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Introduction

This thesis consists of the following four papers:

• Point simpliciality in Choquet theory on nonmetrizable compact spaces, Bull.
Sci. Math. 135 (2011), 312–323.

• Two remarks on remotality, J. Approx. Theory 163 (2011), 307–310.

• (with P. Hájek) Polynomials and identities on real Banach spaces, J. Math.
Anal. Appl. 385 (2012), 1015–1026.

• Coarse and uniform embeddings between Orlicz sequence spaces, submitted.

Each paper constitutes one chapter. Except for the third one, the papers are
presented in their original form. The third paper, as presented here, differs very
slightly from the published version. Let us now briefly introduce the topics treated
in this thesis. Let us mention that all vector spaces considered here are over the
real field.

In Chapter 1 we are concerned with Choquet theory of function spaces. We
study the recent notion of the set of simpliciality, introduced by M. Bačák in
[Bač09]. Suppose that H is a function space on a compact space K. The set of
simpliciality of H is the set of all x ∈ K for which there exists a unique maximal
measure representing x. So we may say that the set of simpliciality of H is the
set of all points of K at which the function space H is “locally simplicial”.

Bačák in [Bač09] studied the set of simpliciality from various points of view.
He was mainly interested in the case when K is metrizable. In that case, the
set of simpliciality has some nice properties. Here we study the properties of the
set of simpliciality for K nonmetrizable. We give examples showing that if K is
nonmetrizable, then the set of simpliciality may behave quite pathologically, so
Bačák’s results are no longer true in this setting.

In Chapter 2 we present some results concerning the notion of remotality.
Let X be a Banach space and E ⊂ X be a bounded set. If x ∈ X, we define
D(x,E) := sup{‖x− z‖ : z ∈ E}. We say that the set E is remotal from a point
x ∈ X if there exists a point e ∈ E such that ‖x− e‖ = D(x,E). In other words,
E contains a farthest point from x. The set E is said to be remotal if it is remotal
from all x ∈ X.

In recent years, remotal sets have received growing attention. Our work is a
reaction to the paper [MaRa10] by Mart́ın and Rao. They studied the following
problem: characterize those Banach spaces in which every closed convex bounded
set is remotal. Clearly in finite-dimensional spaces every closed bounded set is
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INTRODUCTION 7

remotal. Mart́ın and Rao proved that in every infinite-dimensional Banach space
there exists a closed convex bounded set which is not remotal. In connection with
the method of their proof, they asked whether the remotality of co (E) from a
point x ∈ X, where E is a weakly closed and bounded subset of a Banach space
X, implies the remotality of E from x. We answer this question in the negative
by finding a counterexample in c0.

The second purpose of this chapter is to present an alternative proof of the
fact that in every infinite-dimensional Banach space there exists a closed convex
bounded set which is not remotal.

In Chapter 3 we study polynomials on Banach spaces. This is a joint work
with Petr Hájek. We are interested in the relations between polynomials and linear
identities. A classical example of theorems we are dealing with is a result due to
Fréchet, Mazur and Orlicz, stating that if X, Y are Banach spaces, f : X → Y is
a continuous mapping and n ∈ N∪{0}, then f is a polynomial of degree at most
n if and only if

n+1∑
k=0

(−1)n+1−k
(
n+ 1
k

)
f(x+ kh) = 0 for all x, h ∈ X.

Similar identities were treated by other authors in their study of Banach spaces
with polynomial norms. In our work we develop an abstract approach to linear
identities, generalizing and unifying the aforementioned results. We study under
which conditions a linear identity is satisfied only by polynomials, and describe
the space of polynomials satisfying such linear identity. We also present a method
for creating linear identities with prescribed properties based on the Lagrange
interpolation theory.

As mentioned above, this chapter slightly differs from the published paper.
The difference is in Theorems 3.3.8 and 3.4.1, which are slightly more general than
the corresponding theorems in the published paper, and in comments between
Corolary 3.3.5 and Theorem 3.3.7.

Chapter 4 presents some results in the nonlinear geometry of Banach spaces.
These results were obtained during my stay at Université de Franche-Comté in
Besançon, under the direction of Gilles Lancien.

Let (M,dM), (N, dN) be metric spaces and suppose that f : M → N is a map-
ping. Then f is called a coarse embedding if there exist nondecreasing functions
ρ1, ρ2 : [0,∞)→ [0,∞) such that limt→∞ ρ1(t) =∞ and

ρ1(dM(x, y)) ≤ dN(f(x), f(y)) ≤ ρ2(dM(x, y)) for all x, y ∈M.

The mapping f is called a uniform embedding if f is injective and both f and
f−1 : f(M)→M are uniformly continuous.

In the nonlinear geometry of Banach spaces, a considerable interest has been in
the following general questions: when does a Banach space coarsely (uniformly)
embed into another Banach space? Not much is known in general, but there
are some results for special classes of Banach spaces. Due to the work of many
mathematicians, the coarse and uniform embeddability between `p-spaces is now
completely characterized. Our aim is to generalize this classification to a wider
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class of Banach spaces, namely to Orlicz sequence spaces. We give an almost
complete classification of the coarse and uniform embeddability between these
spaces. We show that the embeddability between two Orlicz sequence spaces is
in most cases determined only by the values of their upper Matuszewska-Orlicz
indices. On the other hand, we present examples showing that in some cases the
embeddability is not determined by the values of the upper Matuszewska-Orlicz
indices.



Chapter 1

Point simpliciality in Choquet
theory on nonmetrizable compact
spaces

1.1 Introduction

For notation and terminology we refer the reader to the next section. Let H be a
function space on a compact space K. This paper is concerned with those proba-
bility measures µ on K for which there exists a unique maximal (with respect to
the Choquet ordering �) measure ν such that µ � ν. A characterization of such
measures was given by J. Köhn in [Köh70, Proposition 1] in the convex case, i.e.
in the context of compact convex subsets of locally convex spaces, and extended
to the general case of function spaces by M. Bačák in [Bač09, Theorem 5.1] (his
proof is done only for metrizable compact spaces, but works with no change also
without the assumption of metrizability). Let us present it here:

Theorem 1.1.1 (Köhn, Bačák). Let H be a function space on a compact space K
and let µ ∈M1(K). Then the following statements are equivalent:

(i) There exists a unique maximal measure ν ∈M1(K) such that µ � ν.

(ii) For every f, g ∈ Kc(H) we have µ((f + g)∗) = µ(f ∗) + µ(g∗).

(iii) For every maximal ν ∈ M1(K), µ � ν, and every f ∈ Kc(H), we have
ν(f) = µ(f ∗).

We denote by M1
PS(H) the set of all measures from M1(K) which satisfy

some of the equivalent conditions of Theorem 1.1.1. If we take the Dirac measure
εx for x ∈ K and apply Theorem 1.1.1, we get a characterization of those points
x ∈ K for which there exists a unique maximal measure representing x (in the
convex case, this result, with some other equivalent conditions, was proved also
by S. Simons in [Sim70, Theorem 37]). In [Bač09], the set of all these points of
K is called the set of simpliciality of H and denoted by SimH(K). It turned out
that if the space K is metrizable, the set SimH(K) is closely related to measures
from M1

PS(H), and has some other nice properties. More precisely, we have the
following (for proofs, see [Bač09, Theorems 4.5, 5.1 and 5.6]):

9
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Theorem 1.1.2 (Bačák). Let H be a function space on a metrizable compact
space K.

(a) The set SimH(K) is Borel (in fact, a Gδ set).

(b) Let µ ∈M1(K). Then µ ∈M1
PS(H) if and only if µ(SimH(K)) = 1.

(c) The set SimH(K) is H-extremal.

The purpose of this paper is to study the validity of the statements of Theo-
rem 1.1.2 without the assumption of metrizability. We will show that without this
assumption, the statement (a) is false, and the statements (b) and (c) are false,
even if the set SimH(K) is Borel. The counterexamples in the general context of
function spaces are presented in Section 1.4. In Section 1.5, we will show that the
counterexamples may be constructed even in the convex case. Of course, it would
be sufficient to present the examples only in the convex case, but we have decided
to include the constructions also in the general context of function spaces, since
these are much simpler and may be of some interest in themselves.

We will also show something more. Suppose that µ ∈ M1
PS(H). We know

from Theorem 1.1.2(b), that this is equivalent to the fact that µ is carried by
SimH(K) if K is metrizable. If K is nonmetrizable, then, by a simple applica-
tion of Theorem 1.1.1, we have at least that the atomic part of µ is carried by
some (countable and therefore Borel) subset of SimH(K). This is similar to the
relation between maximal measures and the Choquet boundary ChH(K) (if K
is metrizable, then maximal probability measures are precisely those measures
from M1(K) which are carried by ChH(K), see [LMNS10, Corollary 3.62], and
in general, the atomic parts of maximal measures are carried by some subset of
ChH(K), see [LMNS10, Proposition 3.66]). Since maximal measures are always
carried by ChH(K) (see [LMNS10, Proposition 3.64]), one may conjecture that
µ is carried by SimH(K). Example 1.4.5 shows that even this statement is false.
We do not know whether such an example may be found in the convex case.

In the construction of the examples we use the idea of the “porcupine” topo-
logy due to E. Bishop and K. de Leeuw, see [BiLe59, p. 327].

1.2 Preliminaries

Let us briefly summarize notation, terminology and basic facts used in this paper.
For details and further information about Choquet theory see [LMNS10] or a
classical book [Phe01]. All topological spaces throughout the paper are supposed
to be Hausdorff. Let K be a compact space. We denote by C(K) the space of all
real continuous functions on K equipped with the supremum norm. The symbol
M+(K) denotes the set of all nonnegative Radon measures (that is nonnegative
regular Borel measures) on K. The symbol M(K) stands for the space of all
signed Radon measures on K, while M1(K) denotes the set of all probability
Radon measures on K. All these sets of measures are equipped with the w∗-
topology.

A linear subspace H of the space C(K) is called a function space if it contains
all constant functions and separates points of K. If X is a compact convex subset
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of some locally convex space, then the space A(X) of all continuous affine func-
tions on X is a function space. If not stated otherwise, on a compact convex set
X we will always consider the function space A(X). We will refer to this setting
as to the convex case. By a compact convex set we always mean a compact convex
subset of a real locally convex space.

Let H be a function space on K. Let µ ∈ M1(K). We say that x ∈ K is the
resultant of µ (or µ represents x) if f(x) = µ(f) for every f ∈ H; we denote the
resultant of µ (which is unique if it exists) by r(µ). The set of all µ ∈ M1(K)
which represent x ∈ K is denoted by Mx(H). If X is a compact convex set,
then every measure from M1(X) has a resultant, see [LMNS10, Theorem 2.29].
If µ, ν ∈M+(K) and µ(f) = ν(f) for every f ∈ H, we write µ ∼ ν.

If f is a bounded function on K, its upper envelope f ∗ is defined by f ∗ :=
inf{h ∈ H : h ≥ f}. If f is a bounded Borel function on K, then it is said to be
H-convex if f(x) ≤ µ(f) for all x ∈ K and µ ∈Mx(H). The set of all continuous
H-convex functions on K is denoted by Kc(H). The Choquet ordering onM+(K)
is defined as follows: if µ, ν ∈M+(K), then µ � ν provided µ(f) ≤ ν(f) for every
f ∈ Kc(H). Clearly if µ � ν for µ, ν ∈ M+(K), then µ ∼ ν. Measures which are
maximal in the Choquet ordering are called maximal measures. For every measure
µ ∈ M1(K) there exists a maximal measure ν ∈ M1(K) such that µ � ν, see
[LMNS10, Theorem 3.65]. In particular, for every x ∈ K there exists a maximal
measure µ ∈M1(K) representing x.

The Choquet boundary of H (denoted by ChH(K)) is the set of all x ∈ K
which have only one representing measure — Dirac measure concentrated at x,
which we denote by εx. The set ChH(K) is a Gδ set if K is metrizable, and may
be non-Borel in general. If K is metrizable, then µ ∈ M+(K) is maximal if and
only if it is carried by ChH(K) (we say that µ is carried by a set A ⊂ K if A is
Borel and µ(K \A) = 0). A simple observation is that if a measure µ ∈M+(K),
where K is an arbitrary compact space, is carried by some subset of ChH(K),
then it is maximal, see [LMNS10, Corollary 3.60]. A point x ∈ K is said to be
H-exposed, if there exists f ∈ H such that f(x) = 0 and f > 0 on K \ {x}. An
important fact is that H-exposed points of K belong to ChH(K), see [LMNS10,
Proposition 3.7]. If X is a compact convex set, then ChA(X)(X) equals the set of
extreme points of X, denoted by ext(X).

As we have said in the Introduction, the set of simpliciality of H, denoted by
SimH(K), is defined as the set of all x ∈ K for which there exists a unique maximal
measure representing x. If X is a compact convex set, we write simply Sim(X)
instead of SimA(X)(X). Of course, we have ChH(K) ⊂ SimH(K). Hence SimH(K)
is nonempty if K 6= ∅, since ChH(K) is (see [LMNS10, Proposition 3.15]). We
denote by M1

PS(H) the set of all µ ∈ M1(K) for which there exists a unique
maximal measure ν ∈M1(K) such that µ � ν (in [Bač09], the setM1

PS(H) was
denoted simply by PS). Clearly, every maximal measure fromM1(K) belongs to
M1

PS(H).
A Borel subset B of K is called H-extremal if for every x ∈ B and every

µ ∈Mx(H) we have µ(B) = 1. If X is a compact convex set, then A(X)-extremal
sets are called measure extremal. Further, a subset F of a compact convex set X
is called extremal, if for every x, y ∈ X and λ ∈ (0, 1) such that λx+(1−λ)y ∈ F ,
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we have x, y ∈ F . Clearly, every measure extremal subset of X is extremal, but
extremal subsets of X need not be measure extremal, even if they are Borel. See
[DLS06] for a thorough discussion of the relation between extremal and measure
extremal sets. The set Sim(X) is always extremal, see [Bač09, Theorem 4.1], and
measure extremal if X is metrizable, as mentioned in Theorem 1.1.2(c), above. In
Example 1.5.7 we will show that in general Sim(X) need not be measure extremal,
even if it is Borel.

If X is a locally convex space, the topological dual of X is denoted by X∗.
If X, Y are measurable spaces, ϕ : X → Y is a measurable mapping and µ is
a measure on X, then we denote by ϕ]µ the image of the measure µ under the
mapping ϕ.

Let us recall the notion of the state space, which will be the main tool to
construct compact convex sets with desired properties. The state space S(H) of
the function space H is the set {ϕ ∈ H∗ : ϕ ≥ 0, ϕ(1) = 1}. The set S(H) is a
compact convex subset of the space H∗ endowed with the w∗-topology. On S(H)
we will always consider the w∗-topology.

Define a mapping φ : K → S(H) by φ : x 7→ φx, x ∈ K, where φx : f 7→
f(x), f ∈ H. Then φ is a homeomorphism of K into S(H) and carries ChH(K)
onto ext(S(H)). Let π be the quotient mapping fromM(K) toH∗, that is π(µ) :=
µ|H, µ ∈ M(K). Then S(H) = π(M1(K)). If ϕ ∈ S(H) and µ ∈ M1(K) such
that π(µ) = ϕ, we write µ ∼ ϕ.

We will use the following properties of state spaces, for proofs see [LMNS10,
Section 4.3].

Proposition 1.2.1. Let H be a function space on a compact space K, and let
X := S(H) be its state space. Then we have the following.

(a) If µ ∈M1(K), then r(φ]µ) = π(µ).

(b) A measure λ ∈ M+(X) is maximal if and only if λ = φ]µ for some µ ∈
M+(K) maximal.

Let µ ∈ M+(K). Then µ is said to be continuous if µ({x}) = 0 for each
x ∈ K. A point x ∈ K is said to be an atom of µ if µ({x}) > 0. The measure µ is
said to be atomic (or discrete) if there exists a set M ⊂ K such that µ(K\M) = 0
and M consists of atoms of µ. A well known fact says that every µ ∈ M+(K)
can be uniquely decomposed as µ = µa + µc, where µa is atomic (the so-called
atomic part of µ) and µc is continuous (the continuous part of µ). If M is a Borel
subset of K, we denote by µM the measure defined by µM(A) := µ(A ∩M) for
A ⊂ K Borel.

A characteristic function of a subset M of some set is denoted by χM , and for
a characteristic function of a singleton {x} we use an abbreviation χx.

1.3 Basic construction

First, we will construct a basic function space, which will be used later to con-
struct the examples. It is a special case of the construction from [BiLe59, p. 327].
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Definition 1.3.1. Let M ⊂ [0, 1] be arbitrary. We define sets Lx ⊂ R3, x ∈ [0, 1],
by Lx := {(x, 0, 0)} for x ∈ [0, 1] \M , and

Lx := {(x, 0, 0), (x, 1, 1), (x,−1, 1), (x,−1,−1), (x, 1,−1)}

for x ∈M . Define
L :=

⋃
x∈[0,1]

Lx.

Topologize L as follows: every point of L \
(
[0, 1]× {(0, 0)}

)
is an open set, and

every point (x, 0, 0), x ∈ [0, 1], has a base of neighbourhoods consisting of the sets

{(x, 0, 0)} ∪
⋃

y∈U\{x}

Ly,

where U runs through all neighbourhoods of x in [0, 1]. Then L is easily seen to
be a compact space. Note that the relative topology on [0, 1]× {(0, 0)} inherited
from L coincides with the Euclidean topology. For simplicity, we will write [0, 1]
instead of [0, 1] × {(0, 0)}, M instead of M × {(0, 0)} and x instead of (x, 0, 0),
where no confusion is likely. Further, for x ∈ M , denote ax := (x, 1, 1), bx :=
(x,−1, 1), cx := (x,−1,−1) and dx := (x, 1,−1).

Define a function space F on L to be the set of all f ∈ C(L) which satisfy

f(x) =
1

2
f(ax) +

1

2
f(cx) =

1

2
f(bx) +

1

2
f(dx)

for every x ∈M .
Further, define a mapping γ : L→ [0, 1] by γ(y) := x if y ∈ Lx.

Let us now present some properties of the function space F .

Claim 1.3.2. We have SimF(L) = ChF(L) = L \M .

Proof. If x ∈ M , the functions χax − χcx and χbx − χdx show that the points
ax, bx, cx, dx are H-exposed points of L, and therefore belong to ChF(L). If x ∈
[0, 1] \M , define a function f ∈ F by f(y) := |γ(y) − x|, y ∈ L. This function
shows that every x ∈ [0, 1]\M is H-exposed, hence belongs to ChF(L). If x ∈M ,
the point x does not belong to SimF(L), since it has two maximal representing
measures, 1

2
εax + 1

2
εcx and 1

2
εbx + 1

2
εdx . These measures are maximal since they

are carried by a subset of ChF(L). ut

Claim 1.3.3. Let M = [0, 1] and let µ ∈ M+(L) be continuous and carried by
[0, 1] (note that such a nontrivial measure clearly exists). If ν ∈ M+(L) is such
that ν ∼ µ, then ν = µ. In particular, µ is maximal.

Proof. First we will show that ν is carried by [0, 1]. Assume for the contradiction
that this is not the case. Then ν has an atom, since L\ [0, 1] is discrete. Hence the
measure γ]ν, which is carried by [0, 1], also has an atom. Further, if f ∈ C([0, 1]),
then f ◦ γ ∈ F , and consequently µ(f) = µ(f ◦ γ) = ν(f ◦ γ) = γ]ν(f). Therefore
µ = γ]ν, a contradiction with the continuity of µ. Hence ν is carried by [0, 1]. But
this means that ν = γ]ν and therefore µ = ν. ut
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Claim 1.3.4. Let M = [0, 1]. A measure µ ∈ M1(L) is maximal if and only if
µ[0,1] is continuous.

Proof. Since [0, 1] = L\ChF(L) by Claim 1.3.2, it follows that µ[0,1] is continuous
for µ maximal (see [LMNS10, Proposition 3.66]).

Let µ[0,1] be continuous. Then µ[0,1] is maximal by Claim 1.3.3. Further, µL\[0,1]
is maximal, since it is carried by ChF(L). Hence µ = µ[0,1] + µL\[0,1] is maximal
(since the sum of two maximal measures is again maximal, see [LMNS10, Theo-
rem 3.70]). ut

1.4 Function spaces

In this section, we present the promised counterexamples in the general context of
function spaces. First, let us show that if we drop the assumption of metrizability,
the set of simpliciality need not be Borel.

Example 1.4.1. There exist a function space H on a compact space K such that
SimH(K) is not Borel.

Proof. Let K := L and H := F , where L and F are as in Definition 1.3.1, with
M non-Borel in [0, 1]. We know from Claim 1.3.2 that SimH(K) = K \M . Since
M is not Borel in [0, 1], we get that SimH(K) ∩ [0, 1] is not Borel in [0, 1], and
therefore SimH(K) is not Borel in K. ut

Remark 1.4.2. (a) We may, of course, take M in the construction of Exam-
ple 1.4.1 much more bad than non-Borel. For example, if we take M which
is not universally measurable in [0, 1] (a subset of some compact topological
space is universally measurable if it is measurable with respect to the com-
pletion of any nonnegative Radon measure), for example M not Lebesgue
measurable, then SimH(K) is not universally measurable in K, as is easily
seen.

(b) By a suitable modification of the construction in Definition 1.3.1 we may
show that there is no connection between the complexity of the Choquet
boundary and the set of simpliciality. Let N ⊂ [0, 1] \M . Define Lx, x ∈
[0, 1], as in Definition 1.3.1, with the exception that for x ∈ N put Lx :=
{(x, 0, 0), (x, 1, 0), (x,−1, 0)}, and topologize L similarly as before. The func-
tion space F will be defined as before, with the additional requirement that
for every f ∈ F and x ∈ N we have f(x) = 1

2
f((x, 1, 0)) + 1

2
f((x,−1, 0)).

Then we may show, similarly as in the proof of Claim 1.3.2, that

ChF(L) = L \ (M ∪N) and SimF(L) = L \M.

The next example shows that even if the set SimH(K) is Borel and µ ∈
M1

PS(H), we cannot guarantee that µ is carried by SimH(K).

Example 1.4.3. There exist a function space H on a compact space K and a
measure µ ∈ M1

PS(H) (actually, µ is maximal), such that SimH(K) is Borel
(actually, open), and µ is carried by a compact set disjoint from SimH(K).
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Proof. Let K := L and H := F , where L and F are as in Definition 1.3.1, with
M = [0, 1]. Then, by Claim 1.3.2, we have SimH(K) = K \ [0, 1], which is an open
set in K. Let µ ∈ M1(K) be continuous and carried by [0, 1]. By Claim 1.3.3, µ
is maximal, but µ is carried by the set [0, 1], which is compact and disjoint from
SimH(K). ut

The following example shows that even if the set SimH(K) is Borel, it need
not be H-extremal.

Example 1.4.4. There exist a function space H on a compact space K such that
SimH(K) is Borel (actually, open), but not H-extremal.

Proof. Let L, F be as in Definition 1.3.1, with M = [0, 1]. Define K := L ∪ {a},
where a /∈ L, and topologize K so that a is an isolated point of K and the
topology on L remains the same. Let µ ∈ M1(K) be continuous and carried by
[0, 1], and let

H := {f ∈ C(K) : f |L ∈ F , f(a) = µ(f)} .

Clearly, H is a function space.
Now, a /∈ ChH(K), since µ represents a. If x ∈ [0, 1], the functions χax − χcx

and χbx − χdx show that the points ax, bx, cx, dx are H-exposed, hence belong to
ChH(K). Further, each x ∈ [0, 1] does not belong to SimH(K), since it has two
maximal representing measures, 1

2
εax + 1

2
εcx and 1

2
εbx + 1

2
εdx (which are maximal

since they are carried by a subset of ChH(K)).
Let us show that a ∈ SimH(K). Let ν ∈Ma(H) be maximal. Since ChH(K) ⊂

L and L is a closed subset of K, the measure ν is carried by L. Since ν(f) = µ(f)
for every f ∈ H, and both ν and µ are carried by L, we have ν(f) = µ(f) for
every f ∈ F . By Claim 1.3.3, this entails ν = µ.

So we have K \ SimH(K) = [0, 1] and therefore SimH(K) is an open set.
But µ ∈ Ma(H), a ∈ SimH(K), and µ(SimH(K)) = 0. Hence SimH(K) is not
H-extremal. ut

Finally, let us show that measures from M1
PS(H) may even be carried by a

compact set disjoint from the closure of the set of simpliciality. This of course
makes Example 1.4.3 quite redundant, but the construction of Example 1.4.3 is
easier than the construction of Example 1.4.5, and Example 1.4.3 may be of some
interest in itself.

Example 1.4.5. There exist a function space H on a compact space K and a
measure µ ∈ M1

PS(H), such that SimH(K) is Borel (actually, open), and µ is
carried by a compact set disjoint from SimH(K).

Proof. Let L,F be as in Definition 1.3.1, with M = [0, 1]. Let

K := L ∪ ([0, 1]× {(1, 0)}) ∪ ([0, 1]× {(2, 0)}) ⊂ R3,

topologized so that the sets L and K \ L are open, the topology on L remains
the same as in Definition 1.3.1, and on K \ L we have the Euclidean topology
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inherited from R3. The space K is clearly compact. Denote by H the function
space{
f ∈ C(K) : f |L ∈ F and f((x, 1, 0)) =

1

2
f((x, 0, 0)) +

1

2
f((x, 2, 0)), x ∈ [0, 1]

}
.

Then SimH(K) = ChH(K) = K\
(
[0, 1]×{(0, 0), (1, 0)}

)
. Indeed, the functions

χax − χcx and χbx − χdx show that the points ax, bx, cx, dx are H-exposed and
therefore belong to ChH(K). If x ∈ [0, 1], take a function f ∈ H such that
f((y, 2, 0)) = |y − x| for y ∈ [0, 1], and f = 1 on L. This function shows that
(x, 2, 0) is H-exposed, hence (x, 2, 0) ∈ ChH(K). If x ∈ [0, 1], then (x, 0, 0) does
not belong to SimH(K), since it has two maximal representing measures, 1

2
εax +

1
2
εcx and 1

2
εbx + 1

2
εdx . These measures are maximal since they are carried by a

subset of ChH(K). Finally, if x ∈ [0, 1], then the point (x, 1, 0) does not belong
to SimH(K), since it also has two maximal representing measures, 1

4
εax + 1

4
εcx +

1
2
ε(x,2,0) and 1

4
εbx + 1

4
εdx + 1

2
ε(x,2,0). Again, these measures are maximal since they

are carried by a subset of ChH(K).
Let λ ∈ M1([0, 1]) be continuous and let λi, i = 0, 1, 2, be the copy of the

measure λ on the line segment [0, 1] × {(i, 0)} ⊂ K. Let us show that λ1 ∈
M1

PS(H). To this end, we will show that in fact if ν ∈ M1(K) is a maximal
measure such that ν ∼ λ1, then ν = 1

2
λ0 + 1

2
λ2. It is clear that λ1 ∼ 1

2
λ0 + 1

2
λ2.

So, let ν ∈M1(K) be maximal such that ν ∼ λ1. Then ν is carried by ChH(K) =
K \

(
[0, 1]× {(1, 0)}

)
.

Let f ∈ C
(
[0, 1]× {(2, 0)}

)
. Let g ∈ H be such that g = 0 on L and g = f on

[0, 1]× {(2, 0)}. Then

ν[0,1]×{(2,0)}(f) = ν[0,1]×{(2,0)}(g) = ν(g) = λ1(g) =
1

2
λ2(g) =

1

2
λ2(f),

and therefore ν[0,1]×{(2,0)} = 1
2
λ2.

If f ∈ F , let g ∈ H be such that g = f on L and g = 0 on [0, 1] × {(2, 0)}.
Then

νL(f) = νL(g) = ν(g) = λ1(g) =
1

2
λ0(g) =

1

2
λ0(f),

and therefore, by Claim 1.3.3, we have νL = 1
2
λ0.

Hence ν = νL + ν[0,1]×{(2,0)} = 1
2
λ0 + 1

2
λ2. Therefore, if we denote µ := λ1, we

have µ ∈ M1
PS(H), but µ is carried by a compact set [0, 1] × {(1, 0)}, which is

disjoint from the set SimH(K) = K \ ([0, 1]× {(1, 0)}). ut

1.5 The convex case

In this section we will show that the pathologies from Examples 1.4.1, 1.4.3 and
1.4.4 may occur even in the convex case. The method is standard — we will take
the state space of an appropriate function space. However, the constructions are
not as straightforward as the constructions of compact convex sets whose sets of
extreme points have pathological properties. In that case, one may use the fact
that if H is a function space on a compact space K, and X is the state space
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of H, then φ(ChH(K)) = ext(X) (see Preliminaries for explanation), and simply
transfer the properties of ChH(K) to ext(X). This need not hold (and in our
examples it does not) for SimH(K) and Sim(X). However, we have at least the
following simple fact, which will be useful in our constructions.

Proposition 1.5.1. Let H be a function space on a compact space K and let
X := S(H) be its state space. Then φ(SimH(K)) = Sim(X) ∩ φ(K).

Proof. A simple application of Proposition 1.2.1. ut

Example 1.5.2. There exists a compact convex set X such that Sim(X) is not
Borel.

Proof. Let L,F be as in Definition 1.3.1, with M non-Borel in [0, 1]. Let X :=
S(F) be the state space of the function space F . As we have shown in the
construction of Example 1.4.1, the set SimF(L) is not Borel in L. By Propo-
sition 1.5.1, we have φ(SimF(L)) = Sim(X)∩φ(L). Since φ is a homeomorphism,
the set Sim(X) is non-Borel. ut

Before we proceed to the next example, let us prove the following statement.

Proposition 1.5.3. Let L,F be as in Definition 1.3.1, with M = [0, 1], and let
X := S(F) be the state space of the function space F . Then the set Sim(X) is a
Gδ set.

Proof. Let ϕ ∈ X and let µ ∈M1(L) be such that µ ∼ ϕ. Then the measure γ]µ
on [0, 1] (γ was defined in Definition 1.3.1) is uniquely determined by ϕ, as easily
follows from the fact that f ◦ γ ∈ F if f ∈ C([0, 1]). Denote this measure by γ]ϕ.
Further, denote by Nϕ the set of atoms of γ]ϕ. Let x ∈ Nϕ and let µx be the image
of the measure µLx under the mapping ωx : Lx → R2 defined by ωx(x) = (0, 0),
ωx(ax) = (1, 1), ωx(bx) = (−1, 1), ωx(cx) = (−1,−1), ωx(dx) = (1,−1). Denote
by rµx the resultant of the measure µx

γ]ϕ({x})
(which is a probability measure on the

unit square in R2, that is, a square with vertices (1, 1), (−1, 1), (−1,−1), (1,−1)).
If f ∈ (R2)∗, then the function defined by f ◦ωx on Lx and 0 on L\Lx belongs to
F , and an easy computation then shows that rµx does not depend on the choice of
µ ∼ ϕ. Hence we may denote the point rµx by rϕx . Further, denote by C the unit
square in R2 and E the union of its edges. For n ∈ N, let Cn :=

(
1− 1

n

)
C.

Let us now describe members of Sim(X).

Claim 1.5.4. Let ϕ ∈ X. Then ϕ ∈ Sim(X) if and only if rϕx ∈ E for every
x ∈ Nϕ.

Proof of Claim 1.5.4. First, note that Sim(C) = E, which is quite easy to prove.
Let rϕx /∈ E for some x ∈ Nϕ. Since rϕx /∈ Sim(C), there are ν1, ν2 ∈ M1(C),

ν1 6= ν2, which represent rϕx , and are maximal, that is, they are carried by the
set of vertices of C. Let µ ∈ M1(L) be maximal such that µ ∼ ϕ. Then µ1 :=
µ−µLx+γ]ϕ({x})(ω−1x )]ν1 and µ2 := µ−µLx+γ]ϕ({x})(ω−1x )]ν2 are two different
measures such that µ1, µ2 ∼ ϕ, which can be easily proved using the fact that for
f ∈ F the function f ◦ ω−1x is the restriction of a continuous affine function on
C to the vertices of C and to (0, 0). Further, these two measures are maximal by
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Claim 1.3.4, since they are continuous on [0, 1]. Hence, by Proposition 1.2.1, we
have that φ]µ1, φ]µ2 are two different maximal measures representing a point ϕ.

Let rϕx ∈ E for every x ∈ Nϕ. Let λ1, λ2 ∈ M1(X) be maximal measures
representing a point ϕ. By Proposition 1.2.1, we have λ1 = φ]µ1 and λ2 = φ]µ2,
where µ1, µ2 ∈ M1(L) are maximal, and µ1, µ2 ∼ ϕ. Then γ]µ1 = γ]µ2 = γ]ϕ,
and therefore, since µ1, µ2 are continuous on [0, 1] by Claim 1.3.4, and atomic
on L \ [0, 1] by the discreteness of L \ [0, 1], we have that both (µ1)[0,1] and
(µ2)[0,1] are equal to the continuous part of γ]ϕ. Let us show that if x ∈ Nϕ, then

(µ1)Lx = (µ2)Lx . To this end it suffices to show that (µ1)x

γ]ϕ({x})
= (µ2)x

γ]ϕ({x})
. But this is

clear since these two measures are maximal in C (they are carried by vertices of
C) and have the same resultant rϕx ∈ E = Sim(C). Hence µ1 = µ2 and therefore
λ1 = λ2. ut

Hence, by Claim 1.5.4, we have

X \ Sim(X) = {ϕ ∈ X : rϕx /∈ E for some x ∈ Nϕ}

=
⋃
n∈N

{ϕ ∈ X : rϕx ∈ Cn for some x ∈ Nϕ}

=
⋃

n,m∈N

{
ϕ ∈ X : rϕx ∈ Cn and γ]ϕ({x}) ≥ 1

m
for some x ∈ Nϕ

}
.

Denote the sets from the last union depending on n,m ∈ N by Fnm.

Claim 1.5.5. For every n,m ∈ N we have Fnm ⊂ X \ Sim(X).

Proof of Claim 1.5.5. Let n,m ∈ N and let {ϕα} be a net in Fnm such that
ϕα → ϕ ∈ X. We have to show that rϕx /∈ E for some x ∈ Nϕ. First, let xα ∈ Nϕα

be witnesses of the fact that ϕα ∈ Fnm and let µα ∈M1(L) be such that µα ∼ ϕα.
By passing to a subnet if necessary, we may suppose that xα → x ∈ [0, 1] and
µα → µ ∈ M1(L) (since M1(L) is compact). Clearly µ ∼ ϕ. Further, we may
suppose that either xα 6= x for every α or xα = x for every α.

If xα 6= x for every α, then µ({x}) ≥ 1
m

. Indeed, if gk ∈ C([0, 1]) is such that
0 ≤ gk ≤ 1, gk(x) = 1 and gk(y) = 0 for |y−x| ≥ 1

k
, then a function fk on L defined

by fk := gk ◦γ on L\Lx, fk(x) := 1 and fk := 0 on Lx \{x} belongs to C(L), and
clearly lim infα µα(fk) ≥ 1

m
. Hence µ(fk) = limα µα(fk) ≥ 1

m
. Since fk → χ{x}, the

Lebesgue dominated convergence theorem shows that µ({x}) = limk µ(fk) ≥ 1
m

.
Consequently x ∈ Nϕ. To show that rϕx /∈ E it clearly suffices to show that
µx(g)

γ]ϕ({x})
< 1 for every g ∈ (R2)∗ such that g ≤ 1 on C. So take such a g. Define a

function f on L by f := g ◦ ωx on Lx and f := 0 on L \ Lx. Then f ∈ F and we
have

µx(g)

γ]ϕ({x})
=

µ(f)

γ]ϕ({x})
=
µLx\{x}(f)

γ]ϕ({x})
≤ µ(Lx \ {x})

γ]ϕ({x})
=

µ(Lx \ {x})
µ({x}) + µ(Lx \ {x})

< 1

(the last inequality follows from µ({x}) ≥ 1
m
> 0). Hence rϕx /∈ E.

Let xα = x for every α. Since µα → µ and Lx is a compact subset of L, we have
lim supα µα(Lx) ≤ µ(Lx) (see [LMNS10, Theorem A.85(b)]). Hence µ(Lx) ≥ 1

m
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and consequently x ∈ Nϕ. Further, there exists an index α0 such that µα(Lx)
µ(Lx)

<

1 + 1
n

for α � α0. Take again g ∈ (R2)∗ such that g ≤ 1 on C, and define f ∈ F
by f := g ◦ ωx on Lx and f := 0 on L \ Lx. Then we have µα(f)

µα(Lx)
= (µα)x(g)

γ]ϕα({x})
=

g(rϕαx ) ≤ 1 − 1
n
, since rϕαx ∈ Cn (x witnesses the fact that ϕα ∈ Fnm). Then for

α � α0 we have

µα(f)

γ]ϕ({x})
=
µα(f)

µ(Lx)
=
µα(Lx)

µ(Lx)

µα(f)

µα(Lx)
<

(
1 +

1

n

)(
1− 1

n

)
= 1− 1

n2
.

Since
µα(f)

γ]ϕ({x})
→ µ(f)

γ]ϕ({x})
,

we have µx(g)
γ]ϕ({x})

= µ(f)
γ]ϕ({x})

≤ 1− 1
n2 < 1. Hence rϕx /∈ E. ut

Now it is easy to finish the proof of the proposition. By Claim 1.5.5 we have

X \ Sim(X) =
⋃

n,m∈N

Fnm ⊂
⋃

n,m∈N

Fnm ⊂ X \ Sim(X),

and therefore
X \ Sim(X) =

⋃
n,m∈N

Fnm.

Hence the set Sim(X) is a Gδ set. ut

We are now ready to present the remaining examples.

Example 1.5.6. There exist a compact convex set X and λ ∈ M1
PS(A(X))

(actually, λ is maximal), such that Sim(X) is Borel (actually, a Gδ set), and λ
is carried by a compact set disjoint from Sim(X).

Proof. Let L,F be as in Definition 1.3.1, with M = [0, 1], and let µ ∈ M1(L)
be continuous and carried by [0, 1]. Let X := S(F) be the state space of F , and
let λ := φ]µ. The set Sim(X) is a Gδ set by Proposition 1.5.3. By Claim 1.3.3,
the measure µ is maximal, and therefore λ is maximal by Proposition 1.2.1(b).
Since SimF(L) = L \ [0, 1] by Claim 1.3.2, and φ(SimF(L)) = Sim(X) ∩ φ(L)
by Proposition 1.5.1, the measure λ is carried by a compact set disjoint from
Sim(X). ut
Example 1.5.7. There exists a compact convex set X such that Sim(X) is Borel
(actually, a Gδ set), but not measure extremal.

Proof. Let again L,F be as in Definition 1.3.1, with M = [0, 1], and let µ ∈
M1(L) be continuous and carried by [0, 1]. Let X := S(F) be the state space
of F , and λ := φ]µ. By Proposition 1.5.3, the set Sim(X) is a Gδ set. Further,
by the same argument as in the construction of Example 1.5.6, the measure λ is
carried by a compact set disjoint from Sim(X). Let ϕ ∈ X be the resultant of
the measure λ. Then ϕ ∈ Sim(X). Indeed, let Γ ∈M1(X) be a maximal measure
representing ϕ. By Proposition 1.2.1 we have Γ = φ]ν for some ν ∈ M1(L), and
ν ∼ µ. By Claim 1.3.3 we have ν = µ, and therefore Γ = λ. Hence ϕ ∈ Sim(X)
(this follows also from Claim 1.5.4, but this statement is unnecessarily strong for
this purpose), and Sim(X) is not measure extremal. ut
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1.6 Final remarks

Let H be a function space on a compact space K. Denote by M1
QS(H) the set

of all µ ∈ M1(K) for which there exists a unique maximal measure ν such
that µ ∼ ν (in [Bač09], the set M1

QS(H) was denoted by QS). Some charac-
terizations of measures from M1

QS(H) was given in [Bač09, Theorem 5.3]. Since
clearlyM1

QS(H) ⊂M1
PS(H), we have that measures fromM1

QS(H) are carried by
SimH(K) if K is metrizable. However, the measure µ from the construction of Ex-
ample 1.4.3 belongs toM1

QS(H) by Claim 1.3.3, but it is carried by a compact set
disjoint from the (Borel) set of simpliciality. This may happen also in the convex
case. Indeed, the measure λ from the construction of Example 1.5.6 has the same
properties. To see that λ really belongs to M1

QS(A(X)), we may use the simple
fact that if Y is a compact convex set, then ν ∈ M1(Y ) belongs to M1

QS(A(Y ))
if and only if r(ν) ∈ Sim(Y ), cf. [Bač09, Remark 5.4]. That r(λ) ∈ Sim(X) was
shown in the construction of Example 1.5.7.

Since the measure µ from the construction of Example 1.4.5 belongs to the set
M1

QS(H), we see that a measure fromM1
QS(H) may even be carried by a compact

set disjoint from the closure of the set of simpliciality. However, this cannot
happen in the convex case. Indeed, if X is a compact convex set, then the set
Sim(X) is extremal (see [Bač09, Theorem 4.1]). Hence, if r(µ) ∈ Sim(X) for some
measure µ ∈M1(X), then supt(µ) ⊂ Sim(X) (where supt(µ) denotes the support
of µ). To prove this, assume for the contradiction that supt(µ) 6⊂ Sim(X). Then
there exists a compact convex set Y ⊂ X \ Sim(X) such that µ(Y ) > 0. Further,
we have µ(X \ Y ) > 0, since otherwise we would have r(µ) ∈ Y . If we denote

x1 := r
(

µY
µ(Y )

)
and x2 := r

(
µX\Y
µ(X\Y )

)
, then we have r(µ) = µ(Y )x1+(1−µ(Y ))x2,

as is easily checked. But r(µ) 6= x1, since x1 ∈ Y , which is a contradiction with
the extremality of the set Sim(X).
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Chapter 2

Two remarks on remotality

Let X be a Banach space (all spaces throughout the paper are considered to be
real) and E ⊂ X be a bounded set. If x ∈ X, we define D(x,E) := sup{‖x− z‖ :
z ∈ E}. We say that the set E is remotal from a point x ∈ X if there exists a
point e ∈ E such that ‖x− e‖ = D(x,E). The set E is said to be remotal if it is
remotal from all x ∈ X.

Consider the following problem: characterize those Banach spaces in which
every closed convex bounded set is remotal. Clearly in finite-dimensional spaces
every closed bounded set is remotal. M. Sababheh and R. Khalil claimed in
[SaKh08, Theorem A] that among reflexive spaces, those spaces in which every
closed convex bounded set is remotal are precisely the finite-dimensional ones.
However, their proof was not entirely correct. Later, T.S.S.R.K. Rao in [Rao09,
Theorem 2.3] proved the assertion of [SaKh08, Theorem A] by showing that even
in every Banach space which fails the Schur property, there exists a closed convex
bounded set which is not remotal. M. Mart́ın and T.S.S.R.K. Rao in [MaRa10,
Theorem 7] then solved the problem completely by showing that in every infinite-
dimensional Banach space there exists a closed convex bounded set which is not
remotal. Their method was (as well as the method of the previous works [Rao09]
and [SaKh08]), roughly speaking, the following. First, they proved that if E is a
bounded subset of a Banach space, then, under some additional assumptions on
the set E, the remotality of co (E) from a point x ∈ X implies the remotality of
E from x. Then they constructed an appropriate bounded set E (considering sep-
arately the spaces which fail the Schur property, reproving [Rao09, Theorem 2.3],
and the others) which is not remotal from 0, and therefore also co (E) is not
remotal from 0.

In this connection, they asked in [MaRa10, Remark 6] whether the remotality
of co (E) from a point x ∈ X, where E is a weakly closed and bounded subset
of a Banach space X, implies the remotality of E from x. Example 2.0.1 below
answers this question in the negative.

The second purpose of this note is to present an alternative proof of [MaRa10,
Theorem 7]. To prove that in every non-reflexive Banach space there exists a
closed convex bounded set which is not remotal, we use a simple construction
using James’ characterization of reflexivity. The case of reflexive spaces is covered
by [Rao09, Theorem 2.3] or by [MaRa10, Remark 3].
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It should be noted that the statement of [MaRa10, Theorem 7] has also been
proved by L. Veselý in [Ves09, Remark 2.10].

Let us first summarize some notation. Let X be a Banach space. The topolog-
ical dual of X is denoted by X∗. The weak closure of a subset E of X is denoted
by E

w
, and the weak convergence in X is denoted by

w−→. The convex hull and
the closed convex hull of a subset E of X are denoted by co (E) and co (E) re-
spectively. The symbol c0 stands for the space of all real sequences vanishing at
infinity, equipped with the supremum norm. If x ∈ c0, we write xk for the k-th
coordinate of x.

Example 2.0.1. There exists a weakly closed and bounded subset E of c0 which
is not remotal from 0, and such that co (E) is remotal from 0.

Proof. Define vectors xn ∈ c0, n ∈ N, as

xn :=
(
2− 1

n
, (−1)n, (−1)n, . . . , (−1)n, 0, 0, . . .

)
,

where the number of nonzero coordinates of xn is n + 1. Now, define E := {xn :
n ∈ N}. Then E is a weakly closed and bounded subset of c0 which is not remotal
from 0, while co (E) is remotal from 0.

Clearly the set E is bounded and not remotal from 0. Let us show that E is
weakly closed. Assume for the contradiction that there exists x ∈ E

w \ E. Let
k ∈ N, k ≥ 2. We claim that xk ∈ {−1, 1}. It is clear from the definition of the
vectors xn that there exists m ∈ N such that xkn ∈ {−1, 1} for each n > m. And

it is easy to see that x ∈ E \ {x1, . . . , xm}
w

. Then there exists a net {yα} from
E \ {x1, . . . , xm} such that yα

w−→ x. Applying a functional ϕ ∈ (c0)
∗ such that

ϕ(z) = zk, z ∈ c0, we see that ykα → xk. Since ykα ∈ {−1, 1} for all α, it follows
that xk ∈ {−1, 1}. But this is a contradiction with the fact that x ∈ c0. Hence E
is weakly closed.

Now, let us verify that co (E) is remotal from 0. Clearly D(0, co (E)) =
D(0, E) = 2 (for the first equality see [SaKh08, Lemma 2.1]). Let us show that
(2, 0, 0, . . . ) ∈ co (E), which clearly implies the remotality of co (E) from 0. To
this end, we will show that if

an :=
n∑
i=1

1

n
xi ∈ co (E),

then an → (2, 0, 0, . . . ).
First, it is easy to see that if tn, t ∈ R and tn → t, then also

n∑
i=1

1

n
ti

n→∞−−−→ t.

Then

a1n =
n∑
i=1

1

n
x1i → 2,

since x1n = 2− 1
n
→ 2.
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Further, let k ∈ N, k ≥ 2. It is clear from the definition of the vectors xn that(
xk1, x

k
2, x

k
3, . . .

)
=
(
0, . . . , 0, (−1)m+1, (−1)m, (−1)m+1, (−1)m, . . .

)
,

where the number l ∈ N∪{0} of zero coordinates of the vector on the right hand
side and the number m ∈ {0, 1} depend on k (the precise values of l and m are
not important for us). Then ∣∣akn∣∣ =

∣∣∣∣∣
n∑
i=1

1

n
xki

∣∣∣∣∣ ≤ 1

n
.

Hence

‖an − (2, 0, 0, . . . )‖ ≤ max

{
2− a1n,

1

n

}
→ 0,

as desired. ut

Let us now present the promised proof of [MaRa10, Theorem 7].

Theorem 2.0.2. Let X be an infinite-dimensional Banach space. Then there
exists a closed convex bounded subset of X which is not remotal.

Proof. If X is in addition reflexive, then it fails the Schur property, and there-
fore we may apply the argument from [MaRa10, Remark 3] or follow [Rao09,
Theorem 2.3].

Suppose that X is not reflexive. By James’ theorem (see [Die75, p. 12]), there
exists ϕ ∈ X∗ such that ‖ϕ‖ = 1 and ϕ is not norm-attaining, i.e. there exists no
x ∈ X such that ‖x‖ ≤ 1 and ϕ(x) = 1. Define

K :=
{
x ∈ X : ‖x‖2 ≤ ϕ(x)

}
.

Then K is a closed convex bounded set which is not remotal from 0.
The set K is closed, because the functions ‖.‖2 and ϕ are continuous. To prove

the convexity of K, let x, y ∈ K and λ ∈ [0, 1]. Then (we use the fact that the
function t 7→ t2, t ∈ R, is convex and non-decreasing on [0,∞))

‖λx+ (1− λ)y‖2 ≤ (λ‖x‖+ (1− λ)‖y‖)2 ≤ λ‖x‖2 + (1− λ)‖y‖2

≤ λϕ(x) + (1− λ)ϕ(y) = ϕ(λx+ (1− λ)y).

Hence K is convex.
Further, supx∈K ‖x‖ = 1. Indeed, if x ∈ K, then ‖x‖2 ≤ ϕ(x) ≤ ‖ϕ‖‖x‖ =

‖x‖, and therefore ‖x‖ ≤ 1. On the other hand, if ε > 0, then, since ‖ϕ‖ = 1, there
exists y ∈ X such that ‖y‖ = 1 and |ϕ(y)| > 1− ε. Let x := ϕ(y)y. Then x ∈ K,
since ‖x‖2 = ‖ϕ(y)y‖2 = ϕ(y)2 = ϕ(ϕ(y)y) = ϕ(x), and ‖x‖ = |ϕ(y)| > 1− ε.

Finally, let us show that there exists no x ∈ K such that ‖x‖ = 1. Assume for
the contradiction that there exists x ∈ K such that ‖x‖ = 1. Then 1 = ‖x‖2 ≤
ϕ(x) ≤ ‖ϕ‖‖x‖ = 1. Hence ϕ(x) = 1, a contradiction with the fact that ϕ is not
norm-attaining. ut
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Chapter 3

Polynomials and identities on
real Banach spaces
(joint work with Petr Hájek)

3.1 Introduction

In our present paper we study linear identities via the duality theory for real
polynomials and functions on Banach spaces, which allows for a unified treat-
ment and generalization of some classical results in the area. The basic idea is to
exploit point evaluations of polynomials, as e.g. in [Rez93]. As a by-product we
also obtain a curious variant of the well-known Hilbert lemma on the represen-
tation of the even powers of the Hilbert norm as sums of powers of functionals
(Corollary 3.3.5). In Theorems 3.3.8, 3.4.1 and 3.4.4 (generalizing [Wil18] and
[Rez78]) we prove that under certain natural assumptions identities derived from
point evaluations can be satisfied only by polynomials. We apply the Lagrange
interpolation theory in order to create a machinery allowing the creation of linear
identities which characterize spaces of polynomials of prescribed degrees (Theo-
rem 3.5.2). We elucidate the special situation when all the evaluation points are
collinear (Corollary 3.4.8 and Theorem 3.5.4). Our work is based on (and gen-
eralizes) the theory of functional equations in the complex plane due to Wilson
[Wil18] and Reznick (in the homogeneous case) [Rez78], [Rez79], and the classi-
cal characterizations of polynomials due to Fréchet [Fré09a], [Fré09b], and Mazur
and W. Orlicz, [MaOr34a], [MaOr34b], which can be summarized in the following
theorem.

Theorem 3.1.1. Let X, Y be real Banach spaces, f : X → Y be continuous,
n ∈ N ∪ {0}. TFAE

(i) f ∈ Pn(X;Y ).

(ii) ∆n+1f(x;h1, . . . , hn+1) = 0 for all x, hi ∈ X.

(iii) f �E is a polynomial of degree at most n for every affine one-dimensional
subspace E of X.

24
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(iv)
n+1∑
k=0

(−1)n+1−k
(
n+ 1
k

)
f(x+ kh) = 0 for all x, h ∈ X.

Here we use the higher order differences defined as follows.

∆kf(x;h1, . . . , hk) =
k∑
j=0

∑
A⊂{1,...,k},|A|=j

(−1)k−jf

(
x+

∑
l∈A

hl

)
.

In particular,

∆kf(x;h, . . . , h) =
k∑
j=0

(−1)k−j
(
k
j

)
f(x+ jh).

The theory of linear identities for Banach space norms was developed by many
authors. Its first and well-known result is a theorem of Jordan and von Neumann.

Theorem 3.1.2 ([JoNe35]). Let (X, ‖ · ‖) be a Banach space such that

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2, x, y ∈ X.

Then X is isometric to a Hilbert space.

Note that a real Banach space X is isometric to a Hilbert space iff ‖.‖2 is
a 2-homogeneous polynomial. Theorem 3.1.2 has been the basis of subsequent
development with the aim of using similar identities in order to characterize the
Hilbert spaces, or the classes of Banach spaces allowing the polynomial norms,
e.g. Carlsson [Car64], Day [Day47], [Day59], Giles [Gil67], G.G. Johnson [Joh73],
Koehler [Koe70], [Koe72], Lorch [Lor48], Reznick [Rez78], [Rez79] and Senechalle
[Sen68]. This theory is closely related to the isometric Banach space theory, see
e.g. Koldobsky and Konig [KoKö01] and references therein. In our paper, we de-
velop an abstract approach to the theory of linear identities, generalizing Wilson’s
and Reznick’s work. The novelty lies in giving a new functional-analytic meaning
to these identities, finding the link to the Lagrange interpolation, and finding a
general method for establishing new identitites with prescribed properties.

3.2 Basic facts and definitions

We begin developing our abstract framework. Let X, Y be real Banach spaces.
We denote by P(dX;Y ) (resp. Pd(X;Y )) the Banach space of continuous d-ho-
mogeneous polynomials from X to Y (resp. continuous polynomials of degree at
most d).

Let n ∈ N, d ∈ N ∪ {0}. We are going to use some notation and results in
[Rez93]. We have a natural identification (Rn)∗ = Rn, using the dot product. For
simplicity of notation, we put Fn,d = P(dRn;R). Denote the set of multi-indices
by

I(n, d) =

{
α : {1, . . . , n} → {0, . . . , d} : |α| =

n∑
i=1

α(i) = d

}
.
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One gets dimFn,d = |I(n, d)| =
(
n+ d− 1
n− 1

)
. Further, we put Πn,d = Pd(Rn;R),

J (n, d) =
⋃d
l=0 I(n, l) is the set of all multi-indices of degree at most d. Clearly,

for every P ∈ Πn,d there exist a uniquely determined representation P (x) =∑
α∈J (n,d) aαx

α, where xα =
∏n

i=1 x
α(i)
i for x = (x1, . . . , xn) ∈ Rn.

Fact 3.2.1.

dim Πn,d =
d∑
l=0

(
n+ l − 1
n− 1

)
=

(
n+ d
n

)
= dim Fn+1,d.

Moreover, there is a natural linear isomorphism i : Fn+1,d → Πn,d, given by
the restriction i(P ) = P �E, where E = {x ∈ Rn+1 : xn+1 = 1} is an affine
hyperplane. In other words, performing i on a d-homogeneous polynomial means
replacing the n+ 1-st coordinate by the constant 1.

Let C(Rn) be the space of all continuous functions on Rn. Point evaluations
at x ∈ Rn belong to the linear dual of C(Rn). Point evaluations separate elements
of C(Rn). For z ∈ Rn we are going to use the notation z = 1z ∈ C(Rn)∗ where
z(f) = f(z), f ∈ C(Rn), and we will call these evaluation functionals nodes. To
simplify the language, we will occasionally identify z ∈ Rn with its corresponding
node z, calling the elements of Rn themselves nodes. We are going to introduce an
abstract formalism suitable for working with nodes and their linear combinations.
Consider the linear space F(Rn) of all formal finite linear combinations of nodes.
It is important to note that a linear multiple ξz of the node z is not the same
element as the node corresponding to the point ξz ∈ Rn. Informally, whenever we
write ξz as an element of F(Rn), it is understood that we are dealing with the
element ξz. In order to distinguish the usual vector summation from the space Rn

from the formal summation of the nodes we will introduce the new summation
symbol �. So for every x ∈ F(Rn) there exist ai ∈ R, xi ∈ Rn so that

x = a1x1 � · · ·� akxk = �−
k∑
i=1

aixi

The previous expression is unique if xi are assumed pairwise distinct and ai 6=
0, i = 1, . . . , k.

The operation � formally acts on x = �−
∑k

i=1 aixi and y = �−
∑l

i=1 biyi
as

x � y =

(
�−

k∑
i=1

aixi

)
�

(
�−

l∑
i=1

biyi

)
.

Similarly, we define the scalar multiplication of ξ ∈ R and x as

ξx = �−
k∑
i=1

(ξai)xi.

With these operations F(Rn) is a linear space. Then 〈C(Rn),F(Rn)〉 form a
dual pair ([FHHMZ11]) with the evaluation

〈f,x〉 =
k∑
i=1

aif(xi).
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Restricting this dual pairing to subspaces Fn,d (resp. Πn,d) of C(Rn) leads to

a dual factorization of the action of � on F(Rn) so that xd = �d −
∑k

i=1 aixi
(resp. xd = �d −

∑k
i=1 aixi) and

xd = �d −
k∑
i=1

aixi = yd = �d −
l∑

i=1

biyi

iff
〈f,xd〉 = 〈f,yd〉 holds for all f ∈ Fn,d

(and the resp. case of Πn,d).
Thus we have a (non-unique) representation of the elements of F ∗n,d (resp.

Π∗n,d) as elements in F(Rn), given by

〈P,x〉 = 〈P,�−
k∑
i=1

aixi〉 =
k∑
i=1

aiP (xi).

P ∈ Fn,d (resp. Πn,d), x = � −
∑k

i=1 aixi. We let Kd ↪→ F(Rn) be the subspace
consisting of all elements for which

〈P,�−
k∑
i=1

aixi〉 = 0 holds for all P ∈ Πn,d.

Then Π∗n,d = F(Rn)/Kd. Suppose A = {y1, . . . , yr} ⊂ Rn. We say that the cor-
responding set of nodes A = {y1, . . . ,yr} is Fn,d-independent if the nodes are
linearly independent as elements of F ∗n,d. For simplicity, if the space Fn,d is un-
derstood, we will often drop the boldface notation and say that A is a set of
nodes, and that A is Fn,d-independent. It is clear from basic linear algebra that
A is Fn,d-independent iff there exist dual elements {h1, . . . , hr} ⊂ Fn,d so that
hj(yk) = δkj , where δ is the Kronecker delta. If {y1, ..., yr} are Fn,d-independent
then r ≤ |I(n, d)|. In case of r = |I(n, d)|, F ∗n,d = span({yk}rk=1) and we call
{yk}rk=1 a basic set of nodes for Fn,d. A classical example of a basic set of nodes
for Fn,d is the set I(n, d) (Biermann, see [Rez93]). The following result is imme-
diate.

Proposition 3.2.2. Let r = |I(n, d)|. If {yk}rk=1 is a basic set of nodes for Fn,d
and {hk}rk=1 ⊂ Fn,d is its dual basis, then for all P ∈ Fn,d

P (x) =
r∑

k=1

P (yk)hk(x), x ∈ Rn.

The following is a general characterization of basic sets of nodes [Lore92],
[Rez93].

Theorem 3.2.3. Let r = |I(n, d)|, I(n, d) = {α1, . . . , αr}. Let {yk}rk=1 ⊂ Rn.
Then {yk}rk=1 is a basic set of nodes for Fn,d iff it holds

det


yα1
1 yα2

1 . . . yαr1
yα1
2 yα2

2 . . . yαr2
. . .

yα1
r y

α2
r . . . yαrr

 6= 0.
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Moreover, if {yk}rk=1 is a basic set of nodes for Fn,d, then every P ∈ Fn,d can be
written uniquely as P (x) =

∑r
k=1 ak〈yk, x〉d.

The same notation and terminology applies to the case of Πn,d spaces. Analo-
gously, for r = |J (n, d)|, we say that {yk}rk=1 ⊂ Rn is a basic set of nodes for Πn,d

if these elements form a linear basis of Π∗n,d. Observe that basic sets of nodes ex-
ist, as the pointwise evaluations form a separating set of functionals for Πn,d. The
following is a general characterization of basic sets of nodes for Πn,d, analogous
to Theorem 3.2.3, [Lore92].

Theorem 3.2.4. Let r = |J (n, d)|, J (n, d) = {α1, . . . , αr}. Let {yk}rk=1 ⊂ Rn.
Then {yk}rk=1 is a basic set of nodes for Πn,d iff it holds

det


yα1
1 yα2

1 . . . yαr1
yα1
2 yα2

2 . . . yαr2
. . .

yα1
r y

α2
r . . . yαrr

 6= 0.

Moreover, if {yk}rk=1 is a basic set of nodes then every node y ∈ Rn ↪→ Π∗n,d
can be written uniquely as a linear combination of the elements in {yk}rk=1. More
precisely, y = �d−

∑r
k=1 akyk iff {ak}rk=1 form a solution of the system of linear

equations
r∑

k=1

aky
α
k = yα, α ∈ J (n, d).

The Generalized Lagrange formula is an expression of linear dependence of
nodes in the dual of Πn,d.

Theorem 3.2.5 (Generalized Lagrange formula). Let r = |J (n, d)|, {yk}rk=1 be
a basic set of nodes for Πn,d. Then for every z ∈ Rn there exists a unique set of
coefficients ak(z) ∈ R such that z = �d−

∑r
k=1 ak(z)yk. The functions z → ak(z)

are polynomials of degree at most d, given by the formula

ak(z) =

det


yα1
1 yα2

1 . . . yαr1
yα1
2 yα2

2 . . . yαr2
. . .

zα1zα2 . . . zαr

. . .
yα1
r y

α2
r . . . yαrr



det


yα1
1 yα2

1 . . . yαr1
yα1
2 yα2

2 . . . yαr2
. . .

yα1
k y

α2
k . . . yαrk
. . .

yα1
r y

α2
r . . . yαrr



.

Then {ak, yk}rk=1 is a biorthogonal system in Πn,d × Π∗n,d and the formula

P (z) =
r∑

k=1

ak(z)P (yk)



CHAPTER 3. POLYNOMIALS AND IDENTITIES 29

is valid for P ∈ Πn,d.

We remark that the problem of characterizing geometrically basic sets of nodes
for Πn,d, when n ≥ 2, is open, and it is important for approximation theory
and its applications in numerical mathematics. We refer to [Lore92], [ChuYa77],
[BoRo90] for more results and references. An interesting special case is due to
Chung and Yao [ChuYa77], for certain implicitly described sets of nodes. Let us
briefly describe this elegant result, although it is not central for our subsequent
work.

Let x1, . . . , xk ∈ Rn, k ≥ n, be such that every affine hyperplane in Rn contains
at most n points of 0, x1, . . . , xk. Then for every I ⊂ {1, . . . , k} such that #I = n
there exists a unique point zI ∈ Rn such that 〈zI , xi〉 = −1 for every i ∈ I and
〈zI , xi〉 6= −1 for every i /∈ I. Indeed, by the hypothesis the points xi, i ∈ I, lie in
an affine hyperplane H not containing 0, and xi /∈ H for every i /∈ I. Define

hI(x) :=
k∏

i=1,i/∈I

1 + 〈x, xi〉
1 + 〈zI , xi〉

for x ∈ Rn.

Then hI is well-defined and hI ∈ Πn,k−n. Further, if J ⊂ {1, . . . , k} is such
that #J = n, then hI(zJ) = δI,J (δ is the Kronecker delta). Hence the set
{xI : I ⊂ {1, . . . , k},#I = n} is a basic set of nodes for Πn,k−n (since the
cardinality of this set is

(
k
n

)
= dim Πn,k−n).

Let L ∈ L(RN ;RM). We let L̃ ∈ L(F(RN);F(RM)) be defined as

L̃

(
�−

k∑
i=1

aixi

)
= �−

k∑
i=1

aiL(xi).

We introduce a partial ordering for elements of
⋃∞
n=1F(Rn) by setting for x =

a1x1 � · · ·� anxn ∈ F(RN) and y = b1y1 � · · ·� bmym ∈ F(RM)

x � y iff L̃x = y for some L ∈ L(RN ;RM).

Definition 3.2.6. We say that a polynomial P ∈ Πn,d is compatible with x ∈
F(Rm) if

〈P ◦ L,x〉 = 〈P, L̃x〉 = 0 for all L ∈ L(Rm;Rn).

Let X, Y be Banach spaces and f : X → Y be a continuous mapping. Then
we say that f is compatible with x ∈ F(Rm), x = �−

∑k
i=1 aixi, if

〈f ◦ L,x〉 =
k∑
i=1

aif(Lxi) = 0 for all L ∈ L(Rm;X).

Remark 3.2.7. Clearly, if X, Y are Banach spaces, then a continuous mapping
f : X → Y is compatible with x = a1x1 � · · · � anxn ∈ F(Rm), where xk =
(x1k, . . . , x

m
k ), iff

n∑
k=1

akf

(
m∑
i=1

xikzi

)
= 0 for every z1, . . . , zm ∈ X. (3.1)
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The expression (3.1) is called a linear identity. In particular, Fréchet theorem
3.1.1 is equivalent to saying that f is a polynomial of degree at most n iff f is
compatible with an element xM,n ∈ F(Rn+2) (resp. xF,n ∈ F(R2)) where

xM,n = �−
n+1∑
j=0

∑
A⊂{1,...,n+1},|A|=j

(−1)n+1−j

(
e0 +

∑
l∈A

el

)
,

xF,n = �−
n+1∑
k=0

(−1)n+1−k
(
n+ 1
k

)
(1, k). (3.2)

Moreover, the linear operator L : Rn+2 → R2 defined by

L(x0, x1, . . . , xn+1) =

(
x0,

n+1∑
i=1

xi

)
satisfies L̃(xM,n) = xF,n, so in particular xM,n � xF,n. It is easy to see that
L : RN → RM leads to a linear mapping L∗ : ΠM,d → ΠN,d defined as L∗(P ) =
P ◦ L. The adjoint linear operator L∗∗ : Π∗N,d → Π∗M,d coincides with L̃ (if the
duals are represented using the canonical evaluations). The following is a simple
consequence of the definitions.

Fact 3.2.8. Let x ∈ F(Rm),y ∈ F(Rn), X, Y be Banach spaces and f : X → Y
be continuous. Suppose that x � y. Then the compatibility of f with x implies the
compatibility of f with y. Consequently, if L̃x = y for some bijection L ∈ L(Rm),
then f is compatible with x iff f is compatible with y.

The implication in Fact 3.2.8 cannot be reversed. For example, let n ∈ N and
let x,y ∈ F(R3) be defined by

x = (−1)n+1(1, 0, 1) �

(
�−

n+1∑
k=1

(−1)n+1−k
(
n+ 1
k

)
(1, k, 0)

)
,

y = �−
n+1∑
k=0

(−1)n+1−k
(
n+ 1
k

)
(1, k, 0)

(x and y differ only in the third coordinate of the first node). Then clearly
x � y. It is also clear that the compatibility of a continuous f : R3 → R with y is
equivalent to the compatibility of f with xF,n from (3.2), and therefore the space
of those continuous f : R3 → R compatible with y is Π3,n. On the other hand, if
P ∈ Π3,1 is defined as P : (x, y, z) 7→ z, then 〈P,x〉 = (−1)n+1 6= 0, and therefore
P is not compatible with x. In fact, it will follow from Theorem 3.4.4 that the
only continuous functions on R3 compatible with x are the constant functions.

3.3 Fundamental properties of compatibility

In this section, we establish basic results concerning compatibility and show that,
under some natural assumptions, polynomials are the only continuous mappings
satisfying linear identities.
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Lemma 3.3.1. Let x ∈ F(Rm). TFAE

(i) For every Banach spaces X, Y every P ∈ P(dX;Y ) is compatible with x.

(ii) Every P ∈ Fm,d is compatible with x.

(iii) 〈P,x〉 = 0 for every P ∈ Fm,d.

Proof. The implications (i)⇒(ii)⇒(iii) are clear.
(iii)⇒(ii): Suppose that (iii) holds, and let P ∈ Fm,d. If L ∈ L(Rm), then

P ◦ L ∈ Fm,d, hence 〈P ◦ L,x〉 = 0, and therefore P is compatible with x.
(ii)⇒(i): Suppose that every P ∈ Fm,d is compatible with x. Let X, Y be Ba-

nach spaces and P ∈ P(dX;Y ). Let L ∈ L(Rm;X) and choose ϕ ∈ Y ∗ arbitrary.
Then ϕ ◦ P ◦ L ∈ Fm,d, and therefore 0 = 〈ϕ ◦ P ◦ L,x〉 = ϕ(〈P ◦ L,x〉). Since ϕ
was arbitrary, we conclude that 〈P ◦ L,x〉 = 0. ut

Lemma 3.3.2. Let X, Y be Banach spaces and let P =
∑d

k=0 Pk ∈ Pd(X;Y ),
where Pk ∈ P(kX;Y ) are k-homogeneous summands. If P is compatible with
x ∈ F(Rm), then each nonzero summand Pk is compatible with x.

Proof. By assumption,

〈P ◦ L,x〉 =
d∑

k=0

〈Pk ◦ L,x〉 = 0 for all L ∈ L(Rm;X).

In particular, fixing L, composing L ◦ (tIdRm), and using the homogenity of Pk
we obtain

0 = 〈P ◦ (L ◦ (tIdRm)),x〉 =
d∑

k=0

tk〈Pk ◦ L,x〉 for all L ∈ L(Rm;X).

The right hand side, for a fixed L, is an Y -valued polynomial in t. Thus each
〈Pk ◦ L,x〉 = 0, otherwise for some t the total value could not be zero. ut

The following result was proved by Reznick. We give a proof using our for-
malism.

Lemma 3.3.3. Let X, Y be Banach spaces and let 0 6= P ∈ P(dX;Y ), x ∈
F(Rm). Then P is compatible with x iff the polynomial t → td from F1,d is
compatible with x.

Proof. On one hand, there exists a one dimensional subspace E ↪→ X such that
P �E= atd, a 6= 0. So for every L : Rm → E we have that 〈P ◦ L,x〉 = 0.
Consequently, td is compatible with x. On the other hand, if td is compatible
with x, then so is every φd(y), where φ ∈ (Rm)∗. Indeed, φd(y) is a composition
of a linear projection of Rm onto a one dimensional subspace F ↪→ Rm, and the
polynomial td defined on F = R. If Q ∈ Fm,d, then by Theorem 3.2.3 Q(y) =∑
akφ

d
k(y), so Q is compatible with x, being a sum of finitely many polynomials

compatible with x. Lemma 3.3.1 then finishes the proof. ut
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Corollary 3.3.4. An element x = a1x1� · · ·� anxn ∈ F(Rm) is compatible with
t→ td (or any other nonzero d-homogeneous polynomial) iff a1x1�d · · ·�danxn =
0 in F ∗m,d.

Corollary 3.3.5. Let 0 6= P ∈ Fn,d. Then for any Q ∈ Fn,d there exist a finite
collection of linear Lk ∈ L(Rn) and ak ∈ {±1}, k = 1, . . . , r = |I(n, d)|, such that
Q =

∑r
k=1 akP ◦ Lk.

Proof. Suppose, by contradiction, that the linear span H = span{P ◦ L : L ∈
L(Rn)} in the space Fn,d is a proper subspace, i.e. there exists some Q ∈ Fn,d \H
and a linear functional x which is zero on H and nonzero on Q. Thus P is
compatible with x, but Q is not. This contradicts Lemma 3.3.3. Hence H =
Fn,d and Q is a finite linear combination of elements of the form P ◦ Lk. By
Carathéodory lemma [Rez93], we infer that the number of summands can be
chosen not to exceed the dimension of the space Fn,d. ut

The above corollary is analogous to the celebrated Hilbert lemma, which
claims that for given l, n ∈ N there exists a finite collection {φ1, . . . , φN} ⊂ (Rn)∗

such that

‖x‖2l`2 =
N∑
i=1

φ2l
i (x), x ∈ Rn.

The difference lies in the value of coefficients ak, which in the Hilbert case
can be chosen to be positive. Such conclusion is false in our setting, by easy
examples when Q is non-positive or non-convex and P (x) = φn(x). Much subtler
counterexamples follow from the work of Neyman [Ney84], who proved that there
exists a finite dimensional Banach space whose norm taken to n-th power is an
n-homogeneous polynomial Q but the space is not isometric to a subspace of `n
space. It follows that the polynomial Q ∈ Fn,d may be convex and non-negative
and yet it admits no formula with all ak ≥ 0.

Next, we investigate under which conditions on x ∈ F(Rm) the only contin-
uous mappings compatible with x are polynomials. Under the assumption that
there is k such that for every i 6= k the vector xk is not a multiple of xi, we will
prove in Theorem 3.3.8 that every continuous mapping which is compatible with
x = a0x0� · · ·� an+1xn+1 ∈ F(Rm) is necessarily a polynomial of degree at most
n. In particular, the Jordan-von Neumann Theorem 3.1.2 follows immediately
from this statement. A similar result was proved by Reznick for homogeneous
functions.

The assumption that there is k such that for every i 6= k the vector xk is not a
multiple of xi is in some sense optimal. Indeed, it is easy to see that if the vectors
xi fail this condition and if d ∈ N, then there are nonzero ai such that every d-
homogeneous continuous mapping is compatible with x = a0x0 � · · ·� an+1xn+1.

An interesting example in this direction is derived from the polarization for-
mula below. The second part (3.3) is an easy observation of the present authors,
which follows by inspection of the classical proof (e.g. [Din99, p.8]).

Proposition 3.3.6 ([BoHi31], [MaOr34a], Polarization formula). For every P ∈
P(nX;Y ), where X, Y are Banach spaces, there exists a unique symmetric n-
linear form P̌ ∈ Ls(nX;Y ) such that P (x) = P̌ (x, . . . , x). The following formula
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holds.

P̌ (x1, . . . , xn) =
1

2nn!

∑
εi=±1

ε1 . . . εnP

(
n∑
i=1

εixi

)
.

On the other hand, for every 0 6= P ∈ P(kX;Y ), k < n, or k − n odd and
positive the following formula holds.

∑
εi=±1

ε1 . . . εnP

(
n∑
i=1

εixi

)
= 0, xi ∈ X. (3.3)

In the remaining case when k > n and k− n is even, there exists x ∈ X such
that the left hand side in (3.3) for xi = x, i = 1, . . . , n, is nonzero.

Translated into our language, we see that

xB = �−
∑
εi=±1

ε1 . . . εn

(
n∑
i=1

εiei

)
∈ F(Rn)

is compatible with k-homogeneous polynomials iff either k < n or k − n is a
positive odd number.

In the proof of Theorem 3.3.8 we will use the following result due to Wilson
[Wil18]. Since Wilson’s paper may be difficult to acces, we will also give a proof.
The original statement in [Wil18] is for functions on R2, but the proof works
with no change for arbitrary mappings between Banach spaces. By a direction
determined by a nonzero vector x ∈ Rm we mean a one dimensional subspace
{tx : t ∈ R} of Rm.

Theorem 3.3.7 ([Wil18]). Let X, Y be Banach spaces, f : X → Y be a contin-
uous mapping and let x = a0x0 � · · ·� an+1xn+1 ∈ F(R2), n ∈ N ∪ {0}. Suppose
that for every k 6= n+1 the vectors xk and xn+1 are linearly independent, and that
an+1 6= 0. Let p+ 2 be the number of distinct directions determined by the vectors
x0, . . . , xn+1. If f is compatible with x, then f is compatible with xF,p from (3.2).

Proof. Let xi = (ri, si), i = 0, . . . , n + 1. By Fact 3.2.8 we may suppose WLOG
that rn+1 = 0 and sn+1 = 1. Then ri 6= 0 for every i 6= n + 1. By Remark 3.2.7
the mapping f for every x, y ∈ X satisfies

n∑
i=0

aif(rix+ siy) + an+1f(y) = 0. (3.4)

First, let us suppose that x0, . . . , xn+1 are pairwise linearly independent, i.e.
p = n. Put ∆j,i = si − ri sjrj for i, j ∈ {0, . . . , n}. Then ∆j,i = 0 iff j = i.

In the first step, we subtract (3.4) from the equation derived from (3.4) by
replacing x by x− s0

r0
x and y by y + x. We obtain

n∑
i=1

ai

(
f(rix+ siy + ∆0,ix)− f(rix+ siy)

)
+ an+1(f(y + x)− f(y)) = 0. (3.5)
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Note that since ∆0,0 = 0, we have eliminated the terms with i = 0.
In the second step, we subtract (3.5) from the equation derived from (3.5) by

replacing x by x− s1
r1
x and y by y + x. We obtain

n∑
i=2

ai

(
f(rix+ siy+ (∆1,i + ∆0,i)x)− f(rix+ siy+ ∆1,ix)− f(rix+ siy+ ∆0,ix)

+ f(rix+ siy)
)

+ an+1

(
f(y + 2x)− 2f(y + x) + f(y)

)
= 0.

In this step we have eliminated the terms with i = 1.
We continue in this manner. In the k-th step we subtract the last equation

from the equation derived from the last one by replacing x by x− sk−1

rk−1
x and y by

y + x. Since the substitutions replace rix + siy by rix + siy + ∆k−1,ix and since
∆k−1,k−1 = 0, the subtraction eliminates the terms with i = k − 1. After n + 1
steps we arrive at

an+1

n+1∑
k=0

(−1)n+1−k
(
n+ 1
k

)
f(y + kx) = 0,

and since an+1 6= 0, we see that f is compatible with xF,n.
Now consider the case when some pairs of the vectors x0, . . . , xn are linearly

dependent. Then in some steps we eliminate terms corresponding to more than
one value of i. It is easy to see that after p+ 1 steps we arrive at

an+1

p+1∑
k=0

(−1)p+1−k
(
p+ 1
k

)
f(y + kx) = 0,

and therefore f is compatible with xF,p. ut

Theorem 3.3.8. Let X, Y be Banach spaces, f : X → Y be a continuous mapping
and x = a0x0 � · · · � an+1xn+1 ∈ F(Rm),m ≥ 2, n ∈ N ∪ {0}. Suppose that for
every k 6= n + 1 the vector xn+1 is not a multiple of xk, and that an+1 6= 0. Let
q be the number of distinct directions determined by the vectors x0, . . . , xn+1 (0
does not determine a direction), and let p = max{q− 2, 0} (hence p ≤ n). If f is
compatible with x, then f is a polynomial of degree at most p.

Proof. We may suppose WLOG that x0, . . . , xn+1 are distinct. We will distinguish
between two cases.
Case 1: xk 6= 0 for every k 6= n+ 1. Then for every k 6= n+ 1 the vectors xk and
xn+1 are linearly independent.

First let m = 2. Since f is compatible with x, it is compatible with xF,p by
Theorem 3.3.7. By Theorem 3.1.1 the mapping f is a polynomial of degree at
most p.

Now let m > 2. By Fact 3.2.8 it is enough to find a y ∈ F(R2), such that
x � y, and y satisfies the assumptions of the case m = 2. So we claim that there
exists a linear operator T : Rm → R2 such that the couple T (xk) and T (xn+1)
is linearly independent for all k 6= n + 1. (The number of distinct directions
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determined by T (x0), . . . , T (xn+1) is clearly less than or equal to q.) This is easily
seen as follows. Let Ek = span{xk, xn+1} ↪→ Rm, k ∈ {0, . . . , n}, be a system
of 2-dimensional subspaces of Rm. There exists an (m− 2)-dimensional subspace
F ↪→ Rm such that F ∩ Ek = {0}, k ∈ {0, . . . , n}. (Equivalently, F + Ek = Rm).
Then the orthogonal projection T in Rm, with kernel F and two dimensional
range F⊥ ↪→ Rm, clearly satisfies the condition.
Case 2: xk = 0 for some k 6= n+1. We may suppose that x0 = 0. Let us first show
that if f is compatible with x, then f − f(0) is compatible with y = a1x1 � · · ·�
an+1xn+1. Note first that the compatibility of f with x yields

∑n+1
i=0 aif(0) = 0.

Let L ∈ L(Rm;X). Then

〈(f − f(0)) ◦ L,y〉 =
n+1∑
i=1

ai(f − f(0))(Lxi) =
n+1∑
i=1

aif(Lxi)−
n+1∑
i=1

aif(0)

=
n+1∑
i=0

aif(Lxi)−
n+1∑
i=0

aif(0) = 〈f ◦ L,x〉 = 0.

Hence f − f(0) is compatible with y.
Now if n ≥ 1, then y satisfies the hypotheses of Case 1, and therefore f−f(0)

is a polynomial of degree at most p. If n = 0, then f − f(0) = 0, hence it is
a polynomial of degree 0 = p. In both cases, f is a polynomial of degree at
most p. ut

3.4 The space of compatible mappings

If x ∈ F(Rm) andX, Y are Banach spaces, then the set of all continuous mappings
from X to Y which are compatible with x is clearly a linear space. We are now
ready to describe this space more precisely.

Theorem 3.4.1. Let x = a0x0 � · · · � an+1xn+1 ∈ F(Rm),m ≥ 2, n ∈ N ∪ {0}.
Suppose that for every k 6= n+ 1 the vector xn+1 is not a multiple of xk, and that
an+1 6= 0. Let q be the number of distinct directions determined by the vectors
x0, . . . , xn+1 (0 does not determine a direction), and let p = max{q− 2, 0}. Then
there exists A ⊂ {0, . . . , p} such that if X, Y are Banach spaces and f : X → Y
is a continuous mapping, then f is compatible with x iff f =

∑
k∈A Pk for some

Pk ∈ P(kX;Y ) (if A is empty, the sum is understood to be equal to 0).

Proof. Let A be the set of all k ∈ {0, . . . , p} for which there exist Banach spaces
X, Y and a nonzero polynomial from P(kX;Y ) which is compatible with x. By
Lemma 3.3.3, if k ∈ A, then for every Banach spaces X, Y every polynomial
from P(kX;Y ) is compatible with x, and the same holds also for their linear
combinations. Let now X, Y be Banach spaces and f : X → Y be a continuous
mapping compatible with x. By Theorem 3.3.8 the mapping f is a polynomial of
degree at most p. Say f =

∑n
k=0 Pk, where Pk ∈ P(kX;Y ). If Pk 6= 0 for some k ∈

{0, . . . , p}, then it follows from Lemma 3.3.2 that k ∈ A. Hence f =
∑

k∈A Pk. ut

It may happen that the set A from the above theorem contains some gaps. In
fact, we have even the following.
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Theorem 3.4.2. Let 0 ≤ d1 < d2 < · · · < dk ≤ d be given integers and let
m ≥ 2. Then there exists x = a1x1� · · ·�anxn ∈ F(Rm), n ≥ 2, where x1, . . . , xn
are pairwise linearly independent vectors and ai 6= 0 for i = 1, . . . , n, such that x
is compatible with t→ tl, l ≤ d, iff l ∈ {d1, d2, . . . , dk}.

Proof. Consider the linear subspace E of Πm,d generated by
⋃k
i=1 Fm,di . Let M =

{0, . . . , d}\{d1, d2, . . . , dk}. Choose for every l ∈M some nonzero l-homogeneous
polynomial Pl ∈ Fm,l. Then Pl /∈ E for every l ∈M .

Now, let x1, . . . , xn ∈ Rm be pairwise linearly independent vectors such that
the restriction map Φ : Πm,d → C({x1, . . . , xn}) = Rn defined by

Φ(P ) = P �{x1,...,xn}, P ∈ Πm,d,

is one-to-one and not surjective (for example, take a pairwise linearly independent
basic set of nodes for Πm,d and add one point which is not a multiple of any
of the nodes). Then Φ(Pl) /∈ Φ(E) for every l ∈ M and Φ(Πm,d) is a proper
subspace of Rn. It is easy to see that there exists f = (a1, . . . , an) ∈ (Rn)∗ \ {0}
such that f(Φ(E)) = 0 and f(Φ(Pl)) 6= 0 for every l ∈ M . It is clear that if
x = a1x1 � · · · � anxn ∈ F(Rm), then x is not compatible with Pl for every
l ∈ M , but it is compatible with members of E by Lemma 3.3.1. We may of
course suppose that ai 6= 0 for i = 1, . . . , n. Lemma 3.3.3 then concludes the
proof. ut

More can be said if the points x0, . . . , xn+1 lie in an affine hyperplane not
containing 0.

Lemma 3.4.3. Let x = a0x0 � · · · � an+1xn+1 ∈ F(Rm),m ≥ 2, n ∈ N ∪ {0},
where x0, . . . , xn+1 are distinct and lie in an affine hyperplane not containing 0.
If every polynomial from Fm,d is compatible with x, then the same holds for every
polynomial from Πm,d.

Proof. Let H be an affine hyperplane in Rm which contains x0, . . . , xn+1 and does
not contain 0. Suppose that every polynomial from Fm,d is compatible with x. If
P ∈ Πm,d, then it is clear from Fact 3.2.1 that there exists Q ∈ Fm,d such that
Q �H= P �H . Since Q is compatible with x, we see that 〈P,x〉 = 〈Q,x〉 = 0. By
Lemma 3.3.1 every polynomial from Πm,d is compatible with x. ut

Theorem 3.4.4. Let x = a0x0 � · · · � an+1xn+1 ∈ F(Rm),m ≥ 2, n ∈ N ∪ {0},
where x0, . . . , xn+1 are distinct and lie in an affine hyperplane not containing 0,
and ak 6= 0 for k = 0, . . . , n+ 1.

If
∑n+1

k=0 ak = 0, then there exists l ∈ {0, . . . , n} such that if X, Y are Banach
spaces and f : X → Y is a continuous mapping, then f is compatible with x iff
f is a polynomial of degree at most l.

If
∑n+1

k=0 ak 6= 0, then there is no nonzero mapping compatible with x.

Proof. Since x0, . . . , xn+1 are pairwise linearly independent, Theorem 3.4.1 ap-
plies. Let A ⊂ {0, . . . , n} be a set whose existence is ensured by Theorem 3.4.1.
If
∑n+1

k=0 ak = 0, then t 7→ 1, t ∈ R, is compatible with x and therefore A is
nonempty. Let l ∈ A be maximal. Since every polynomial from Fm,l is compatible
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with x, by Lemma 3.4.3 every polynomial from Πm,l is also. Hence A = {0, . . . , l}.
This argument also shows that if A is nonempty, then t 7→ 1 is compatible with
x, and consequently

∑n+1
k=0 ak = 0. Hence if

∑n+1
k=0 ak 6= 0, then there is no nonzero

mapping compatible with x. ut

Some information on the exact value of l can be derived from the geometrical
properties of the set {x0, . . . , xn+1}. Clearly there is no lower bound on l, since to
each x0, . . . , xn+1 we may take a0, . . . , an+1 such that

∑n+1
k=1 ak 6= 0, and then there

is no nonzero mapping compatible with x. Even if we demand that
∑n+1

k=0 ak = 0, it
is easy to find such a0, . . . , an+1 so that some P ∈ Fm,1 = (Rm)∗ is not compatible
with x. Indeed, take P ∈ Fm,1 which is not constant on x0, . . . , xn+1 and then
find a0, . . . , an+1 such that

∑n+1
k=0 ak = 0 and

∑n+1
k=0 akP (xk) 6= 0. However, there

is a simple upper bound in terms of the dimension of the affine hull of the points
x0, . . . , xn+1. It will be given in Corollary 3.4.8. In the proof of Lemma 3.4.6 we
will use the following simple fact.

Fact 3.4.5. If M ⊂ R2 is a union of n distinct lines containing 0, then M is
a nullspace of an n-homogeneous polynomial P : R2 → R. Indeed, let P (x) =
Πn
i=1φi(x), where φ ∈ (R2)∗ are chosen so that their kernels coincide with the

given lines.

If M ⊂ Rm, we denote by aff (M) the affine hull of M .

Lemma 3.4.6. Let x0, . . . , xn+1 ∈ Rm, n ∈ N ∪ {0}, be distinct and denote by d
the dimension of aff ({x0, . . . , xn+1}). Then there exists k0 ∈ {0, . . . , n + 1} and
a polynomial P : Rm → R of degree at most n + 2− d such that P (xk0) 6= 0 and
P (xk) = 0 for every k ∈ {0, . . . , n+ 1} \ {k0}.

Proof. We may WLOG suppose that m = d. The case d = 1 is trivial. Let d ≥ 2.
We may further suppose WLOG that x0, . . . , xd−1 are affinely independent, that
M = aff ({x0, . . . , xd−1}) is a hyperplane in Rd (i.e. it is a subspace), and that
xn+1 /∈M . Using a similar argument as in the proof of Theorem 3.3.8 we construct
a linear mapping L : Rd → R2 such that L(x0), . . . L(xd−1) lie on a line p ⊂ R2,
L(xn+1) /∈ p and L(xn+1) 6= L(xk) for all k 6= n+ 1.

Now, there exists z ∈ p such that the line q ⊂ R2 which contains z and L(xn+1)
does not contain L(xk) for all k 6= n + 1. Let p1, . . . , pr be distinct lines which
contain z and some L(xk), k 6= n+ 1. Then r ≤ n+ 2− d. By Fact 3.4.5 (since a
translation of a polynomial of degree r is again a polynomial of degree r) there
exists a polynomial Q : R2 → R of degree r ≤ n + 2− d such that the nullspace
of Q is

⋃r
i=1 pi. Then P = Q ◦ L ∈ Πd,n+2−d is the desired polynomial. ut

Proposition 3.4.7. Let x = a0x0� · · ·� an+1xn+1 ∈ F(Rm), n ∈ N∪{0}, where
x0, . . . , xn+1 are distinct and ak 6= 0 for k = 0, . . . , n + 1, and denote by d the
dimension of aff ({x0, . . . , xn+1}). If every P ∈ Πm,k is compatible with x, then
k ≤ n+ 1− d.

Proof. By Lemma 3.4.6 there exists k0 ∈ {0, . . . , n + 1} and a polynomial P :
Rm → R of degree at most n+2−d such that P (xk0) 6= 0 and P (xk) = 0 for every
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k ∈ {0, . . . , n + 1} \ {k0}. Then P cannot be compatible with x, since otherwise
we would have

0 = 〈P,x〉 =
n+1∑
k=0

akP (xk) = ak0P (xk0),

and therefore ak0 = 0, a contradiction. Hence k ≤ n+ 1− d. ut

Corollary 3.4.8. Let x = a0x0 � · · ·� an+1xn+1 ∈ F(Rm),m ≥ 2, n ∈ N ∪ {0},
where x0, . . . , xn+1 are distinct and lie in an affine hyperplane not containing 0,
ak 6= 0 for k = 0, . . . , n + 1 and

∑n+1
k=0 ak = 0. Let l be as in Theorem 3.4.4 and

denote by d the dimension of aff ({x0, . . . , xn+1}). Then l ≤ n+ 1− d.

For example, if in Corollary 3.4.8 the points x0, . . . , xn+1 are affinely inde-
pendent, then d = n + 1 and therefore l = 0. Corollary 3.4.8 also shows that in
order to achieve the maximal possible value of l in Theorem 3.4.4 (i.e. l = n),
it is necessary that x0, . . . , xn+1 be collinear; see Theorem 3.5.4 for more general
result.

3.5 Generating linear identities

In order to generate linear identities, we can use Theorem 3.2.5 on the general-
ized Lagrange formula. In fact, the Lagrange formula is an expression of linear
dependence of functionals in the dual of Πm,d. Let {xk}rk=1 ⊂ Rm be a basic set of
nodes for Πm,d and let {hk}rk=1 ⊂ Πm,d be its dual basis. Given z ∈ Rm \ {xk}rk=1,
there exists a unique set of coefficients ak = ak(z) ∈ R such that

P (z) =
r∑

k=1

ak(z)P (xk) for every P ∈ Πm,d,

and ak(z) = hk(z), k = 1, . . . , r. Then every P ∈ Πm,d is compatible with
a1(z)x1 � · · ·� ar(z)xr � (−1)z.

Lemma 3.5.1. Let {xk}rk=1 ⊂ Rm be a basic set of nodes for Πm,d, z ∈ Rm \
{xk}rk=1, and let x = a1(z)x1 � · · · � ar(z)xr � (−1)z. If every P ∈ Πm,l is
compatible with x, then l ≤ d.

Proof. Assume WLOG that a1(z) 6= 0. Considering the dual basis of {xk}rk=1 we
see that there existsQ ∈ Πm,d such thatQ(x1) 6= 0 andQ(xk) = 0 for k = 2, . . . , r.
Further, it is clear that there existsR ∈ Πm,1 (these are the affine functions on Rm)
such that R(x1) 6= 0 and R(z) = 0. Then clearly P = QR ∈ Πm,d+1, P (x1) 6= 0,
P (xk) = 0 for k = 2, . . . , r and P (z) = 0. But then 〈P,x〉 = a1(z)P (x1) 6= 0,
hence P is not compatible with x, and therefore l ≤ d. ut

The following theorem describes a method of generating linear identities which,
for prescribed d, characterize polynomials of degree at most d.

Theorem 3.5.2. Let {xk}rk=1 ⊂ Rm be a basic set of nodes for Πm,d, z ∈ Rm \
{xk}rk=1, and let x = a1(z)x1 � · · ·� ar(z)xr � (−1)z. Let T : Rm → Rn, n > m,
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be an affine one-to-one mapping such that 0 /∈ T (Rm). Then a1 = a1(z), . . . , ar =
ar(z) are the unique coefficients with the following property. Let y = a1T (x1) �
· · ·�arT (xr)�(−1)T (z). If X, Y are Banach spaces and f : X → Y is continuous,
then f is compatible with y iff f is a polynomial of degree at most d.

Proof. Since T (x1), . . . , T (xr), T (z) lie in an affine hyperplane not containing 0,
Theorem 3.4.4 applies. It follows that it suffices to prove the theorem for X = Rn

and Y = R, and it also follows that the space of those continuous f : Rn → R
which are compatible with y is Πn,l for some l ∈ N ∪ {0} or a trivial space.
If P ∈ Πn,d, then P ◦ T ∈ Πm,d, so P ◦ T is compatible with x, and therefore
〈P,y〉 = 0. By Lemma 3.3.1 every member of Πn,d is compatible with y. Hence
the space of compatible functions is nontrivial and l ≥ d. On the other hand, if
P ∈ Πm,l, then P ◦T−1 : T (Rm)→ R can be extended to a member of Πn,l, which
is compatible with y by the definition of l. It follows from Lemma 3.3.1 that every
polynomial from Πm,l is compatible with x. By Lemma 3.5.1 we conclude that
l ≤ d. Theorem 3.2.5 then yields the uniqueness part. ut

A special case of Theorem 3.5.2 in dimension one corresponds to the classical
Lagrange interpolation polynomial.

Theorem 3.5.3 (Classical Lagrange interpolation). Let x0, . . . , xn+1 ∈ R, n ∈
N ∪ {0}, be distinct. Then there exist a unique set of coefficients a0, . . . , an ∈
R\{0}, such that every P ∈ Π1,n is compatible with a0x0� · · ·�anxn�(−1)xn+1.
Moreover,

ak =
n∏

i=0,i 6=k

xn+1 − xi
xk − xi

, k = 0, . . . , n.

The following theorem characterizes those a0x0 � · · · � an+1xn+1 ∈ F(Rm)
which can be used to characterize polynomials of degree at most n, the highest
possible degree. It is a generalization of the equivalence of the conditions (i) and
(iv) in Theorem 3.1.1.

Theorem 3.5.4. Let x0, . . . , xn+1 ∈ Rm,m ≥ 2, n ∈ N, be distinct points. TFAE

(i) The points x0, . . . , xn+1 lie on a line not containing 0.

(ii) There exist a0, . . . an ∈ R \ {0} such that if X, Y are Banach spaces and
f : X → Y is a continuous mapping, then f is compatible with x = a0x0 �
· · ·� anxn � (−1)xn+1 iff f is a polynomial of degree at most n.

Moreover, the coefficients a0, . . . , an from (ii) are uniquely determined, and if
T : R → Rm is an affine one-to-one map and yk ∈ R, k = 0, . . . , n + 1, are such
that T (yk) = xk, then

ak =
n∏

i=0,i 6=k

yn+1 − yi
yk − yi

, k = 0, . . . , n.
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Proof. (i)⇒(ii): Suppose that (i) holds. Since x0, . . . , xn+1 lie on a line not con-
taining 0, there exists an affine one-to-one map T : R → Rm and yk ∈ R, k =
0, . . . , n+ 1, such that T (yk) = xk and 0 /∈ T (R). Combining Theorem 3.5.2 with
Theorem 3.5.3 gives (ii) and also the moreover part.

(ii)⇒(i): Denote by d the dimension of aff ({x0, . . . , xn+1}). If (ii) holds, then
it follows from Proposition 3.4.7 that n ≤ n + 1 − d, and therefore x0, . . . , xn+1

are collinear.
Suppose by contradiction that x0, . . . , xn+1 lie on a line containing 0. It is easy

to construct a continuous function f : Rm → R which is not a polynomial but it is
linear on every one dimensional subspace of Rm. Let L ∈ L(Rm). As x0, . . . , xn+1

lie in a one dimensional subspace, the same holds for L(x0), . . . , L(xn+1). Hence
there exists P ∈ Πm,1 such that P (L(xk)) = f(L(xk)) for all k. Since P is com-
patible with x, we obtain 0 = 〈P ◦L,x〉 = 〈f ◦L,x〉. Hence f is compatible with
x. But this is a contradiction, since f is not a polynomial. ut
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Chapter 4

Coarse and uniform embeddings
between Orlicz sequence spaces

4.1 Introduction

Let (M,dM), (N, dN) be metric spaces and let f : M → N be a mapping. Then f is
called a coarse embedding if there exist nondecreasing functions ρ1, ρ2 : [0,∞)→
[0,∞) such that limt→∞ ρ1(t) =∞ and

ρ1(dM(x, y)) ≤ dN(f(x), f(y)) ≤ ρ2(dM(x, y)) for all x, y ∈M.

We say that f is a uniform embedding if f is injective and both f and f−1 :
f(M) → M are uniformly continuous. If f is both a coarse embedding and a
uniform embedding, then f is called a strong uniform embedding. Naturally we
say that M coarsely embeds into N if there exists a coarse embedding of M into
N , and similarly for other types of embeddings. Let us mention that what we call
a coarse embedding is called a uniform embedding by some authors. We use the
term coarse embedding because in the nonlinear geometry of Banach spaces the
term uniform embedding has a well established meaning as above.

The study of conditions under which a Banach space coarsely (or uniformly)
embeds into another Banach space has been a very active area of the nonlinear
geometry of Banach spaces. Coarse embeddability has received much attention
in recent years mainly because of its connection with geometric group theory,
whereas the study of uniform embeddability may be regarded as classical. See
[Kal08] for a recent survey on the nonlinear geometry of Banach spaces.

Not much is known in general, but there are some partial results. The coarse
and uniform embeddability between `p-spaces is now completely characterized.
Let us recall the results. Nowak proved that `p coarsely embeds into `2 if 1 ≤
p < 2 [Now05, Proposition 4.1] and that `2 coarsely embeds into `p for any
1 ≤ p < ∞ [Now06, Corollary 4]. A construction due to Albiac in [Alb08, proof
of Proposition 4.1(ii)], originally used to show that `p Lipschitz embeds into `q
if 0 < p < q ≤ 1, can be used to show that `p strongly uniformly embeds into
`q if 1 ≤ p < q (see also [AlBa12], where this construction is performed for all
0 < p < q). This fact also follows from Proposition 4.4.1 below, whose proof is
based on Albiac’s construction. On the other hand, Johnson and Randrianarivony

41
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proved that `p does not coarsely embed into `2 if p > 2 [JoRa06, Theorem 1].
Later, results of Mendel and Naor [MeNa08, Theorems 1.9 and 1.11] showed that
`p actually does not coarsely or uniformly embed into `q if p > 2 and q < p.
Furthermore, `2 uniformly embeds into `p if 1 ≤ p < ∞. Indeed, by [BeLi00,
Corollary 8.11], `2 uniformly embeds into S`2 , which is uniformly homeomorphic
to S`p by [BeLi00, Theorem 9.1]. In fact, `2 even strongly uniformly embeds into
`p if 1 ≤ p < 2. This will be proved in Theorem 4.3.1 below. We can summarize
the results as follows.

Theorem 4.1.1. Let p, q ∈ [1,∞). Then the following assertions are equivalent:

(i) `p coarsely embeds into `q.

(ii) `p uniformly embeds into `q.

(iii) `p strongly uniformly embeds into `q.

(iv) p ≤ q or q < p ≤ 2.

Our aim is to generalize this classification to a wider class of Banach spaces,
namely to Orlicz sequence spaces. Let hM and hN be Orlicz sequence spaces
associated with Orlicz functions M and N , and let βM and βN be the upper
Matuszewska-Orlicz indices of the functions M and N . We will show that the
coarse (uniform) embeddability of hM into hN is in most cases determined only
by the values of βM and βN . The dependence of the embeddability of hM into hN
on the values of βM and βN is very similar to the dependence of the embeddability
of `p into `q on the values of p and q from Theorem 4.1.1 (note that the upper
Matuszewska-Orlicz index of `p is p). In some cases, however, the embeddability
of hM into hN is not determined by the values of βM and βN . A brief summary
of our results is given at the end of the paper.

It is worth mentioning that Borel-Mathurin proved in [Bor10a] the following
result concerning uniform homeomorphisms (i.e. bijections which are uniformly
continuous and their inverses are also uniformly continuous) between Orlicz se-
quence spaces. Let M and N be Orlicz functions and let αM and αN be their
lower Matuszewska-Orlicz indices. If hM and hN are uniformly homeomorphic,
then αM = αN and βM = βN . The fact that αM = αN was published also in
[Bor10b], the fact that βM = βN is a consequence of results of Kalton [Kal12].

This paper is organized as follows. In Section 4.2 we summarize the notation
and terminology, and recall basic facts concerning Orlicz sequence spaces. In
Section 4.3 we give the proof of the fact that `2 strongly uniformly embeds into
`p if 1 ≤ p < 2. Section 4.4 then contains the results concerning the coarse and
uniform embeddability between Orlicz sequence spaces.

4.2 Preliminaries

Our notation and terminology for Banach spaces is standard, as may be found for
example in [LiTz77] and [LiTz79]. All Banach spaces throughout the paper are
supposed to be real. The unit sphere of a Banach space X is denoted by SX . If
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(Xn)∞n=1 is a sequence of Banach spaces and 1 ≤ p <∞, then (
∑∞

n=1Xn)`p stands

for the `p-sum of these spaces, i.e. the space of all sequences x = (xn)∞n=1 such

that xn ∈ Xn for every n, and ‖x‖ = (
∑∞

n=1 ‖xn‖p)
1
p < ∞. If a Banach space X

is isomorphic to a subspace of a Banach space Y , we will sometimes say that X
linearly embeds into Y .

Let us give the necessary background concerning Orlicz sequence spaces. De-
tails may be found in [LiTz77] and [LiTz79].

A function M : [0,∞)→ [0,∞) is called an Orlicz function if it is continuous,
nondecreasing and convex, and satisfies M(0) = 0 and limt→∞M(t) =∞.

Let M be an Orlicz function. We denote by `M the Banach space of all real

sequences (xn)∞n=1 satisfying
∑∞

n=1M
(
|xn|
ρ

)
<∞ for some ρ > 0, equipped with

the norm defined for x = (xn)∞n=1 ∈ `M by

‖x‖ = inf

{
ρ > 0 :

∞∑
n=1

M

(
|xn|
ρ

)
≤ 1

}
.

Let hM denote the closed subspace of `M consisting of all (xn)∞n=1 ∈ `M such that∑∞
n=1M

(
|xn|
ρ

)
< ∞ for every ρ > 0. The sequence (en)∞n=1 of canonical vectors

then forms a symmetric basis of hM . Clearly if M(t) = tp for some 1 ≤ p < ∞,
then hM is just the space `p with its usual norm.

If M(t) = 0 for some t > 0, then M is said to be degenerate. In this case, hM
is isomorphic to c0 and `M is isomorphic to `∞. In the sequel, Orlicz functions
are always supposed to be nondegenerate.

We will be interested in the spaces hM . Note that `M = hM if and only if `M
is separable if and only if βM <∞, where βM is defined below.

An important observation is that if two Orlicz functions M1 and M2 coincide
on some neighbourhood of 0, then hM1 and hM2 consist of the same sequences
and the norms induced by M1 and M2 are equivalent.

The lower and upper Matuszewska-Orlicz indices of M are defined by

αM = sup

{
q ∈ R : sup

λ,t∈(0,1]

M(λt)

M(λ)tq
<∞

}
,

βM = inf

{
q ∈ R : inf

λ,t∈(0,1]

M(λt)

M(λ)tq
> 0

}
,

respectively. Then 1 ≤ αM ≤ βM ≤ ∞. Note also that if M(t) = tp for some
1 ≤ p < ∞, then αM = βM = p. We will need the following theorem due to
Lindenstrauss and Tzafriri (see [LiTz77, Theorem 4.a.9]).

Theorem 4.2.1. Let M be an Orlicz function and let 1 ≤ p ≤ ∞. Then `p
if p < ∞, or c0 if p = ∞, is isomorphic to a subspace of hM if and only if
p ∈ [αM , βM ].

Let M be an Orlicz function and x = (xn)∞n=1 ∈ hM . Using the Lebesgue’s
dominated convergence theorem we see that the function

ρ 7→
∞∑
n=1

M

(
|xn|
ρ

)
, ρ > 0,
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is continuous. In particular,

∞∑
n=1

M

(
|xn|
‖x‖

)
= 1. (4.1)

The following lemma is a simple consequence of the convexity of M combined
with the fact that M(0) = 0, and (4.1).

Lemma 4.2.2. Let M be an Orlicz function and let x = (xn)∞n=1 ∈ hM .

(a) If ‖x‖ ≤ 1, then
∑∞

n=1M(|xn|) ≤ ‖x‖.

(b) If ‖x‖ ≥ 1, then
∑∞

n=1M(|xn|) ≥ ‖x‖.

If X is a Banach space, define qX = inf {q ≥ 2 : X has cotype q}. Then if M
is an Orlicz function, we have

qhM = max(2, βM). (4.2)

This can be proved as follows. Suppose first that βM <∞. Note that hM , equipped
with the natural order, is a Banach lattice. By Remark 2 after Proposition 2.b.5
in [LiTz79], we have

βM = inf {1 < q <∞ : hM satisfies a lower q-estimate} .

By [LiTz79, Theorem 1.f.7], if a Banach lattice satisfies a lower r-estimate for
some 1 < r < ∞, then it is q-concave for every r < q < ∞. And by [LiTz79,
Proposition 1.f.3(i)], if a Banach lattice is q-concave for some q ≥ 2, then it
is of cotype q. Hence qhM ≤ max(2, βM). The opposite inequality follows from
the fact that `βM is isomorphic to a subspace of hM by Theorem 4.2.1, and
q`βM = max(2, βM). If βM =∞, then, by Theorem 4.2.1, hM contains c0, and the
result follows.

4.3 Embeddings of `2

In this section we give the promised proof of the fact that `2 strongly uniformly
embeds into `p if 1 ≤ p < 2. The proof is inspired by Nowak’s construction of
coarse embeddings between these spaces in [Now06, proof of Corollary 4].

Recall that a kernel K on a set X (i.e. a function K : X ×X → C such that
K(y, x) = K(x, y) for every x, y ∈ X) is called

(a) positive definite if
∑n

i,j=1K(xi, xj)cicj ≥ 0 for every n ∈ N, x1, . . . , xn ∈ X
and c1, . . . , cn ∈ C,

(b) negative definite if
∑n

i,j=1K(xi, xj)cicj ≤ 0 for every n ∈ N, x1, . . . , xn ∈ X
and c1, . . . , cn ∈ C satisfying

∑n
i=1 ci = 0.
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Note that if the kernel K is real-valued, then in order to check the positive or
negative definiteness of K it suffices to use only the real scalars.

Recall also that for p, q ∈ [1,∞), the Mazur map Mp,q : S`p → S`q , defined for
x = (xn)∞n=1 by

Mp,q(x) =
(
|xn|

p
q signxn

)∞
n=1

,

is a uniform homeomorphism between these unit spheres. If p > q, then it satisfies
for all x, y ∈ S`p and for some C > 0 the inequalities

C‖x− y‖
p
q ≤ ‖Mp,q(x)−Mp,q(y)‖ ≤ p

q
‖x− y‖, (4.3)

and the opposite inequalities if p < q (with different C) because clearly Mq,p =
M−1

p,q . See [BeLi00, Theorem 9.1] for a proof.

Theorem 4.3.1. Let 1 ≤ p < 2. Then `2 strongly uniformly embeds into `p.

Proof. First, for every t > 0 there exists a mapping ϕt : `2 → S`2 such that for
all x, y ∈ `2 we have

‖ϕt(x)− ϕt(y)‖2 = 2
(

1− e−t‖x−y‖2
)
. (4.4)

To prove this statement, fix t > 0. By a simple computation, the function (x, y)→
‖x − y‖2, (x, y) ∈ `2 × `2, is a negative definite kernel on `2, and therefore, by
[BeLi00, Proposition 8.4], the function (x, y) → e−t‖x−y‖

2
, (x, y) ∈ `2 × `2, is

a positive definite kernel on `2. By [BeLi00, Proposition 8.5(i)], there exists a
Hilbert space H and a mapping T : `2 → H such that e−t‖x−y‖

2
= 〈T (x), T (y)〉

for every x, y ∈ `2. The rest is clear.
Let tn > 0, n ∈ N, be such that

∑∞
n=1

√
tn < ∞. For each n ∈ N, define

fn = M2,p ◦ ϕtn . Let x0 ∈ `2 be arbitrary and define f : `2 → (
∑∞

n=1 `p)`p by

f(x) = (fn(x) − fn(x0))
∞
n=1 (that f(x) ∈ (

∑∞
n=1 `p)`p for every x ∈ `2 will follow

from the estimate (4.5) below). Let us show that f is a strong uniform embedding.
Since the spaces (

∑∞
n=1 `p)`p and `p are isometric, the proof will be then complete.

Let x, y ∈ `2. Then

‖f(x)− f(y)‖ ≤
∞∑
n=1

‖fn(x)− fn(y)‖ =
∞∑
n=1

‖M2,p(ϕtn(x))−M2,p(ϕtn(y))‖

≤ 2

p

∞∑
n=1

‖ϕtn(x)− ϕtn(y)‖ =
2
√

2

p

∞∑
n=1

(
1− e−tn‖x−y‖2

) 1
2

≤ 2
√

2

p

∞∑
n=1

(
tn‖x− y‖2

) 1
2 = ‖x− y‖2

√
2

p

∞∑
n=1

√
tn, (4.5)

where the first inequality follows from the triangle inequality, the second inequal-
ity from (4.3), the second equality from (4.4), and the third inequality from the
fact that 1− e−t ≤ t for all t ∈ R. By our assumption,

∑∞
n=1

√
tn <∞.
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On the other hand,

‖f(x)− f(y)‖p =
∞∑
n=1

‖fn(x)− fn(y)‖p

=
∞∑
n=1

‖M2,p(ϕtn(x))−M2,p(ϕtn(y))‖p

≥ Cp

∞∑
n=1

‖ϕtn(x)− ϕtn(y)‖2

= 2Cp

∞∑
n=1

(
1− e−tn‖x−y‖2

)
, (4.6)

where the inequality follows from (4.3).
Define functions ρ1, ρ2 on [0,∞) by

ρ1(s) = 2
1
pC

(
∞∑
n=1

(
1− e−tns2

)) 1
p

and

ρ2(s) = s
2
√

2

p

∞∑
n=1

√
tn.

Then, by (4.5) and (4.6), for every x, y ∈ `2 we have

ρ1(‖x− y‖) ≤ ‖f(x)− f(y)‖ ≤ ρ2(‖x− y‖).

Clearly both ρ1, ρ2 are nondecreasing. Let us show that ρ1(s)→∞ as s→∞.
Let N ∈ N. Then there exists K > 0 such that for each 1 ≤ n ≤ N and s > K
we have 1− e−tns2 ≥ 1

2
. For such s we then obtain

ρ1(s) ≥ 2
1
pC

(
N∑
n=1

(
1− e−tns2

)) 1
p

≥ CN
1
p .

Hence ρ1(s)→∞ as s→∞, and therefore f is a coarse embedding.
Since ρ2(s)→ 0 as s→ 0+, and

ρ1(s) ≥ 2
1
pC
(

1− e−t1s2
) 1
p
> 0

for every s > 0, we see that f is also a uniform embedding. ut

4.4 Main Results

Let us start with a sufficient condition for the strong uniform embeddability of
Orlicz sequence spaces into `p-spaces. The proof of the following proposition is
based on a construction due to Albiac [Alb08, proof of Proposition 4.1(ii)].
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Proposition 4.4.1. Let M be an Orlicz function with βM <∞ and let p > βM .
Then hM strongly uniformly embeds into `p.

Proof. We may clearly suppose that M(1) = 1. Fix arbitrary βM < q < p. Then
there is C > 0 such that

M(λt)

M(λ)tq
≥ C for every λ, t ∈ (0, 1]. (4.7)

We may suppose without loss of generality that

M(λt)

M(λ)tq
≥ C for every λ > 0 and t ∈ (0, 1]. (4.8)

Indeed, if (4.7) holds, then in particular M(t) ≥ Ctq for every 0 < t ≤ 1. We
may clearly suppose that Ctq ≤M(t) ≤ Dtq for some D ≥ 1 and for every t > 1.
Then if λ > 1 and t ∈ (0, 1], we have M(λt) ≥ C(λt)q = Cλqtq ≥ C

D
M(λ)tq. Since

C
D
≤ C, we may take as C in (4.8) the number C

D
.

We will proceed in two steps.
Step 1: We will construct functions fn,k : R → [0,∞), n, k ∈ Z, such that for
certain constant A ≥ 1 and for every s, t ∈ R we have

M(|s− t|) ≤
∞∑

n,k=−∞

|fn,k(s)− fn,k(t)|p ≤ AM(|s− t|). (4.9)

Suppose that n ∈ Z. Let an = 2n+2M
(

1
2n+1

) 1
p and define

fn(t) =


ant if t ∈

[
0, 1

2n

]
,

−an
(
t− 1

2n−1

)
if t ∈

(
1
2n
, 1
2n−1

]
,

0 otherwise.

For k ∈ Z then define the translation of fn by

fn,k(t) = fn

(
t− k − 1

2n+1

)
, t ∈ R.

Note that for every n, k ∈ Z the estimate 0 ≤ fn,k ≤ an
1
2n

holds, the Lipschitz
constant of fn,k is an, and the support of fn,k is

[
k−1
2n+1 ,

k−1
2n+1 + 1

2n−1

]
.

For the upper estimate in (4.9), let s, t ∈ R, s 6= t, and let N ∈ Z be such
that 1

2N+1 < |s− t| ≤ 1
2N

.
If n > N and k ∈ Z, then

|fn,k(s)− fn,k(t)|p ≤ apn
1

2np
= 4pM

(
1

2n+1

)
= 4pM

(
1

2n−N
1

2N+1

)
≤ 4p

1

2n−N
M

(
1

2N+1

)
≤ 4p

1

2n−N
M(|s− t|) (4.10)

(the first inequality follows from the fact that 0 ≤ fn,k ≤ an
1
2n

, while the second
one from the convexity of M and the fact that M(0) = 0).
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If n ≤ N and k ∈ Z, then

|fn,k(s)− fn,k(t)|p ≤ apn|s− t|p ≤ 2p(n+2)M

(
1

2n+1

)
1

2pN

= 4p
1

2p(N−n)
M

(
1

2n+1

)
= 4p

(
1

2
p
q
(N−n)

)q
M

(
1

2n+1

)
≤ 4p

C
M

(
1

2
p
q
(N−n)

1

2n+1

)
=

4p

C
M

(
1

2( pq−1)(N−n)
1

2N+1

)
≤ 4p

C

1

2( pq−1)(N−n)
M

(
1

2N+1

)
≤ 4p

C

1

2( pq−1)(N−n)
M(|s− t|) (4.11)

(the first inequality follows from the fact that the Lipschitz constant of fn,k is an,
the third one from (4.8), and the fourth one from the convexity of M and the
fact that M(0) = 0).

Note that the estimates (4.10) and (4.11) do not depend on k. For n ∈ Z,
denote Sn = {k ∈ Z : fn,k(s) > 0 or fn,k(t) > 0}. Clearly the cardinality of Sn is
at most 8. Hence, using (4.10) and (4.11),

∞∑
n,k=−∞

|fn,k(s)− fn,k(t)|p

=
∑
n>N

∑
k∈Sn

|fn,k(s)− fn,k(t)|p +
∑
n≤N

∑
k∈Sn

|fn,k(s)− fn,k(t)|p

≤ 8 · 4p
(∑
n>N

1

2n−N
+

1

C

∑
n≤N

1

2( pq−1)(N−n)

)
M(|s− t|)

= 8 · 4p
(

1 +
1

C

1

1− 21− p
q

)
M(|s− t|).

So we may take

A = 8 · 4p
(

1 +
1

C

1

1− 21− p
q

)
.

For the lower estimate in (4.9), suppose that s, t ∈ R, s < t, and let now N ∈ Z
be such that 1

2N+2 < |s−t| ≤ 1
2N+1 . Let K be the largest k ∈ Z such that s belongs

to the support of fN,k. Then s ∈
[
K−1
2N+1 ,

K−1
2N+1 + 1

2N+1

)
and t ∈

[
K−1
2N+1 ,

K−1
2N+1 + 1

2N

)
.

Hence

|fN,K(s)− fN,K(t)|p = apN |s− t|
p ≥ 2p(N+2)M

(
1

2N+1

)
1

2p(N+2)

= M

(
1

2N+1

)
≥M(|s− t|),

and therefore
∞∑

n,k=−∞

|fn,k(s)− fn,k(t)|p ≥ |fN,K(s)− fN,K(t)|p ≥M(|s− t|).
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Step 2: Define f : hM → `p(N× Z× Z) by

f(x) = (fn,k(xi)− fn,k(0))(i,n,k)∈N×Z×Z,

where x = (xi)
∞
i=1 (the fact that f(x) ∈ `p(N×Z×Z) for every x ∈ hM will follow

from the estimates below). Let us show that f is a strong uniform embedding.
Let x = (xi)

∞
i=1, y = (yi)

∞
i=1 ∈ hM . By (4.9), for each i ∈ N we have

M(|xi − yi|) ≤
∞∑

n,k=−∞

|fn,k(xi)− fn,k(yi)|p ≤ AM(|xi − yi|),

and therefore

∞∑
i=1

M(|xi − yi|) ≤ ‖f(x)− f(y)‖p ≤ A

∞∑
i=1

M(|xi − yi|).

By Lemma 4.2.2, if ‖x− y‖ ≤ 1, then

‖f(x)− f(y)‖p ≤ A
∞∑
i=1

M(|xi − yi|) ≤ A‖x− y‖,

and if ‖x− y‖ ≥ 1, then

‖f(x)− f(y)‖p ≥
∞∑
i=1

M(|xi − yi|) ≥ ‖x− y‖.

If ‖x− y‖ > 1, then, by (4.8), for every i ∈ N we have

M

(
|xi − yi|
‖x− y‖

)
≥ CM(|xi − yi|)

1

‖x− y‖q
,

and therefore, using also (4.1), we obtain

‖f(x)− f(y)‖p ≤ A
∞∑
i=1

M(|xi − yi|) ≤
A

C

∞∑
i=1

M

(
|xi − yi|
‖x− y‖

)
‖x− y‖q

=
A

C
‖x− y‖q.

If ‖x− y‖ < 1, then similarly

‖f(x)− f(y)‖p ≥
∞∑
i=1

M(|xi − yi|) ≥ C

∞∑
i=1

M

(
|xi − yi|
‖x− y‖

)
‖x− y‖q

= C‖x− y‖q.

Now define

ρ1(t) =

{
C

1
p t

q
p if t ∈ [0, 1),

t
1
p if t ≥ 1,
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and

ρ2(t) =

{
A

1
p t

1
p if t ∈ [0, 1],(

A
C

) 1
p t

q
p if t > 1.

Then ρ1, ρ2 are nondecreasing (since C ≤ 1), limt→∞ ρ1(t) = ∞, and for every
x, y ∈ hM we have

ρ1(‖x− y‖) ≤ ‖f(x)− f(y)‖ ≤ ρ2(‖x− y‖).

Hence f is a coarse embedding, and clearly it is also a uniform embedding. Since
`p(N × Z × Z) is isometric to `p, we have obtained a strong uniform embedding
of hM into `p. ut

We are now ready to give a sufficient condition for the strong uniform embed-
dability between Orlicz sequence spaces. Recall that if M,N are metric spaces
and f : M → N is a mapping, then f is called a Lipschitz embedding provided f
is injective and both f and f−1 : f(M) → M are Lipschitz mappings. Clearly if
f is a Lipschitz embedding, then f is a strong uniform embedding.

Theorem 4.4.2. Let M,N be Orlicz functions. If βM < βN or βN ≤ βM < 2 or
βM = βN =∞, then hM strongly uniformly embeds into hN .

Proof. If βN =∞, then c0 linearly embeds into hN by Theorem 4.2.1, and since
every separable metric space Lipschitz embeds into c0 by [Aha74], we conclude
that any hM even Lipschitz embeds into hN . So suppose that βN <∞.

If βM < βN , then hM strongly uniformly embeds into `βN by Proposition 4.4.1,
and `βN linearly embeds into hN by Theorem 4.2.1. Hence hM strongly uniformly
embeds into hN .

If βN ≤ βM < 2, then hM strongly uniformly embeds into `2 by Proposi-
tion 4.4.1. By Theorem 4.3.1, `2 strongly uniformly embeds into `βN , which in
turn linearly embeds into hN by Theorem 4.2.1, and therefore hM strongly uni-
formly embeds into hN . ut

To give a condition ensuring the nonexistence of a coarse or uniform em-
bedding between two Orlicz sequence spaces, we will use the following result
due to Mendel and Naor. Recall that if X is a Banach space, then we define
qX = inf {q ≥ 2 : X has cotype q}.

Theorem 4.4.3 ([MeNa08, Theorems 1.9 and 1.11]). Let Y be a Banach space
with nontrivial type and let X be a Banach space which coarsely or uniformly
embeds into Y . Then qX ≤ qY .

Theorem 4.4.4. Let M,N be Orlicz functions. If βM > 2 and βN < βM , then
hM does not coarsely or uniformly embed into hN .

Proof. Assume first that hN has nontrivial type. Since, by (4.2),

qhM = max(2, βM) > max(2, βN) = qhN ,

it follows from Theorem 4.4.3 that hM does not coarsely or uniformly embed
into hN .
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Now suppose that hN does not have nontrivial type and suppose for the con-
tradiction that hM coarsely or uniformly embeds into hN . Pick any p ∈ (βN , βM).
Then hN strongly uniformly embeds into `p by Proposition 4.4.1, and therefore
hM coarsely or uniformly embeds into `p. But `p has nontrivial type (since p > 1)
and its upper Matuszewska-Orlicz index is equal to p < βM , which is in contra-
diction with the first part of the proof. ut

Theorems 4.4.2 and 4.4.4 give almost complete classification of the coarse
(uniform) embeddability between Orlicz sequence spaces. In the remaining cases,
when βN ≤ βM = 2 or 2 < βM = βN <∞, the situation is more complicated.

Let us now investigate the case when βN ≤ βM = 2. We will show that in
this case the coarse (uniform) embeddability of hM into hN is not determined by
the values of βM and βN . More precisely, for any 1 ≤ p ≤ 2 we can find Orlicz
functions M1, N1,M2, N2 such that βM1 = βM2 = 2 and βN1 = βN2 = p, and
such that hM1 coarsely (uniformly) embeds into hN1 and hM2 does not coarsely
(uniformly) embed into hN2 . Of course, by Theorem 4.3.1, `2 strongly uniformly
embeds into `p, providing thus examples of M1 and N1. Let us give examples of
M2 and N2.

We will use the following theorem due to Johnson and Randrianarivony.

Theorem 4.4.5 ([JoRa06, Theorem 1]). Let X be a Banach space with a nor-
malized symmetric basis (en)∞n=1 such that

lim inf
n→∞

1

n
1
2

∥∥∥∥∥
n∑
i=1

ei

∥∥∥∥∥ = 0.

Then X does not coarsely or uniformly embed into a Hilbert space.

This theorem was originally stated only for coarse embeddability; the state-
ment about uniform embeddability follows from a result of Randrianarivony
[Ran06, a paragraph before Theorem 1], who proved that a Banach space coarsely
embeds into a Hilbert space if and only if it uniformly embeds into a Hilbert space.

Proposition 4.4.6. Let M be an Orlicz function such that

lim
t→0+

M(t)

t2
= 0.

Then hM does not coarsely or uniformly embed into `2.

Proof. We may suppose without loss of generality that M(1) = 1. Then the
sequence of canonical vectors (en)∞n=1 forms a normalized symmetric basis of hM .
Furthermore,∥∥∥∥∥

n∑
i=1

ei

∥∥∥∥∥ = inf

{
ρ > 0 :

n∑
i=1

M

(
1

ρ

)
≤ 1

}
= inf

{
ρ > 0 : M

(
1

ρ

)
≤ 1

n

}
= inf

{
ρ > 0 :

1

ρ
≤M−1

(
1

n

)}
=

1

M−1
(
1
n

) ,
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and therefore
1

n
1
2

∥∥∥∥∥
n∑
i=1

ei

∥∥∥∥∥ =
1

n
1
2M−1

(
1
n

) .
Let tn = M−1 ( 1

n

)
. Then tn → 0 and M(tn) = 1

n
, and therefore

1

n
1
2M−1

(
1
n

) =
M(tn)

1
2

tn

n→∞−−−→ 0,

since limt→0+
M(t)
t2

= 0.
Hence

lim inf
n→∞

1

n
1
2

∥∥∥∥∥
n∑
i=1

ei

∥∥∥∥∥ = 0,

and therefore, by Theorem 4.4.5, the space hM does not coarsely or uniformly
embed into `2. ut

Example 4.4.7. There exists an Orlicz function M such that αM = βM = 2 and
hM does not coarsely or uniformly embed into `p for any 1 ≤ p ≤ 2.

Proof. Let

f(t) =
t2

1− log t
, t ∈ (0, e).

Then using simple calculus we see that f is a continuous convex function, f(t) > 0
for each t ∈ (0, e) and limt→0+ f(t) = 0. Clearly there exists an Orlicz function
M such that M(t) = f(t) for every t ∈ (0, 1].

Let us show that αM = βM = 2. Let q ≤ 2 and λ, t ∈ (0, 1]. Then

M(λt)

M(λ)tq
=

(λt)2

1−log(λt)
λ2

1−log λt
q

= t2−q
1− log λ

1− log(λt)
≤ t2−q ≤ 1

(the first inequality follows from the fact that s 7→ 1 − log s is decreasing), and
therefore αM ≥ 2.

Let q > 2. If λ, t ∈ (0, 1], then

M(λt)

M(λ)tq
= t2−q

1− log λ

1− log(λt)
= t2−q

1− log λ

1− log λ− log t
=

t2−q

1 + − log t
1−log λ

≥ t2−q

1− log t
,

where the inequality holds since − log t ≥ 0 and 1 − log λ ≥ 1. Now if we define
g(s) = s2−q

1−log s , s ∈ (0, 1], then lims→0+ g(s) = ∞, g(1) = 1 and g(s) > 0 for each

s ∈ (0, 1]. It follows that there is C > 0 such that g(s) ≥ C for each s ∈ (0, 1].
Hence

M(λt)

M(λ)tq
≥ C

for every λ, t ∈ (0, 1]. This implies that βM ≤ 2.
Finally, if t ∈ (0, 1], then

M(t)

t2
=

t2

1−log t

t2
=

1

1− log t

t→0+−−−→ 0.
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Hence, by Proposition 4.4.6, hM does not coarsely or uniformly embed into `2.
Let 1 ≤ p < 2. Since `p strongly uniformly embeds into `2 by Theorem 4.1.1, it
follows that hM does not coarsely or uniformly embed into `p. ut

The last remaining case is when 2 < βM = βN < ∞. In this case, we can of
course always have the coarse (uniform) embeddability (since any Banach space
strongly uniformly embeds into itself). However, we do not know whether there
exist Orlicz functions M,N satisfying 2 < βM = βN <∞, such that hM does not
coarsely (uniformly) embed into hN .

Let us conclude with a brief summary of the results. Let M,N be Orlicz
functions.

(1) If βM < βN or βN ≤ βM < 2 or βM = βN =∞, then hM strongly uniformly
embeds into hN .

(2) If βM > 2 and βN < βM , then hM does not coarsely or uniformly embed
into hN .

(3) If βN ≤ βM = 2, then the coarse (uniform) embeddability of hM into hN is
not determined by the values of βM and βN .

(4) If 2 < βM = βN < ∞, then the question of the coarse (uniform) embed-
dability of hM into hN is open.
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