it is still
σ-(1− ε)-symmetrically porous for every 0 < ε < 1.
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2. Unitary representations of finite

abelian groups realizable by an action

This chapter is based on the paper [2]. It contains two sections. The introductory Section
2.1 is more detailed than Section 1 (Introduction) of [2] since it contains more detailed
explanations of some basic facts concerning the relevant notions. Section 2.2 differs from
Section 2 (Proof of the main theorem) of [2] only in the proof of Claim 2.2.2, where we
give a little more detailed explanation of one particular argument.

2.1 Introduction

In this chapter, we investigate the topological space of unitary representations of a finite
abelian group on a given infinite-dimensional separable complex Hilbert space. In this
introductory section, we remind the terminology as well as some well known basic facts
concerning the relevant notions and some results shown in [10]. Throughout this chapter,
whenever we speak about a Hilbert space, we always mean an infinite-dimensional separable
complex Hilbert space.

If H is a Hilbert space, let U(H) denote the unitary group of H consisting of all unitary
operators on H. The strong topology on U(H) is the topology generated by the family of
maps U ∈ U(H) 7→ U(x) ∈ H, x ∈ H, i.e. it is the smallest topology such that all these
maps are continuous. The weak topology on U(H) is generated by the family of maps
U ∈ U(H) 7→ 〈U(x), y〉 ∈ C, x, y ∈ H. In the following lemma, we remind some very well
known basic facts concerning these topologies.

Lemma 2.1.1. Let U(H) be endowed with the strong topology.

(i) The (strong) topology on U(H) coincide with the weak topology.

(ii) The mapping (U, V ) ∈ U(H)2 7→ UV ∈ U(H) is continuous.

(iii) The mapping U ∈ U(H) 7→ U−1 ∈ U(H) is continuous.

(iv) The unitary group U(H) endowed with the strong topology is a Polish group.

Proof. (i) The fact that the weak topology is weaker than the strong topology is clear
by the definitions. To show the opposite, let {Ui : i ∈ I} be a net of unitary operators
converging to some U ∈ U(H) in the weak topology and let x ∈ H. Then we have

||Ui(x)− U(x)||2 = ||Ui(x)||
2 + ||U(x)||2 − 2Re〈Ui(x), U(x)〉

= 2
(

||x||2 − Re〈Ui(x), U(x)〉
)

,

and the expression on the right hand side tends to zero since

lim〈Ui(x), U(x)〉 = 〈U(x), U(x)〉 = ||U(x)||2 = ||x||2.
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This proves that Ui converge to U also in the strong topology and we are done.
(ii) Let {(Ui, Vi) : i ∈ I} be a net of pairs of unitary operators converging to some

(U, V ) ∈ U(H)2 and let x ∈ H. Then we have

||UiVi(x)− UV (x)|| ≤ ||Ui(Vi − V )(x)||+ ||(Ui − U)(V (x))||

≤ ||(Vi − V )(x)||+ ||(Ui − U)(V (x))||,

and the expression on the right hand side tends to zero since limVi(x) = V (x) and
limUi(V (x)) = U(V (x)).

(iii) Let {Ui : i ∈ I} be a net of unitary operators converging to some U ∈ U(H) and
let x ∈ H. Then we have

||U−1
i (x)− U−1(x)|| = ||x− UiU

−1x||,

and the expression on the right hand side tends to zero since

limUi(U
−1(x)) = U(U−1(x)) = x.

(iv) By (ii) and (iii), we already know that U(H) is a topological group. It remains to
show that it is a Polish space. To do this, let D ⊆ H be a countable dense subset of H
which is closed under rational linear combinations. Let U ∈ U(H) and let {Ui : i ∈ I} be
a net of unitary operators such that limUi(d) = U(d) for every d ∈ D. Then for every
x ∈ H and d ∈ D, we have

||Ui(x)− U(x)|| ≤ ||Ui(x)− Ui(d)||+ ||Ui(d)− U(d)||+ ||U(d)− U(x)||

= 2||x− d||+ ||Ui(d)− U(d)||.

For every x ∈ H, we can find d ∈ D arbitrarily close to x, and so it follows from the
previous estimate that limUi(x) = U(x) for every x ∈ H. This shows that the strong
topology on U(H) is generated by the family of maps U ∈ U(H) 7→ U(d) ∈ H, d ∈ D.
Now, it easily follows that the mapping F : U ∈ U(H) 7→ (U(d))d∈D ∈ HD is a topological
embedding of U(H) to the Polish space HD, and it only remains to prove that the range
of F is a Gδ subset of H

D. Let {Bn : n ∈ N} be an open basis of H. Then we have

F (U(H)) = {(y(d))d∈D ∈ HD : (y(d))d∈D can be extended to a linear operator on H

such that it preserves the norm and its range is dense in H}

= {(y(d))d∈D ∈ HD : ∀p, q ∈ Q ∀d1, d2 ∈ D y(pd1 + qd2) = py(d1) + qy(d2),

∀y ∈ D ||y(d)|| = ||d||, ∀n ∈ N ∃d ∈ D y(d) ∈ Bn},

and so F (U(H)) is the intersection of the closed sets

⋂

p,q∈Q
d1,d2∈D

{(y(d))d∈D ∈ HD : y(pd1 + qd2) = py(d1) + qy(d2)}
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and
⋂

d′∈D

{(y(d))d∈D ∈ HD : ||y(d′)|| = ||d′||}

and of the Gδ set
⋂

n∈N

⋃

d′∈D

{(y(d))d∈D ∈ HD : y(d′) ∈ Bn}.

This finishes the proof.

From now on, whenever we talk about the unitary group U(H) of a Hilbert space H,
we consider it as a Polish group, equipped with the strong (equivalently weak) topology.

For a countable group Γ and a Hilbert space H, we denote by Rep(Γ, H) the set of all
group homomorphisms from Γ to the unitary group U(H). Every element of Rep(Γ, H) is
called a unitary representation of Γ on H. We consider the set Rep(Γ, H) as a subspace of
the Polish space U(H)Γ under the identification of π ∈ Rep(Γ, H) with (π(γ))γ∈Γ ∈ U(H)Γ.
If we denote by e the identity element of Γ and by I the identity operator on H, then
Rep(Γ, H) corresponds to the set

{(π(γ))γ∈Γ ∈ U(H)Γ : π(e) = I, ∀γ1, γ2 ∈ Γ π(γ1γ2) = π(γ1)π(γ2)},

which is the intersection of the closed sets

{(π(γ))γ∈Γ ∈ U(H)Γ : π(e) = I}

and
⋂

γ1,γ2∈Γ

{(π(γ))γ∈Γ ∈ U(H)Γ : π(γ1γ2) = π(γ1)π(γ2)}.

It follows that Rep(Γ, H) is closed in U(H)Γ, and so it is a Polish space when equipped
with the induced topology.

A measurable space (X,S) is called a standard Borel space if there is a Polish space Y
such that (X,S) is isomorphic to (Y,B(Y )), the space Y endowed with the σ-algebra B(Y )
of its Borel subsets. If (X,S) is a standard Borel space then we usually call the sets from
S Borel subsets of X. The following known theorem says that there is only one standard
Borel space (up to a Borel isomorphism) of a given cardinality (its proof can be found in
[9, Theorem 15.6]).

Theorem 2.1.2. Let X, Y be standard Borel spaces. Then X, Y are Borel isomorphic if
and only if X and Y have the same cardinality.

A standard probability space is a standard Borel space (X,S) together with a non-
atomic probability measure µ defined on the σ-algebra S. We denote it shortly by (X,µ)
instead of (X,S, µ). It is notable that there exists only one standard probability space
(up to a Borel isomorphism which preserves measure), namely [0, 1] endowed with m, the
restriction of the Lebesgue measure to Borel subsets of [0, 1]. This immediately follows
from the next known theorem (its proof can be found in [9, Theorem 17.41]).
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Theorem 2.1.3. Let X be a standard Borel space and µ be a continuous Borel probability
measure on X. Then there is a Borel isomorphism f : X → [0, 1] such that fµ = m.

If (X,µ) is a standard probability space then a Borel automorphism T : X → X is called
a measure-preserving automorphism of (X,µ) if for every B ∈ S we have µ(T−1(B)) =
µ(B). As usual, we identify two measure-preserving automorphisms T, S of (X,µ) if they
agree almost everywhere, i.e. if

µ({x ∈ X : T (x) 6= S(x)}) = 0.

Under this identification, we denote the set of all measure-preserving automorphisms of
(X,µ) by Aut(X,µ). Every T ∈ Aut(X,µ) can be identified with a unitary operator UT

on the Hilbert space L2(X,µ) defined by

UT (f)(x) = f(T−1(x)), f ∈ L2(X,µ), x ∈ X.

The following lemma is a well known fact but I did not find any complete proof in the
literature.

Lemma 2.1.4. Let (X,µ) be a standard probability space. Then the set

{UT ∈ U(L2(X,µ)) : T ∈ Aut(X,µ)}

is closed in U(L2(X,µ)).

Proof. We will show that U ∈ U(L2(X,µ)) is of the form UT for some T ∈ Aut(X,µ) if
and only if it is a positivity preserving operator fixing 1 (= the constant function on X
whose value is 1), i.e. if we have

U ∈ {V ∈ U(L2(X,µ)) : ∀f ∈ L2(X,µ) (f ≥ 0 ⇒ V (f) ≥ 0), V (1) = 1}.

This is all we need since this set is the intersection of the closed sets

⋂

f∈L2(X,µ)
f≥0

{V ∈ U(L2(X,µ)) : V (f) ≥ 0}

and
{V ∈ U(L2(X,µ)) : V (1) = 1}.

The fact that for every T ∈ Aut(X,µ), the operator UT preserves positivity and fixes 1 is
easy. So let us choose a positivity preserving operator U ∈ U(L2(X,µ)) fixing 1. Let S
denote the σ-algebra of all Borel subsets of X and let A ∈ S. Then we have

〈U(χA), U(χX\A)〉 = 〈χA, χX\A〉 = 0,

0 = U(0) ≤ U(χA) ≤ U(1) = 1
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and
0 = U(0) ≤ U(χX\A) ≤ U(1) = 1.

These facts easily imply that only on a µ-null set, both U(χA) and U(χX\A) can have
nonzero values. But we also have

U(χA) + U(χX\A) = U(1) = 1,

and so U(χA) can be represented by a characteristic function of some B ∈ S (and U(χX\A)
can be represented by the characteristic function of its complement). For every A ∈ S,
choose B(A) ∈ S such that U(χA) can be represented by the characteristic function of
B(A) (so B(A) is uniquely determined up to a µ-null set).

Claim 2.1.5. The mapping A ∈ S 7→ B(A) ∈ S has the following properties:

(i) For every A ∈ S, we have µ(B(A)) = µ(A).

(ii) For every A ∈ S, the sets B(X\A) and X\B(A) differ only by a µ-null set.

(iii) For every sequence {An}n∈N of sets from S, the sets B(
⋃

n∈N

An) and
⋃

n∈N

B(An) differ

only by a µ-null set.

Proof. (i) For every A ∈ S, we have

µ(B(A)) = ||χB(A)||
2 = ||U(χA)||

2 = ||χA||
2 = µ(A).

(ii) Let A ∈ S. The set B(A) was defined such that U(χA) can be represented by
the characteristic function of B(A) and U(χX\A) can be represented by the characteristic
function of X\B(A). So the sets B(X\A) and X\B(A) differ only by a µ-null set.

(iii) Let {An}n∈N be a sequence of sets from S. For n ∈ N, let us define

A′
n = An\

⋃

m<n

Am,

so that the sets A′
n, n ∈ N, are pairwise disjoint. Since disjointness (up to a µ-null set) of

two sets corresponds to the orthogonality of their characteristic functions, the sets B(A′
n),

n ∈ N, are also pairwise disjoint (up to µ-null sets). So we have

χ
B

(

⋃

n∈N

An

) = U

(

χ ⋃

n∈N

An

)

= U

(

χ ⋃

n∈N

A′
n

)

= U

(

∞
∑

n=1

χA′
n

)

=
∞
∑

n=1

U
(

χA′
n

)

=
∞
∑

n=1

χB(A′
n) = χ ⋃

n∈N

B(A′
n),

and so the sets B

(

⋃

n∈N

An

)

and
⋃

n∈N

B (A′
n) differ only by a µ-null set. Further, for every

n ∈ N we have
χB(A′

n) = U
(

χA′
n

)

≤ U (χAn
) = χB(An),
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and so

µ

(

⋃

n∈N

B(A′
n)\

⋃

n∈N

B(An)

)

= 0.

On the other hand, for every m ∈ N we have

χB(Am) = U (χAm
) ≤ U

(

χ ⋃

n∈N

An

)

= χ
B

(

⋃

n∈N

An

),

and so

µ

(

⋃

m∈N

B(Am)\B

(

⋃

n∈N

An

))

= 0.

It follows that
⋃

n∈N

B(An) also differs from the sets B

(

⋃

n∈N

An

)

and
⋃

n∈N

B (A′
n) only by

µ-null sets, as we wanted.

Let us choose f ∈ L2(X,µ) such that f ≥ 0. Since U preserves positivity, it also
preserves real, resp. purely imaginary functions. In particular, U−1(f) is real (since U
maps the imaginary part of U−1(f) to 0). Let us denote by g+, resp. g− the positive, resp.
the negative part of U−1(f). Then g+ and g− are orthogonal to each other, and so the
same holds for U(g+) and U(g−). Since both U(g+) and U(g−) are non-negative, this can
happen only if

µ{x ∈ X : U(g+)(x) 6= 0 and U(g−)(x) 6= 0} = 0.

But we have U(g+)−U(g−) = U(g+−g−) = f ≥ 0, and so U(g−) = 0 µ-almost everywhere.
Then we also have g− = 0 µ-almost everywhere, and so U−1(f) = g+ ≥ 0. This shows that
U−1 is a positivity preserving operator, as well as U .

Now, let B ∈ S. Since U−1 is a positivity preserving operator fixing 1, we know that
U−1(χB) can be represented by a characteristic function of some A(B) ∈ S. Moreover,
the mapping B ∈ S 7→ A(B) ∈ S has analogous properties to those of the mapping
A ∈ S 7→ B(A) ∈ S proved in Claim 2.1.5. For every A ∈ S, we also have

χA = U−1(χB(A)) = χA(B(A)),

and so the sets A and A(B(A)) differ only by a µ-null set. On the other hand, for every
B ∈ S, we have

χB = (U−1)−1(χA(B)) = U(χA(B)) = χB(A(B)),

and so the sets B and B(A(B)) differ only by a µ-null set.
Let us denote byN the σ-ideal of all µ-null subsets ofX. Let us consider the equivalence

relation on S defined such that two sets from S are equivalent if they differ only by a µ-
null set. Let S/N be the quotient set of S induced by this equivalence relation. Let us
define a mapping from S/N to S/N such that for every A ∈ S, the equivalence class
Ã of A is mapped to the equivalence class B̃(A) of B(A). By the Claim 2.1.5 and the
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consequent considerations, we have verified all assumptions of [17, p. 413, Theorem 21]
on the mapping Ã 7→ B̃(A) (i.e., we have verified that this mapping is a σ-isomorphism of
the Boolean σ-algebra S/N onto itself in the terminology of [17], the mapping B̃ 7→ Ã(B)
being its inverse). By this theorem, there exists a Borel isomorphism T of X onto itself
such that the sets B(A) and T (A) differ only by a µ-null set for every A ∈ S (and so T
preserves the measure µ). Now, for every A ∈ S we have

UT (χA)(x) = 1 ⇔ χA(T
−1(x)) = 1 ⇔ T−1(x) ∈ A ⇔ x ∈ T (A),

and so the unitary operators U and UT coincide on the characteristic functions of the sets
from S. It follows that the operators U and UT are the same.

By the previous lemma, we can view Aut(X,µ) as a closed subgroup of the Polish group
U(L2(X,µ)). Then it becomes a Polish group, too.

Let Γ be a group and X be a set. Denote by e the identity element of Γ. Let a be a
mapping from Γ × X to X. Then a is called a (group) action of Γ on X if the following
two conditions hold:

(i) a(gh, x) = a(g, a(h, x)) for every g, h ∈ Γ and x ∈ X,

(ii) a(e, x) = x for every x ∈ X.

If this is the case, we also say that Γ acts on X (by the action a).
An action a of a countable group Γ on a standard probability space (X,µ) is called a

measure preserving action of Γ on (X,µ) if all the maps a(γ, ·) : X → X, γ ∈ Γ, defined by
a(γ, ·) : x 7→ a(γ, x) are in Aut(X,µ). Again, we identify two measure preserving actions
a, b of Γ on (X,µ) if they agree almost everywhere, i.e. if for every γ ∈ Γ we have

µ({x ∈ X : a(γ, x) 6= b(γ, x)}) = 0.

Under this identification, we denote the set of all measure preserving actions of Γ on (X,µ)
by A(Γ, X, µ). Then A(Γ, X, µ) is a closed subset of the Polish space Aut(X,µ)Γ, since it
is the intersection of the closed sets

{(T (γ))γ∈Γ ∈ Aut(X,µ)Γ : T (e) = I}

and
{(T (γ))γ∈Γ ∈ Aut(X,µ)Γ : ∀γ1, γ2 ∈ Γ T (γ1γ2) = T (γ1)T (γ2)}.

So A(Γ, X, µ) equipped with the induced topology is also a Polish space.
If (X,µ) is a standard probability space, we denote by L2

0(X,µ) the orthogonal com-
plement of the constant functions in the Hilbert space L2(X,µ), i.e.

L2
0(X,µ) = {f ∈ L2(X,µ) :

∫

X

fdµ = 0}.
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If a is a measure-preserving action of a countable group Γ on a standard probability
space (X,µ) then the formula

κa
0(γ)(f)(x) = f(a(γ−1, x)), γ ∈ Γ, f ∈ L2

0(X,µ), x ∈ X

defines a unitary representation of Γ on L2
0(X,µ). Indeed, for every γ ∈ Γ, the mapping

a(γ, ·) is in Aut(X,µ) and the unitary operator Ua(γ,·) on L2(X,µ) clearly maps the subspace
L2
0(X,µ) onto itself. It follows that the restriction of Ua(γ,·) on L2

0(X,µ), which is the
mapping f ∈ L2

0(X,µ) 7→ κa
0(γ)(f) ∈ L2

0(X,µ), is a unitary operator on L2
0(X,µ). Finally,

the fact that the mapping γ ∈ Γ 7→ κa
0(γ) ∈ U(L2

0(X,µ)) is a group homomorphism is
obvious. This unitary representation is called Koopman unitary representation κa

0 of Γ on
L2
0(X,µ) associated with the action a.
If Γ is a countable group and H is a Hilbert space then the unitary group U(H) acts

on Rep(Γ, H) by conjugation, which is a mapping from U(H) × Rep(Γ, H) to Rep(Γ, H)
defined by

T · π = TπT−1, T ∈ U(H), π ∈ Rep(Γ, H),

where
TπT−1(γ) = Tπ(γ)T−1, γ ∈ Γ.

Two unitary representations π, ρ of a countable group Γ on Hilbert spaces H, K
respectively are called unitarily equivalent if there exists a unitary operator U from H
onto K such that we have

Uπ(γ) = ρ(γ)U, γ ∈ Γ.

We say that a unitary representation π of a countable group Γ on a Hilbert space H is
realizable by an action if there is a standard probability space (X,µ) and a ∈ A(Γ, X, µ)
such that π is unitarily equivalent to the Koopman representation κa

0 of Γ on L2
0(X,µ)

associated with a.
Some interesting facts concerning the notion of realizability by an action can be found

in [10, Appendix H, (F)]. It is shown there that if Γ is a countable group and H is a Hilbert
space then the set of realizable by an action unitary representations of Γ on H is dense in
Rep(Γ, H) (see [10, Proposition H.14]). It is also stated there (without proof) that this set
is either meager or comeager in Rep(Γ, H) since it is invariant under conjugacy by elements
of the unitary group U(H). Here, we prove this fact.

Lemma 2.1.6. Let H be a Hilbert space and Γ be a countable group. Then the set of
realizable by an action π ∈ Rep(Γ, H) is either meager or comeager in Rep(Γ, H).

Proof. Denote the set of all realizable by an action unitary representations of Γ on H
by A. By Theorem 2.1.3, a representation π ∈ Rep(Γ, H) is in A if and only if there is
a ∈ A(Γ, [0, 1],m) such that π is unitarily equivalent to the Koopman representation κa

0 of
Γ on L2

0([0, 1],m) associated with a. If we fix an arbitrary unitary operator U from H onto
L2
0([0, 1],m), this is equivalent to the proposition

∃a ∈ A(Γ, [0, 1],m) ∃V ∈ U(H) ∀γ ∈ Γ UV π(γ) = κa
0(γ)UV.
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From this, it easily follows that A is an analytic subset of Rep(Γ, H). But every analytic set
has the Baire property (see [9, Corollary 29.14]), and so either A is meager in Rep (Γ, H)
or there is a nonempty open set G ⊆ Rep (Γ, H) such that A ∩ G is comeager in G
(see [9, Proposition 8.26]). There is nothing to prove in the former case, so suppose
the latter. By [10, Proposition H.1], there is π ∈ Rep(Γ, H) such that its conjugacy
class {U · π : U ∈ U(H)} is dense in Rep(Γ, H). Without loss of generality, we may
assume that π ∈ G. Now, whenever G1 is a nonempty open subset of Rep(Γ, H), there
is U ∈ U(H) such that U · π ∈ G1. The set A is comeager in G and the mapping
ρ ∈ Rep(Γ, H) 7→ U ·ρ ∈ Rep(Γ, H) is a self-homeomorphism of Rep(Γ, H) which preserves
realizability by an action, and so A is also comeager in {U · ρ : ρ ∈ G}. So the intersection
{U · ρ : ρ ∈ G} ∩ G1 is a nonempty (it contains U · π) open subset of G1 in which A is
comeager. We have shown that for every nonempty open subset G1 of Rep(Γ, H), there is
a nonempty open subset G2 of G1 such that A is comeager in G2. Let us define

G̃ =
⋃

{G ⊆ Rep(Γ, H) : G is open in Rep(Γ, H) and A is comeager in G}.

Then the complement of G̃ in Rep(Γ, H) is a closed subset of Rep(Γ, H) with empty interior
by the previous considerations, so it is nowhere dense. Further, G̃ \ A is meager (see [9,
Theorem 8.29]). Finally, the complement of A is a subset of (Rep(Γ, H) \ G̃) ∪ (G̃ \ A),
and so it is meager, too.

It is also shown in [10] that if Γ is torsion-free abelian then the set of realizable by an
action π ∈ Rep(Γ, H) is meager in Rep(Γ, H). Here, we consider the following question.

Question 2.1.7. Let Γ be a countable group and H be an infinite-dimensional separable
complex Hilbert space. Is the set of all realizable by an action π ∈ Rep(Γ, H) meager in
Rep(Γ, H)?

This question was posed in [10, Problem H.16] for an infinite group Γ. Here, we show that
if Γ is finite abelian then the answer is negative. This will be done by proving the following
theorem which is the main result of this chapter.

Theorem 2.1.8. Let Γ be a finite abelian group and let H be an infinite dimensional
separable complex Hilbert space. Then the set

{π ∈ Rep(Γ, H) : π is realizable by an action}

is comeager in Rep(Γ, H).

2.2 Proof of the main theorem

In this section, we provide a negative answer to Question 2.1.7 in case of a finite abelian
group Γ by proving Theorem 2.1.8.
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Proof of Theorem 2.1.8. Suppose that Γ has n elements g1, . . . , gn. Let us define

φ : [0, 1) → [0, 1
n
)

by

φ(x) = x−
⌊nx⌋

n

(where ⌊y⌋ denotes the integer part of y). This means that for every x ∈ [0, 1) there is
some j ∈ {1, . . . , n} such that x = j−1

n
+ φ(x).

We define a : Γ× [0, 1) → [0, 1) such that for j, k ∈ {1, . . . , n} and x ∈ [k−1
n
, k
n
) we have

a(gj, x) =
l−1
n

+ φ(x) where l ∈ {1, . . . , n} is such that gl = gkg
−1
j . We verify that a is an

action of Γ on [0, 1). Let x ∈ [0, 1) and j, k, l ∈ {1, . . . , n} be such that x ∈ [k−1
n
, k
n
) and

gl = gkg
−1
j . Let m ∈ {1, . . . , n}. We want to show that a(gm, a(gj, x)) = a(gmgj, x). But

a(gj, x) =
l−1
n

+ φ(x) ∈ [ l−1
n
, l
n
) and so we have a(gm, a(gj, x)) =

p−1
n

+ φ(a(gj, x)) =
p−1
n

+
φ(x) where p ∈ {1, . . . , n} is such that gp = glg

−1
m = gk(gmgj)

−1, and so a(gm, a(gj, x)) =
a(gmgj, x). Finally, if gj is the identity element of Γ then gl = gkg

−1
j holds if and only if

k = l and so easily a(gj, x) = x for every x ∈ [0, 1).
Moreover, the action a preserves the Lebesgue measure of [0, 1) since for every j ∈

{1, . . . , n}, the mapping a(gj, ·) : [0, 1) → [0, 1) acts as a permutation of the intervals
[0, 1

n
), . . . , [n−1

n
, 1). Let κa

0 denote the Koopman representation of Γ on L2
0[0, 1) = {f ∈

L2[0, 1) :
∫ 1

0
f = 0} associated with a. For every character γ from the dual group Γ̂ of Γ,

let us define a subspace Kγ of L2
0[0, 1) by

Kγ = {f ∈ L2
0[0, 1) : ∀g ∈ Γ κa

0(g)(f) = γ(g)f}.

Claim 2.2.1. For every γ ∈ Γ̂, we have dimKγ = ∞.

Proof. Let us choose γ ∈ Γ̂. Define T : L2
0[0,

1
n
) → L2

0[0, 1) by

T (f)(x) = γ(gj)f(φ(x))

where f ∈ L2
0[0,

1
n
), j ∈ {1, . . . , n} and x ∈ [ j−1

n
, j

n
). The definition is correct since for

every f ∈ L2
0[0,

1
n
) and j ∈ {1, . . . , n}, we have

j

n
∫

j−1

n

|T (f)|2 =

1

n
∫

0

|f |2 < ∞

and
j

n
∫

j−1

n

T (f) = γ(gj)

1

n
∫

0

f = 0,
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and so T (f) ∈ L2
0[0, 1). Moreover, T is injective since T (f)|[0, 1

n
) = γ(g1)f for every

f ∈ L2
0[0,

1
n
). The operator T is also obviously linear and so it is enough to show that

T (L2
0[0,

1
n
)) ⊆ Kγ. To do this, let us choose f ∈ L2

0[0,
1
n
), j, k ∈ {1, . . . , n} and x ∈ [k−1

n
, k
n
).

Let l ∈ {1, . . . , n} be such that gl = gkgj = gk(g
−1
j )−1. Then

κa
0(gj)(T (f))(x) = T (f)(a(g−1

j , x)) = T (f)
(

l−1
n

+ φ(x)
)

= γ(gl)f
(

φ
(

l−1
n

+ φ(x)
))

= γ(gl)f (φ(x))

= γ(gk)γ(gj)f (φ(x)) = γ(gj)T (f)(x),

as we wanted.

For every π ∈ Rep(Γ, H) and γ ∈ Γ̂, define (similarly as above) a subspace Hπ
γ of H by

Hπ
γ = {h ∈ H : ∀g ∈ Γ π(g)(h) = γ(g)h}.

Claim 2.2.2. Let π ∈ Rep(Γ, H) be such that for every γ ∈ Γ̂, we have dimHπ
γ = ∞.

Then π is unitarily equivalent to κa
0.

Proof. For every g ∈ Γ, let us denote by o(g) the order of g in Γ. Now, for every j ∈
{1, . . . , n} and r ∈ {1, . . . , o(gj)}, let us define

λj,r = exp
2rπi

o(gj)
.

This means that λj,1, . . . , λj,o(gj) are all o(gj)th roots of unity. It follows that

σ (π(gj)) ⊆ {λj,1, . . . , λj,o(gj)}, j ∈ {1, . . . , n}

since for every j ∈ {1, . . . , n}, we have

λ ∈ σ (π(gj)) ⇒ λo(gj) ∈ σ
(

π(gj)
o(gj)

)

= σ (I) = {1}.

Let j ∈ {1, . . . , n}, r ∈ {1, . . . , o(gj)}. If λj,r is an eigenvalue of π(gj), let Hj
r be its

eigenspace. And if λj,r is not an eigenvalue of π(gj), let H
j
r = {0}. We show by induction

on j that for every j ∈ {1, . . . , n}, we have

H =
⊕

r1∈{1,...,o(g1)}

...
rj∈{1,...,o(gj)}

H1
r1
∩ . . . ∩Hj

rj
,

where the symbol
⊕

refers to the direct sum of pairwise orthogonal subspaces. By the
spectral theorem (see [18, Theorem 12.23]) applied to the unitary operator π(g1), there
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exists a unique resolution E of the identity on the subsets of σ (π(g1)) ⊆ {λ1,1, . . . , λ1,o(g1)}
such that

π(g1) =

∫

σ(π(g1))

λdE(λ) =
∑

λ∈σ(π(g1))

λE({λ}).

By properties of a resolution of the identity, the operators E({λ}) from the previous sum are
orthogonal projections with pairwise orthogonal ranges. It follows that if λ1,r ∈ σ (π(g1))
then the range of E({λ1,r}) is nontrivial and equals H1

r . So we have

H =
⊕

r1∈{1,...,o(g1)}

H1
r1
.

Suppose that for some j ∈ {2, . . . , n}, we already know that

H =
⊕

r1∈{1,...,o(g1)}

...
rj−1∈{1,...,o(gj−1)}

H1
r1
∩ . . . ∩Hj−1

rj−1
.

Let us choose one of the subspaces H1
r1
∩ . . .∩Hj−1

rj−1
from the previous direct sum and pick

one of its elements h and k ∈ {1, . . . , j − 1}. Then we have

π(gk) (π(gj)(h)) = π(gj) (π(gk)(h)) = π(gj) (λk,rkh) = λk,rkπ(gj)(h)

which shows that H1
r1
∩ . . . ∩Hj−1

rj−1
is invariant for the unitary operator π(gj). So we can

apply the spectral theorem to the restriction of π(gj) to H1
r1
∩ . . .∩Hj−1

rj−1
similarly as above

to get

H1
r1
∩ . . . ∩Hj−1

rj−1
=

⊕

rj∈{1,...,o(gj)}

H1
r1
∩ . . . ∩Hj−1

rj−1
∩Hj

rj

which easily finishes the induction step.
Choose a subspace of H of the form H1

r1
∩ . . . ∩ Hn

rn
from the decomposition we have

just proven (for j = n) and suppose that it contains a nonzero vector h. Pick any j, k, l ∈
{1, . . . , n} such that gjgk = gl. Then we have

λl,rlh = π(gl)h = π(gj)π(gk)h = λj,rjλk,rkh

and so λl,rl = λj,rjλk,rk . Also, if gj is the identity element of Γ then o(gj) = 1 and so
λj,rj = 1. These two facts imply that the mapping γ : Γ → C defined by

γ(gj) = λj,rj , j ∈ {1, . . . , n}

is in the dual group Γ̂ of Γ. So we have H1
r1
∩ . . . ∩Hn

rn
⊆ Hπ

γ .
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For every j ∈ {1, . . . , n}, the subspaces Hj
r , r = 1, . . . , o(gj) are pairwise orthogonal to

each other and so it easily follows that the subspaces Hπ
γ , γ ∈ Γ̂, are pairwise orthogonal

to each other, too. So we have

⊕

γ∈Γ̂

Hπ
γ ⊆ H =

⊕

r1∈{1,...,o(g1)}

...
rn∈{1,...,o(gn)}

H1
r1
∩ . . . ∩Hn

rn
⊆
⊕

γ∈Γ̂

Hπ
γ ,

and consequently

H =
⊕

γ∈Γ̂

Hπ
γ .

By repeating the previous considerations for κa
0 and L2

0[0, 1) instead of π and H, we
obtain that

L2
0[0, 1) =

⊕

γ∈Γ̂

Kγ.

Since all the subspaces Hπ
γ of H and Kγ of L2

0[0, 1), γ ∈ Γ̂, are infinite dimensional there

exists a unitary operator from H onto L2
0[0, 1) which maps Hπ

γ onto Kγ for every γ ∈ Γ̂.
Such an operator easily witnesses that π and κa

0 are unitarily equivalent.

Claim 2.2.3. The set A = {π ∈ Rep(Γ, H) : ∀γ ∈ Γ̂ dimHπ
γ = ∞} is dense Gδ in

Rep(Γ, H).

Proof. First, we prove that A is dense. Let us pick an open set U in Rep(Γ, H) of the form

U =
{

π ∈ Rep(Γ, H) : ∀g ∈ Γ ∀j ∈ {1, . . . , p} ‖π(g)(hj)− ρ(g)(hj)‖ < ε
}

where ρ ∈ Rep(Γ, H), p ∈ N, h1, . . . , hp ∈ H and ε > 0. We want to find some π ∈ A ∩ U .
Let us define

H ′ = span
{

ρ(g)(hj) : g ∈ Γ, j ∈ {1, . . . , p}
}

.

Then H ′ is a finite dimensional subspace of H which is invariant for the representation ρ.
Let T be a unitary operator of L2

0[0, 1) onto the orthogonal complement (H ′)⊥ of H ′ in H.
Define π ∈ Rep(Γ, H) such that it coincides with ρ on H ′ and such that the restriction of
π to (H ′)⊥ is defined as the conjugation of κa

0 by the unitary operator T . Then π ∈ U and
dimHπ

γ ≥ dimKγ = ∞ for every γ ∈ Γ.

Next, we prove that A is Gδ. To do this, it is enough to show that for every γ ∈ Γ̂ and
q ∈ N, the set

Uγ
q =

{

π ∈ Rep(Γ, H) : dimHπ
γ ≥ q

}

is open in Rep(Γ, H). So let us fix γ ∈ Γ̂, q ∈ N and π ∈ Uγ
q to show that π is an interior

point of Uγ
q . There exist linearly independent vectors h1, . . . , hq ∈ H such that for every

g ∈ Γ and j ∈ {1, . . . , q}, we have

π(g)(hj) = γ(g)hj.
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Pick η > 0 such that whenever h′
1, . . . , h

′
q ∈ H are such that for every j ∈ {1, . . . , q} we

have ‖h′
j − hj‖ < η, then h′

1, . . . , h
′
q are also linearly independent. Let us define

C = min
{∣

∣γ(g)− γ′(g)
∣

∣ : g ∈ Γ, γ, γ′ ∈ Γ̂, γ(g) 6= γ′(g)
}

,

ε =
Cη

n

and
V =

{

ρ ∈ Rep(Γ, H) : ∀g ∈ Γ ∀j ∈ {1, . . . , q} ‖ρ(g)(hj)− π(g)(hj)‖ < ε
}

.

It is enough to show that V ⊆ Uγ
q . To do this, pick ρ ∈ V . As in the proof of the previous

claim, we have

H =
⊕

γ′∈Γ̂

Hρ
γ′ ,

and so for every j ∈ {1, . . . , q} there is a decomposition

hj =
∑

γ′∈Γ̂

hγ′

j

such that for every γ′ ∈ Γ̂, we have hγ′

j ∈ Hρ
γ′ . It is enough to show that for every

j ∈ {1, . . . , q}, we have ‖hγ
j −hj‖ < η since then the linearly independent vectors hγ

1 , . . . , h
γ
q

witness that ρ ∈ Uγ
q . Let us pick j ∈ {1, . . . , q}. For every k ∈ {0, 1, . . . , n}, let us denote

(Γ̂)k = {γ′ ∈ Γ̂ : ∀l ∈ {1, . . . , k} γ′(gl) = γ(gl)}.

Then we have
∥

∥hj − hγ
j

∥

∥ ≤
n
∑

k=1

∥

∥

∑

γ′∈(Γ̂)k−1

hγ′

j −
∑

γ′∈(Γ̂)k

hγ′

j

∥

∥.

For every k ∈ {1, . . . , n}, we also have

∥

∥

∑

γ′∈(Γ̂)k−1

hγ′

j −
∑

γ′∈(Γ̂)k

hγ′

j

∥

∥

2
=
∥

∥

∑

γ′∈(Γ̂)k−1\(Γ̂)k

hγ′

j

∥

∥

2

=
∑

γ′∈(Γ̂)k−1\(Γ̂)k

∥

∥hγ′

j

∥

∥

2
≤

1

C2

∑

γ′∈(Γ̂)k−1\(Γ̂)k

∣

∣γ′(gk)− γ(gk)
∣

∣

2∥
∥hγ′

j

∥

∥

2

≤
1

C2

∑

γ′∈Γ̂

∣

∣γ′(gk)− γ(gk)
∣

∣

2∥
∥hγ′

j

∥

∥

2
=

1

C2

∥

∥

∑

γ′∈Γ̂

(

γ′(gk)− γ(gk)
)

hγ′

j

∥

∥

2

=
1

C2

∥

∥

∑

γ′∈Γ̂

γ′(gk)h
γ′

j − γ(gk)
∑

γ′∈Γ̂

hγ′

j

∥

∥

2
=

1

C2

∥

∥

∑

γ′∈Γ̂

ρ(gk)(h
γ′

j )− γ(gk)hj

∥

∥

2

=
1

C2

∥

∥ρ(gk)(hj)− π(gk)(hj)
∥

∥

2
<

1

C2
ε2 =

η2

n2
,
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and so
∥

∥hj − hγ
j

∥

∥ <

n
∑

k=1

η

n
= η,

as we wanted.

Finally, by Claim 2.2.2, Claim 2.2.3 and the Baire category theorem, comeager many
unitary representations of Γ on H are unitarily equivalent to κa

0. In particular, they are
realizable by an action and so the proof is finished.
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