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Vedoucí doktorské práce: Prof. RNDr. Jaroslav Nešetřil, DrSc., IUUK MFF UK
Abstrakt: Tématem dizertační práce je studium složitosti, která vzniká, pokud k určitému prostředí
či procesu uvážíme jeho kompetitivní variantu, a to především pomocí metod algoritmické teorie
her, teorie složitosti, a dalších nástrojů. Například v prostředí Internetu je vyloučeno aplikovat na
graf propojených počítačů libovolný klasický grafový algoritmus, protože ten zpravidla vyžaduje exis-
tenci centrální autority, která s grafem manipuluje. V této práci popisujeme distribuovanou a lokálně
definovanou hru, která v kompetitivním prostředí bez centrální autority simuluje výpočet váženého
vrcholového pokrytí grafu, včetně zobecnění na tzv. hitting set a submodulární váhovací funkci. Doká-
žeme, že tato hra má vždy Nashovo ekvilibrium a každé toto ekvilibrium dá stejně dobrou aproximaci
optimálního pokrytí, jakou lze dosáhnout nejlepšími známými aproximačními algoritmy. Přesněji, tzv.
cena anarchie naší hry je stejná jako faktor u nejlepšího známého aproximačního algoritmu. Dosa-
vadní výsledky v této oblasti neměly cenu anarchie omezenu ani konstantou. Kromě toho v práci
předkládáme i výsledky z oblasti her tzv. grafových prohledávacích her a pozičních her, které se týkají
složitosti kompetitivního prostředí. V oblasti pozičních her určíme herní velikost (velikost hracího
plánu potřebnou pro existenci vítězné strategie prvního hráče) několika herních variant ramseyov-
ských vět, která vyjde podstatně menší než příslušná ramseyovská velikost. Dále vyřešíme otevřenou
otázku u varianty prohledávacích her zvané „guarding gameÿ, u níž dokážeme, že tento problém je
v obecnosti E-úplný.

Klíčová slova: algoritmická teorie her, cops and robber, Ramseyova teorie, kombinatorické hry, poziční
hry
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Abstract: In this thesis we study the complexity that appears when we consider the competitive version
of a certain environment or process, using mainly the tools of algorithmic game theory, complexity
theory, and others. For example, in the Internet environment, one cannot apply any classical graph
algorithm on the graph of connected computers, because it usually requires existence of a central
authority, that manipulates with the graph. We describe a local and distributed game, that in a
competitive environment without a central authority simulates the computation of the weighted vertex
cover, together with generalisation to hitting set and submodular weight function. We prove that this
game always has a Nash equilibrium and each equilibrium yields the same approximation of optimal
cover, that is achieved by the best known approximation algorithms. More precisely, the Price of
Anarchy of our game is the same as the best known approximation ratio for this problem. All
previous results in this field do not have the Price of Anarchy bounded by a constant. Moreover,
we include the results in two more fields, related to the complexity of competitive environments. In
positional games, we establish the game size of game variants of several Ramsey-type theorems, and
we show that the game sizes are tremendously smaller than the Ramsey sizes. In the field of the cops
and robber games, we solve an open question regarding the computational complexity of the so-called
guarding game problem—we show that the problem is E-complete for general graphs.
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1. Introduction

There are many aspects of mathematics, but only few areas are undergoing such rapid
growth as the game theory. Also, very few areas of combinatorics display such a variety
of applicability to various other parts of mathematics and practical problems.

Since the dawn of humanity, people were attracted to various games, battling them-
selves in Go, Chess, Backgammon, and countless more games. However, not only these
free-time puzzles were called a game. Many important personalities called their actions
in the field of for example military, politics and economics to be a “game”. All these
activities share the following: there are several players (warriors, politicians, business-
men, animal species, . . . ) trying to maximise their own profit (money, parliament seats,
territory gain, . . . ) in some sense, while on the other hand usually having to cleverly
counteract the actions of their opponents. It seems only natural to study, what should be
the rational behaviour of all players, given their initial assumptions and situation.

When we are talking about a game, or game setting of certain process, this means we
are in the world where there are selfish and greedy entities, which tend to compete each
other. It is much harder to control and manoeuvre this environment, when compared
to a setting when there is a central authority which may impose any demand on the
environment and all entities. Among such “anarchy” setting are for example computer
networks on the Internet (hardly anyone can dictate how should the connected computers
behave, but still we would like to impose certain protocols and recommended behaviour),
democratic economies (we need to preserve some freedom of subjects on the market,
but we would still like to collect taxes, punish unfair traders and manipulate the whole
economics in a certain direction), and many other examples. Note, that reaching some
desired global objective in the “anarchy” setting is therefore much more complicated, at
least in general. The authority in the game setting does not have the right to directly
control the actions of the players, the only stimulus the authority can apply is the setting
of game rules and payoffs of the players according to their behaviour.

And let us not restrict ourselves only to settings with vast number of players/entities.
For example, in Ramsey theory, which is a well-known and well-studied part of modern
mathematics, we are interested in the smallest size of some combinatorial object (graph,
hypergraph, arithmetic progression, . . . ) that is sufficient for existence of certain internal
homogeneity of the object. Let us consider the game setting of this—there are two players,
the first one is trying to build the internal homogeneity of the object and the second is
trying to build as chaotic object as possible. We may now ask: What is the smallest
size of the object such that the first player may always succeed in building the internal
homogeneity? This game size should be of course smaller than the size in the Ramsey
setting. In fact, in many cases the difference between both sizes is dramatic.

Therefore, based on the previous thoughts, we formulate the general topic of this
thesis: We study the complexity that often suddenly appears, when we consider the com-
petitive version of a certain environment, process or behaviour.
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1.1 Obtained Results

In accordance with our general topic we present our results from three fields of the game
theory: algorithmic game theory, cops and robber games, and positional games. For a
brief overview what we have achieved in these fields see Sections 1.1.1, 1.1.2 and 1.1.3.
In the field of algorithmic game theory, we prove a positive and somewhat surprising

result—when we consider the competitive setting of the vertex cover problem and its
generalisations to set cover and some other variants, where each vertex is controlled by
an independent player, we show a game that reaches the same global quality vertex (set)
cover as in the central-authority setting. Here we have to measure the quality of the
reached cover in the terms of approximation of the optimal solution, as the vertex cover
is a classical NP-complete problem.
In the field of the cops and robber games, we solve an open question regarding the com-

putational complexity of the so-called guarding game problem. This is a negative result,
as we show that the problem is E-complete for general graphs, where E = DTIME(2O(n)).
And finally in the field of positional games, we again prove several positive results. We
establish the game size of game versions of several Ramsey-type theorems, and we show
that the game sizes are much smaller than the Ramsey sizes.
The results contained in this thesis have been published or submitted for publishing

in the following papers.

[79] Nešetřil, J., Valla, T., On Ramsey-type Positional Games , Journal of Graph Theory
64 (2010), 4, pp. 343–354.

[87] Piliouras, G., Valla, T., Végh, L., LP-based Covering games with low Price of
Anarchy , submitted, Arxiv preprint arXiv:1203.0050.

[95] Šámal, R., Stolař, R., Valla, T., Complexity of the Cop and Robber Guarding Game,
Proceedings of IWOCA 2011, Lecture Notes in Computer Science 7056 (2011), pp.
361–373.

[96] Šámal, R., Valla, T., On the complexity of the guarding game, submitted to Algo-
rithmica, Arxiv preprint arXiv:1112.6140.

1.1.1 Algorithmic Game Theory: Covering Games

Combinatorial optimisation has for several decades dictated the landscape of algorithm
design. One limiting assumption of the “classical” combinatorial optimisation is the
existence of an omnipotent centralised authority that has access to all the relevant in-
formation and has the power to enforce any solution of its choice. Over the last decade,
the soundness of such assumptions has increasingly come into question following a num-
ber of paradigm-shifting socioeconomic events such as the rapid rise of the Internet, the
painful realization of the extent of inter-connectivity of the global economy as well as the
emergence of global sustainability concerns.
The competition between individual incentives and social optimality is of fundamental

concern in distributed systems as it can lead to highly inefficient outcomes. The price of
anarchy examines exactly what are the worst case repercussions of such a policy. For-
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mally, price of anarchy is defined as the maximal ratio between the social cost of a Nash
equilibrium and that of the global optimal configuration. Intuitively, a low price of anar-
chy implies that upon converging to a socially stable outcome, the quality of the acquired
solution is almost optimal from a central optimisation perspective.
Unfortunately, in many cases of interesting games the price of anarchy is extremely

high. Vertex cover, due to its prominent position within combinatorial optimisation, has
been studied in the context of game theory from different approaches, all of which so far
have shared this limiting characteristic.
We present a new class of vertex cover and set cover games, calledMafia games. Using

this new techniques, we are able to prove the following results.

Theorem 1.1. The Mafia games for vertex cover, hitting set and submodular hitting set
always have pure Nash equilibria, and the price of anarchy is 2 for vertex cover and d for
(submodular) hitting set.

The proofs of all these results and related discussion can be found in Chapter 4.
Thus, in our work, the price of anarchy bounds match the best known constant factor

approximation guarantees for the centralised optimisation problems for linear and also for
submodular costs—in contrast to all previously studied covering games, where the price
of anarchy cannot be bounded by a constant. In particular, we describe a vertex cover
game with a price of anarchy of 2. The rules of the games capture the structure of the
linear programming relaxations of the underlying optimisation problems, and our bounds
are established by analysing these relaxations. Furthermore, for linear costs we exhibit
linear time best response dynamics that converge to these almost optimal Nash equilibria.
These dynamics mimic the classical greedy approximation algorithm of Bar-Yehuda and
Even.
In the description, we use the colourful and yet intuitive terminology of a Mafia

(service points) which “provides security” (covers edges). The vertices may choose to join
Mafia or to remain civilians. Each edge of the graph has to be “secured”, that is, at least
one endpoint must be in Mafia. For player v, there is an initial cost c(v) to join Mafia.
Mafiosi can collect ransoms as the price of security of the incident edges: if a vertex v
chooses to be a mafioso, his strategy also includes a ransom vector, so that the total
ransom he demands from his neighbours is c(v). It is a one-shot game and mafiosi can
ransom both their civilian and mafioso neighbours.
If v is a civilian, he has to pay to his neighbours in the Mafia all ransom they demand.

Furthermore, if there is an incident uncovered edge uv, that is, u is also a civilian, both
of them have to pay a huge penalty. In contrast, if v is a mafioso, he has to pay c(v) for
joining, and he receives whatever he can collect from ransoms. However, mafiosi ransomed
excessively obtain a protected status: if the total demand from v is more than c(v), he
satisfies only a proportional fraction of the demands. It is important to note that the
payoff function is defined locally: besides his own strategy, the payoff of a player depends
only on the strategies of players at distance at most 2 from him (i.e. immediate neighbours
and neighbours of neighbours). Also note that ifM is a vertex cover, then the total utility
of the players is −c(M). Consequently, an optimal solution to the optimisation problem
gives a social optimum of the game.

11



The world of decentralised competition is not immune to the results of computational
complexity. Hence, a low price of anarchy does not necessarily yield a usable outcome in
the means of the game dynamics, when players sequentially have the possibility to change
their strategies for a better one.
We prove the following.

Theorem 1.2. For the vertex cover and hitting set covering games, there is a dynamics
such that after O(n) moves, we obtain a strategy profile in Nash equilibrium.
For the proofs see Chapter 4.
In our covering games, we first show that even in simple instances, round robin best

response dynamics may end in a loop. However, this can be simply fixed by a slight
modification of the payoff.
We introduce a secondary utility, that does not affect the price of anarchy results,

but merely instigates the mafiosi to use more fair (symmetric) ransoms: r(u, v) = r(v, u).
With this secondary objective, we show that actually a single round of best response
dynamics under a simple selection rule of the next player results in a Nash-equilibrium.
This dynamics in fact simulates the Bar-Yehuda–Even algorithm. An analogous dynamics
is shown in the case of hitting set. Moreover, these dynamics can be interpreted in a
distributed manner, enabling several players to change their strategies at the same time.

Our results were distantly inspired by the approach of Panagopoulou and Spirakis [82],
who described a vertex colouring game and analysed its price of anarchy. We thus looked
for a different important combinatorial problem with a potential to be analysed in the
competitive setting. There were also previous attempts to define and analyse covering
games (see Chapter 3 for an outline), but unfortunaly these had a high price of anarchy.

1.1.2 Cops and Robber Games: The Guarding Game

The so-called guarding game belongs to a vast class of games on graphs called in general
graph searching and sweeping games. Imagine the following setting: We are given a finite
graph (directed or undirected). There is an intruder (or more intruders in some variants
of the game, sometimes the intruder is called robber) positioned on the graph and there
are several searchers (let us call them cops) that want to capture the intruder. There are
many variants of the game but usually the robber and the cops moves alternately and the
robber is captured when one of the cops meets him at the same place (vertex, edge) in
the graph.
We turn our attention on the following variant of the searching game, defined by

Fomin et al. [37]. The guarding game is played on a graph (directed or undirected) by
two players, the cop-player and the robber-player , each having his pawns (c cops and one
robber, respectively) on the vertices. There is a subset of vertices called protected region.
In alternate turns, the robber aims to enter the protected region by a move to a vertex
of the region with no cop on it, and the cops try to prevent this. If the robber can enter
the protected region, the robber-player wins the game, otherwise the cop-player wins.
Fomin et al. [37] asked a question about the complexity of the related computational
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problem: given a position of the guarding game, who is the winner of the game? Fomin
et al. answered this question for the case, when the underlying graph is directed acyclic,
yielding a PSPACE-complete problem, and asked about the complexity of the general case.
We answer this question in the following results (recall that the complexity class

E = DTIME(2O(n))).

Theorem 1.3. The guarding game problem is E-complete for general (directed) graphs.
Moreover, the problem is E-complete when restricted on the class of undirected graphs.

Here, we would like to point out the fact that with some minor exceptions, all known
hardness results for cops and robbers, or pursuit-evasion games are for the directed graph
variants of the games only. We also prove the E-completeness of a variant of the guarding
game problem called reverse guarding game problem. For all proofs and discussion see
Chapter 5. The results appeared in our papers [95] and [96].

Searching games were originally motivated by the speleologist community in the 70’s,
dealing with someone lost in a complicated cave system. However, up to today, the prob-
lem quickly developed to a broad class of games, with many variants, many generalisations
and surprising connections with other parts of graph theory. See Alspach [2] for a good
survey.

1.1.3 Positional Games: Structural Ramsey Games

The goal of Chapter 6 is to study various Ramsey-type theorems and the corresponding
games, establish good upper bounds on both numbers and discover large gaps between
them. Usually, the validity of Ramsey-type theorems depends only on the size of the
object; given object large enough, the theorem holds. We call such minimal sufficient size
Ramsey number. Similar concept exists in combinatorial games. By game number we
mean the minimum object size such that certain player (usually the first) wins, provided
he uses the best strategy possible. Often, there is large gap between the Ramsey number
and the appropriate game number.
Our main result in this field follows.

Theorem 1.4. Let C be a class of structures which is closed under vertex inflation. Then
C is a game Ramsey class.
For a proof and precise definition of vertex inflation (and its consequences) and game

Ramsey class, see Chapter 6. Roughly speaking, vertex inflation is substitution of vertex
by an independent set, and game Ramsey class C is a game-theoretic analogy of Ramsey
class—for every objects A,B ∈ C there exists C ∈ C such that the first player wins the
game of building in C a copy of B with all subobjects A taken by him (and the second
player is his adversary).
We also investigate the game version of Brauer theorem—for any n, in arbitrary finite

colouring of first N integers, N = N(n) large enough, there is a monochromatic arithmetic
progression a0, a0+ d, . . . , a0+ nd together with the difference d. In the game setting, we
prove the following theorem.

13



Theorem 1.5. The game number of the game version of Brauer theorem is O(2nn3) and
Ω(2n/2

√
n).

For details and proof see Section 6.4. We also also study several more Ramsey-
type games, namely strong games and vertex-colouring games, which can be found in
Sections 6.3.1 and 6.3.2.
The results were published in our paper [79].

In many cases, establishing a reasonable Ramsey number upper bound is an enor-
mously complicated task which has been a subject of effort of many great mathemati-
cians. Surprisingly, when considering the corresponding combinatorial game, it is often
quite easy to find good upper bound on the game number, usually much lower than the
Ramsey number bound.
There are many aspects of combinatorics, but only few areas form such a compact

body of concepts and results (and thus in turn form a theory in the classical sense) as
Ramsey theory. Also, very few areas of combinatorics display such a variety of techniques
from various parts of mathematics. Very roughly speaking, Ramsey theory studies the
chromatic number of hypergraphs. Many results of Ramsey theory (including Ramsey’s
theorem itself) have a character of a combinatorial principle which may be viewed as a
generalisation of the pigeon-hole principle. Moreover, many mathematicians admit there
is an elegance in Ramsey theory statements.
On the other hand, combinatorial games are 2-player games of skill (no chance moves)

with perfect information (the player cannot hide anything), and there are only three
possible outcomes of the game: “win”, “draw” and “loss”. This class includes Chess, Go,
Checkers, Tic-Tac-Toe, Hex, Nim, etc. The goal is to answer questions like “who wins”,
“how to win” and “how long does it take to win”. As a contrary to Ramsey theory, the
theory of combinatorial games is still very young and at an early stage of development.
What is the thing that connects Ramsey theory and combinatorial games? In one

direction, almost every object studied by Ramsey theory can be taken and considered a
“playground” of a combinatorial game. Two players keep colouring parts of this object
and both wants to win, this means, to colour certain sub-object by their own colour. There
can be also many different game rules. In the other direction, Ramsey theory can serve
as a powerful tool to at least partially answer questions like “who wins” in a particular
game.
Given a certain object, Ramsey theory states that there exists an internal regularity

inside, some homogeneous sub-object. To the contrary, the goal of many combinatorial
games is to create such a homogeneous sub-objects. An enormous amount of work in this
direction has been done by József Beck who introduced the concept of Ramsey-type games
by studying the game versions of Ramsey and van der Waerden theorems (see Chapter 6
for an overview).
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1.2 Contents Overview

In Chapter 2, we give an introduction to the algorithmic game theory. Here we introduce
the definitions of games, strategies, costs and payoffs, we discuss several solution concepts
and most notably pure and mixed Nash equilibria. We also deal with the complexity of
computing Nash equilibria, Finally we discuss the measures of equilibria efficiency This
chapter is heavily based on Tardos and Vazirani [97] and Papadimitriou [85]. A reader
experienced in the field of algorithmic game theory may freely skip this chapter, as it does
not contain any new results and serves as a gentle introduction to the topic.
Chapter 3 contains an overview of results in vertex cover and set cover approximation

based on the great book by Williamson and Shmoys [99] (Section 3.1). And what is more
important, in the following sections of Chapter 3 we outline a set of previous attempts
to define and study covering games, that means, games which in some sense simulate the
computation of vertex cover or set cover.
In Chapter 4 we present the main results of the thesis, in the field of algorithmic game

theory, based on our paper [87]. In Section 4.2 we give the definition of our weighted
vertex covering game and then study its properties. Most notably, we prove that a
Nash equilibrium always exist and that every equilibrium is in fact a vertex cover 2-
approximation. We further generalise the approach to weighted set cover and even to the
case of submodular weight function. In all cases we prove that a Nash equilibria always
exist and attains a low price of anarchy, which means they give a good approximation
ratio of the optimal solution. Finally, in Section 4.3 we discuss and describe the dynamics
for fast convergence to a Nash equilibrium in most of our games.
Chapter 5 contains our results in the field of cops and robber games, based on our

papers [95] and [96]. We first define the guarding game on graphs and give a survey on
the previous and related results. Then, in Section 5.2, we establish the complexity of the
problem to be E-complete for the directed case, and later in Section 5.3 we extend the
result to the undirected case. Finally, Section 5.4 contains additional results on another
variant of the game.
In Chapter 6, we present our results in the field of positional games, based on our

paper [79]. Section 6.2 is based on the great book of Beck [10] and we build here the
necessary theory of positional games from scratch. In Sections 6.3 and 6.4 we investigate
games corresponding to structural extensions of Ramsey and van der Waerden theorems—
the theorem of Brauer, structural and restricted Ramsey theorems.
At the end of Chapters 4, 5 and 6 we discuss further questions and open problems

arising from our results.
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1.3 Basic Notions

For the sake of completeness, we define the basic notation used in this book. However, we
restrict ourselves only to bare definitions, for details and explanation, see e.g. Matoušek
and Nešetřil [70]. Also, throughout the thesis, a lot of notions from the complexity theory
appears. We closely follow the terminology of Papadimitriou [83], which the reader should
consult when having troubles understanding the complexity-related notions in the text.
By the symbol N, we shall mean the set {1, 2, . . . } of all positive integers, and by R

we mean the set of all real numbers (by R+ and R− we denote positive and negative reals,
respectively, and by the 0 subscript we mean that we allow zero as well). For n ∈ N, we
often denote the set {1, 2, . . . , n} by [n]. To emphasise that a certain element is vector,
we use bold symbols (x,y, . . . ). For 0 ≤ k ≤ n, the symbol

(
n
k

)
denotes the number of

k-element subsets of an n-element set. For a set X, the symbol 2X means the set of all
possible subsets of X, the symbol

(
X
k

)
means the set of all k-element subsets of X, by |X|

we denote the cardinality of X, and we define

Xk = X × · · · ×X
︸ ︷︷ ︸

k

,

where × is the Cartesian product of two sets. The difference of two sets A and B is
denoted by A \B.
Let us define the asymptotic estimates.

(1) We say that a function f : N → N is O(g) for a function g : N → N, if there is a
constant c > 0 such that f(n) ≤ c · g(n) for every n ∈ N.

(2) We say that a function f : N → N is Ω(g) for a function g : N → N, if there is a
constant c > 0 such that c · g(n) ≤ f(n) for every n ∈ N.

(3) We say that a function f is Θ(g) if f is both O(g) and Ω(g).
(4) To express that f is O(g), we often write f(n) = O(g(n)). Similarly, f(n) =
Ω(g(n)) means that f is Ω(g).

A graph G is a pair (V,E) where V , called the vertex set , is an arbitrary finite set
and E ⊆

(
V
2

)
is called the edge set . Elements of E are called edges. For a graph G, the

vertex set of G is denoted by V (G), and the edge set by E(G). Similarly, oriented graph−→
G is a pair (V,

−→
E ), where

−→
E ⊆ V × V and if not stated otherwise, we don’t allow allow

loops (edges (v, v)). If no misunderstanding occurs, we write only G instead of
−→
G . For

some E ′ ⊆ E, by G[E ′] we mean the graph induced by the edges E ′.
A finite hypergraph F = (V, F ) is a set system where V is an arbitrary finite set and

F ⊆ 2V . Similarly, V (F) is the vertex set and E(F) is the edge set. Elements of F are
usually called hyperedges. A hypergraph F is k-uniform (or simply a k-graph) if |S| = k
for every S ∈ E(F). Thus, graph is a special case of hypergraph, a 2-graph. We always
use standard letters to denote graphs, and we use both standard and caligraphic symbols
(A,B, . . . ) to denote hypergraphs.
We say that hypergraph H = (VH, EH) is a subgraph of hypergraph F = (VF , EF) if

VH ⊆ VF and EH ⊆ 2VH ∩ EF . We denote this fact by H ⊆ F .
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For a hypergraph F = (V, F ) and a vertex v ∈ V , we define the vertex degree

degF(v) = |{S ∈ F ; v ∈ S}| .

We also define a minimum degree

δ(F) = min
v∈V
degF(v)

and a maximum degree
∆(F) = max

v∈V
degF(v).

For two distinct vertices u, v ∈ V , we define the double degree

degF(u, v) = |{S ∈ F ; u, v ∈ S}|

and a maximum double degree

∆2(F) = max
u,v∈V
u 6=v

degF(u, v).

If ∆2(F) = 1, then F is called almost disjoint.
For oriented graph

−→
G = (V,E), we defined the in-degree of v ∈ V

deg+−→
G
(v) = |{u ∈ V ; (u, v) ∈ E}|

and out-degree
deg−−→

G
(v) = |{u ∈ V ; (v, u) ∈ E}| .

We call v ∈ V a sink if deg−−→
G
(v) = 0 and source if deg+−→

G
(v) = 0.

For two hypergraphs H = (VH, EH) and F = (VF , EF), the bijection f : VH → VF is
called isomorphism if the condition

{v1, v2, . . . , vk} ∈ EH ⇔ {f(v1), f(v2), . . . , f(vk)} ∈ EF

holds for every k and for every subset {v1, . . . , vk} ⊆ VH. If there exists an isomorphism
of two hypergraphs H and F , we denote this fact by H ≃ F and we say that H and F
are isomorphic.
For two hypergraphs H = (VH, EH) and F = (VF , EF), the function h : VH → VF is

called homomorphism if the condition

{v1, v2, . . . , vk} ∈ EH ⇒ {f(v1), f(v2), . . . , f(vk)} ∈ EF

holds for every k and for every subset {v1, . . . , vk} ⊆ VH.
These are the important graphs used throughout the whole thesis:
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(1) A complete k-graph Kk
n is a k-graph (V,

(
V
k

)
), |V | = n. If k = 2, we use just the

symbol Kn.
(2) A cycle Cℓ of length ℓ is every hypergraph (VC , EC) where VC = {v0, v1, . . . , vℓ−1}
and EC = {S0, S1, . . . , Sℓ−1} such that {vi, v(i+1) mod ℓ} ⊆ Si for every 0 ≤ i < ℓ.

(3) A path P of length p is every hypergraph (VP , EP ) such that VP = {v1, v2, . . . , vp}
and EP = {S1, S2, . . . , Sp−1} such that {vi, vi+1} ⊆ Si for every 0 ≤ i < p. Often,
we talk about a path from one vertex (which is v1) to another vertex (which is vp).

A hypergraph F is said to be connected if for every two distinct vertices u, v ∈ V (F)
there exists a path in F from u to v. A tree is a connected hypergraph that contains no
cycle. A star is a tree where all edges share precisely one common vertex.
A vertex-colouring (or just colouring to be short) of a hypergraph F = (V, F ) by t

colours is a mapping ct : V → {1, . . . , t}. We say that a colouring ct is proper if every
S ∈ F contains at least two vertices with different colours. The chromatic number of F
is

χ(F) = min{t; there exists a proper colouring ct of F}.

By girth of a graph (or hypergraph) G (denoted girth(G)) we mean the length of the
longest cycle in G.
By alphabet Σ we mean a finite set of symbols. For s ∈ Σ and n ∈ N, by sn we denote

the string of n symbols s.
We also use a lot of terminology from the complexity theory. For the definitions, dis-

cussion and notions of all complexity-related issues see eg. Papadimitriou [83]. Through-
out this thesis, we use the complexity classes P, NP, E, DTIME, PSPACE and PPAD.
The class PPAD is defined in Section 2.5.1 and for the rest, as well as other notions like
hardness, reductions, completeness and related topics, see [83].
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2. Algorithmic Game Theory

Introduction

The classical game theory aims to model situations in which multiple participants interact
or affect each other’s outcomes. We start by describing the basic notions and concepts,
and we include this chapter in order to make this thesis self-contained. An experienced
reader familiar with the problematics of algorithmic game theory may thus freely skip the
whole chapter, as it does not contain new results and serves as a gentle introduction to
the concepts used later in Chapters 3 and 4.
Sections 2.1, 2.2, 2.3 and 2.4 closely follow the introduction given by Tardos and

Vazirani [97], Section 2.5 follows the discussion of computing the Nash equilibria by
Papadimitriou [85], and Section 2.6 follows Roughgarden and Tardos [92].

2.1 Informal Introduction via Examples

Instead of going directly for formal definitions of our games and related concepts, we
rather start with an informal introduction via few examples to understand the basics of
our subject.
Let us therefore begin with perhaps the most well-known example of such game—the

Prisoner’s Dilemma.

Example 2.1. (Prisoner’s Dilemma [97]) Two prisoners are in the prison for a crime
they committed and each one may either confess to the crime or deny the crime. If both
deny the crime, the trial will not be able to convict them and they will both serve a
short prison term (say 3 years). If only one of them confesses, his term will be reduced
to 1 year, because he will be used as a witness against the other prisoner, who will in
turn be sentenced to 10 years. If both prisoners confess, they will get a small break for
cooperating and will have to serve prison sentences of 6 years.
There are four possible outcomes depending on the choices made by each of the two

prisoners. We may summarise the costs incurred via the following matrix.

confess deny
confess (6, 6) (1, 10)
deny (10, 1) (3, 3)

Each prisoner has two possible strategies (choices). The entries of the matrix are the
costs incurred by the players in each situation. The first number is the number of years
in prison for the first prisoner and the second number for second prisoner. This matrix is
called a cost matrix.
There is only one stable solution of this game—when both prisoners confess. In the

other cases, there is always a way for at least one of the players to improve his payoff by
switching from “deny” to “confess”. Of course, the best outcome for both players is when
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both deny. However, this is not stable—anytime each of the players would be tempted to
betray and therefore serve less time in prison.

In this chapter we will be concerned with the situations where many participants
interact, and these cases are modelled by games that involve many players.

Example 2.2. (Pollution game [97]) The Pollution game is an extension of Prisoner’s
Dilemma for many players. We discuss the issues of multi-player games in the context of
pollution control. Assume there are n countries. Each country faces the choice of either
passing legislation to control pollution or not. Assume that pollution control has a cost of
10 for the country, but each country that pollutes adds 1 to the cost of all countries (say
the health cost). The cost of controlling pollution is considerably larger than the cost of
being socially irresponsible.
If k countries choose not to control pollution, then the cost incurred by each of these

countries is k. The cost incurred by the remaining n− k countries is k+10 each, because
they pay the increased cost for their own pollution control. The only stable solution of
this game is when no country controls pollution, which has cost n for each country. Note
that if they all had controlled pollution, the cost would be only 10 for each country.

So far we have seen only examples where there is a unique optimal selfish strategy
for each player, not depending on other players’ choices. Now we give example of game
where the players’ optimal selfish strategies depend on what the other players play.

Example 2.3. (Tragedy of the commons [97]) In the game Tragedy of the commons , n
players would like to have part of a shared resource, say a shared communication channel.
Each player wants to send information along this channel of certain maximum capacity,
say 1. Each player has an infinite set of strategies, the strategy of player i is to send
xi ∈ [0, 1] units of flow through the channel.
We assume that each player wants to have a large fraction of the bandwidth. However,

assume that the quality of the channel deteriorates with the total bandwidth used. Let
us describe the game in the following simple model, which assigns a payoff for each set of
strategies. If the total bandwidth

∑

j xj exceeds the channel capacity, all players get zero
payoff. If

∑

j xj < 1 then the payoff for player i is xi(1 −
∑

j xj). This model captures
what we want—the payoff for a player is bad if the resources are over-used, but increases
with his own share.
Let us now try to find stable strategies for a player. Let us concentrate on player

i and assume that t =
∑

j 6=i xj < 1 flow is sent by all other players. Now for player i,
sending x flow results in a payoff x(1− t− x). Using elementary calculus we get that the
optimal solution is x = (1 − t)/2. A set of strategies is stable if all players are playing
their optimal selfish strategies, given the strategies of all other players in the game. In
our game, this means that xi = (1−

∑

j 6=i xj)/2 for all i, which has a unique solution in
xi = 1/(n+ 1) for all i.
However, this solution is horrible, the total value of the solution is very low. The

payoff for player i is xi(1 −
∑

j 6=i xj) = 1/(n + 1)
2, and the sum of all players is then

n/(n + 1)2 ≈ 1/n. On the other hand, if the total bandwidth used is ∑i xi = 1/2 then
the total value is 1/4, which is roughly n/4 times bigger. Therefore, in this game the
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n players sharing the common resource overuse it so that the total value of the shared
resource decreases dramatically. It is thus similar to the Pollution game above.
In our next example we present a game with multiple stable outcomes. The game is

part of a broader family called “coordination games.” In coordination games two players
are choosing between two options and their goal is to choose the same, however, both
players have different preferences on the options.

Example 2.4. (Battle of the sexes [97]) Two players, a boy and a girl, are deciding
where to go in the evening. They both consider two options: going to theatre or going to
a pub. The boy prefers pub and the girl prefers theatre. However, hey both would like to
spend the evening together rather than separately. Here is the payoff matrix:

girl \ boy T P

T (8, 10) (1, 1)
P (2, 2) (10, 8)

The two solutions where the two players choose different events are not stable. In
each case, any player may improve his or her payoff by switching to the other option. The
two remaining options are both stable solutions, only one is slightly better for the girl
and the second is slightly better for the boy.
So far we considered only games with the outcomes stable in the sense that none of

players would like to individually deviate from such an outcome. Not all games have such
stable solution.

Example 2.5. (Matching pennies [97]) There are two players, each having a penny.
They choose from two strategies: heads (H) or tails (T ). The row player wins if the two
pennies match, while the column player wins if they do not match. The payoffs are given
by the following matrix:

H T

H (1,−1) (−1, 1)
T (−1, 1) (1,−1)

One can understand the game as that the row player is interested in reaching the
same value (agreement) with the column player, while the column player wants to disrupt
the agreements. It is easy to see that this game has no stable solution. Instead, it seems
best for the players to randomise in order to not get exploited by the strategy of the other
player.

2.2 Defining Games, Strategies, and Payoffs

So far, we have given examples and discussed costs, payoffs and strategies informally.
In this section we define the games formally. All previous examples were all one-shot
simultaneous move games, this means that all players simultaneously choose an action
from their set of possible strategies.
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2.2.1 Simultaneous Move Game

Our games consists of a set of n players, {1, 2, . . . , n}. For each player i we define his
set of possible strategies Si. During a gameplay, each player i chooses a strategy si ∈ Si.
By s = (s1, . . . , sn) we denote the vector of strategies (or strategy vector or strategy
profile) selected by the players, and by S = S1× · · · ×Sn we denote the set of all possible
combinations how players can pick strategies.
The strategy vector s ∈ S selected by all players determine the outcome for each

player. However, certain outcomes are better for some player than another. Thus, to
specify the game completely, for each player we define a preference ordering on these
outcomes by establishing a complete, transitive, reflexive binary relation Ri on the set of
all strategy vectors S. Given two elements s1, s2 ∈ S, this relation Ri for player i says
whether player i weakly prefers s1 or s2; we say that i weakly prefers s1 to s2 if i either
prefers s1 to s2 or considers them to be equally good.
In many cases we may proceed by much simpler way—for each player, we assign a

value to each outcome. For some games it is natural to think of the values as the payoffs
(or utilities) to players, and for some games as the costs incurred by players. We denote
these functions by ui : S → R and ci : S → R, respectively. (Note that costs and payoffs
can be used interchangeably, as ui(s) = −ci(s).) Sometimes, it is more convenient to use
a different notation: we denote by uS(i) the payoff of the player i for the strategy vector
S, and sometimes we will omit the symbol S (thus writing only u(i)) on places, where no
misunderstanding may occur.
Observe, that we have defined the payoff to be the function of all strategies chosen by

all players (the strategy vector). This is what makes a game to be a game, as the payoff
depends not only on player’s own strategy but also on the strategies of all other players.

2.2.2 Standard Form Games

When exactly specifying a game, one option is to explicitly list all possible strategies and
the preferences (or utilities or costs) of all players. This way of specification is called the
standard form or matrix form of a game. We have already used this form in Section 2.1.
For two-player games with players having a small number of strategies, this form is very
convenient.
However, for most games we consider, this representation is exponential sized in the

natural description of the game (or even infinite). Most our games have many players
(and there are also games with infinitely many players). Also, the players may have
exponentially many strategies in terms of the size of the game.
Sometimes we may avoid these (super)exponential descriptions. For example, the

payoff may depend on the number of players selecting a given strategy, rather than the
exact subset. Another hope for compact representation is when the payoff of certain
player depends on the strategies of a few other players, not all participants, for example
only local neighbours, and so on.

22



2.3 Solution Concepts

Now we present basic solution concepts that can be used to study our games. We will
define the notion of stability that we already informally used in the previous examples in
Section 2.1.

2.3.1 Dominant Strategy Solution

If we look at Prisoner’s Dilemma (Example 2.1) and the Pollution Game (Example 2.2),
we discover the following shared property: each player has a unique best strategy, which
does not depend on the strategies selected by other players. In these examples, this is
called a dominant strategy solution. For a formal definition, let us consider a strategy
vector s ∈ S, let si be the strategy of player i and let s−i be the (n − 1)-dimensional
vector of strategies played by other players. Instead of ui(s) (the utility of player i), we
sometimes use the notation ui(si, s−i). A strategy vector s ∈ S is a dominant strategy
solution, if for each player i and each strategy vector s′ ∈ S, we have

ui(si, s
′
−i) ≥ ui(s

′
i, s

′
−i).

Let us note that a dominant strategy solution may not give an optimal payoff to any
of the players. Having a single dominant strategy for each player is an extremely strong
requirement and few games satisfy it.

2.3.2 Pure Strategy Nash Equilibrium

Games rarely posses dominant strategy solutions. We therefore need to develop a less
strict solution concept. We seek a solution where individual players act according to
their incentives, greedily maximising their payoff. we capture by the notion of a Nash
equilibrium. This concept was introduced by Nash [72] and has quickly attained the status
of the central solution concept in game theory.
A strategy vector s ∈ S is said to be a Nash equilibrium if for all players i and each

alternate strategy s′i ∈ Si we have

ui(si, s−i) ≥ ui(s
′
i, s−i).

In another words, no player i can improve his payoff by changing his strategy from si
to s′i, assuming that all other players stick to the strategies they have chosen in s. This
means once the players reach Nash equilibria, the players are motivated by their payoffs
to keep their current strategy, and the game reaches a stable state.
A dominant strategy solution is a Nash equilibrium. A strictly dominating solution

(which means that switching to it always strictly improves the outcome) is also the unique
Nash equilibrium. However in general, Nash equilibria are not unique. We also already
know that Nash equilibria may not be optimal for the players, since dominant strategy
solutions are Nash equilibria, and we have already seen examples in Section 2.1 where
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this happens. In games with multiple Nash equilibria, different equilibria can have vastly
different payoffs for the players.

The Nash equilibria is an extremely useful concept, however, suppose we want some
prediction of what players will do. Then, which equilibrium will the players play if there
are multiple equilibria possible? And which equilibrium they should coordinate on when
they play independently? However, Nash equilibrium is a stable state of the game. Once
reached, the players do not want to individually leave it.

2.3.3 Mixed Strategy Nash Equilibria

We call the Nash equilibria defined in Section 2.3.2 pure strategy Nash equilibria, because
players deterministically choose their strategies. However, there are games without pure
strategy Nash equilibria, For example the Matching Pennies game (Example 2.5). But, if
we allow the players to randomise their strategies, and in this game the players flip a coin
and pick their two strategies with probability 1/2, then we in some sense obtain a stable
solution. In this case the expected payoff of each player is 0, and no player can improve
it by choosing a different probability distribution over strategies.

If the players are allowed to select strategies randomly, we have to define how they
evaluate the random outcome. In the notion of mixed Nash equilibrium, we will assume
that players are risk-neutral; this means they play to maximise the expected payoff.

When formally defining randomised strategies, we let each player set a probability
distribution over his set of possible strategies. We call this distribution mixed strategy.
We assume that players independently select strategies using the probability distribution.

In 1951, John Nash [72] proved the following fundamental theorem.

Theorem 2.6. (Nash [72]) Any game with a finite set of players and finite set of strate-
gies has a Nash equilibrium of mixed strategies.

Note that this theorem holds also for the two player games, and also for the important
special case of two-player zero-sum games, this means games in which the gain of one
players is exactly the loss of the other player.
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2.3.4 Games with no Nash equilibria

The assumptions in Theorem 2.6 about the finite set of players and finite strategy sets are
necessary. There exist games with an infinite number of players, or games with a finite
number of players who have an infinite strategy sets, that do not have Nash equilibria.
Let us describe the following simple example called Pricing game.

Example 2.7. (Pricing game [97]) Two sellers sell a product to three buyers, as illus-
trated in Figure 2.1.

α β

A B C

pα pβ

sellers

buyers

Fig. 2.1. Sellers 1 and 2 are selling identical product to buyers A,B,C.

Each buyer wants to buy one unit of the product. Buyers A and C have access to
only one seller, α and β respectively. Buyer B can buy the product from any of the two
sellers. All three buyers have maximum value 1 for the item, which means they will not
buy the product if the price is above 1. The sellers play the following pricing game: they
each propose a price pi in the interval [0, 1]. Buyers A and C buy from the sellers α and
β respectively. On the other hand, B buys from seller α. The income of a seller is the
sum of the prices at which they sold goods.
Now, one possible strategy for each seller is to set a price pi = 1 and guarantee an

income of 1 from the buyer who does not have a choice. Alternatively, they can also try to
compete for buyer B. By the rules of the game they are not allowed to price-discriminate,
i.e., they cannot sell the product to the two buyers at different prices. Here, each player
has uncountably many available strategies, i.e., all numbers in interval [0, 1]. We show
that this game does not have a pure Nash equilibrium, and it turns out that it does not
have even a mixed Nash equilibrium.
We show that no pure strategy equilibrium exists: if pα > 1/2, player β will slightly

lower the price, set it at 1/2 < pβ < pα, and get income of more than 1. Then in turn
player α will underpay player β, and this repeats. So in an equilibrium, we cannot have
pα > 1/2. If pα ≤ 1/2, the (unique) best response for player β is to set pβ = 1. But then
player α will increase pα, so pα ≤ 1/2 also does not lead to an equilibrium. To argue that
there is no mixed strategy equilibrium is more complicated and we skip it in this example.
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2.3.5 Strong Nash Equilibrium

So far we discussed only selfish games where the players are not allowed to cooperate.
Perhaps another realistic scenario is when players may form coalitions in order to max-
imise their income. The concept of strong Nash equilibrium was introduced in 1974 by
Aumann [5].
We say that a vector of strategies forms a strong Nash equilibrium if no subset A

of players has a way to simultaneously change their strategies, improving each of the
participant’s utility. More formally, for a strategy vector s and a set of players A let
sA denote the vector of strategies of the players in A and let s−A denote the vector of
strategies of the players not in A. We will also use ui(sA, s−A) for the utility for player i
in the strategy s. We say that in a strategy vector s of a subset A of players has a joint
deviation if there are alternate strategies s′i ∈ Si for i ∈ A forming a vector sA, such that
ui(s) ≤ ui(s′A, s−A) for all i ∈ A, and for at least one player in A the inequality is strict.
A strategy vector s is strong Nash equilibrium if no subset A has a joint deviation.
Note that the concept of strong Nash is an extremely stable state of a game. However,

very few games have this equilibria.

2.4 Finding Equilibria

Given a game, the basic questions are: Does it attain a Nash equilibria? If yes, then how
does such equilibria look like? And how can we find it and compute it?
In this section we discuss two closely related issues: how easy or how hard is to find an

equilibrium, and does “natural gameplay” lead the players to an equilibrium? Of course,
the ideal situation is that the equilibrium is computationally easy to find, and also easy
to reach by players playing independently.
We first prove, that in two-player zero-sum games it is relatively easy to compute a

Nash equilibria. However, in the general case we are not that lucky—in Section 2.5 we
discuss that the computational complexity of finding an equilibria is nontrivial.

2.4.1 Two-person Zero-sum Games

A two-player game is a zero-sum game if the sum of the payoffs of the two players is zero
for any choice of strategies. Therefore, for such games it is sufficient to define the payoffs
for only one player, say the row player. Let M be the matrix of these payoffs.
By Theorem 2.6 this game always has a mixed strategy Nash equilibrium. We show

how to find an equilibrium using linear programming. Let r∗ and c∗ be the probability
distribution for the row and column players, respectively, that form a Nash equilibrium.
Then the expected value paid by the column player to the row player is v∗ = r∗Mc∗.
In a Nash equilibrium the players cannot improve their payoff by deviating even if

they know the strategies played by the other players. Let us now consider some strategy
r for the row player. The expected payoffs for different strategies of the column player
are described by the vector rM . The column players wants to minimise his loss and play
strategies that correspond to the minimum entries in rM . So the best strategy for the
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row player is to maximise this minimum value; let us denote this value by vr. We may
find this best strategy by the following linear program:

vr = max v

r ≥ 0
∑

i

ri = 1

(rM)j ≥ v for all j

(By (rM)j we denote the j-th coordinate of the vector rM .) The value vr is the maximum
values of row player that he can to win by playing a mixed strategy r.
Since the row player can guarantee to win vr, he must win at least vr in any equilib-

rium, and thus vr ≤ v∗. However, the column player knows r, so the best strategy for
him is to select the columns with minimum value r∗A. From this we have v∗ ≤ vr, and
therefore v∗ = vr.
Analogously, we may compute the value vc, i.e., the minimum loss the column player

can guarantee by playing a mixed strategy c:

vc = min v

c ≥ 0
∑

j

cj = 1

(Mc)i ≤ v for all i

Analogously, we can argue that v∗ = vc. Therefore, we get that vc = vr, the row players’
maximum guaranteed win is the same as the column players’ minimum guaranteed loss.
We show that the pair r and c of solutions of these linear programs forms a Nash equilib-
rium. If the players play these strategies, then the row player cannot increase his income,
because the column player is guaranteed by his strategy not to lose more than vc. Also,
the column player cannot decrease his loss, as the row player is guaranteed to win vr by
his strategy. This mean that r and c form an equilibrium.
We also note that the two linear program above are duals of each other. Linear

programming duality also implies that the two values vr and vc are equal.
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2.4.2 Best Response in Games

For a solution concept, the following property (stronger than only being polynomial-time
computable) is often wanted: the players are able to quickly reach the equilibrium (or at
least converge to an equilibrium in the limit) using the “natural” game playing tactics.
We call this tactic a dynamic.
Let us now describe the best response tactic, which is a very natural one. Consider

a strategy vector s and a player i, who is thus receiving the utility ui(s). We say that a
change from strategy si to s′i is an improving response for player i if ui(s

′
i, s−i) > ui(s)

and best response if s′i maximises the players’ utility maxs′i∈Si
ui(s′i, s−i) over all possible

strategies. We then playing a game by repeatedly allowing some player to make an
improving or a best response move.
For example, in the Prisoner’s Dilemma (Example 2.1), a Nash equilibrium is reached

in a few steps using the best response dynamic. In the Tragedy of the Commons (Exam-
ple 2.3) the players will not reach the equilibrium in a finite time, but the strategy vector
will converge to the equilibrium. In Matching Pennies (Example 2.5), the gameplay will
cycle, because the players will cycle through the four possible strategy vectors, if they
are alternately taking best response moves. While this gameplay does not reach a pure
equilibrium (as none exists), in some sense we can still say that best response converges
to the equilibrium: the average payoff for the two players converges to 0, which is the
payoff at equilibrium; and even the frequencies at which the four possible strategy vectors
are played converge to the probabilities in equilibrium.
In most games, the best response behaviour is not strong enough to guarantee con-

vergence.

2.5 Computing Nash equilibria

By the theorem of Nash (Theorem 2.6), we already know that every finite game has a
mixed Nash equilibrium. We may ask an important question: Is there an efficient al-
gorithm for finding this equilibrium? Efficient computability is an important modelling
requirement for every solution concept. If an equilibrium concept is not efficiently com-
putable, the usability as a prediction tool of the behaviour of rational players is very
limited. In this section, we explore computing Nash equilibria in general case from the
point of view of the computational complexity theory.
We define Nash as the following computational problem: Given a game in strategic

form, find a Nash equilibrium. Since Nash needs the computation of a real-valued distri-
bution for each player, it seems to be a quest in continuous mathematics. However, we
shall see that the task is essentially combinatorial.
The NP-completeness, the most common way of establishing complexity of various

problems, does not seem to be the right tool for studying the complexity of Nash. Instead,
we will introduce the so-called PPAD-completeness. Nash is PPAD-complete even for two-
player games in standard form.
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2.5.1 The class PPAD

The class PPAD was first defined and studied by Papadimitriou [84]. Let us consider the
following setting.

• We are given a directed graph defined on an exponentially large set of vertices
(labelled by strings).

• The in-degree and out-degree of each vertex is at most one.
• Given a string, it is computationally easy to (a) tell if it is a vertex of the graph,
and if so to (b) find its neighbours (one or two of them), and to (c) tell which one
is the predecessor and/or which one is the successor.

• There is one known source (vertex with no incoming edges). We call it the “stan-
dard source”.

• The solution of the problem is any sink of the graph (a vertex with no outgoing
edges), or any source other than the standard one.

PPAD is the class of all problems, whose solution space can be set up as the set of
all sinks and all nonstandard sources in a directed graph with the properties displayed
above.
Let us now define the class PPAD formally, according to [21]. A search problem S is a

set of inputs IS ⊆ Σ∗ on some alphabet Σ such that for each x ∈ IS there is an associated
set of solutions Sx ⊆ Σ|x|k for some integer k, such that for each x ∈ IS and y ∈ Σ|x|k

whether y ∈ Sx is decidable in polynomial time. This is precisely NP with added emphasis
on finding a witness. A search problem is total if Sx 6= ∅ for all x ∈ IS.
Formally, we shall define PPAD as the class of all total search problems polynomial-

time reducible to the following problem:
end of the line: Given two circuits S and P , each with n input bits and n output

bits, such that P (0n) = 0n 6= S(0n), find an input x ∈ {0, 1}n such that P (S(x)) 6= x or
S(P (x)) 6= x 6= 0n.
Intuitively, the previous problem creates a directed graph GS,P with vertex set {0, 1}n

and an edge from x to y whenever both y = S(x) and x = P (y); S and P stand for
“successor candidate” and “predecessor candidate”. All vertices in GS,P have in-degree
and out-degree at most one, and there is at least one source, namely 0n, so there must
be a sink. We seek either a sink, or a source other than 0n. Notice that in this problem
a sink or a source other than 0n is sought.
Let us consider the class NP. Here, we have the notion of NP-completeness that

helps characterise the complexity of difficult problems in NP, even there is no proof
a that P 6= NP. An analogous approach exists for the class PPAD. We can advance
our understanding of the complexity of a problem such as Nash by proving it PPAD-
complete—meaning that all other problems in PPAD reduce to it. Such a result implies
that we could solve the particular problem efficiently if and only if all problems in PPAD
can be thus solved.
We may now formulate the following theorem, which we state without proof.

Theorem 2.8. (Daskalakis, Goldberg, Papadimitriou [21]) Nash is PPAD-complete prob-
lem.
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Why should we believe that PPAD contains hard problems? As we do not know
whether P 6= NP, we cannot be sure that this is the case. If P = NP, then P = PPAD as
PPAD ⊆ NP. However, if P 6= NP, then still the PPAD-complete problems may be easily
solvable. Several experts believe ([21]) that the reason why PPAD-complete problems are
hard is similar to the reason why people believe that NP-complete problems are hard
(but only a little bit weaker reason). This means, researchers have tried hard for a long
time to develop efficient algorithms problems in PPAD, and failed. One example of these
problems is Brouwer: Given a continuous function from some compact and convex set to
itself, find a fixed point.

Theorem 2.9. (Daskalakis, Goldberg, Papadimitriou [21]) Brouwer is PPAD-complete
problem.

In the light of the previous discussion, we now see that the task of deciding the
existence of, or even efficiently computing a Nash equilibria is a highly complicated task
in the general, and we should expect troubles in proving the existence of equilibria in
nontrivial games.

2.6 Algorithmic Game Theory

Combinatorial optimisation has for several decades dictated the landscape of algorithm
design. The extent of its impact can be appreciated by the fact that almost by default
the main judging criterion of a polynomial-time algorithmic solution is the approximation
guarantee it offers, regardless of other parameters that may affect the applicability of the
solution in practice (simplicity of implementation, robustness to input errors, etc.)
One such limiting assumption that is inherent in algorithm design is the existence of

an omnipotent centralised authority that has access to all the relevant information and
has the power to enforce any solution of its choice. Over the last decade, the soundness
of such assumptions has increasingly come into question following a number of paradigm-
shifting socioeconomic events such as the rapid rise of the Internet, the painful realization
of the extent of inter-connectivity of the global economy as well as the emergence of global
sustainability concerns.
Algorithmic game theory strives for global optimisation in such decentralised settings

that consist of self-interested individuals. In these more challenging scenarios, tractability
can be compromised along two largely independent axes: due to individual incentive issues
or due to computability issues.
The competition between individual incentives and social optimality is of fundamental

concern in distributed systems as it can lead to highly inefficient outcomes. The price of
anarchy literature Koutsoupias and Papadimitriou [61], [62] examines exactly what are
the worst case repercussions of such a policy. Formally, price of anarchy is defined as
the maximal ratio between the social cost of a Nash equilibrium and that of the global
optimal configuration. Intuitively, a low price of anarchy implies that upon converging to
a socially stable outcome, the quality of the acquired solution is almost optimal from a
central optimisation perspective.
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2.6.1 The Inefficiency of Equilibria

In Sections 2.1 and 2.3 we have already seen examples demonstrating that the outcome
of rational behaviour by self-interested players can be inferior to a centrally designed
outcome. In this section we discuss the question: how much?
Let us first again look at he Prisoner’s Dilemma (Example 2.1). This game has a

unique equilibria and when players enter this equilibria, they both pay the cost of 6.
However, when cooperating, they both pay only 3, there is another outcome in which all
of the players achieve a smaller cost, so we see that the equilibrium is inefficient for the
players. We would like to somehow formalise this inefficiency. Here the difference be-
tween “good” and “bad” outcome is clearly visible thanks to the cost (measured in years)
assigned to the players. However, the same happens when the payoffs (or costs) are an
abstract quantities that expresses the player’s preferences between different outcomes. In
such applications, we may proceed quantitatively by imposing a specific objective func-
tion, defined on the outcomes of the game, that numerically expresses the “social good”
or “social cost” of an outcome. Let us denote by c(p) the cost of player p in a certain
strategy profile. There are two most frequently used objective functions: the utilitarian
functions, defined as

∑

p c(p) (sum of the players’ costs), and egalitarian function, defined
as maxp c(p) (the maximum player cost). In the Prisoner’s Dilemma, the Nash equilibrium
does not minimise either of these objective functions.
By introducing an objective function we may quantify the inefficiency of equilibria.

Certain outcomes of a game may thus become optimal or approximately optimal. The
reason for introducing this machinery is to understand when the equilibria are guaran-
teed to approximately optimise natural objective functions. This means that the selfish
behaviour of players does not lead to severe consequences, and therefore it is not neces-
sary to impose additional control over players’ actions. In particular, these guarantees are
especially useful in applications involving the Internet, where implementing an optimal
solution can be impossible or unusable expensive.

2.6.2 Measures of Inefficiency

In the algorithmic game theory literature (see eg. [80] for good survey), several measures
of the inefficiency of the equilibria of a game have been considered. To precisely specify
such measure, we must first solve these issues:

(1) How do we express the players’ payoffs or costs?
(2) What objective function should we use?
(3) How should we define “approximately optimal”?
(4) How should we define an “equilibrium”?
(5) How should we choose between multiple equilibria (if there are any)?

The answer to the first issue will be some concrete payoff that players seek to maximise
(such as money income), or a cost that players aim to minimise (such as years served in
prison).
As for the second issue, we focus primarily on the utilitarian objective function (recall
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that here the goal is to maximise the sum of players’ payoffs or minimise the sum of
players’ costs). The outcome of a game is called optimal if it optimises the chosen ob-
jective function. For example, in the Prisoner’s Dilemma (Example 2.1), the coordinated
outcome when both players deny their involvement is optimal for both the utilitarian and
egalitarian objective functions. In principle, we can only expect the outcome of selfish
behaviour to approximate an optimal outcome when the objective function is related to
the players’ objectives.
In the third issue, we compute the factor to which a given outcome approximates

an optimal outcome according as the ratio of the objective function values of the given
outcome and the optimal outcome. We consider only nonnegative objective functions,
so this ratio is always nonnegative. (As a convention, we interpret the ratio c/0 as 1 if
c = 0 and as +∞ if c > 0.) A value close to 1 thus indicates that the given outcome is
approximately optimal. For example, in the Prisoner’s Dilemma, the sum of the players’
costs in the Nash equilibrium is 12 (both players confess) and the minimum sum of costs
is 6 (both players deny). The ratio for the equilibrium outcome is thus 2.
We often study Nash equilibria and games where the set of players or strategies is

not finite. In some games, relatively weak assumptions lead the players into reaching an
equilibrium outcome in a reasonable amount of time. However, there also exists games
that do not converge so nicely. In these cases, it seems useful to consider not only Nash
equilibria but also a set of unstable outcomes.
Note that given an objective function and an equilibrium concept, a game may have

many different equilibria with different objective function values. Here it is not clear
which equilibrium should be compared to an optimal outcome.

2.6.3 Price of Anarchy and Price of Stability

The most popular measure of the inefficiency of equilibria is the price of anarchy (PoA).
It solves the issue of multiple equilibria by a worst-case approach. Let v : S → R+0 be
the objective function, let OPT denote the optimal outcome. More precisely, the price of
anarchy of a game is defined as

PoA = max
e is N.E.

f(e)

OPT

for the case when we are minimising the objective function, and analogously for the
maximisation case. Note that the price of anarchy of a game is defined with respect to a
choice of objective function and a choice of equilibrium concept. However, in this thesis
we will use only Nash equilibria.
The most interesting games for us are those in which the price of anarchy is close to 1.

In such games, all equilibria are good approximations of an optimal outcome. From one
point of view, the benefit provided by central authority control over the players’ actions is
reasonably small. From another point of view, the anarchy setting still attains a similar
quality outcome as in the central authority setting.
Suppose we have a game with multiple equilibria and a large price of anarchy, which

is caused only by one inefficient equilibria while the other are good. The price of stability
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(PoS) is a measure of inefficiency designed to distinguish between games in which all
equilibria are inefficient and games in which only some equilibrium is inefficient. Defined
formally, the price of stability of a game is

PoS = min
e is N.E.

f(e)

OPT

for the case when we are minimising the objective function, and analogously for the
maximisation case.
For a game with multiple equilibria, its price of stability is at least as close to 1 as

its price of anarchy, and it can be much closer. The price of stability thus provides a
weaker guarantee than a bound on the price of anarchy. So why to study the price of
stability? First reason is, that sometimes it is possible to find a nontrivial bound only
for the price of stability and not for the price of anarchy. Second reason is, the price of
stability has a natural interpretation in many network games—imagine that the outcome
is initially designed by a central authority for a subsequent use by selfish players. The best
equilibrium is then a natural solution to use. Moreover, in many networking applications
the players are not independent; often they interact with an underlying protocol that
essentially proposes a collective solution to all participants, who can either accept it or
refuse it. The price of stability then measures the benefit of such protocols. The price
of stability is usually studied only for equilibrium concepts without randomisation, like
pure-strategy Nash equilibria. Since a mixed-strategy Nash equilibrium might randomise
only over outcomes that are not (pure-strategy) Nash equilibria, it is not clear how to
interpret it as a single proposed outcome for future use by selfish players. The price of
stability thus quantifies the necessary degradation in solution quality caused by imposing
the game-theoretic constraint of stability.
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3. Covering Games Outline

Unfortunately, in many cases of interesting games the price of anarchy is prohibitively
high. Vertex cover, due to its prominent position within combinatorial optimisation, has
been studied in the context of game theory from different approaches, all of which so far
have shared this limiting characteristic.
The goal of this chapter is to sketch the past effort of other authors to describe a game

on graphs, that converges to a vertex cover (or general set cover) of a good quality, and
to present similar games, ideas, generalisations and related issues, that may be helpful in
our effort to design a new “good” class of covering games with a low price of anarchy.
A “good quality game” has to fulfil certain requirements. Namely:

(1) The game should always have a Nash equilibrium.
(2) The price of anarchy of the game is close to 1.
(3) If we cannot attain small price of anarchy, then we would like to have at least small
price of stability.

(4) We would like to describe a dynamic as simple as possible, that (quickly) converges
to some Nash equilibrium (with small objective value if possible).

However, in order to understand the issues of designing a covering game, we have to
first understand the concepts of approximating the vertex and set cover in the standard
environment. We present on overview of the most important facts in Section 3.1.
As we will see in Sections 3.2–3.6, the requirements on a good quality games were

not very well met in the past research. However, this outline of past results, more or less
related to the vertex/set cover games, still presents an extremely useful list of ideas and
concepts, that is helpful in the effort of designing a new class of covering games.
We present an overview of results and main ideas from the following papers:

[4] Anshelevich, E., Dasgupta, A., Tardos, É., Wexler, T.: Near-optimal network de-
sign with selfish agents, Theory of Computing 4 (2008), 1, pp. 77–109.

[6] Balcan, M. F., Krehbiel, S., Piliouras, G., Shin, J.: Near Optimality in Covering
and Packing Games by Exposing Global Information, arXiv preprint 1109.3606
(2011).

[16] Buchbinder, N., Lewin-Eytan, L., Naor, J., Orda, A.: Non-cooperative cost sharing
games via subsidies, Algorithmic Game Theory (2008), pp. 337–349.

[18] Cardinal, J., Hoefer, M.: Selfish service installation in networks, Internet and
Network Economics (2006), pp. 174–185.

[19] Cardinal, J., Hoefer, M.: Non-cooperative facility location and covering games,
Theoretical Computer Science 411 (2010), 16-18, pp. 1855–1876.

[28] Escoffier, B., Gourves, L., Monnot, J.: On the Impact of Local Taxes in a Set Cover
Game, Structural Information and Communication Complexity 6058 (SIROCCO
2010), pp. 2–13.

In the following sections, we try to use as much as possible the terminology from the
original papers.
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3.1 Vertex Cover, Set Cover and Approximation

The vertex cover and its generalisations (like set cover) are classical optimisation problem
in computer science and is a typical example of an NP-hard optimisation problem that has
an approximation algorithm. Its decision version, the vertex cover problem, is a classical
NP-complete problem in computational complexity theory (see eg. [83]). In this section,
we outline basic facts and results about vertex cover and similar problem, mostly related
to approximation of these problems.
In Section 3.1 we closely follow the book by Williamson and Shmoys [99].

3.1.1 Definitions

In the vertex cover problem, we are given an undirected graph G = (V,E) and a nonneg-
ative weight wi ≥ 0 for each vertex i ∈ V . The goal is to find a minimum-weight subset
of vertices C ⊆ V such that for each edge ({i, j} ∈ E, either i ∈ C of j ∈ C. If wj = 1 for
each vertex j, the problem is called unweighted vertex cover problem. The vertex cover
problem can be further generalised to the set cover problem.
In the set cover problem, we are given a ground set of elements E = {e1, . . . , en},

some subsets of this ground set S1, . . . , Sm where each Sj ⊆ E, and a nonnegative weight
wi ≥ 0 for each Si. The goal is to find a minimum-weight collection of subsets that covers
all of E. That is, we want to find an I ⊆ {1, . . . ,m} that minimises ∑i∈I wi subject
to ∪i∈ISi = E. If wj = 1 for each subset j, the problem is called unweighted set cover
problem.
To see that the vertex cover problem is a special case of the set cover problem, for

any instance of the vertex cover problem, create an instance of the set cover problem in
which the ground set is the set of edges, and a subset Si of weight wi is created for each
vertex i ∈ V containing the edges incident to i. It is easy to see that for any vertex cover
C, there is a set cover I = C of the same weight, and vice versa.
From the complexity point of view, the following well-known fact holds (see eg. [83]).

Theorem 3.1. ([83]) The set cover problem and vertex cover problem are NP-complete.

Therefore, if we cannot solve this problem efficiently (unless P = NP), one may thus
at least try to design efficient approximation algorithm, this means, design algorithms
that gives at most f -times worse solution than the optimal for a certain factor f . More
precisely, an α-approximation algorithm for an optimisation problem is a polynomial-time
algorithm that for all instances of the problem produces a solution whose value is within
a factor α of the value of an optimal solution.
For example, the following simple algorithm yields a 2-approximation of the un-

weighted vertex cover problem: find a maximal (under inclusion) matching M of the
graph and include both endpoints of all edges in M into the cover C. Observe, that C in-
deed is a feasible vertex cover as it cannot be extended by an unmatched edge. To see the
2-approximation, consider an optimal vertex cover O. If O ⊆ C, then clearly |O| ≥ |C|/2
as O must cover at least each edge from the matching by one vertex. If O 6⊆ C, observe
that similarly |C|/2 ≤ |O ∩ C| ≤ |O|.
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3.1.2 Linear Programming

The theory of linear programming (LP) plays an important role in the combinatorial
optimisation. For the introduction to LP and related issues see eg. [68]. We describe how
to write vertex cover (and set cover) as a linear program.

A linear program is formulated by some number of decision variables that denote the
decisions that needs to be made. These variables are constrained by a number of linear
inequalities. An assignment of reals to the variables satisfying the constraints is called
feasible solution. For the set cover problem, we need to decide which subsets Si to use
in the solution, so we introduce a decision variable xi for each Si. We would like to have
xi = 1 if Si is included in the solution, and xi = 0 otherwise. We therefore introduce
constraints xi ≤ 1 and xi ≥ 0 for every Si. A feasible solution does not guarantee that
xi ∈ {0, 1}, we thus formulate this problem as an integer program, where every solution
must be integral.

As we are solving set cover problem, we introduce additional constraints: to make
sure every element ej is covered, at least one Si containing ei must be selected. We ensure
it with

∑

i: ej∈Si

xj ≥ 1,

for each element ej.

Finally, linear and integer programs are defined by a linear function of the decision
variables (called the objective function), which is to be either maximised or minimised. A
feasible solution with maximum (minimum) possible objective function is called optimal
solution. The value of the objective function for a certain solution is called value of the
solution and value of the objective function for an optimal solution is called values of the
linear (integer) program. We solve the linear program if we find an optimal solution.

For the variables and constraints introduced above, we set the objective function to
∑m

i=1wixi and we wish to minimise it, at this corresponds to the total weight of the
selected set cover.

We thus write the integer program that exactly models the set cover problem in the
following compact form:

min
m∑

i=1

wixi

∑

i: ej∈Si

xj ≥ 1, j = 1, . . . , n

xi ∈ {0, 1}, i = 1, . . . ,m. (3.1)

In general, integer program cannot be solved in polynomial time, for example because
set cover is NP-hard. On the other hand, linear program are polynomial-time solvable.
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Let us consider the following linear program related to the previous integer program:

min
m∑

i=1

wixi

∑

i: ej∈Si

xj ≥ 1, j = 1, . . . , n

xi ≥ 0, i = 1, . . . ,m. (3.2)

Note that the additional constraints xi ≤ 1 are redundant—in an optimal solution we
can freely reduce every xi > 1 to xi = 1. The linear program (3.2) is a relaxation of the
original integer program (3.1). This means, every feasible solution of (3.1) is feasible for
(3.2) and has the same value in both programs. Let us denote by Z∗

L the optimum value
of (3.2) and Z∗

I the optimum value of (3.1). Therefore, any optimal solution OPT to the
linear program has values Z∗

L ≤ Z∗
I = OPT, since the the linear program finds a feasible

solution of lowest possible values.
We will further describe how to use the polynomial-time solvable relaxation of the set

cover problem to obtain an approximation algorithm. The fractional solution of the linear
program can be rounded to a solution of the integer program of value that lies within
some factor f of the value of the linear program Z∗

L. Therefore, the integer solution is at
most f -times worse the optimal solution of the problem.

3.1.3 Deterministic Rounding Algorithm

Let us consider the following algorithm to obtain a solution of the set cover problem. Let
x∗ be the optimal solution of the LP (3.2). We include subset Si in our solution if and
only if x∗i ≥ 1/f , where f is the maximum number of sets in which any element appears.
More formally, let fj = |{i; ej ∈ Si}| for j = 1, . . . , n, then f = maxj=1,...,n fj. Let I be
the indices i of the subsets in this solution. What we essentially do here is that we round
the fractional solution x∗ to an integer solution x̂ by setting

x̂j =

{
1 if x∗i ≥ 1/f,
0 otherwise.

One may easily prove that the collection of subsets Si, i ∈ I, is a set cover.
This rounding procedure yields an f -approximation algorithm for the set cover prob-

lem (see [99]). In the special case of the vertex cover problem, fj = 2 for each vertex
j ∈ V , thus the rounding algorithm produces a 2-approximation algorithm for the vertex
cover problem.
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3.1.4 Rounding a Dual Solution

Linear programming duality (see eg. [68]) is a powerful technique and we will use it to
derive another approximation algorithm for the set cover.
Suppose that each element ej is charged some price yj ≥ 0 for being covered by some

subset from the set cover. We would like to capture the fact that ej is covered by a
low-weight subset by requiring a lower payment, and by a high-weight subset by requiring
a higher payment; moreover, the sum of all prices of elements in a subset Si cannot be
more than the weight of the set. For each subset Si we thus impose the following limit
on the prices: ∑

j: ej∈Si

yj ≤ wi.

One may find the highest total price that the elements can be charged by the following
linear program:

max
n∑

j=1

yj

∑

j: ej∈Si

yj ≤ wi, i = 1, . . . ,m

yj ≥ 0, j = 1, . . . , n. (3.3)

This linear program is the dual linear program of the primal linear program (3.2). The
dual linear program have certain important properties, for example ([68]), any feasible
solution to the dual linear program has a value less or equal than any feasible solution to
the primal linear program. More precisely,

m∑

i=1

wixi ≥
n∑

j=1

yj.

In particular, for any feasible y,
∑n

j=1 yj ≤ Z∗
L, which is called the weak duality property

of linear programs. Since Z∗
L ≤ OPT, we have that for any feasible y, ∑n

j=1 yj ≤ OPT.
There is also the strong duality property: if both programs have feasible solutions, their
optimal values are equal.
Therefore, if x∗ is an optimal solution to (3.2), and y∗ is an optimal solution to (3.3),

then
m∑

i=1

wix
∗
i =

n∑

j=1

y∗i .

The solution of the dual linear program can be used to derive good approximation
algorithm. Let y∗ be an optimal solution to the dual LP (3.3). Consider the solution
where we choose all subsets for which the corresponding dual inequality is tight, which
means we have equality for subset Si and

∑

j: ej∈Si
y∗j = wi. Then, it is possible to prove

that this collection of subsets is a set cover, and the following theorem holds. This algorith
is called dual rounding algorithm. The dual rounding algorithm is an f -approximation
algorithm for the set cover problem (see [99]).
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3.1.5 The Primal-Dual Method

The algorithms for approximating set cover presented so far had a disadvantage: they re-
quired solving a linear program. There are generic LP solving polynomial-time algorithms,
but we will describe an algorithm tailored especially for the set cover problem.
The basic idea is the following: Instead of actually solving the dual LP to the optimal

solution, we construct a feasible dual solution with the same properties. In our case, this
approach will be much faster than fully solving the dual LP.
The primal-dual algorithm follows.

(1) Let y := 0 and I := ∅.
(2) While there exists some ej /∈

⋃

i∈I Si, repeat:
(i) Increase the dual variable yj until there is some ℓ with ej ∈ Sℓ such that

∑

i: ei∈Sℓ
yi = wℓ.

(ii) Let I := I ∪ {ℓ}.
This primal-dual algorithm is an f -approximation algorithm for the set cover problem

(see [99]).
In general, primal-dual algorithms start with a dual feasible solution, and use dual

information to infer a primal, possibly infeasible, solution.

3.1.6 A Greedy Algorithm

So far we presented several techniques, all leading to the same results: an f -approximation
algorithm. In this section we show an algorithm attaining a significantly better approx-
imation ratio than f . The algorithm will be greedy, which means each decision is made
to optimise only that particular decision, even though this only locally optimal decisions
might not lead to a globally optimal solution. However, greedy algorithms are usually
fast and very easy to implement.
The greedy algorithm for the set cover problem follows.

(1) Let I := ∅.
(2) For each i, let Ŝi := Si.
(3) While I is not a set cover, repeat:

(i) Let ℓ := argmini: Ŝi 6=∅wi/|Ŝj|.
(ii) Let I := I ∪ {ℓ}.
(iii) For each i, let Ŝi := Ŝi \ Sℓ.

Obviously, this algorithm runs in polynomial time, as there are at most m round, and
in each we compute O(m) ratios, each in constant time.
By Hn we denote the n-th harmonic number. The greedy algorithm for the set cover

problem computes an Hn-approximation of the set cover problem (see [99]).
It is possible to slightly improve the approximation factor by analysing the algorithm

performance more carefully. Let g be the maximum size of any subset Si. By using a more
careful analysis one can obtain ([99]) that this algorithm computes an Hg-approximation
of the set cover problem.
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3.1.7 Inapproximability Results

Unfortunately, one cannot hope to design approximation algorithms for set cover problem
with the approximation factor arbitrarily close to 1. Moreover, it turns out that no
approximation algorithm with factor better thanHn is possible, under assumption slightly
stronger than P = NP.
The following holds ([99]): If there exists a c lnn-approximation algorithm for the

unweighted set cover problem for some constant c < 1, then there is an O(nO(log log n))-time
deterministic algorithm for each NP-complete problem. Also, there exists some constant
c > 0 such that if there exists a c lnn-approximation algorithm for the unweighted set
cover problem, then P = NP.
The f -approximation algorithms for the set cover problem imply a 2-approximation

algorithm for the special case of the vertex cover problem. No algorithm with a better
constant factor in known.
For the vertex cover problem, the following statements hold ([99]): If there exists an

α-approximation algorithm for the vertex cover problem with α < 10
√
5 − 21 ≈ 1.36,

then P = NP. Also, assuming the unique games conjecture holds, if there exists an α-
approximation algorithm for the vertex cover problem with constant α < 2, then P = NP.
For the discussion of unique games and the unique games conjecture, see eg. [99],

Section 13.3. For our purposes we just note that the conjecture is roughly that a particular
problem (called unique games) is NP-hard.
Therefore, assuming P 6= NP and the NP-completeness of the unique games problem,

the best possible approximation algorithm for the vertex cover problem has been found.

3.2 Selfish Service Installation in Networks

We start with the result of Cardinal and Hoefer [18] and [19]. The authors define a vertex
cover game where the edges of a network are owned by k players. An player’s goal is to
have each of his edges supplied by a service point at least one of its endpoints. There is a
cost c(v) ≥ 0 associated to building a service point at vertex v. The strategy of a player
is a vector consisting of offers to the vertices. Service points will be installed at vertices
where the total offer exceeds the cost of the vertex. Let us now describe the model in
more details.
The vertex cover game for k players is defined as follows. In an undirected graph

G = (V,E) with n = |V | and m = |E| each player i owns a set Ei ⊆ E of edges. Each
player strives to establish service at least one endpoint of each of his edge. For each vertex
v there is a nonnegative cost c(v) for establishing service at this vertex. A strategy for a
player i is a function pi : V → R+0 specifying an offer to costs of each vertex. The cost of a
strategy pi for player i is the sum of all money he offers to the vertices. Once the sum of
offers of all players for vertex v exceeds its cost it is considered bought. Bought vertices
can be used by all players to cover their incident edges. Each player strives to minimise
his cost, but insists on covering his edges. A payment scheme is a vector p = (p1, . . . , pk)
specifying a strategy for each player. A Nash equilibrium is a payment scheme such that
no player i can unilaterally improve his payments by changing his strategy and still cover
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all his edges in Ei. The game is called unweighted if all vertices have equal costs, and
weighted otherwise. The games with a planar graph G are called planar games.
The authors prove that the price of anarchy in the vertex cover game is exactly k.
The price of anarchy is k even for very simple games. There are even planar games for

two player without Nash equilibria. We further state two theorems regarding the weighted
game and the complexity of deciding the existence of pure Nash equilibria.
Moreover, the authors prove that for any ε > 0 there is a weighted game in which the

price of stability is at least (k − 1) − ε, and there is an unweighted game in which the
price of stability is (k+2)/4. Also, it is NP-hard to determine whether (1) an unweighted
vertex cover game or (2) a weighted vertex cover game for 2 players has a pure strategy
Nash equilibrium, even if the graphs G[Ei] are forests.
So we see that these results do not give a good bound on price of anarchy and do not

even guarantee the existence of a Nash equilibrium.

3.3 Non-cooperative Cost Sharing Games via

Subsidies

Similar games are defined by Buchbinder et al. [16].
The authors model the system as an instance of the set cover problem. Let N =

{1, 2, . . . , n} be a ground set of n elements (the users), and let S be a family of subsets of
N , |S| = m (the facilities). Each facility s ∈ S thus consists of the users to whom it can
provide service. A cover of N ′ ⊆ N is a collection of sets such that their union contains
N ′. Each subset s ∈ S has a non-negative cost cs associated with it. The social cost of a
collection of sets T is defined to be the total cost of the sets belonging to T . In a feasible
cover, each user is assigned to one of the sets in the cover containing it. Users sharing the
same set also share its cost. An egalitarian cost sharing mechanism is considered, which
evenly splits the cost of a set among its users. This cost sharing mechanism satisfies
essential properties such as cross monotonicity (the cost share of a user for using a set
cannot increase when additional users join the system) and budget balance (the sum of
the payments of the users receiving service from a set is equal to its cost).
The authors consider a set cover game with selfish non-cooperative players. Each

player is interested in selecting its cover in a way that minimises its payment. Thus, the
strategies of the players in the game correspond to their different possible covers, that
is, the different sets that can provide service to the players. Each player independently
chooses a strategy minimising its payment, i.e., its best response. The best response of a
player in the set cover game is thus defined as the set(s) that can provide service to the
player at minimum cost (with respect to the current state of the system). The mutual
influence of the players is determined by the egalitarian cost sharing mechanism.
The paper is focused on a dynamic setting, where players follow the natural game

course induced by best-response dynamics. Each player, in his turn, chooses a cover that
minimises his cost. The authors take an approach that does not rely on starting the game
in a specific starting configuration. There are many situations in which not all players
might be available at the same time. It is thus explored a natural setting where users
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join the game starting from an empty configuration. Upon arrival, a user chooses a cover
selfishly. As a result, players that have joined the game previously may change their
strategy later on by choosing a cover of lower cost. The central authority is allowed to
increase the subsidies of the sets in every step of the game in order to improve the social
welfare of the final cover. One may assume that the game is controlled by an adversarial
scheduler that decides which user plays in each step. The order by which the users play
is not known before (as it is chosen by an adversary) as well as the set of elements (users)
N ′ ⊆ N that actually participates in the game. However, it is assumed that the set cover
instance, i.e., N and S, is known in advance.
The natural game course continues until Nash equilibrium is reached. A Nash equi-

librium of the set cover game corresponds to a choice of covers for all users in N , where
no user can unilaterally reduce its payment by choosing a different cover.
The Nash equilibrium of the set cover game is not unique and the greedy nature of

the users could lead to very inefficient Nash equilibrium points, even when initialising
the game from an empty configuration. Subsidies are used in order to guarantee that
best-response dynamics will not converge to such bad equilibria.
During the course of the game, each subset s ∈ S is associated with a subsidy value

(possibly equal to zero, in case no subsidy is offered to the set). The effective cost of a set
s, denoted by ĉs, is defined to be cs minus the subsidy associated with s. Thus, following
the egalitarian cost sharing mechanism used in our setting, if ns users use set s, then each
user pays ĉs/ns for this set. Note that as the subsidies can only lower the cost of the
users, the potential function of the set cover game decreases in the presence of a subsidy
mechanism as well, and convergence to Nash equilibrium is still guaranteed.
The performance of a subsidy mechanism is a function of two quality parameters:

• The price of anarchy: The ratio between the social cost of a Nash equilibrium
solution (that is, the sum of the subsidies and the payments of the users) and the
social cost of an optimal solution.

• The taxation ratio: The fraction of the payments collected as taxes from the users.
The authors consider two different models: (i) an integral model in which sets can

only be fully bought (i.e., integrally) and each element is covered by a single set; and (ii)
a fractional model in which a fraction of a set can be bought and each user can be covered
by several sets (provided that their fractions add up to 1). The subsidies, similarly to the
choices of the sets, can be given either integrally or fractionally, depending on the model.
In the fractional model, the central authority is allowed to subsidise only a fraction of a
set.
Let f denote the maximum frequency of an element, that is, the maximum number

of sets that an element can belong to. The main results obtained in [16] follow.
If we consider the fractional model, there exists a subsidy policy such that, for any

ε ≤ 1, the price of anarchy is O( log f
ε
) and the taxation ratio is ε.

If we consider the integral model, there exists a subsidy policy such that, for any
ε ≤ 1, the price of anarchy is O( log f log(

n
ε
)

ε
) and the taxation ratio is ε.

As wee see, low price of anarchy is attained only in the fractional model and not in
the “full” integral model.
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3.4 Impact of Local Taxes in a Set Cover Game

We also present the approach by Escoffier et al. [28] designed for the more general set
cover problem.
The situation is usually modelled as a set cover problem. Given a set E = {e1, . . . , en}

of n elements, a collection S = {S1, . . . , Sm} of m subsets of E such that
⋃

j=1 Sj = E and
a weight function w : S → R+, the problem is to find X ⊆ S such that every element in
E belongs to at least one member of X and ∑Sj∈X w(Sj) is minimum.
The authors study a set cover game defined upon the set cover problem. A facility j

is associated with each set Sj ∈ S. Each element ei ∈ E is controlled by a player i who
wants ei to be covered by a set of S. The set of facilities {1, . . . ,m} and the set of players
{1, . . . , n} are respectively denoted by M and N . Each player i ∈ N has a strategy set Σi
defined as {j ∈ M ; ei ∈ Sj}. By Σ = Σ1 × · · · × Σn it is denoted the set of all states (or
strategy profiles). The i-th coordinate of a ∈ Σ, denoted by ai, is the action of i (actions
are singletons). The congestion (or load) of a facility j is the number of players who want
their element to be covered by Sj. It is denoted by ℓj(a) and defined as |{i ∈ N ; ai = j}|.
In the general tailored model, there is one function C which depends on locally avail-

able values: sj, wj and ℓj(a) for a given state a. This function C is unique, public and
used locally by every facility. C(sj, wj , ℓj(a)) is the tax that every player who has selected
j must pay. It is assumed that C exhibits economies of scale, i.e. C is a monotone non
increasing function of ℓj(a). In addition, C is non negative (players are not paid to select
a facility). The goal in this model is to find a function that minimises the social cost.
If the taxes paid by the players do not cover the cost of all selected facilities then we
interpret it as the introduction of subsidies.
In the fair balanced model, the cost of a facility is evenly shared by the players that

chose this facility: C(sj, wj , ℓj) = wj/ℓj. This function is a natural special case of the
tailored model. It corresponds to situations where a fair and budget balanced cost is
needed (the value of a state equals the sum payments of the agents, while this property
does not necessary holds for other tax functions in the tailored model).
Finally, the tax that player i must pay under the state a is C(sai , wai , lai(a)).
Recall the definition of strong Nash equilibria. A k-strong equilibrium is defined

similarly for coalitions involving at most k players. One may also analogously generalise
and define the price of anarchy to the case of the strong equilibria: the k-strong price of
anarchy, which is the worst case ratio between the weight of a pure k-strong equilibrium
(assuming one exists) and the optimum, over all instances of a game.
The most important result of [28] is the following: If we consider the previously

defined set cover game in the fair balanced model, then the k-strong price of anarchy is
H(k)−1+∆/k, where ∆ is the maximum size of a set and H(k) is the harmonic number.
From this, one can derive that the price of anarchy is ∆ and strong price of anarchy is

H(∆). One may also deduce that k−SPoA = H(k)−1+n/k, PoA = n and SPoA = H(n)
where n is the number of players and these bounds are tight.
In the tailored model, the price of anarchy can reduce by more than 1/3 using a

function that encourages players to choose big sets. Bounds on the PoA obtained in the
tailored model are of the same order as those obtained with the fair balanced model.
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Then local taxes cannot (in the model dealt with here) considerably reduce the social
cost (compared to a fair and balanced division of the cost).
Again, we see that this game model attain onlyO(log k) bound on the price of anarchy.

3.5 Near Optimality in Covering and Packing

Games

A different approach was followed by Balcan et al. [6]. Here the players are the vertices of
the graph, and their strategies are deciding whether they open a service point. If opening
a service point, vertex v incurs a cost c(v). If he decides not to open, he has to pay a
penalty for all edges incident to v whose other endpoints are uncovered.
The authors analyse a setting in which a central authority knows a good approxima-

tion, but elements are modelled as only locally aware agents with cost functions repre-
senting a natural distributed game interpretation of the core optimisation problem. They
generalise the problem by not requiring total coverage, rather the importance of covering
a given set is determined by its set weight. Each element i that chooses to be on incurs
his own cost ci, and each element i that is off pays the sum of the weights of sets he par-
ticipates in that do not contain any other on element. If the element costs are all smaller
than the set weights, then the cost-minimising set of on elements is also the optimal set
cover. If additionally each set is of size two, then this is the special case of a minimum
weighted vertex cover problem. By simply redefining the cost structure so that i pays ci
if he is off and the sum of weights of fully-covered sets he participates in if he is on, it
is possible to interpret this new game as a packing problem with maximum independent
set as a special case.
There are several models of distributed and semi-selfish social behaviour in a general

repeated game setting. Usually, the models share the common feature that a central au-
thority has knowledge of some joint strategy profile with low social cost, and this authority
broadcasts this strategy in the hopes that players will adopt their prescribed strategies.
Specifically, the public service advertising model (PSA) assumes that each player indepen-
dently has an α probability of receiving and temporarily adopting the advertising strategy.
Those that do not receive and adopt their prescribed strategy behave in a greedy best
response manner. This model is well-suited for an engineering systems setting, where
one does not expect all components to receive the central authority’s signal. The learn-
ing models assume that each player uses any of a broad class of learning algorithms to
continually choose between acting according to their local best response move and their
broadcasted signal. In the learn-then-decide (LTD) model, players eventually commit to
one of these options. These models are better motivated by a social setting where players
that are only locally aware are interested in exploring the advertising strategy with the
hopes that it will benefit them personally.
For the case where costs of players and weights of sets are bounded below and above

by constants, the authors show the following:

(1) In vertex cover games, for any advertising strategy sad, the dynamics of players
converges to a state of expected cost O(cost(sad)) in PSA and LTD models.
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(2) In set cover games, for any advertising strategy sad, the dynamics of players con-
verges to a state of expected cost O(∆2 · cost(sad)2) in PSA model and O(∆22 ·
cost(sad)2) in LTD model.

(3) In set cover games, for a specific advertising strategy sad, the dynamics of play-
ers converge to a state of cost O(cost(sad)) with high probability in PSA model.
Moreover, there is a polynomial-time algorithm to find such a specific sad of low
cost, i.e. cost(sad) = O(∆2 log n ·OPT), where OPT is the optimal (social) cost.

Furthermore, all the above convergence guarantees happen in polynomial number of
steps in terms of the number of players.

3.6 Near-optimal Network Design

Here we present the results of Anshelevich et al. [4].
The authors consider a simple network design game where every agent has a specific

connectivity requirement, i.e. each agent has a set of terminals and wants to build a
network in which his terminals are connected. Possible edges in the network have costs
and each agent’s goal is to pay as little as possible. This game can be viewed as a simple
model of network creation. Alternatively, by studying the best Nash equilibria, the game
provides a framework for understanding those networks that a central authority could
persuade selfish players to purchase and maintain, by specifying to which parts of the
network each player contributes. An interesting feature of our game is that selfish players
will find it in their individual interests to share the costs of edges, and so effectively
cooperate.
More precisely, the authors study the following network game for n players, which

they call the connection game. For each game instance, we are given an undirected graph
G with non-negative edge costs. Players form a network by purchasing some subgraph
G′ ⊆ G. Each player has a set of specified terminal nodes that he would like to see
connected in the purchased network. With this as their goal, players offer payments
indicating how much they will contribute towards the purchase of each edge in G. If the
players’ payments for a particular edge e sum to at least the cost of e, then the edge is
considered bought, which means that e is added to the network and can now be used
by any player. Each player would like to minimise his total payments, but insists on
connecting all of his terminals. The cost of any edge may be shared by multiple players.
Furthermore, once an edge is purchased, any player can use it to satisfy his connectivity
requirement, even if that player contributed nothing to the cost of this edge. A lot of
interest lies in deterministic Nash equilibria of the connection game, and in the price
of stability, as the price of anarchy in the game can be quite bad. In a game theoretic
context it might seem natural to also consider mixed Nash equilibria when players can
randomly choose between different strategies. However, since this is the modelling of the
construction of large-scale networks, randomising over strategies is not a realistic option
for players.
The results in [4] include the following.
The authors consider the special case when the goal of each player is to connect a
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single terminal to a common source. In this case, there is a Nash equilibrium, the cost of
which is equal to the cost of the optimal network. In other words, with a single source and
one terminal per player, the price of stability is 1. Furthermore, given an ε > 0 and α-
approximate solution to the optimal network, it is shown how to construct in polynomial
time an (1 + ε)-approximate Nash equilibrium (players only benefit by a factor of (1 + ε)
in deviating) whose total cost is within a factor of α to the optimal network.
These results may be generalised in two ways. First, the results can be extended to

the case when the graph is directed and players seek to establish a directed path from
their terminal to the common source. Second, players do not have to insist on connecting
their terminals at all cost, but rather each player i may have a maximum cost max(i)
that he is willing to pay, and would rather stay unconnected if his cost exceeds max(i).
Next the general case is considered, when players may want to connect more than

two terminals, and they do not necessarily share a single source node. In this case, there
may not exist a deterministic Nash equilibrium. When deterministic Nash equilibria do
exist, the costs of different equilibria may differ by as much as a factor of n, the number of
players, and even the price of stability may be nearly n. However, one can prove that there
is always a 3-approximate equilibrium that pays for the optimal network. Furthermore,
the authors show how to construct in polynomial time a (4.65 + ε)-approximate Nash
equilibrium whose total cost is within a factor of 2 to the optimal network.
Finally it is shown in [4], that determining whether or not a Nash equilibrium exists

is NP-complete when the number of players is part of the input.

3.7 Outline Summary

In both these approaches the price of anarchy is very high: Θ(k) in Cardinal and Hoe-
fer [18] and Θ(n) in Balcan et al. [6]. Indeed, if the underlying network is a star, and each
edge is owned by a different player in the first case, we get Nash equilibria with all leaves
being service points. These guarantees are significantly worse than the ones available in
the centralised setting, where simple factor 2-approximation algorithms exist.
The basic set cover games in Buchbinder et al. [16], Escoffier et al. [28] and Balcan et

al. [6] fall into the class of congestion games studied by Rosenthal [89]. In the models of
[16] and [28], in the hitting set terminology, the players are the hyperedges that choose a
vertex to cover them, and the cost of the vertex is divided among them according to some
rule. [16] investigates the influence of a central authority that can influence choices by
taxes and subsidies in a best response dynamics; [28] studies different cost sharing rules of
the vertices (“local taxes”). However, none of these methods achieve a constant price of
anarchy. The model of [6] can achieve a good equilibrium by assuming a central authority
that propagates information on an optimal solution to a fraction of the players. In contrast
to [16] and [6], our model is defined locally, without assuming a central authority.
Cardinal and Hoefer [19] define a general class of covering games, including the vertex

cover game [18], and also the selfish network design game by Anshelevich et al. [4]. The
game is based on a covering problem given by a linear integer program. Variables represent
resources, and the players correspond to certain sets of constraints they have to satisfy.
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An player can offer money for resources needed to satisfy her constraints. From each
variable, the number of units covered by the total offers of the players will be purchased
and can be used by all players simultaneously to satisfy their constraints, regardless to
their actual contributions to the resource.
In the vertex cover or hitting set game, the resources are the service points and the

set of constraints belonging to the players express that every (hyper)edge owned by them
has to be covered. In the model of [4], player i wants to connect a set of terminals Si in a
graph G = (V,E) with edge costs c. Hence the variables represent the edges of the graph
and the constraints belonging to player i enforce the connectivity of Si.
The previous results are focused on noncooperative covering games. A different line

of game theoretic study is focused on cost sharing mechanism, e.g. [22], [23], [46], [30],
[63] ,[64].
The performance of behavioural dynamics in games and specifically establishing fast

convergence to equilibria of good quality has been the subject of intensive recent research
[53], [54], [24]. The importance of such results that go beyond the analysis of performance
of Nash equilibria has been stressed in [52] where it has been shown that even in very
simple games with constant number of players and strategies, the performance of sim-
ple learning dynamics can be arbitrarily different than (any convex combination of) the
payoffs of Nash equilibria.
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4. LP-based Covering Games

with low Price of Anarchy

In this chapter, we present a new class of vertex cover and set cover games. The price of
anarchy bounds match the best known constant factor approximation guarantees for the
centralised optimisation problems for linear and also for submodular costs—in contrast
to all previously studied covering games, where the price of anarchy cannot be bounded
by a constant (e.g. [18], [19], [28], [16], [6]). In particular, we describe a vertex cover
game with a price of anarchy of 2. The rules of the games capture the structure of the
linear programming relaxations of the underlying optimisation problems, and our bounds
are established by analysing these relaxations. Furthermore, for linear costs we exhibit
linear time best response dynamics that converge to these almost optimal Nash equilibria.
These dynamics mimic the classical greedy approximation algorithm of Bar-Yehuda and
Even [7].
This chapter is based on our paper [87].

4.1 Introduction

We have already presented several vertex cover games in Chapter 3. However, recall these
games attain a very high price of anarchy.
In contrast, we shall present a simple vertex cover game with a price of anarchy 2.

As in Balcan et al. [6], the players are the vertices, and the regulations delegate the
responsibility of covering every edge of the network to its two endpoints: both incur a
high penalty if the edge is left uncovered (i.e., neither of them chooses to build a service
point). The difference from the setting of [6] is that those who open a service point can
demand compensation from their neighbours. This is justified since if u opens a service
point, every neighbour v benefits from this as the common responsibility of covering {u, v}
is taken over by u.
In the description, we use the colourful and yet intuitive terminology of a Mafia

(service points) which provides “security” (covers edges). The vertices may choose to join
Mafia or to remain civilians. Each edge of the graph has to be “secured”, that is, at least
one endpoint must be in Mafia. For player v, there is an initial cost c(v) to join Mafia.
Mafiosi can collect ransoms as the price of security of the incident edges: if a vertex v
chooses to be a mafioso, his strategy also includes a ransom vector, so that the total
ransom he demands from his neighbours is c(v). It is a one-shot game and mafiosi can
ransom both their civilian and mafioso neighbours.
If v is a civilian, he has to pay to his neighbours in the Mafia all ransom they demand.

Furthermore, if there is an incident uncovered edge {u, v}, that is, u is also a civilian,
both of them have to pay a huge penalty. In contrast, if v is a mafioso, he has to pay
c(v) for joining, and he receives whatever he can collect from ransoms. However, mafiosi
ransomed excessively obtain a protected status: if the total demand from v is more than
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c(v), he satisfies only a proportional fraction of the demands. It is important to note
that the payoff function is defined locally: besides his own strategy, the payoff of an
player depends only on the strategies of players at distance at most 2 from him (i.e.
immediate neighbours and neighbours of neighbours). Also note that if M is a vertex
cover, then the total utility of the players is −c(M). Consequently, an optimal solution
to the optimisation problem gives a social optimum of the game.
Our approach avoids bad Nash equilibria that are possible in Cardinal and Hoefer [18]

and Balcan et al. [6]. As an example, consider the vertex cover game on a star with all
vertices having cost 1. In the models of [18] and [6] there exists a Nash equilibrium where
the leaves form the vertex cover. In our model, if all leaves are mafiosi, then all of them
would demand ransom from the central player, who would then have a strong incentive
to join the mafia and obtain the protected status. It can be verified that the only Nash
equilibria correspond to outcomes where the central vertex and at most one leaf are in
the Mafia.
As a different interpretation of the game above, consider a road network with the

vertices representing cities. The maintenance of a road must be provided by a facility
at one of the endpoints. The cost of opening the facility dominates the operating cost:
if city v decides to open one at cost c(v), it is able to maintain all incident roads. As
a compensation, the cities can try to recollect the opening cost by asking contributions
from the neighbouring cities. A city without a facility has to pay all contributions he is
asked to pay. However, if a city opens a facility, its liability is limited and has to satisfy
demands only up to his opening cost, c(v).

Our approach can be extended to the hitting set problem, which is equivalent to the set
cover problem. We are given a hypergraph G = (V, E), and a cost function c : V → R+
on the vertices. Our aim is to find a minimum cost subset M of V intersecting every
hyperedge in E . This problem is known to be approximable within a factor of d, the
maximum size of a hyperedge. In the corresponding Mafia game, the hyperedges shall be
considered as clubs in need of security. A mafioso can assign ransoms to the clubs he is
a member of, that will be distributed equally to all other members of the club.
We shall prove that for the vertex cover and hitting set games, the price of anarchy is

2 and d, respectively. Bar-Yehuda and Even gave a simple primal-dual algorithm with this
guarantee in 1981 [7]. No better constant factor approximation has been given ever-since.
Furthermore, assuming the Unique Games Conjecture, Khot and Regev [49] proved that
the hitting set problem cannot be approximated by any constant factor smaller than d.
As a further extension, we also investigate the submodular hitting set (or set cover)

problem, that has received significant attention recently. The goal is to find a hitting
set M of a hypergraph minimising C(M) for a submodular set function C on the ground
set. Independently, Koufogiannakis and Young [59] and Iwata and Nagano [47] gave d-
approximation algorithms. Our game approach extends even to this setting, with the same
price of anarchy d. This involves a new player, the Godfather, who’s strategy consists of
setting a budget vector in the submodular base polyhedron of C. Otherwise, the game is
essentially the same as the (linear) hitting set game.
Recent work of Roughgarden et al. [90], [13], [91] has shown that the majority of
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positive results in price of anarchy literature can be reduced to a specific common set of
structural assumptions. In contrast, in our work, we use a novel approach by exploring
connections to the LP relaxations of the underlying centralised optimisation problems.
This connection raises interesting questions about the limits of its applicability.
Our games can be seen as the duals of the covering games presented in Chapter 3.

That is, the players correspond to the variables, and are responsible for the satisfaction
of the constraints containing them. If a constraint is left unsatisfied, the participating
variables get punished. Also, a variable may require compensation (ransoms) from other
variables participating in the same constraints. These compensations will correspond
to a dual solution in a Nash equilibrium. We hope that our approach of studying dual
covering games might be extended to a broader class of problems, with the price of anarchy
matching the integrality gap.

4.1.1 Convergence and Complexity of Dynamics

The world of decentralised competition is not immune to the results of computational
complexity. Hence, a low price of anarchy although promising does not necessarily yield
a usable outcome in the means of the game dynamics, when players sequentially have the
possibility to change their strategies for a better one. The reasons for these inconsistencies
fall in one of two possible categories: either non-convergence of the dynamics to a Nash
equilibrium or too slow convergence to a Nash equilibrium.
Even in a very simple game settings, with a constant number of players and strategies

and no computational complexity issues, it could be the case that games exhibit only
highly unstable Nash equilibria. In such settings, numerous learning dynamics, even if
they start off from a state close to a Nash equilibrium, they diverge away from it fast [20],
[52].
On the other hand, as the games grow in size, even when there exist simple decen-

tralised dynamics which provably converge to Nash equilibria, it is not necessarily the
case that this convergence is achieved within polynomial time. For example, in the case
of general congestion games, although best response dynamics always converge to a Nash
equilibrium, finding any sample equilibrium (even via a centralised algorithm) has been
shown to be PLS-hard [29], implying that any decentralised dynamic is bound to fail as
well in worst case instances. A low price of anarchy although promising does not necessar-
ily yield a usable outcome in the means of the game dynamics, when players sequentially
have the possibility to change their strategies for a better one. The reasons for these in-
consistencies fall in one of two possible categories: either non-convergence of the dynamics
to a Nash equilibrium [20], [52] or too slow convergence [29].
In our covering games, we first show that even in simple instances, round robin best

response dynamics1 may end in a loop. However, this can be simply fixed by a slight
modification of the payoff. We introduce a secondary utility, that does not affect the
price of anarchy results, but merely instigates the mafiosi to use more fair (symmetric)

1These are the dynamics where each player takes turn playing his best response in a cyclic ordering according

to some fixed permutation.
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ransoms: r(u, v) = r(v, u). With this secondary objective, we show that actually a single
round of best response dynamics under a simple selection rule of the next player results in
a Nash-equilibrium. This dynamics in fact simulates the Bar-Yehuda and Even algorithm.
An analogous dynamics is shown in the case of hitting set. Moreover, these dynamics can
be interpreted in a distributed manner, enabling several players to change their strategies
at the same time.
In our games, the set of strategies is infinite as ransoms can be arbitrary real numbers.

However, if the vertex weights are integers, we can restrict possible ransoms to be integers
as well. All out results straightforwardly extend to this finite game.

This chapter is organised as follows. Section 4.2 defines the Mafia games for vertex
cover, hitting set, and submodular hitting set, and proves the existence of Nash equilibria
and gives price of anarchy bounds. Section 4.3 shows that certain simple dynamics rapidly
converge to Nash equilibrium for vertex cover and for hitting set. Section 4.4 discusses
possible further research directions.

4.2 The Mafia games and Price of Anarchy

bounds

4.2.1 Vertex cover

Given a graph G = (V,E), let c : V → R+ be a cost function on the vertices. In the
vertex cover problem, the task is to find a minimum cost set M ⊆ V containing at least
one endpoint of every edge in E. For a vertex v ∈ V , let N(v) = {u; {u, v} ∈ E} denote
the set of its neighbours.

4.2.1.1 Game definition

The Mafia Vertex Cover Game is a one-shot game on the player set V . The basic strategy
of an player is to decide being a civilian or a mafioso. The set of civilians shall be denoted
by C, the set of mafiosi (Mafia) by M . For civilians, no further decision has to be made,
while for mafiosi, their strategy also contains a ransom vector. Each mafioso m ∈ M
can demand ransoms from his neighbours totalling c(m). The ransom demanded from a
neighbour u ∈ N(m) is r(m,u) ≥ 0, with ∑

u∈N(v) r(m,u) = c(m). The strategy profile
S = (M,C, r) thus consists of the sets of mafiosi and civilians, and the ransom vectors.
Let us call c(v) the budget of an player v ∈ V , and let T >

∑

v∈V c(v) be a huge
constant. Let

D(v) =
∑

m∈M
r(m, v)

be the demand asked from the player v ∈ V .
Let us now define the payoffs for a given strategy profile S. For a civilian v ∈ C, let

Pen(v) = T if v is incident to an uncovered edge, that is C ∩N(v) 6= ∅, and Pen(v) = 0
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otherwise. The utility of v ∈ C is

uS(v) = −D(v)− Pen(v).

If v ∈ M and the total demand from v is D(v) > c(v) (i.e. v is asked too much),
we call v protected and denote the set of protected mafiosi by P ⊆ M . The real amount
of money that the protected mafioso p ∈ P pays to his neighbours is scaled down to
c(p)
D(p)

r(u, p). Let F−(v) = min{D(v), c(v)} be the total amount the mafioso v pays for
ransom. Let

F+(v) =
∑

u∈N(v)\P
r(v, u) +

∑

u∈N(v)∩P

c(u)

D(u)
r(v, u)

denote the income of v ∈ M from the ransoms. Then the utility of a mafioso v ∈ M is
defined as

uS(v) = −c(v) + F+(v)− F−(v).

This means v has his initial cost c(v) for entering the Mafia, receives full payment from
civilians and unprotected mafiosi, receives reduced payment from protected mafiosi, and
pays the full payment to his neighbouring mafiosi if v is unprotected, or reduced payment
if v is protected.

4.2.1.2 The existence of pure Nash equilibria

Pure Nash equilibria are (deterministic) strategy outcomes such that no player can im-
prove her payoff by unilaterally changing her strategy. We will start by establishing that
our game always exhibits such states. The following is the standard linear programming
relaxation of vertex cover along with its dual.

min
∑

v∈V
c(v)x(v) (P-VC)

x(u) + x(v) ≥ 1 for all {u, v} ∈ E

x ≥ 0

max
∑

{u,v}∈E
y({u, v}) (D-VC)

∑

{u,v}∈E
y({u, v}) ≤ c(u) for all u ∈ V

y ≥ 0

For a feasible dual solution y we say that the vertex v ∈ V is tight if

∑

{u,v}∈E
y({u, v}) = c(v).
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We call the pair (M, y) a complementary pair if M is a vertex cover, y is a feasible dual
solution, and each v ∈M is tight with respect to y.

Lemma 4.1. If (M, y) is a complementary pair, then M is a 2-approximate solution
to the vertex cover problem.

Proof. The primal objective is at most twice the dual objective, as

∑

v∈M
c(v) =

∑

v∈M

∑

u∈N(v)
y({u, v}) ≤ 2

∑

{u,v}∈E
y({u, v}).

The inequality follows as each edge {u, v} is counted at most twice. �

We shall show that the simple approximation algorithm by Bar-Yehuda and Even [7]
returns a complementary pair, and therefore has approximation factor 2. Our next lemma
proves that a complementary pair provides a Nash equilibrium.

Lemma 4.2. Let (M, y) be a complementary pair, and consider the strategy profile
where the players in M form the Mafia and C = V \M are the civilians. For u ∈ M ,
define r(u, v) = y({u, v}) for every v ∈ N(u). Then the strategy profile S = (M,C, r) is
a Nash equilibrium.

Proof. Since D(v) ≤ c(v) for all players, there are no protected mafiosi. If v is a civilian,
his payoff is −D(v). He would not get a protected status if he entered the Mafia as
D(v) ≤ c(v), and thus his payoff would be −c(v) + F+(v)−D(v) ≤ −D(v) by arbitrary
choice of ransoms. If v is a mafioso, he has F+(v) = c(v) as none of his neighbours is
protected. Thus his utility is −D(v), the maximum he can obtain for any strategy. �

The existence of a complementary pair is provided by the algorithm of Bar-Yehuda
and Even [7]. In each step of the algorithm we maintain a feasible dual solution, and M
will be the set of tight vertices.

(1) Set y({u, v}) := 0 for each {u, v} ∈ E and M = {v ∈ V ; c(v) = 0}.
(2) While M is not a vertex cover do

(i) Choose an arbitrary edge {u, v} ∈ E with u, v ∈ V \M .
(ii) Raise y({u, v}) until u or v becomes tight.
(iii) Include the new tight endpoint(s) into M .

(3) Return M .

It is straightforward that the algorithm returns a complementary pair (M, y). Using
Lemma 4.2, we obtain the following theorem.

Theorem 4.3. The Mafia Vertex Cover Game always has a pure Nash equilibrium.
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4.2.1.3 The Price of Anarchy

For a strategy profile S with a uncovered edges, the sum of the utilities is −c(M)− 2aT .
The Price of Anarchy compares this sum in a Nash equilibrium at the worst case to the
maximum value over all strategy profiles, that corresponds to a minimum cost vertex
cover.
Consider a strategy profile S that encodes a Nash equilibrium. First, observe that

Mafia M is a vertex cover. Indeed, if there were an uncovered edge {u, v} ∈ E, both u
and v would receive the high penalty T , and therefore they would have incentive to join
Mafia. We shall prove that the cost c(M) is at most twice the cost of an optimal vertex
cover, consequently, the price of anarchy is at most 2.

Lemma 4.4. Let the strategy profile S = (M,C, r) be a Nash equilibrium. Then there
are no protected mafiosi.

Proof. For a contradiction, suppose P is nonempty. First we show there exists an edge
{m, p} ∈ E such that m ∈ M \ P , p ∈ P and r(m, p) > 0. Indeed, if there were no such
edges, then ∑

p∈P
D(p) ≤

∑

p∈P
c(p)

as the ransoms demanded from protected mafiosi are all demanded by others P . However,
by definition D(p) > c(p) for all p ∈ P , giving

∑

p∈P
D(p) >

∑

p∈P
c(p),

a contradiction.
Consider the edge {m, p} ∈ E as above. We claim that m could choose a better

strategy, and therefore S cannot be a Nash equilibrium. If m does not have any civilian
neighbours, that is, N(m) ⊆ M , then his utility would strictly increase if decides to
become a civilian. Indeed, his income now is F+(m) < c(m) and he has to pay F−(m) =
D(m) ≤ c(m). As a civilian, his utility were −D(m).
Next, assume there exists a v ∈ C, {m, v} ∈ E. Then m may decrease r(m, p) to 0

and increase r(m, v) by the same amount. Again, this would be a better strategy for m,
as v pays the full amount whereas p payed only a reduced amount. �

Lemma 4.5. Suppose the strategy profile S = (M,C, r) is a Nash equilibrium and let
v ∈ C. Then D(v) ≤ 2c(v).

Proof. Suppose the contrary: let D(v) > 2c(v) and thus uS(v) < −2c(v). If joining
Mafia, v receives the protected status and thus gains utility at least −2c(v) as F−(v) =
c(v). �

Theorem 4.6. The price of anarchy in the Mafia game is 2.

Proof. Let S = (M,C, r) be a strategy profile in a Nash equilibrium. Using the con-
vention r(u, v) = 0 if u ∈ C, let us define y({u, v}) = r(u, v) + r(v, u) for every edge
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{u, v} ∈ E. We show that
∑

u∈V y({u, v}) ≤ 2c(v) for every v ∈ V . Indeed, if v ∈ C,
then

∑

u∈V
y({u, v}) =

∑

u∈M
r(u, v) = D(v) ≤ 2c(v)

by Lemma 4.5. If v ∈M , then

∑

u∈V
y({u, v}) =

∑

u∈N(v)
r(v, u) +D(v) ≤ 2c(v)

by Lemma 4.4. Therefore 1
2
y is a feasible solution to (D-VC) and

∑

{u,v}∈E

1

2
y({u, v}) = 1

2

∑

m∈M

∑

v∈V
r(m, v) =

1

2

∑

m∈M
c(m).

This verifies that the objective value for 1
2
y is the half of the cost of the primal feasible

vertex cover M , proving that M is a 2-approximate vertex cover. �

4.2.2 Set cover and hitting set

In this section, we generalise our approach to the hitting set problem. Given a hypergraph
G = (V, E) and a cost function c : V → R+, we want to find a minimum cost M ⊆ V

intersecting every hyperedge. Let d = max{|S|; S ∈ E}.
In the set cover problem, we have a ground set U and a collection of subsets S of

U . For a cost function c : S → R+ we want to find minimum cost collection of subsets
whose union is U . This is equivalent to the hitting set problem, where the ground set is
S, and to each u ∈ U , there is a corresponding hyperedge that is the collection of subsets
containing u.
For simplicity, we define the hitting set game on a d-uniform hypergraph. This can

be done without loss of generality. To verify this, take an arbitrary instance G = (V, E),
and let T > d

∑

v∈V c(v). Extend V by d − 1 new vertices of cost T , and for every
S ∈ E , extend S by any d − |S| new elements. If there is a d-approximate solution
to the modified instance, it cannot contain any of the new elements. Hence finding a
d-approximate solution is equivalent in the original and in the modified instance.
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4.2.2.1 Game definition

We define the Mafia Hitting Set Game on a d-uniform hypergraph G = (V, E). The set of
players is V , with v ∈ V having a budget c(v). We shall call the hyperedges clubs . For
an player v ∈ V , let N (v) ⊆ E denote the set of clubs containing v. The players again
choose from the strategy of being a civilian or being a mafioso, denoting their sets by C
and M , respectively. The strategies of the mafioso m incorporates the ransoms r(m,S)
for the clubs S containing m, with

∑

S∈N (v) r(m,S) = c(m).
We define the payoffs for the strategy profile S = (M,C, r) similarly to the vertex

cover case. For a civilian v ∈ C, Pen(v) = T for a large constant T if v participates in a
club containing no mafiosi, and 0 otherwise.
In each club S, the ransom r(m,S) of a mafioso m ∈ S ∩M has to be payed by all

other members at equal rate, that is, everyone pays r(m,S)
(d−1) to m. The demand from an

player is the total amount he has to pay in all clubs he is a member of, that is,

D(v) =
1

d− 1
∑

S∈N (v)

∑

m∈M∩S
r(m,S).

Note that if a mafioso v would receive all the money he demands, he would gain (d−1)c(v).
The utility of a civilian v ∈ C is defined as

uS(v) = −D(v)− Pen(v).

A mafioso v receives the protected status if D(v) > c(v), that is, he is asked for more
than his maximal income. The set of protected mafiosi is denoted by P , and they pay
proportionally reduced ransoms. Let F−(v) = min{D(v), c(v)} be the total amount v
pays. The income is defined by

F+(v) =
∑

S∈N (v)

r(v, S)

d− 1



|S \ (P ∪ {v})|+
∑

u∈(S∩P )\{v}

c(u)

D(u)



 .

The utility of a mafioso v ∈M is then

uS(v) = −c(v) + F+(v)− F−(v).
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4.2.2.2 The existence of pure Nash equilibria

The standard LP-relaxation extends the formulations (P-VC) and (D-VC).

min
∑

v∈V
c(v)x(v) (P-HS)

∑

u∈S
x(u) ≥ 1 for all S ∈ E

x ≥ 0

max
∑

S∈E
y(S) (D-HS)

∑

S∈N (u)
y(S) ≤ c(u) for all u ∈ V

y ≥ 0

Again, for a feasible dual solution y, v ∈ V is called tight if the corresponding in-
equality in (D-HS) holds with equality. A pair (M, y) of a hitting set M and a feasible
dual y is called a complementary pair if the dual inequality corresponding to any v ∈M

is tight. The following simple claim generalises Lemma 4.1.

Lemma 4.7. If (M, y) is a complementary pair, then M is a d-approximate solution
to the hitting set problem.

Proof. The primal objective is at most d-times the dual objective, as
∑

v∈M
c(v) =

∑

v∈M

∑

S∋v
y(S) ≤ d

∑

S∈E
y(S).

The inequality follows as each set is counted at most d-times. �

The algorithm of Bar-Yehuda and Even [7], outlined in Section 4.2.1 naturally extends
to the hitting set problem, and delivers a complementary pair.

Lemma 4.8. Let us define strategies in the Mafia Hitting Set Game based on a comple-
mentary pair (M, y) as follows. Let players in M be the Mafia and V \M be the civilians.
For each v ∈ M , define r(v, S) = y(S) for every S ∈ E containing v. Then the strategy
profile S = (M,C, r) is a Nash equilibrium.

Proof. For each v ∈ V ,

D(v) ≤ 1

d− 1
∑

S∈N (v)
y(S)|(S ∩M) \ {v}| ≤ c(v)

and therefore there are no protected mafiosi. If v is a civilian, his payoff is −D(v). He
would not get a protected status if he entered the Mafia as D(v) ≤ c(v), and thus his
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payoff would be −c(v) + F+(v) −D(v) ≤ −D(v) by arbitrary choice of ransoms. If v is
a mafioso, he has F+(v) = c(v) as none of his neighbours is protected. Thus his utility is
−D(v), the maximum he can obtain for any strategy. �

As the algorithm of Bar-Yehuda and Even [7] provides a complementary pair, this
immediately yields the following.

Theorem 4.9. The Mafia Hitting Set Game always has a pure Nash equilibrium.

4.2.2.3 The Price of Anarchy

Lemma 4.10. Let the strategy profile S = (M,C, r) be a Nash equilibrium. Then there
are no protected mafiosi.

Proof. The proof follows the same lines as for Lemma 4.4. For a contradiction, assume
P 6= ∅. First, it is easy to show that there exists an unprotected m ∈ M \ P and S ∈ E ,
S ∩ P 6= ∅, such that r(m,S) > 0 by comparing the total in-demand and out-demand of
protected mafiosi. For such m, if there exists no set S ′ ∈ E with S ′ ∩M = {m}, then he
could increase his utility by leaving the Mafia. Otherwise, he could increase his utility by
decreasing r(m,S) and increasing r(m,S ′). �

The following lemma is the analogue of Lemma 4.5, yet the proof is more complicated.

Lemma 4.11. Let the strategy profile S = (M,C, r) be a Nash equilibrium and let
v ∈ C. Then D(v) ≤ d

d−1c(v).

Proof. Suppose the contrary, let there be a v ∈ C such that D(v) > d
d−1c(v). His current

utility is uS(v) = −D(v).
We show that v could join Mafia and set ransoms that provide him a strictly larger

utility. If F+S′(v) is the income for such a strategy profile S ′, then uS′(v) = F+S′(v)− 2c(v),
as he would obtain the protected status. To get uS′(v) > uS(v), we need to ensure
F+S′(v) > 2c(v)−D(v). As D(v) > d

d−1c(v) is assumed, it suffices to give an S ′ with

F+S′(v) ≥ d− 2
d− 1c(v). (4.1)

We define the ransoms r′(v, S) by “stealing” the strategies of the other mafiosi. That is,
for each club S ∈ N (v),

1

d− 1
∑

m∈M∩S
r(m,S)

is the total ransom v has to pay to the members of this club. We define r′(v, S) propor-
tionally to this amount:

r′(v, S) :=
c(v)

(d− 1)D(v)
∑

m∈M∩S
r(m,S).
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By Lemma 4.10, we know that there are no protected mafiosi in the Nash equilibrium S.
We show that after v enters Mafia, even if some of the old mafiosi become protected, they
are only slightly overcharged. More precisely, we shall show that

D′(t) ≤ d

d− 1c(t) for all t ∈M. (4.2)

From this bound, (4.1) immediately follows. Indeed, everybody will pay at least d
d−1

fraction of the demands, and therefore

F+S′(v) ≥ d− 1
d

c(v) ≥ d− 2
d− 1c(v).

It is left to prove (4.2). The demand of v from some t ∈M can be bounded as follows:

1

d− 1
∑

S∈N (v)∩N (t)
r′(v, S) =

c(v)

(d− 1)2D(v)
∑

S∈N (v)∩N (t)



r(t, S) +
∑

t′∈(S∩M)\{t}
r(t′, S)





<
1

d(d− 1)(c(t) + (d− 1)D(t)) ≤
1

d(d− 1)d · c(t) =
c(t)

d− 1 .

Here we used that D(t) ≤ c(t) as t was not protected in S. Using this fact once more, we
get

D′(t) ≤ D(t) +
c(t)

d− 1 ≤
d

d− 1c(t).

�

Theorem 4.12. The price of anarchy for the Mafia Hitting Set Game is d.

Proof. Let S = (M,C, r) be a strategy profile in a Nash equilibrium. Then M is a
hitting set, as if there was an uncovered club, all members would be unhappy due to the
term Pen(v). We show that the cost of M is within a factor d from the optimum. Let us
set y(S) =

∑

v∈M∩S r(v, S) for each S ∈ E . Lemmas 4.10 and 4.11 easily imply
∑

S∈S:v∈S
y(S) ≤ d · c(v)

for every v ∈ V , and thus 1
d
y is a feasible dual solution to (D-HS). Then

∑

S∈S

1

d
y(S) =

∑

s∈S

1

d

∑

m∈M∩S
r(m,S) =

∑

m∈M

1

d

∑

S∈N (m)
r(m,S) =

1

d

∑

m∈M
c(m),

showing that M is a d-approximate solution to (P-HS). �
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4.2.3 Submodular hitting set

In the submodular hitting set problem, we are given a hypergraph G = (V, E) with a
submodular set function C : 2V → R+, that is, C(∅) = 0, and

C(X) + C(Y ) ≥ C(X ∩ Y ) + C(X ∪ Y ) for all X, Y ⊆ V.

We shall assume also that C is monotone, that is, C(X) ≤ C(Y ) if X ⊆ Y . Our aim is
to find a hitting set M minimising C(M).
Koufogiannakis and Young [59], and Iwata and Nagano [47] obtained d-approximation

algorithms for this problem, where d is the maximum size of a hyperedge. We shall
present the primal-dual algorithm in [47], a natural extension of the Bar-Yehuda and
Even algorithm.
For a submodular function C, it is natural to define the following two polyhedra. The

submodular polyhedron is

P (C) = {z ∈ RV ; z ≥ 0, z(Z) ≤ C(Z) for all Z ⊆ V },

and the submodular base polyhedron is

B(C) = {z ∈ RV ; z ≥ 0, z(Z) ≤ C(Z) for all Z ( V, z(V ) = C(V )}.

Given a vector z ∈ P (C), the set Z is tight with respect to z if z(Z) = C(Z). An
elementary consequence of submodularity is that for every z ∈ P (C), there exists a
unique maximal tight set. Note that B(C) ⊆ P (C) and z ∈ P (C) is in B(C) if and only
if V is tight.
In the LP relaxation, we assign a primal variable ξ(Z) to every subset Z ⊆ V . In an

integer solution, ξ(Z) = 1 if Z is the chosen hitting set and 0 otherwise.

min
∑

Z⊆V
C(Z)ξ(Z)

∑

Z∈N (u)
ξ(Z) = x(u) for all u ∈ V

∑

u∈S
x(u) ≥ 1 for all S ∈ E

ξ ≥ 0 (P-SHS)

The dual linear program can be written in the following consistent form:

max
∑

S∈E
y(S)

∑

S∈N (u)
y(S) = z(u) for all u ∈ V

z ∈ P (C)

y ≥ 0 (D-SHS)
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Note that in the dual program, y uniquely defines z. Therefore we will say that y is a
feasible dual solution if the corresponding z is in P (C). For the special case of the (linear)
hitting set problem, where C(Z) =

∑

v∈Z c(z) for some c : V → R+, this is equivalent to
y satisfying (D-HS).
Accordingly, we say that a set Z is tight for a feasible dual y if z(Z) = P (C). For a

hitting set M and a feasible dual solution y, we say that (M, y) is a complementary pair
if M is tight for y. The following is the generalisation of Lemmas 4.1 and 4.7.

Lemma 4.13. If (M, y) is a complementary pair, then M is a d-approximate solution
of the hitting set problem.

Proof. The primal objective is at most d times the dual objective, as

C(M) =
∑

v∈M
z(m) =

∑

v∈M

∑

S∈N (v)
y(S) ≤ d

∑

S

y(S).

The inequality follows as each S is counted |S| ≤ d times. �

The algorithm by Iwata and Nagano [47] is as follows.

(1) Set y(S) := 0 for each S ∈ E , z(v) := 0 for v ∈ V , and let M be the unique
maximal set with C(M) = 0.

(2) While M is not a hitting set do
(i) Choose an arbitrary hyperedge S ∈ E , S ∩M = ∅.
(ii) Compute ε := max{λ; z + λχZ ∈ P (C)}.
(iii) Increase y(S) and every z(v) for v ∈ Z by ε.
(iv) Replace M by the new unique maximal tight set.

(3) Return M .

In step (2-ii), χZ is the characteristic function of Z. This step can be performed
in the same running time as a submodular function minimisation (see [31]). Note also
that M will always intersect S in step (2-iv) and therefore will be strictly extended. It
is immediate that it returns a complementary pair (M, y) and thus Lemma 4.7 proves
d-approximation.

4.2.3.1 Game definition

The vector z in (D-SHS) plays an analogous role to the budgets c in the (linear) Mafia
Hitting Set Game. We introduce a new player, the Godfather to set the budgets of the
players.
The Submodular Mafia Hitting Set Game is defined on a hypergraph G = (V, E) and

a monotone submodular set function C : 2V → R+. There are |V | + 1 players, one for
each vertex and a special player g, called the Godfather .
The strategy of the Godfather is to return a budget vector c̃ ∈ B(C). The basic

strategy of an player v ∈ V is to decide being a civilian or being a mafioso. The strategy
of a mafioso m further incorporates normalised ransoms r0(m,S) ≥ 0 for clubs S ∈ N (m)
with

∑

S∈N (m) r0(m,S) = 1, that is, r0(m,S) expresses the fraction of the budget of m he
is willing to charge on S.
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The sets of civilians and mafiosi will again be denoted by C and M , respectively.
Hence a strategy profile is given as S = (M,C, c̃, r0). The actual ransoms will be r(m,S) =
r0(m,S) · c̃(m).
The utility of the Godfather is the total budget of the Mafia: uS(g) = C(M). The

utility of the vertex players is defined the same way as for the linear Mafia Hitting Set
Game in Section 4.2.2, with replacing c(v) by c̃(v) everywhere.
For linear cost functions, we have C(Z) =

∑

v∈Z c(z). Then the only vector in B(C)
is c, hence the Godfather has only one strategy to choose. Therefore we obtain the same
game as described in Section 4.2.2.

4.2.3.2 Nash equilibrium and Price of Anarchy

As for vertex cover and hitting set, we show that a complementary solution (M, y) to
(P-SHS) and (D-SHS) provides a solution in Nash equilibrium. Let z(u) =

∑

S∈N (u) y(S).
Note that z ∈ P (C) andM is tight for z. Let us raise the z(v) values for v ∈ C arbitrarily
in order to get a vector in the base polyhedron B(C). Let c̃ denote such a vector.

Lemma 4.14. Let us define strategies in the Mafia Hitting Set Game based on a com-
plementary pair (M, y) with M being the Mafia and V \M the civilians. Let the God-
father assign the budget vector c̃ as defined above. For u ∈ M and S ∈ N (u), define
r0(u, S) = y(S)/c̃(u). Then the strategy profile S = (M,C, c̃, r0) is a Nash equilibrium.

Proof. The Godfather has no incentive to change as by c̃(M) = C(M), he already
receives the maximum possible utility for the given M . By the definition, r(u, S) = y(S)
for each v ∈ V , hence

D(v) ≤ 1

d− 1
∑

S∈N (v)
y(S)|(S ∩M) \ {v}| ≤ c̃(v)

and therefore there are no protected mafiosi. If v is a civilian, his payoff is −D(v). He
would not get a protected status if he entered the Mafia as D(v) ≤ c̃(v), and thus his
payoff would be −c̃(v) + F+(v) −D(v) ≤ −D(v) by arbitrary choice of ransoms. If v is
a mafioso, he has F+(v) = c̃(v) as none of his neighbours is protected. Thus his utility is
−D(v), the maximum he can obtain for any strategy. �

Theorem 4.15. The price of anarchy for the Submodular Mafia Hitting Set Game is d.

Proof. Consider a strategy profile S = (M,C, c̃, r0) in a Nash equilibrium. We can
repeat the entire argument of Section 4.2.2 to show that there are no protected mafiosi
and that every civilian is demanded at most d

d−1 c̃. This is since if the Godfather does not
change his strategy, the game is identical to the linear game with fixed budgets c̃ from
the perspective of the vertex players.
Finally we define y(S) =

∑

m∈M∩S r(m,S), and then
1
d
y is a feasible dual solution for

(D-SHS). Observe that c̃(M) = C(M), as otherwise the Godfather would have incentive
to decrease the budgets of certain civilians and increase for certain mafiosi. Consequently,
C(M) = c̃(M) =

∑

S∈E y(S), showing that M is a d-approximate solution for (P-SHS).�
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4.3 Convergence to Nash equilibrium

In this section, we investigate if the Mafia Games defined in the previous section converge
under certain best response dynamics. We first show that already in the Mafia Vertex
Cover Game, a round robin best response dynamics may run into a loop.
Motivated by this example, we modify the utilities by adding a secondary payoff, that

instigates the mafiosi to use symmetric ransoms: r(u, v) = r(v, u). With this secondary
objective, we show that a single round of best response dynamics under a simple selection
rule results in a Nash-equilibrium. This dynamics simulates the Bar-Yehuda and Even
algorithm. An analogous result is then proved for hitting set. Finally, we discuss possible
extensions for the submodular case.

4.3.1 Vertex cover

Let us now show an example where a round robin dynamics does not necessarily converge.
Consider a star on the vertices v1, v2, v3, v4 and the central vertex z. Assume we are playing
round robin in the order z, v1, v2, v3, v4. Let c(vi) = 1 for i = 1, 2, 3 and c(z) = 2, and let
us start with the strategy profile where M = {z}, r(z, v1) = 2. Assume that whenever
z can change his strategy to get a higher utility, he always chooses to demand his entire
budget 2 from one of the civilians among v1, v2, v3, v4 (this is always a best response).
We claim that this will always be possible as z always stays in the Mafia, and at most

3 vertices among v1, v2, v3, v4 will be in the Mafia at the same time. Indeed, a civilian
will enter only if being ransomed by z. If vi is in the Mafia then his only option is setting
r(vi, z) = 1, and thus if z has at least 3 neighbours in the Mafia, he becomes protected
and thus all his neighbours he is not actually ransoming will have an incentive to leave.
The dynamics never reaches a Nash equilibrium, as if z is ransoming a mafioso vi, he

has incentive to change to ransoming a civilian as vi is protected. On the other hand, if z
ransoms a civilian vi, vi has an incentive to join the Mafia to obtain the protected status.

If we could incentivise z to change his strategy less drastically and ransom the other
players by at most 1, we could rapidly reach a Nash-equilibrium. To enforce such a
behaviour, we introduce a secondary utility function.
For a strategy profile S = (M,C, r), uS(v) is the utility as defined in Section 4.2.1.

Let us define ũS(v) = 0 if v ∈ C and

ũS(v) = −
∑

{u,v}∈E,u∈M
|r(u, v)− r(v, u)|

if u ∈ M . The total utility is then (uS(v), ũS(v)) in the lexicographic ordering: the
players’ main objective is to maximise uS(v), and if that is the same for two outcomes,
they choose the one maximising ũS(v). In the above example, the dynamics would reach
an equilibrium in the second round, with r(z, vi) ≤ 1 for all i.

ũS(v) ≤ 0 and equality holds if r(u, v) = r(v, u) for every {u, v} ∈ M , u, v ∈ M .
Therefore all results in Section 4.2.1 remain valid: in Lemma 4.2 we define a strategy
profile where ũS(v) = 0 for all players, hence it also gives a Nash equilibrium for the
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extended definition of utilities. The secondary utility term ũ does not affect the proofs in
Section 4.2.1.
Consider now the following simple dynamics: Start from the strategy profile where

all players are civilians. In each step, take an player who is incident to uncovered edge
and subject to this, minimises c(v) − D(v), and give him the opportunity to change his
strategy.

Theorem 4.16. After each player changing his strategy at most once, we obtain a
strategy profile in Nash equilibrium.

Proof. By induction, we shall prove that in every step, c(v) ≥ D(v) and ũS(v) = 0 for
all v ∈ V . Consider the next move, when a player v incident to some uncovered edges
minimising c(v) − D(v) moves. He obviously has to enter the Mafia, and can achieve a
maximal (primary and secondary) utility if he sets r(v, u) = r(u, v) for any u ∈M ∩N(v),
and distributes the rest of his ransoms arbitrarily to his civilian neighbours. Note that
this can always be done because c(v) ≥ D(v). Also, note that the total ransom v will
demand from other civilians is c(v) −D(v). By the extremal choice of v, it follows that
none of his civilian neighbours z will violate c(z) ≥ D(z). This also remains true if z ∈M ,
as D(z) is at most the total ransom z demands due to the symmetry of the ransoms.
Hence the induction hypothesis is maintained by an arbitrary best response of v. A

mafioso who is not protected and has secondary objective 0 has no incentive to change his
strategy. Also, a civilian v with c(v) ≥ D(v) has no incentive to join the Mafia if there are
no uncovered edges incident to v. Consequently, the game ends after all uncovered edges
are gone, and once an player joins to Mafia, he would not change his strategy anymore.�

Observe that the dynamics is closely related to the Bar-Yehuda and Even algorithm:
if the next player always ransoms only one of its civilian neighbours, then it corresponds
to a possible performance of the algorithm.

The above dynamics can be naturally interpreted in a distributive manner. In the
proof of Theorem 4.16, we only use that the vertex v changing his strategy is a local
minimiser of c(v)−D(v). The simultaneous move of two players u and v could interfere
only if {u, v} ∈ E or they have a neighbour t in common. In this case, c(t) < D(t) could
result if both u and v start ransoming t simultaneously.
We assume that the players have a hierarchical ordering ≺: u ≺ v expresses that v is

more powerful than u. We call an player v a local minimiser if v ∈ C, v is incident to
some uncovered edges, and c(v) − D(v) ≤ c(u) − D(u) whenever u ∈ C, {u, v} ∈ E. A
local minimiser v is then called eligible if u ≺ v for all local minimisers u whose distance
from v is at most 2.
We start from C = V . In each iteration of the dynamics, we let all eligible players

change their strategy to a best response simultaneously. As in the proof of Theorem 4.16,
c(v)−D(v) ≥ 0 is maintained for all v ∈ V , and thus the dynamics terminates after each
player changes his strategy at most once.
There are multiple distributed algorithms in the literature for vertex cover, e.g. [50],

[43], [60]. The distributed algorithm by Koufogiannakis and Young [60] computes in
O(log n) rounds a 2-approximation in expectation with high probability. In contrast, we
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cannot give good bounds on the number of iterations of our distributed dynamics. For
example, if the graph is a path v1 . . . vn, and the budgets are c(vi) = i, then only player i
will move in step i. Yet we believe that our dynamics could be practically efficient.

4.3.2 Hitting set

The natural generalisation of the secondary objective for hitting set is as follows. For a
club S ∈ E , let var(S) denote the maximum difference between ransoms on this edge.
That is, var(S) = 0 if |S ∩M | ≤ 1 and var(S) = maxv∈S∩M r(v, S) − minv∈S∩M r(v, S)
otherwise. For a strategy profile S = (M,C, r), let ũS(v) = 0 if v ∈ C and

ũS(v) = −
∑

v∈N (v)
var(S)

if v ∈M . The utility of an player is then (uS(v), ũS(v)), under lexicographic ordering.
A natural expectation would be to prove rapid convergence as for vertex cover, if

always the player minimising c(v) − D(v) is allowed to play. However, the Bar-Yehuda
and Even algorithm does not seem to be modelled by this dynamics. Instead, we define
a slightly different extremal choice of the next player. Let

D∗(v) =
∑

S∈N (v)
max

m∈S∩M
r(m,S),

that is, for each club S we consider the largest ransom demanded in this club. Note that
D(v) ≤ D∗(v). Let us consider the following dynamics. We start from the strategy profile
where everyone is civilian, and we always let a civilian play next who is contained in an
uncovered club. Among them, we let the one play who minimises c(v)−D∗(v).

Theorem 4.17. After each player changing his strategy at most once, we obtain a
strategy profile in Nash equilibrium.

Proof. We prove by induction, that in every step, c(v) ≥ D∗(v) and ũS(v) = 0 for all
v ∈ V . Note that this implies that there are no protected mafiosi. If M is not a hitting
set, we let a v minimising c(v) − D∗(v) play. ũS(m) = 0 for all m ∈ M means that for
every club S, r(m,S) is equal for every m ∈M ∩S; let rS denote this common value. As
for the vertex cover case, the best responses of v are to set r(v, S) = rS whenever S was
already covered by the Mafia, and to distribute the remaining ransoms arbitrarily on the
hyperedges covered only by v.
As D∗(v) =

∑

S∈N (v) rS, the remaining amount v distributes is exactly c(v)−D∗(v).
Then by the choice of v, c(z) ≥ D∗(z) shall be maintained for every civilian z, and also
for other mafiosi (note that if z ∈ M , then D∗(z) does not change). It can be seen
analogously as for vertex cover, that we have a Nash equilibrium if there are no more
uncovered clubs. �

Similarly to the vertex cover case, this dynamics essentially simulates the Bar-Yehuda
and Even algorithm. Also, an analogous distributed interpretation can be given.
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4.3.3 Submodular hitting set

One would expect that the Submodular Mafia Hitting Set Game also converges under some
dynamics that simulates the primal-dual algorithm by Iwata and Nagano [47]. However,
if the Godfather does not have a secondary utility, the following example shows that it
can run into a loop even in very simple instances.
Let V = {a, b}, C({a}) = C({b}) = C({a, b}) = 1, and let g be the Godfather. Let

E = {{a, b}}; for simplicity, we use the notation of vertex cover, e.g. r0(a, b) denotes
r0(a, {a, b}). Let us start from the strategy profile C = V , c̃(a) = 1, c̃(b) = 0, and play a
round robin in the order a, b, g.
First, a enters Mafia and sets r0(a, b) = 1. Then b also enters to receive the protected

status and sets r0(b, a) = 1. g has no incentive to move as c̃(M) = 1 is already maximal.
In the next round, a is happier if he leaves Mafia; b has no incentive to change, however g
modifies to c̃(a) = 0 and c̃(b) = 1. This will lead to a loop: a enters again in next round,
b leaves, c̃ is changed again, etc.
The above behaviour can be avoided by introducing a secondary utility for g: let

ũS(g) =
∑

v∈M F+(v), that is, the sum of the actual incomes of the mafiosi. Note that
ũS(g) ≤ c̃(M) and equality holds if and only if there are no protected mafiosi. With this
secondary utility, after both a and b enter Mafia, g will modify to c̃(a) = c̃(b) = 0.5, giving
a Nash equilibrium.
We conjecture that with this secondary utility and the secondary utilities for the

vertex players as for hitting set, rapid convergence can be shown under an appropriate
choice of the next player.

4.4 Conclusions and further research

We have defined games whose Nash equilibria correspond to certain covering problems,
with the price of anarchy matching the best constant factor approximations. The payoffs
in these games are locally defined, and the analysis is based on the LP relaxations of the
corresponding covering problems. An intriguing question is if a similar game theoretic
approach could be applied for further combinatorial optimisation problems.
The first natural direction would be to extend our approach to a broader class of

covering games. The most general approximation result on covering games is [59], giv-
ing a d-approximation algorithm for minimising a submodular function under monotone
constraints, each constraint dependent on at most d variables. As a first step, one could
study hitting set with the requirement that each hyperedge S must be covered by at least
h(S) ≥ 1 elements; a simple primal-dual algorithm was given in [45]. However, extending
our game even to this setting does not seem straightforward.
One could also try to formulate analogous settings for classical optimisation problems

such as facility location, Steiner-tree or knapsack. One inherent difficulty is that in our
analysis, it seems to be crucial that any greedily chosen maximal feasible dual solution
gives a good approximation. Also, we heavily rely on the fact that each constraint contains
at most d variables.
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In Section 4.3, we have shown that the best response dynamics rapidly converges
for vertex cover and hitting set under certain assumptions. Stronger convergence results
might hold: for example, it is open if arbitrary round robin best response dynamics
converge to a Nash equilibrium. For the Submodular Mafia Hitting Set Game, we do not
even have the weaker convergence result.
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5. Cop and Robber Games

The guarding game is a game in which several cops try to guard a region in a (directed or
undirected) graph against a robber. The robber and the cops are placed on the vertices
of the graph; they take turns in moving to adjacent vertices (or staying), cops inside the
guarded region, the robber on the remaining vertices (the robber-region). The goal of the
robber is to enter the guarded region at a vertex with no cop on it. The problem is to
determine whether for a given graph and given number of cops the cops are able to prevent
the robber from entering the guarded region. Fomin et al. [37] proved that the problem
is NP-complete when the robber-region is restricted to a tree. Further they prove that is
it PSPACE-complete when the robber-region is restricted to a directed acyclic graph, and
they ask about the problem complexity for arbitrary graphs. In this chapter we prove
that for arbitrary graphs (directed or undirected) the problem is E-complete.
This chapter is based on our papers [96] and [95].

5.1 Introduction and Motivation

The guarding game (G, VC , c), introduced by Fomin et al. [37], is played on a graph

G = (V,E) (or directed graph
−→
G = (V,E)) by two players, the cop-player and the

robber-player , each having his pawns (c cops and one robber, respectively) on V . There
is a protected region (also called cop-region) VC ⊂ V . The remaining region V \ VC is
called robber-region and denoted VR. The robber aims to enter VC by a move to a vertex
of VC with no cop on it. The cops try to prevent this. The game is played in alternating
turns. In the first turn the robber-player places the robber on some vertex of VR. In the
second turn the cop-player places his c cops on vertices of VC (more cops can share one
vertex). In each subsequent turn the respective player can move each of his pawns to a
neighbouring vertex of the pawn’s position (or leave it where it is). However, the cops
can move only inside VC and the robber can move only on vertices with no cops. At any
time of the game both players know the positions of all pawns. The robber-player wins
if he is able to move the robber to some vertex of VC in a finite number of steps. The
cop-player wins if the cop-player can prevent the robber-player from placing the robber
on a vertex in VC indefinitely. Note that after exponentially many (in the size of the
graph G) turns the positions has to repeat and obviously if the robber can win, he can
win in less than 2|V |(c+1) turns, Note that 2|V |c+1 is the upper bound on the number of all
possible positions of the robber and all cops, so after that many turns the position has to
repeat. Thus, if the robber can win, he can win in less than 2|V |c+1 turns. Consequently,
we may define the robber to lose if he does not win in 2|V |c+1 turns.
For a given graph G and guarded region VC , the task is to find the minimum number

c such that cop-player wins. Note that this problem is polynomial-time equivalent with
the problem of determining the outcome of the game for a fixed number c of cops.
The guarding game is a member of a big class called the pursuit-evasion games, see,
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e.g., Alspach [2] for introduction and survey. The discrete version of pursuit-evasion games
on graphs is called the Cops-and-Robber game. This game was first defined for one cop by
Winkler and Nowakowski [81] and by Quilliot [88]. Aigner and Fromme [1] initiated the
study of the problem with several cops. The minimum number of cops required to capture
the robber is called the cop number of the graph. In this setting, the Cops-and-Robber
game can be viewed as a special case of search games played on graphs. Therefore, the
guarding game is a natural variant of the original Cops-and-Robber game. The complexity
of the decision problem related to the Cops-and-Robbers game was studied by Goldstein
and Reingold [39]. They have shown that if the number of cops is not fixed and if either the
graph is directed or initial positions are given, then the problem is E-complete. Another
interesting variant is the “fast robber” game, which is studied in Fomin et al. [34]. See
the annotated bibliography [36] for reference on further topics.

A different well-studied problem, the Eternal Domination problem (also known as
Eternal Security) is strongly related to the guarding game. The objective in the Eternal
Domination is to place the minimum number of guards on the vertices of a graph G
such that the guards can protect the vertices of G from an infinite sequence of attacks. In
response to an attack of an unguarded vertex v, at least one guard must move to v and the
other guards can either stay put, or move to adjacent vertices. The Eternal Domination
problem is a special case of the guarding game. This can be seen as follows. Let G be
a graph on n vertices and we construct a graph H from G by adding a clique Kn on n
vertices and connecting the clique and G by n edges which form a perfect matching. The
cop-region is V (G) and the robber-region is V (Kn). Now G has an eternal dominating
set of size k if and only if k cops can guard V (G). Eternal Domination and its variant
have been considered for example in [3], [17], [38], [40], [55], [56], [57], [58].

We focus on the complexity issues of the following decision problem: Given the guard-
ing game G = (G, VC , c), who has the winning strategy?
Let us define the computational problem precisely. The directed guarding decision

problem is, given a guarding game (
−→
G , VC , c) where

−→
G is a directed graph, to decide

whether it is a cop-win game or a robber-win game. Analogously, we define the undirected
guarding decision problem with the difference that the underlying graph G is undirected.
The guarding problem is, given a directed or undirected graph G and a cop-region VC ⊆
V (G), to compute the minimum number c such that the (G, VC , c) is a cop-win.

The directed guarding decision problem was introduced and studied by Fomin et
al. [37]. The computational complexity of the problem depends heavily on the chosen re-
strictions on the graph G. In particular, in [37] the authors show that if the robber’s region
is only a path, then the problem can be solved in polynomial time, and when the robber
moves in a tree (or even in a star), then the problem is NP-complete. Furthermore, if
the robber is moving in a directed acyclic graph, the problem becomes PSPACE-complete.
Later Fomin, Golovach and Lokshtanov [35] studied the reverse guarding game with the
same rules as in the guarding game, except that the cop-player plays first. They proved in
[35] that the related decision problem is PSPACE-hard on undirected graphs. Nagamochi
[71] has also shown that that the problem is NP-complete even if VR induces a 3-star
and that the problem is polynomial-time solvable if VR induces a cycle. Also, Thirumala
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Reddy, Sai Krishna and Pandu Rangan have proved [98] that if the robber-region is an
arbitrary undirected graph, then the decision problem is PSPACE-hard.
Fomin et al. [37] asked the following question.

Question 5.1. Is the guarding decision problem for general graphs PSPACE-complete?

Let us consider the class E = DTIME(2O(n)) of languages recognisable by a determin-
istic Turing machine in time 2O(n). We consider log-space reductions, this means that the
reducing Turing machine is log-space bounded. In pursuit of Question 5.1 we prove the
following result.

Theorem 5.2. The directed guarding decision problem is E-complete under log-space
reductions.

We would like to point out the fact that we can prove Theorem 5.2 without prescribing
the starting positions of players. Immediately, we get the following corollary.

Corollary 5.3. The guarding problem is E-complete under log-space reductions.

Let us explain here the relevance of Theorem 5.2 to Question 5.1. Very little is
known how the class E is related to PSPACE. It is only known [14] that E 6= PSPACE.
The following corollary shows that positive answer to Question 5.1 would give a relation
between these two complexity classes. This gives unexpected and strong incentive to find
positive answer to Question 5.1. (On the other hand, to the skeptics among us, it may
also indicate that negative answer is more likely.)

Corollary 5.4. If the conjecture of Fomin et al. is true, then E ⊆ PSPACE.

Proof. Suppose the guarding problem is PSPACE-complete. Let L ∈ E. Then (by
Theorem 5.2) an instance of L can be reduced by a log-space reduction to an instance of
the guarding game, which we suppose to be in PSPACE. Consequently, L ∈ PSPACE. �

We also prove Theorem 5.5, a theorem similar to Theorem 5.2 for general undi-
rected graphs. We define the guarding game with prescribed starting positions G =
(G, VC , c, S, r), where S : {1, . . . , c} → VC is the initial placement of cops and r ∈ VR
is the initial placement of robber. The undirected guarding decision problem with pre-
scribed starting positions is, given a guarding game with prescribed starting positions
(G, VC , c, S, r) where G is an undirected graph, to decide whether it is a cop-win game
or a robber-win game. The directed guarding decision problem with prescribed starting
positions is defined analogously.

Theorem 5.5. The undirected guarding decision problem with prescribed starting posi-
tions is E-complete under log-space reductions.

Here, we would like to point out the fact that with the exception of the result in
[35], all known hardness results for cops and robbers, or pursuit evasion games are for the
directed graph variants of the games [37], [39]. For example, the classical Cop and Robbers
game was shown to be PSPACE-hard on directed graphs by Goldstein and Reingold in
1995 [39] while for undirected graphs, even an NP-hardness result was not known until
recently by Fomin, Golovach and Kratochv́ıl [33].
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Let us also consider the guarding game GR = (−→G , VC , c)R, where the two initial turns
are different: In the first turn, the cop-player places all cops on vertices of VC , and in
the second turn, the robber-player places the robber on some vertex of VR. Then the
game proceeds as usual, starting with the cop-player. In some sense, this game looks like
being harder for the cop-player, because the robber during his initial placement has better
chance to endanger the cop-region. Analogously with the definition of directed guarding
decision problem we define the reverse directed guarding decision problem.
Fomin, Golovach and Lokshtanov [35] proved that the reverse undirected guarding

problem is PSPACE-hard. We show the following theorem for the directed case.

Theorem 5.6. The reverse directed guarding decision problem is E-complete under
log-space reductions.

For the original Cops-and-Robber game, Goldstein and Reingold [39] have proved that
if the number c of cops is not fixed and if either the graph is directed or initial positions
are given, then the related decision problem is E-complete.
In a sense, we show analogous result for the guarding game as Goldstein and Rein-

gold [39] have shown for the original Cops-and-Robber game. Similarly to Goldstein and
Reingold, we can prove the complexity of the undirected guarding decision problem only
when having prescribed the initial positions of players. Dealing with this issue seems to
be a nontrivial task in this family of games.

5.2 The Directed Case

In order to prove E-completeness of the directed guarding decision problem, we first note
that the problem is in E.

Lemma 5.7. The guarding decision problem (directed or undirected) is in E.

Proof. We need to show that there is an algorithm deciding the outcome of a given
guarding game G = (G, VC , c) in 2O(n) time, where n is the size of the input G in some
encoding. Consider the directed graph H of all configurations of the game G—the vertices
of H are all possible legal positions of all cops and the robber, together with the informa-
tion whose turn it is. There is also a starting vertex s representing the empty board and
the vertices r1, . . . , r|VR| representing every possible initial placement of the robber with
still no cops placed. More precisely,

V (H) = {(C, r, t); C : {1, . . . , c} → VC , r ∈ V (G), t ∈ {0, 1}} ∪ {s, r1, . . . , r|VR|}.
Here t = 0 denotes the robber is on move, t = 1 denotes cops are on move, C is the
position of cops and r is the position of the robber. There are edges from s to every
vertex ri and for every ri there are edges to every possible initial subsequent placement
of cops. The edge (k1, k2) belongs to E(H) if and only if k1 is cop turn and k2 is robber
turn (or vice versa) and the pawns of k1 can be legally moved into pawn positions of k2.
Using the following backwards-labelling algorithm we can decide the outcome of every

position in polynomial time in the size of the graph H. Let us denote the robber-winning
configurations by WR.

72



(1) Construct the graph H.
(2) Initially setWR to be all vertices that are a win for the robber-player, i.e. positions
where the robber stands on some v ∈ VC and there is no cop on v.

(3) Add toWR all vertices v where robber is on turn and there is an edge (v, w) ∈ E(H)
and w ∈ WR.

(4) Add to WR all vertices v where cop is on turn and for every edge (v, w) ∈ E(H)
the vertex w ∈ WR.

(5) Repeat |V (H)|-times the steps 3 and 4.
(6) If s ∈ WR the game G is robber-win, otherwise the game G is cop-win.
Note that each step can be computed in time polynomial in the size of H. It remains

to show that the size of H is 2O(n). As mentioned in the introduction, the simplest
upper bound on |V (H)| is 2|V (G)|c+1, which is unfortunately super-exponential in n if c
is close to n. To find a better upper bound, we use the fact that the cops are mutually
indistinguishable. There are at most |V (G)| positions of the robber. Counting the number
of all positions of the cops is the classical problem of putting c indistinguishable balls into
|VC | baskets. Then, taking into account also whose turn it is and the number of vertices
ri, we get that |V (H)| is bounded by

|V (H)| ≤ 4|V (G)|
(|VC |+ c− 1

c

)

≤ 4n
(
n+ c− 1

c

)

≤ 4n2n+c−1 = 2O(n).

Thus the total size of H is 2O(n) as well. �

Let us first study the problem after the second move, where both players have already
placed their pawns. We reduce the directed guarding decision problem with prescribed
starting positions from the following formula-satisfying game F .
A position in F is a 4-tuple (τ, FR(C,R), FC(C,R), α) where τ ∈ {1, 2}, FR and FC

are formulas in 12-DNF both defined on set of variables C ∪ R, where C and R are
disjoint and α is an initial (C ∪R)-assignment. The symbol τ serves only to differentiate
the positions where the first or the second player is on move. Player I (II) moves by
changing the values assigned to at most one variable in R (C); either player may pass
since changing no variable amounts to a “pass”. Player I (II) wins if the formula FR (FC) is
true after some move of player I (II). More precisely, player I can move from (1, FR, FC , α)
to (2, FR, FC , α′) in one move if and only if α′ differs from α in the assignment given to
at most one variable in R and FC is false under the assignment α; the moves of player II
are defined symmetrically.
According to Stockmeyer and Chandra [94], the set of winning positions of player I

in the game F is an E-complete language under log-space reduction.
Let us first informally sketch the reduction from F to G, i.e., simulating F by an

equivalent guarding game G. The setting of variables is represented by positions of certain
cops so that only one of these cops may move at a time (otherwise cop-player loses the
game). The variables (or more precisely the corresponding cops) of C are under control
of cop-player. However, in spite of being represented by cops, the variables of R are under
control of the robber-player by a gadget in the graph

−→
G , which allows him to force any

setting of cops representing R.
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When describing the features of various gadgets, we will often use the term normal
scenario. By normal scenario S of certain gadget (or even the whole game) we mean a
flow of the game that imitates the formula game F . The graph G will be constructed in
such a way that if the player (both cop-player and robber-player) does not exactly follow
the normal scenario S, he loses the game in a few moves.
There are four cyclically repeating phases of the game, determined by the current

position of the robber. The normal scenario is that robber cyclically goes through the
following phases marked by four special vertices and in different phases he can enter
certain gadgets.

(1) “Robber Move” (RM): In this step the robber can enter the Manipulator gadget,
allowing him to force setting of at most one variable in R.

(2) “Robber Test” (RT ): In this step the robber may pass through the Robber Gate
into the protected region VC , provided that the formula FR is satisfied under the
current setting of variables.

(3) “Cop Move” (CM): In this step (and only in this step) one (and at most one)
variable cell Vx for x ∈ C is allowed to change its value. This is realized by a
gadget called Commander .

(4) “Cop Test” (CT ): In this step, if the formula FC is satisfied under the current
setting of variables, the cops are able to block the entrance to the protected region
forever (by temporarily leaving the Cop Gate gadget unguarded and sending a cop
to block the entrance to VC provided by the Robber Gate gadgets).

See Figure 5.2 for the overview of the construction.

RM RT

CMCT

Manipulators

Commander

Variables

Cop gates

Robber gates

Fig. 5.2. The sketch of the construction
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5.2.1 The Variable Cells

Tx

Fx

TFx FTx

Fig. 5.3. Variable cell Vx

For every variable x ∈ C ∪ R we introduce a variable cell Vx, which is a directed cycle
(Tx, TFx, Fx, FTx) (see Figure 5.3). There is one cop (variable cop) located in every Vx
and the position of the cop on vertices Tx, Fx represents the boolean values true and false,
respectively. The prescribed starting position of the variable cop is Tx if α(x) is true, and
Fx otherwise. All the vertices of Vx belong to VC .
The cells are organised into blocks C and R. The block C is under control of cop-player

via the Commander gadget, the block R is represented by cops as well, however, there
are the Manipulator gadgets allowing the robber-player to force any setting of variables
in R, by changing at most one variable in his turn.
Every variable cell Vy, y ∈ R has assigned the Manipulator gadget My. Manipulator

My consists of directed paths (RM,T ′
y, T

′′
y , Ty) and (RM,F ′

y, F
′′
y , Fy) and edges (T

′
y, RT )

and (F ′
y, RT ) (see Figure 5.4).

Ty

Fy

TFy FTy

Cop region Robber region

RM

RT

T
′′

y

F
′′

y

T
′

y

F
′

y

Fig. 5.4. The Manipulator gadget My

The vertices {T ′
y, F

′
y, T

′′
y , F

′′
y , RM,RT} ⊂ VR, the rest belongs to VC .

Lemma 5.8. Let us consider variable cell Vy, y ∈ R, and the corresponding Manipulator
My. Let the robber be at the vertex RM , let the cop be either on Ty or Fy and suppose
no other cop can access any vertex of My in less than three moves. Then the normal
scenario is following: By entering the vertex T ′

y (F
′
y), the robber forces the cop to move

towards the vertex Ty (Fy). Robber then has to enter the vertex RT .

Proof. If the cop refuses to move, the robber advances to T ′′
y or F

′′
y and easily reaches

VC before the cop can block him. On the other hand, if the robber moves to T ′′
y or F

′′
y

even though the cop moved towards the opposite vertex, then cop finishes his movement
to the opposite vertex and robber cannot move anymore. �
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Note that this is not enough to ensure that the variable cop really reaches the opposite
vertex and that only one variable cop from variable cells can move. We deal with this
issue later.
When changing variables of C, we have to make sure that at most one variable is

changed at a time. We ensure that by the gadget Commander (see Figure 5.5), connected
to every Vx, x ∈ C. It consists of the vertices {fx, gx, hx; x ∈ C} ∪ {HQ} and the edges

{(HQ, hx), (hx, HQ), (hx, fx), (Tx, fx), (Fx, fx), (gx, fx), (CM, gx); x ∈ C}.

Cop region Robber region

CM

gx

HQ

hx fx
Tx

Fx

Fig. 5.5. The Commander gadget

The vertices {gx; x ∈ C} and CM belong to VR, the rest belongs to VC . There is one
cop, the “commander”, whose prescribed starting position is the vertex HQ. From every
vertex w ∈ V \ (VC ∪ {CM} ∪ {gx; x ∈ C}) we add the edge (w,HQ) to −→G , thus the
only time the commander can leave HQ is when the robber stands at CM . The normal
scenario is as follows: If the robber moves to CM , the commander decides one variable x
to be changed and moves to hx, simultaneously the cop in the variable cell Vx starts its
movement towards the opposite vertex. The commander temporarily guards the vertex
fx, which is otherwise guarded by the cop in the cell Vx. Then the robber moves (away
from CM) and the commander has to return to HQ in the next move.

Lemma 5.9. Let us consider the Commander gadget and the variable cells Vx for x ∈ C
with exactly one cop each, standing either on Tx or Fx. Let the robber be at the vertex
CM and the cop at HQ, with the cop-player on move. Suppose no other cop can access
the vertices in the Commander gadget. Then the normal scenario is that in at most one
variable cell Vx, x ∈ X the cop can start moving from Tx to Fx or vice versa.

Proof. Only the vertex fx is temporarily (for one move) guarded by the commander. If
two variable cops starts moving, some fy is unsecured and robber exploits it by moving
to gy in his next move. �
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Note that the Manipulator allows the robber to “pass” changing of his variable by
setting the current position of cop in some variable. Also note, that the robber may stay
on the vertex CM , thus allowing the cop-player to change more than one of his variables.
However, in any winning strategy of the robber-player this is not necessary and if the
robber-player does not have a winning strategy, this trick does not help him as the cops
may pass.

5.2.2 The Gates to VC

For every clause φ of FR, there is one Robber gate gadget Rφ. If φ is satisfied by the
current setting of variables, Rφ allows the robber to enter VC .

zφ

Cop region Robber region

RTz′φ

C ′

R′

Fig. 5.6. The Robber Gate Rφ

The Robber gate Rφ consists of a directed path (RT, z′φ, zφ) and the following edges.
Let φ = (ℓ1& . . .&ℓ12) where each ℓi is a literal. If ℓi = x then we put the edge (Fx, zφ) to−→
G . If ℓi = ¬x then we put the edge (Tx, zφ) to

−→
G . See Figure 5.6 for illustration. The

vertices {z′φ; φ ∈ FR} and RT belong to VR, the rest belongs to VC .
Lemma 5.10. Let φ be a clause of FR, consider a Robber Gate Rφ. Let the robber stand
at the vertex RT and let there be exactly one cop in each Vx, x ∈ φ, standing either on
Tx or Fx. Suppose no other cop can access Rφ in less than three moves. Then in the
normal scenario robber can reach zφ if and only if φ is satisfied under the current setting
of variables (given by the positions of cops on variable cells).

Proof. If φ is satisfied, no cop at the variable cells can reach zφ in two (or less) steps.
Therefore, the robber may enter zφ. On the other hand, if φ is not satisfied, at least one
cop is one step from zφ and the robber would be blocked forever if he moves to z′φ. �

For every clause ψ of FC , there is one Cop Gate gadget Cψ (see Figure 5.7). If ψ is sat-
isfied, Cψ allows cops to forever block the entrance to VC , the vertices zφ from each Robber
Gate Rφ. The Cop Gate Cψ consists of directed paths (CT, b′ψ,x, bψ,x) for each variable x
of the clause ψ, the directed cycle (aψ, a′ψ, a

′′
ψ, a

′′′
ψ ) and edges {(aψ, bψ,x), (a′′ψ, bψ,x); x ∈ ψ}

and {(a′′ψ, zφ); φ ∈ FR}.
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Cop region

Robber region

CT

C ′
R′

zψ1

zψ2

zψ3

a′′

ψ

a′

ψ

aψ

a′′′

ψ
bψ,x

b′ψ,x

Fig. 5.7. The Cop Gate Cψ

Let ψ = (ℓ1& . . .&ℓ12) where each ℓi is a literal. If ℓi = x then we put the edge

(Tx, bψ,x) to
−→
G . If ℓi = ¬x then we put the edge (Fx, bψ,x) to

−→
G . From the vertices aψ

and a′′ψ there is an edge to every bψ,x and from a′′ψ there is an edge to every zφ (from
each Robber Gate Rφ). There is a cop, we call him Arnold, and his prescribed starting
position is aψ. Each Cψ has its own Arnold, it would be therefore more correct to name
him ψ-Arnold, however, we would use the shorter name if no confusion can occur. The
vertices {b′ψ,x; ψ ∈ FC , x ∈ ψ} and CT belong to VR, the rest belongs to VC .

Lemma 5.11. Let us consider a Cop Gate Cψ. Let there be one cop at the vertex aψ
(we call him Arnold) and let there be exactly one cop in each Vx, x ∈ ψ, standing on
either Tx or Fx. Let the robber be at the vertex CT and no other cop can access Cψ in
less than three moves. Then in the normal scenario, Arnold is able to move to a′′ψ (and
therefore block all the entrances zφ forever) without permitting robber to enter VC if and
only if ψ is satisfied under the current setting of variables (given by the position of cops
in the variable cells).

Proof. If ψ is satisfied, the vertices bψ,x, x ∈ ψ are all guarded by the variable cops,
therefore Arnold can start moving from aψ towards a′′ψ. If the robber meanwhile moves to
some b′ψ,x, the variable cop from Vx will intercept him by moving to bψ,x and the robber
loses the game. On the other hand, if ψ is not satisfied, there is some bψ,x unguarded
by the cop from Vx. Therefore, Arnold cannot leave aψ, because otherwise robber would
reach bψ,x before Arnold or the cop from Vx could block him. �
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5.2.3 The Big Picture

We further need to assure that the cops cannot move arbitrarily. This means, that the
following must be the normal scenario:

(1) During the “Robber Move” phase, the only cop who can move is the cop in variable
cell Vx chosen by the robber when he enters Manipulator Mx. All other variable
cops must stand on either Tx of Fx vertices for some variable x. The cop in Vx
must reach the vertex Tx from Fx (or vice versa) in two consecutive moves.

(2) During the “Robber Test” phase, no cop can move.
(3) During the “Cop Move” phase, only the commander and the cop in exactly one
variable cell Vx can move. The cop in Vx must reach the vertex Tx from Fx (or
vice versa) in two consecutive moves.

(4) During the “Cop Test” phase, no other cop than Arnold may move. Arnold may
move from vertex aψ to a′′ψ and he must do that in two consecutive steps (and of
course Arnold may do that only if the clause ψ is satisfied).

We say that we force the vertex w by the vertex set S, when for every v ∈ S we add
the oriented path Pv,w = (v, pvw, p′vw, w) of length 3 to the graph

−→
G . The vertices pvw, p′vw

belong to VR. We say that we block the vertex w by the vertex set S, when for every
v ∈ S we add the Blocker gadget Bwv. The Blocker Bwv consists of vertices pv1, p

v
2 ∈ VR

and qv1 , q
v
2 ∈ VC and the edges (v, pvi ), (p

v
i , q

v
i ), (w, q

v
i ) for i = 1, 2.

A cop on a vertex w blocked by v cannot leave w even for one move when the robber
is on v. Note also that if the cop on w enters qvi when it is not necessary to block p

v
i , then

he is permanently disabled until the end of the game and the next time the robber visits
v he may enter the cop-region through the other pvj .
Forcing serves as a tool to prevent moving of more than one variable cops (and

Arnolds) however, because of the structure of variable cells, we cannot do it by simply
blocking the vertices Tx, Fx and we have to develop the notation of forcing.
Case 1: For every variable x ∈ C ∪ R do the following construction. Let Sx =

{RM,RT} ∪ {V (My); y ∈ R, x 6= y} where V (My) are the vertices of Manipulator for
variable y. We force the vertices Tx and Fx by the set Sx. Let S1 = {RM}∪{V (My); y ∈
R}. For each Cop Gate Cψ, we force the vertex aψ by the set S1. Finally, we block the
vertex HQ by the set S1. Observe that whenever a cop from any other Vy than given by
the Manipulator Mx is not on Ty or Fy, the robber can reach VC faster than the variable
cop can block him. On the other hand, if all variable cops are in the right places, the
robber may never reach VC unless being forever blocked. The same holds for Arnold on
vertices aψ and a′′ψ. The commander cannot move because of the properties of the Blocker
gadget. If the variable cop does not use his second turn to finish his movement, the robber
will exploit this by reaching VC by a path from the vertex RT .
Case 2: Let S2 = {RT} ∪ {z′φ; φ ∈ FR} and let F = {Tx, Fx; x ∈ C ∪R} ∪ {aψ; ψ ∈

FC}. We force every v ∈ F by the set S and we block the vertex HQ by S2. Observe
that in the normal scenario no cop may move.
Case 3: Let S3 = {CM} and let F = {Tx, Fx; x ∈ R} ∪ {aψ; ψ ∈ FC}. We force

every v ∈ F by S3. Now, in normal scenario, no variable cop from Vx, x ∈ R may move
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and by Lemma 5.9, only commander and exactly one variable cop from Vy, y ∈ C may
move.
Case 4: Let S4 = {CT} and let F = {Tx, Fx; x ∈ C ∪ R}. We force every v ∈ F by

S4 and we block the vertex HQ by S4. Observe that in normal scenario no variable cop
and the commander may move. The rest follows from Lemma 5.11 and the fact, that a′′ψ
is forced by the vertex RM .

Finally, we connect the vertices in a directed cycle (RM,RT,CM,CT ) and let the
prescribed starting position r of the robber be the vertex RM . All the construction
elements so far presented prove the following corollary.

Corollary 5.12. For every game F = (τ, FC(C,R), FR(C,R), α) there exists a guarding
game G = (−→G , VC , c, S, r),

−→
G directed, with a prescribed starting positions such that player

I wins F if and only if the robber-player wins the game G.
Next we note, that we can modify our current construction so that it fully conforms

to the definition of the guarding game on a directed graph.

Lemma 5.13. Let G = (−→G , VC , c, S, r) be a guarding game with a prescribed starting
positions. Let the position r has no in-going edge and let no two cops start at the same
vertex. Then there exists a guarding game G ′ = (

−→
G ′, V ′

C , c
′),

−→
G ⊆ −→

G ′, VC ⊆ V ′
C such that

• the robber-player wins G ′ if and only if the robber-player wins the game G
• if the cop-player does not place the cops to completely cover S in his first move,
he will lose

• if the robber-player does not place the robber on r in his first move, the cops win.

Proof. Consider an edge (u, v) ∈ E(
−→
G ) such that u ∈ VR and v ∈ VC (a border edge).

Observe, that the out-degree of each such vertex u in our construction is exactly 1. Let
m = |{v ∈ VC ; (u, v) ∈ E(

−→
G ), u ∈ VR}| be the number of vertices from VC directly

threatened (i.e. in distance 1) from the robber region.

Let us define the graph
−→
G ′ = (V ′, E ′) such that V ′ = V (

−→
G ) ∪ {r} ∪ T where T =

{t1, . . . , tm} is the set of new vertices and E ′ = E(
−→
G )∪{(r, v); v ∈ T ∪S}. Consider the

game G ′ = (
−→
G ′, V ′

C , c
′) where V ′

C = VC ∪T and c′ = c+m. See Figure 5.8 for illustration.

S
T

r

Fig. 5.8. Forcing starting positions

Suppose that the robber-player places the robber in the first move to some vertex
v ∈ VR \{r}. Then there are m vertices in VC directly threatened by edges going from VR
and because we have at least m cops available, the cops in the second move can occupy
all these vertices and prevent the robber from entering VC forever. So the robber must
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start at the vertex r. Then observe, that c cops must occupy the positions S and m cops
must occupy the vertices T . If any cop does not start either on T or S, the robber wins in
the next move. The cops on T remain there harmless to the end of the game. The cops
cannot move until the robber decides to leave the vertex r. �

Let us have a guarding game G = (−→G , VC , c, S, r) with prescribed starting positions.
Note that in our construction no two cops had the same starting position. We add new
vertex r and edge (r, RM) to

−→
G and by the previous lemma there is an equivalent guarding

game G ′, G ⊆ G ′, without prescribed starting positions.
Theorem 5.2 is now proved.

5.3 The Undirected Case

In this section we prove Theorem 5.5. The idea follows: We take the same construction of
directed graph

−→
G we used to prove Corollary 5.12. For each edge we build a gadget such

that whenever the resulting undirected edge is used by cop (robber) in bad direction, the
cop-player (robber-player) will lose the game.

To obtain the undirected graph G, let us take the graph
−→
G , and subdivide each edge

e ∈ E(
−→
G ), e = (u, v) by three vertices (see Figure 5.9). We number all vertices by

0, 1, 2, 3, where 0 belongs to starting point of each edge e ∈ E(
−→
G ) and the newly added

vertices e1, e2, e3 are numbered by 1, 2, 3 according to the orientation of e. If u ∈ VR(
−→
G )

then e1, e2, e3 ∈ VR(G), otherwise e1, e2, e3 ∈ VC(G). Now forget the orientation.

u v

e

u v

e1 e2 e3

0 1 2 3 0

Fig. 5.9. Subdividing directed edges

We introduce the gadget Clock (see Figure 5.10). The vertices of Clock are Ω,
c0, . . . , c3, c′0, . . . , c

′
3 and V

′ = {v′; v ∈ VR}. The vertices Ω and ci, c′i, i = 0, 1, 2, 3,
belong to VC , the set V ′ belongs to VR. There are edges {{v, v′}; v ∈ VR}, the neighbours
of ci for i = 0, 1, 2, 3 are c(i+1)mod4, c(i−1)mod4, c′i and c

′
(i−1)mod4. If the number of v ∈ VR

is j, then the vertex v′ is connected to c′j. From the vertex Ω there are edges to every
vertex zφ from each Robber gate gadget and to vertices c′0, . . . , c

′
3. Every subdivided edge

is connected to Clock as in Figure 5.10.
There is one cop (we call him Chuck) in the Clock, whose prescribed starting position

is the vertex c0. His purpose is following: If the robber is on vertex with number i and
moves to vertex with number j = (i+ 1) mod 4, the only thing Chuck can do is to go to
vertex cj (otherwise he loses the game). However, whenever robber does a stupid move
(to a vertex with number j = (i−1) mod 4), Chuck may enter Ω, thus winning the game.
Therefore, this gadget forces the robber to pass through undirected edges only in the
direction from the old graph

−→
G .

81



Ω

c0 c1

c2c3

c′
1

c′
0

c′
2c′

3

cop region

robber region

0 1 2 3 0 13

g3 e0 e1 e2 e3 f0 f1

u v

g′
3

e′
0

e′
1

e′
2

e′
3

f ′

0
f ′

1

Fig. 5.10. The Clock gadget

Lemma 5.14. Let there be exactly one cop in the Clock gadget (we call him Chuck).
Let the robber be at a vertex with number i and let Chuck be at the vertex ci. Then the
normal scenario is that robber must move to a vertex with number j = (i+1) mod 4 and
Chuck must move to vertex cj.

Proof. Suppose first that the robber moved to a vertex vj with number j and Chuck did
not move to cj (he may be at c′i, c

′
(i−1)mod4, c(i−1)mod4 or stay at ci). Then robber may

move to v′j and Chuck cannot prevent him from entering cop-region in the next move.
Suppose now that the robber moved to vertex vk with number k = (i−1) mod 4. Then

Chuck goes to c′k, preventing robber from moving to e
′
k, c

′
k. In the next move, robber may

or may not enter v′k. Is he does so, Chuck moves c
′
k and guards it until the robber leaves.

In both cases, Chuck moves afterwards to Ω, thus being able to block all entrances to the
cop-region. Note that Chuck needs only to be able to block vertices zφ and c′i, because
other entrances to the cop-region in other gadgets are protected by cops staying at these
gadgets, as proved in appropriate lemmas.
If the robber does not move in his turn, Chuck enters c′i. If robber moves to some v

′
i

with number i, Chuck keeps guarding c′i until robber leaves v
′
i and then Chuck moves to

Ω. Using the same argument as above, the cop is able to win the game.
It remains to show that robber may not enter some vertex v′i with number i. If he

does so, Chuck will move to c′i, preventing the robber from entering VC , and guarding
there until robber leaves v′i. Then Chuck moves to Ω and again wins the game using the
same argument as above. �

We have ensured the correct movement of robber, imitating the functionality of the
graph

−→
G on an undirected graph. We still have to do similar thing for cops, as they have

to respect the edge orientation as well. In our argument, every pawn has to move in his
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move. Because staying at one vertex may be a desired part of the cop-player’s strategy,
for every v ∈ VC(G) we glue a subdivided loop lv of length 4 to v, such that the pawn

will move, but in fact stay at one vertex of the original graph
−→
G . The vertices of lv are

again numbered as above.
There will be four CopDir gadgets D0, D1, D2, D3. The task of the gadget Di is to

ensure that whenever the robber moves from vertex with number i − 1 to a vertex with
number i, all cops must move to a vertex with number i. If they don’t, the robber will
be given a chance to enter the cop-region.
The gadget Di (for i = 0, 1, 2, 3) consists of vertices k1i , . . . , k

c
i ∈ VC and ℓ1i , . . . , ℓ

c
i ∈

VR, where c is the number of cops in the original
−→
G , and edges {k1i , ℓ1i }, . . . , {kci , ℓci}. Let

ui ∈ VR and vi ∈ VC be vertices of G with number i. For ui, vi we add new vertices u′i ∈ VR
and m1vi , . . . ,m

c
vi
and edges {ui, u′i} and {{u′i, ℓji}, {kji ,mj

vi
}, {mj

vi
, vi}; j = 1, . . . , c}. See

Figure 5.11 for illustration. This means that all vertices vi and ui with number i are
connected to the gadget Di via this construction.

vi

ui

u
′

i

ℓ
1

i
ℓ
2

i
ℓ
c

i

k
1

i
k

2

i
k

c

i

m
1

vi
m

2

vi

m
c

vi

cop-region

robber-region

· · ·

· · ·

Fig. 5.11. The CopDir gadget Di

Lemma 5.15. Let us have the CopDir gadgets Di for every ui ∈ VR and vi ∈ VC with
number i, i = 0, 1, 2, 3, and let all pawns be on a vertex with number i, robber being
on move. Suppose the robber moves to a vertex with number j = (i + 1) mod 4. Then
the normal scenario is that the cop on the vertex with number i moves to a vertex with
number j.

Proof. Suppose that some cop does not move and does not arrive at a vertex with number
j and he chooses some other vertex instead. Then the robber moves to u′j. All cops must
now enter the vertices m1vj , . . . ,m

c
vj
to protect the vertices k1j , . . . , k

c
j in the next move.

However, since there are c cops in total (not counting Chuck on the Clock) and one did
not go to a vertex with number j, there is one cop-less mp

vj
. Now the robber chooses to go

to ℓpj and in the next move he wins, because the cops do not have time to cover k
p
j . Note

also, that the robber cannot also pointlessly approach u′j when all cops are on vertices
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with number j. All cops would approach m1vj , . . . ,m
c
vj
or even k1j , . . . , k

c
j if necessary and

then return back to their original positions when the robber decided to go back. �

Note that we have now proved that in the normal scenario, at the beginning of the
robber move all pawns stand on vertices with the same number. Observe that using
Lemma 5.14 and Lemma 5.15, the following corollary holds.

Corollary 5.16. For every game F = (τ, FC(C,R), FR(C,R), α) there exist a guarding
game G = (G, VC , c, S, r), G undirected, with a prescribed starting positions such that
player I wins F if and only if the robber-player wins the game G.
The proof of Theorem 5.5 is now complete.

5.4 Guarding Game, where the Cops Start

Here we prove Theorem 5.6.

Proof. To prove the theorem, we first use Corollary 5.12 to obtain the instance of the
guarding game G = (G, VC , c, S, r) with prescribed starting positions. Then we construct
a device forcing the initial positions of all pawns under the reverse rules that yields exactly
the starting positions of the game G.

S
Ω

r

cop-region

robber-region

CM

a1 a2 ak

b1 b2 bk

t

· · ·

· · ·

Fig. 5.12. Forcing starting positions in reverse game

Let k = |{v ∈ VC ; (u, v) ∈ E(G), u ∈ VR}| be the number of directly threatened
vertices (in distance 1 from VR). We introduce new vertices Ω, a1, . . . , ak, b1, . . . , bk ∈ VC
and t ∈ VR. edges {(Ω, ai), (Ω, bi), (r, ai), (t, bi); i = 1, . . . , k}, and edges {(r, s); s ∈ S}.
From Ω there will be edges (Ω, v) and (v,Ω) to every directly threatened vertex v ∈ VC ,
i.e. each v such that there is some w ∈ VR with (w, v) ∈ E(G) (with the exception of r
and t). There will be also k new cops, so there will be c+ k cops in total.
In the first turn, the cops are placed. We will show that the only meaningful placement

of cops (not leading to their defeat) is this:

• There must be a cop on each s ∈ S, or for each cop-less u ∈ S there must be a cop
cu able to reach u in one step. This gives c cops in total.

• There must be at least k cops on the vertices Ω, a1, . . . , ak in total.
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• There must be at least k cops on the vertices Ω, b1, . . . , bk in total.
First suppose that there is less than k cops on the vertices {Ω, b1, . . . , bk} in total.

Then in the second turn the robber may be placed on t and the cop-player does not have
enough cops to block all vertices, thus in the next move the robber can enter VC . If there
is less than k cops on the vertices {Ω, a1, . . . , ak} in total, the robber may be placed on r
and again he wins in the next move.
If there is less than c cops on S or able to cover all vertices of S in one move, then

again the robber wins by starting on the vertex r and entering VC through some unblocked
s ∈ S in the next move. Since we have c+ k cops together, at least k cops must start at
the vertex Ω.
In the second turn, the robber must be placed at the vertex r. If he starts at t, the

vertices b1, . . . , bk are immediately blocked by the cops from Ω and the robber loses. If he
starts on some other vertex v ∈ VR, the cops from Ω will immediately block all entrances
to VC , thus winning the game.
Therefore the robber must be placed on r. Now in the next step k cops from Ω must

move to cover all vertices a1, . . . , ak and c cops must move to completely cover the set S.
Since we have c+ k cops together, all players are now on the prescribed positions and the
k extra cops will remain on the vertices a1, . . . , ak until the end of the game. From this
we also see that on Ω there had to be exactly k cops placed in the initial move of the
game.
No cop may move until the robber leaves r and the game continues as in the case with

prescribed positions (recall that r has no in-going edge and the robber never returns to
r). �

5.5 Further Questions

As we have already mentioned, the relation of the classes PSPACE and E is unclear as
we only know that PSPACE 6= E and the current state of the art is missing some deeper
understanding of the relation. Therefore, the conjecture of Fomin et al. whether the
guarding problem is PSPACE-complete still remain open. However, we believe that the
conjecture is not true.
For a guarding game G = (G, VC , c), what happens if we restrict the size of strongly

connected components of G? If the sizes are restricted by 1, we get DAG, for which the
decision problem is PSPACE-complete. For unrestricted sizes we have shown that G is
E-complete. Is there some threshold for G to become E-complete from being PSPACE-
complete? This may give us some insight into the original conjecture. We are also working
on forcing the starting position in the guarding game on undirected graphs in a way similar
to Theorem 5.2.
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6. Positional Games

Given a certain object, Ramsey theory states that there exists an internal regularity inside,
some homogeneous sub-object. To the contrary, the goal of many combinatorial games is
to create such a homogeneous sub-objects. Usually, the validity of Ramsey-type theorems
depends only on the size of the object; given object large enough, the theorem holds. We
call such minimal sufficient size Ramsey number. Similar concept exists in combinatorial
games. By game number we mean the minimum object size such that certain player
(usually the first) wins, provided he uses the best strategy possible. Often, there is large
gap between the Ramsey number and the appropriate game number.
In this chapter we study various Ramsey-type theorems and the corresponding games,

establish good upper bounds on both numbers and discover large gaps between them. In
many cases, establishing a reasonable Ramsey number upper bound is an enormously
complicated task which has been a subject of effort of many great mathematicians. Sur-
prisingly, when considering the corresponding combinatorial game, it is often quite easy
to find good upper bound on the game number, usually much lower than the Ramsey
number bound. Therefore, we consider this topic exceptionally interesting. In particular,
we contribute to this topic by investigating games corresponding to structural extensions
of Ramsey and van der Waerden theorems—Brauer theorem, structural and restricted
Ramsey theorems. The results were published in the paper [79].
In Section 6.1 we formulate the concepts and results more formally, in Section 6.2 we

give a detailed introduction to the theory of positional games, in Section 6.3 we write
about the structural Ramsey games and finally in Section 6.4 there are results about
arithmetic progression games.

6.1 Introduction

Ramsey theory deals with the statements of the following type: For every partition A1 ∪
· · · ∪ Ak of the set

(
C
A

)
of all substructures of C which are isomorphic to A, there exists

a substructure B of C such that the set
(
B
A

)
belongs to one class of the partition. This

definition of course assumes that we make precise notions of the structure and of the
substructure. The validity of the previous statement is denoted by C → (B)Ak . Every
B′ ∈

(
C
B

)
is called a copy of B in C.

The classical Ramsey theorem in this setting claims that for all integers k, n, p there
exists an integer N such that

KN → (Kn)
Kp

k .

The previous statement is shortly denoted by N → (n)pk, which is the original Erdős-Rado
partition arrow.
In Ramsey theory one tries to prove the validity of statement C → (B)Ak for various

combinatorial, number theoretical and geometrical structures. For a good survey on this
topic, see, e.g., [42] or [73].
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Another question, which is intensively studied, is motivated by efforts to find, for a
given A,B and k, the minimal size of the structure C satisfying C → (B)Ak . Denote by
C-Ramsey number rC(A,B, k) the minimal size of C ∈ C which satisfies C → (B)Ak in a
fixed class C of structures where all the objects A,B,C are considered (we tacitly assume
C ∈ C exists; otherwise we leave rC(A,B, k) undefined).
These questions seem to be very difficult even in the simplest instances, such as the

Ramsey theorem. In this case

2n/2 ≤ rK(K2, Kn, 2) ≤ 22n,

where K is the class of all complete graphs. This leads to tower function growth for
numbers rK(Kp, Kn, k).
For other structures, such as other classes of graphs, hypergraphs (with induced sub-

graphs and subhypergraphs), arithmetic progressions (the van der Waerden theorem),
combinatorial cubes (the Hales-Jewett theorem), the situation is much less satisfactory
and in most instances one is satisfied with the existence of an object C in the previously
described setup, without trying to optimise its size, which seems to be extremely large
for such structures.
Let ∆ = (δi; i ∈ I) be an integer sequence called a type. An ordered relational

structure S of type ∆ is a tuple S = (X, (Ri; i ∈ I)) where X is an ordered set and
Ri ⊆ Xδi (i.e., Ri is a δi-ary relation); we denote V (S) = X. A structure S ′ = (X ′, Y ′)
is a substructure of structure S = (X, Y ) if X ′ ⊆ X, Y ′ ⊆ Y , Y ′ ⊆ 2X′

and X ′ preserves
the ordering of X. A class C of structures is called Ramsey class if for every A,B ∈ C
and every k there exists C ∈ C such that C → (B)Ak . Let us list few examples of Ramsey
classes.
For a fixed ∆, we shall consider the class Rel(∆) of all finite ordered relational struc-

tures of type ∆. A structure S = (X, (Ri; i ∈ I)) of type ∆ is called irreducible, if
for every pair x, y ∈ X there exist i ∈ I and R ∈ Ri such that x, y ∈ R. Let F be a
(possibly infinite) set of structures of type ∆. Denote by Forb∆(F) the class of all ordered
structures A of type ∆ which do not contain any member of F as a substructure (not
necessarily induced).

Theorem 6.1. (Nešetřil, Rödl [77], [78]) Let ∆ be a type and let F be a (possibly
infinite) set of irreducible structures of type ∆. Then the classes Rel(∆) and Forb∆(F)
are Ramsey.

Jószef Beck initiated a systematic study of Ramsey numbers in a setting of combi-
natorial games. He showed that the game versions of Ramsey number are much easier
to estimate. Particularly, for the case of the Ramsey theorem and the van der Waerden
theorem, he obtained asymptotically optimal results ([11], [8], see also [9]).
Let us now turn a general Ramsey-type theorem into a game. (This transformation

is contained already in one of the earliest papers of Ramsey theory [44] by Hales and
Jewett where the authors interpreted the Hales-Jewett theorem.) We consider a structure
C as a board. There are two players, I and II. The players alternately pick substructures
A′ ∈

(
C
A

)
. I wins if and only if he succeeds to find B′ ∈

(
C
B

)
such that the whole set

(
B′

A

)
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is claimed by him. Otherwise II wins. We call this game the Ramsey (A,B)-game on C
and we denote the fact that I wins by

C
g→(B)A.

It follows by a general strategy stealing argument (Theorem 6.8) that I wins provided
C → (B)A2 . However, this is far from necessary. To clarify this, let us denote by rgC(A,B)
the minimal size of C ∈ C measured by |V (C)| satisfying that I wins Ramsey (A,B)-
game on C (provided such a C exists). It appears that in most cases we can claim that
rgC(A,B) has a moderate size. This phenomenon was already exhibited in 1981 by Beck
in a landmark paper [11] and in 2002 in [8]:

Theorem 6.2. (Beck [11]) Consider the game version of the van der Waerden theorem
and let rg(AP (n)) denote the minimum size N such that Player I wins the game of building
a arithmetic progression of length n on the set {1, . . . , N}. Then

lim
n→∞

√

[n]rg(AP (n)) = 2.

Theorem 6.3. (Beck [8]) Let us consider the Ramsey (Ep, Kn)-game in the class Kp of
all p-uniform complete hypergraphs, where Ep is a hypergraph edge, and let the board be
the hypergraph KN ∈ Kp. In case p = 2 (graphs), if

n ≥ 2 log2N − 2 log2 log2N + 2 log2 e− 1 + ≀(1),

then Breaker has an explicit winning strategy. On the other hand, if

n ≤ 2 log2N − 2 log2 log2N + 2 log2 e−
10

3
+ ≀(1),

then Maker has an explicit winning strategy. In case p ≥ 3, Breaker wins if

n ≥ (p! log2N)
1

p−1 + ≀(1),

and Maker wins if

n ≤ (p! log2N)
1

p−1 −O(1).

This should be compared with the bound for Ramsey function mentioned earlier. For
Theorem 6.2, let us just recall that the van der Waerden function is known to be primitive

recursive (as shown first by Shelah [93]) and the bound of order O(222
2
2
n

) was obtained
more recently by Gowers [41]. Nevertheless, the lower bound is exponential only. Thus
the game Ramsey function may be drastically smaller than the Ramsey function.
In this paper we generalise the results of Beck to C-Ramsey numbers for relational

structures. The main message of these results is that the game version of C-Ramsey
numbers may be essentially smaller than the extremely large C-Ramsey numbers. And
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sometimes game Ramsey numbers exist even in the situation where Ramsey-type results
are not true.
Let S = (X, (Ri; i ∈ I)) be a structure of type ∆. The inflation of x ∈ X by a factor

k is the structure S ′ = (X ′, (R′
i; i ∈ I)) of type ∆ defined as follows:

X ′ ={y ∈ X; y 6= x} ∪ Vx, Vx = {yx1 , yx2 , . . . , yxk},
R′
i ={{yx, y1, . . . , yδi−1}; yx ∈ Vx, {y, y1, . . . , yδi−1} ∈ Ri}, i ∈ I.

The set Vx is called multivertex . The inflation of S by a factor k is the structure Sk such
that every x ∈ X was inflated by k.
Constructions similar to inflation are often used in combinatorics. Depending on the

context they are called, for example, blowing-up, multiplication of points, or homomor-
phism preimages.

G G3

Fig. 6.13. Example of inflating the graph G by factor 3.

We show the following:

Theorem 6.4. Let C be a class of structures which is closed under vertex inflation.
Then for every B ∈ C and every A ⊂ B, |V (A)| < |V (B)|, there exists C ∈ C such that
C

g→(B)A. Moreover, |V (C)| ≤ 2u · u · |V (B)| where u =
∣
∣
(
B
A

)∣
∣. Particularly, rgC(A,B) ≤

2u · u · |V (B)|.
The proof is deferred to Section 6.3. The condition of inflation holds, for example, for

any class C of structures which is determined by forbidden homomorphisms from a finite
set of structures F1, . . . , Ft:

C = Forb(F1, . . . , Ft) = {G; Fi 6→ G, i = 1, . . . , t},

where by Fi 6→ G we denote there does not exist a homomorphism from Fi to G. This cov-
ers, for example, class of Kk-free graphs, which is known to be a Ramsey class (and thus C
satisfying C → (B)Ak can be applied in Theorem 6.4). However, the class Forb(F1, . . . , Ft)
is Ramsey if and only if Fi are complete graphs. Thus Theorem 6.4 covers many examples
when C fails to be a Ramsey class.
Denote by G the class of all undirected graphs. It is known that there is no (unordered)

graph G satisfying

G→ (C5)K1,22 ,
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and thus rG(K1,2, C5, 2) is undefined. On the other hand, r
g
G(K1,2, C5) exists and it is

rgG(K1,2, C5) ≤ 800. In fact, rgG(G,H) exists for any graphs G,H.
Analogously with the definition of Ramsey classes, we can thus define game Ramsey

classes. A class C of structures is called game Ramsey class if for every A,B ∈ C there
exists C ∈ C such that C g→(B)A.

Corollary 6.5. Let C be a class of structures which is closed under vertex inflation. Then
C is a game Ramsey class.

Proof. Given A,B ∈ C, let B′ be a large enough inflation of B such that |V (A)| <
|V (B′)|. Then we can apply Theorem 6.4 on A,B′ and since B ⊂ B′, the corollary
follows. �

This should serve as a warm up to Theorem 6.4 and further examples of the structural
Ramsey theorem whose game versions we shall consider. Our examples include restricted
Ramsey theorems for set systems and extended versions of van der Waerden theorem
(Brauer theorem).
We believe that the fact that so broad classes of structures can be proved to be game

Ramsey classes is a quite surprising fact which may lead to some consequences in the
model theory (similarly as Ramsey classes did, see Nešetřil [74] and Kechris, Pestov,
Todorcevic [48]).
Theorem 6.4 also leads to challenging problems. Perhaps the most interesting is the

question whether these results can be modified to obtain results for strong Ramsey theory
games. A strong game is defined by a change of the winning criterion: the first player who
achieves a monochromatic copy of structure B wins. This game may result in a draw.
The strong game is much harder to analyse and presently there is no analogy of

Theorem 6.4 for strong games. Nevertheless, we show a peculiar result:

Theorem 6.6. There exists a graph G with the following properties:

(1) G does not contain K4,

(2) the first player wins strong (K2, K3)-game on G,
(3) G has 9 vertices.

For the proof see Section 6.3.2. This result is more interesting in its context than its
proof (a case analysis, which seems to be typical for the analysis of strong games). The
question of the existence of K4-free graph G satisfying G → (K3)K22 was first answered
by Folkman [32] and later fully solved by Nešetřil and Rödl [75]. Erdős asked whether
there is such a G of size less than 1010. Recently, Dudek and Rödl [25] showed that there
is such a G of order 941.
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6.2 Positional Games in Detail

The author considers the theory of positional games to be exceptionally attractive and
elegant and would like to present it to the reader in a detailed manner. This section
contains all definitions, introduction to the resource counting method and formulations
and proof of theorems used in this chapter. The write-up closely follows Beck [10].

6.2.1 Definitions

Let us precisely define the class of (finite) strong games . Let F = (V, F ) be an arbitrary
finite hypergraph, where V is finite (the “vertex set” or “point set”), and we call V the
board of the game. The hyperedge set F ⊆ 2V is an arbitrary set of subsets of V , that
we usually call winning sets . Two players, I and II, alternately pick previously unpicked
points of the board V . Each player picks one point per move. That player wins who
occupies all points of some winning set A ∈ F first; otherwise the play ends in a draw.
If a player can block every winning set in a strong game, then he can force a blocking

draw . The complementary concept is weak win: if a player does not have a blocking draw,
then the opponent has a weak win. In other words, a player has a weak win if he can
completely occupy a winning set (but not necessarily first).
Similarly we define the class of (finite) weak games on a finite hypergraph F = (V, F ).

Two players alternately pick previously unpicked points of the board V , each player picks
one point per move. The first player wins if he occupies all points of some winning set
A ∈ F . Otherwise the second player wins. Note that the second player can completely
occupy some winning set, but this is not considered as victory, his only goal is to prevent
the first player from winning. Also note that draw is impossible in a weak game. In a
weak game, the first player is usually calledMaker and the second player is called Breaker .
Sometimes the weak games are thus called Maker-Breaker games.
Consider a strong game on a finite hypergraph F = (V, F ). A strategy for the first

(second) player is formally defined as a function S such that the domain of S is a set of
even (odd) length subsequences of different points of the board V , and the range is V . If
the moves of the first player are denoted by x1, x2, x3, . . . , and the moves of the second
player are y1, y2, y3, . . . , then the i-th move xi (yi) is determined by S as follows:

xi = S(x1, y1, x2, y2, . . . , yi−1) ∈ V \ {x1, y1, x2, y2, . . . , yi−1}
(

yi = S(x1, y1, x2, y2, . . . , yi−1, xi) ∈ V \ {x1, y1, x2, y2, . . . , yi−1, xi}
)

defines the i-th move of the first (second) player. In other words, a strategy for the first
(second) player is a function which assigns a legal next move to all partial plays of even
(odd) length.
We call a strategy S for the first player winning (or drawing), if in all possible plays

where the first player follows S is a win for him (a win or a draw). Formally, each play

x1 = S(∅), ∀y1, x2 = S(x1, y1), ∀y2, x3 = S(x1, y1, x2, y2), ∀y3, . . . , ∀yn/2 (6.1)
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if n = |V | is even, and

x1 = S(∅), ∀y1, . . . , ∀y(n−1)/2, x(n+1)/2 = S(x1, y1, x2, y2, . . . , y(n−1)/2) (6.2)

if n is odd, is a win for the first player (a win or a draw).
Similarly, we call a strategy S for the second player winning (drawing) if in all possible

plays where the second player uses S is a win for him (a win or a draw). Formally, each
play

∀x1, y1 = S(x1), . . . , ∀xn/2, yn/2 = S(x1, y1, x2, y2, . . . , xn/2) (6.3)

if n = |V | is even, and

∀x1, y1 = S(x1), ∀x2, y2 = S(x1, y1, x2), ∀x3, . . . , ∀x(n+1)/2 (6.4)

if n is odd, is a win for the second player (a win or a draw). In both cases

xi ∈ V \ {x1, y2, x2, y2, . . . , yi−1} and yi ∈ V \ {x1, y2, x2, y2, . . . , yi−1, xi} (6.5)

hold for all i ≥ 1.
The ultimate questions of game theory are about optimal strategies. Optimal strate-

gies are the winning strategies, and the drawing strategies when winning strategy does
not exist.

6.2.2 Possible Game Outcomes

There are only three possible outcomes of a strong game, as precisely formulated in the
following theorem.

Theorem 6.7. (Strategy Theorem, Beck [10]) Let F = (V, F ) be an arbitrary finite
hypergraph, and consider the strong game on this hypergraph. Then there are three alter-
natives: either the first player has a winning strategy, or the second player has a winning
strategy, or both of them have a drawing strategy.

Proof. The formal proof is a simple modification of the De Morgan’s law. Only one of
the following three possibilities holds:

(a) either the first player (I) has a winning strategy;
(b) or the second player (II) has a winning strategy;
(c) or the negation of (a) ∨ (b).
First assume that n = |V | is even, and let us recall (6.1)–(6.5). Case (a) formally

means that
∃x1∀y1∃x1∀y2 · · · ∃xn/2∀yn/2 (6.6)

such that I wins (the sequence in (6.6) has to satisfy (6.5)).
Indeed,

S(x1, y1, x2, y2, . . . , yi−1) = xi ∈ V \ {x1, y1, x2, y2, . . . , yi−1}

93



defines a winning strategy S for I.
By the De Morgan’s law, ¬(a) is equivalent to

∀x1∃y1∀x2∃y2 · · · ∀xn/2∃yn/2 (6.7)

such that I loses or it is a draw (the sequence in (6.7) has to satisfy (6.5)). Therefore,
¬(a) means that I has a drawing strategy.
Case (c) is equivalent to ¬(a) ∧ ¬(b), which means that both players have a drawing

strategy. The case “n is odd” is analogous and we omit it. �

We should also mentions that for the class of weak games, there are only two outcomes:
either the first player (Maker) has a winning strategy or the second player (Breaker) has
a winning strategy, which follows directly from the definition.

6.2.3 Strategy Stealing Argument

The following theorem is extremely important and also quite surprising; it states that in
the class of strong games the first player has a big advantage—he cannot lose.

Theorem 6.8. (Strategy Stealing, Beck [10]) Let F = (V, F ) be an arbitrary finite
hypergraph. Then playing the strong game on F , first player can force at least a draw,
i.e. a draw or possibly a win.

Proof. The real meaning of Theorem 6.8 is that for the subclass of strong games one
of the 3 possible outcomes of a game (see Theorem 6.7) cannot occur. We show that II
cannot have a winning strategy.
Assume that II has a winning strategy S, and we want to obtain a contradiction. The

idea is the following: If there is a winning strategy S for II, than I may use it (steal it)
as well–if he can simulate to be a second player.
I can use II’s winning strategy S to win as follows. I takes an arbitrary first move,

and then pretends to be the second player, that is, he ignores his first move. After II’s
each move, I, as a fake second player, uses S to play. If I is told to take a move that is
still available, he takes it. If this move was taken by him before as his ignored “arbitrary”
first move, he takes another “arbitrary move”. The crucial point here is that an extra
move, namely the last “arbitrary move”, only helps I in a strong game.
The formal execution of this idea is very simple and goes as follows. We use the

notation x1, x2, x3, . . . for the moves of I, and y1, y2, . . . for the moves of II. By using II’s
moves y1, y2, . . . and II’s winning strategy S, we are going to define I’s moves x1, x2, . . .
(satisfying (6.5)), and also two auxiliary sequences z1, z2, z3, . . . and w1, w2, w3, . . . .
Let x1 be an arbitrary first move of Iand let w1 = x1 and z1 = S(y1). If z1 6= w1, then

let x2 = z1 and w2 = w1. If z1 = w1, then let x2 be another “arbitrary” move, and let
w2 = x2. Next let z2 = S(y1, z1, y2). If z2 6= w2, then let x3 = z2 and w3 = w2. If z2 = w2,
then let x3 be another “arbitrary” move, and let w3 = x3, and so on.
In general, let zi = S(y1, z1, y2, z2, . . . , yi). If zi 6= wi, then let xi+1 = zi and wi+1 = wi;

if zi = wi, then let xi+1 be another “arbitrary” move, and let wi+1 = xi+1.
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It follows that

{x1, x2, . . . , xi, xi+1} = {z1, z2, . . . , zi} ∪ {wi+1} (6.8)

for each i ≥ 1. In view of (6.8) the play y1, z1, y2, z2, y3, z3, . . . is correct, i.e. it satisfies
principle (6.5). We call the two players of this play Y (starting player) and Z (in fact, Y
is II, and Z is “almost” I). There are two cases according to the parity of the board size.
The complete play between Y and Z is

y1, z1, y2, z2, y3, z3, . . . , ym, zm, wm+1 (6.9)

if the board size |V | = 2m+ 1 is odd, and

y1, z1, y2, z2, y3, z3, . . . , ym−1, zm−1, ym, wm (6.10)

if the board size |V | = 2m is even.
Recall that zi = S(y1, z1, y2, z2, . . . , zi−1, yi) for each i ≥ 1. Since S is a winning

strategy for the second player, Z wins the play (6.9) (i.e. when |V | is odd) even if the last
move wm+1 belongs Y . This implies a I’s win in the real play

x1, y1, x2, y2, x3, y3, . . . , xm, ym.

We used the fact that in a strong game an extra point cannot harm I. This is how I
“steals” II’s winning strategy S.
Therefore, if II has a winning strategy, then also Ihas a winning strategy. Thus this

particular play has two winners, which is a contradiction and the winning strategy for II
cannot exist. I can thus always force at least a draw. �

Corollary 6.9. Let F be an arbitrary finite hypergraph. If the second player has a winning
strategy in a weak game on F , then the strong game on F is draw.

Proof. Let S be the winning strategy of the second player in the weak game on F .
Consider a strong game on F . If the second player uses the strategy S, he cannot lose.
Due to Strategy Stealing (Theorem 6.8), he also cannot win, therefore the game is draw.�

However, we should emphasise that the proof of Strategy Stealing is not constructive,
i.e. it gives only existential proof of the first player’s drawing strategy.
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6.2.4 Resource Counting

The resource counting technique will be the main tool in our work. In this section we
present the most important theorems based on resource counting.
The best way to illustrate the resource counting method is to discuss Conway’s solu-

tion [12] of a puzzle called Solitaire Army.
Solitaire Army is a particular case of the class of solitaire puzzles . These puzzles are

not real games because there is only one player. The common feature of these puzzles is
that each one is played with a board and men or pegs, the board contains holes each of
which can hold one man. Each move consists of a jump by one man over one or more
other men, the man jumped over is removed from the board.
The Solitaire Army is played on the infinite plane and the holes are in the lattice

points. The permitted move is to jump a man horizontally or vertically but not diagonally.
Let us draw a horizontal line across the infinite board and start with all men behind this
line. Assume this line is the horizontal axis, so all men are in the lower half-plane. The
question follows: How many men do we need to reach by one man forward 1, 2, 3, 4 or 5
holes into the upper half-plane?
Obviously, two men are needed to send a man forward one hole, and four men are

needed to send a man forward two holes. Eight men are enough to send a man forward
three holes. Twenty men are enough to send a man forward four holes, see Figure 6.14.

1

2

3

4

5

Fig. 6.14. A configuration of Solitaire Army able to jump to distance 4.

But the really surprising result is the case of five holes: it is impossible to send a man
forward five holes into the upper half-plane. This result was discovered by Conway in
1961 (see e.g. [12] or [10]).
The idea of the resource counting is the following. We assign a weight to each hole

such that if H1, H2 and H3 are any three consecutive holes in a row or in a column, and
w(H1), w(H2) and w(H3) are the corresponding weights, then w(H1) + w(H2) ≥ w(H3).
We can evaluate a position by the sum of the weights of those holes which are occupied
by men—this sum is called the value of the position.
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The meaning of the inequality w(H1) + w(H2) ≥ w(H3) is the following. The effect
of a move where a man in H1 jumps over another man in H2 and arrives at H3 is that
we replace men with weights w(H1) and w(H2) by a man with weight w(H3). Since
w(H1) + w(H2) ≥ w(H3), this does not increase the value of the new position.
Inequality w(H1)+w(H2) ≥ w(H3) guarantees that no play is possible from an initial

position to a target position if the target position has a higher value.
We will now define the weight function precisely. Let w be a positive number which

satisfies w + w2 = 1, that is, w equals the golden section
√
5−1
2
. Now Conway’s resource

counting goes as follows. Suppose that there is play that succeeded to send a man 5 holes
forward into the upper half-plane by starting from a configuration of a finite number of
men in the lower half-plane. Write 1 where the man stands 5 holes forward into the upper
half-plane, and extend it in the following way:

1

w

w2

w3

w4

w5

w6

w7w8

w6

w7

w7

w8

w9

w8

w9

w10

w6

w7

w8

w7

w8

w9

w8

w9

w10

.

.

.

· · ·

· · ·

.

.

.
.
.
.

· · ·

· · ·

Fig. 6.15. Evaluating the board by w =
√
5−1
2
.

The value of the top line of the lower half-plane is

w5 + 2w6 + 2w7 + 2w8 + · · · = w5 + 2 w6

1− w
= w5 + 2

w6

w2
= w5 + 2w4 = w3 + w4 = w2.

So the value of the whole lower half-plane is

w2(1 + w + w2 + w3 + . . . ) = w2
1

1− w
= w2

1

w2
= 1,

which is exactly the value of the target position. So no finite number of men in the lower
half-plane will suffice to send a man forward five holes into the upper half-plane. If it was
possible, then, using rules which do not increase the total weight, it would be possible to
gain the final value 1 from the original value less than 1. This is a contradiction, showing
that no finite configuration of men able to jump to distance 5 exists.
It is also easy to see that no infinite configuration able to jump to distance 5 exists:

if this is the case, then in finite time we are able to jump there. But in a finite time, we
used a finite number of men, which is a contradiction.
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One can even show that eight men are in fact needed to send a man forward three
holes, and similarly, twenty men are needed to send a man forward four holes (i.e. the 2i

pattern breaks for four holes). The fact that eight men are necessary can be seen from
the resource count of Figure 6.15, for the target position has value w2 and the highest
value that can be achieved with only seven men below the line is w5 + 3w6 + 3w7. One
can easily check that w2 > w5 + 3w6 + 3w7.
To send a man forward 4 holes requires 20 men (not 16). The proof that 20 men are

necessary is more complicated, but the idea is almost the same as for the case of 3 holes,
and we omit it.

6.2.5 Sufficient Condition for Blocking Draw

An application of resource counting for 2-player games is the following result of Erdős
and Selfridge from 1973 [26]. This is a sufficient condition for blocking draw.

Theorem 6.10. (Erdős, Selfridge [26]) If F = (V, F ) is an k-uniform hypergraph and
|F | < 2k−3, then the second player can force a draw, in fact a blocking draw, in the strong
game on F .

Proof. The proof is according to [10]. Let F = {A1, A2, . . . , Am} where m < 2k−1.
Assume we are at the stage of the game where I already occupied x1, x2, . . . , xi, and II
occupied y1, y2, . . . , yi−1. The question is how to choose the II’s next point yi. Those
winning sets which contain at least one yj, j ≤ i− 1, are “harmless”—we call them dead
sets . The winning sets which are not dead are called survivors. The survivors have a
chance to be completely occupied by I at the end of the play, so they each represent
some “danger”. What is the “total danger” of the whole position? We evaluate the given
position by the following expression, called danger function: Di =

∑

s∈S 2
−us , where S is

the set of survivors indices, us is the number of unoccupied elements of the survivor As,
s ∈ S and index i indicates that we are at the stage of choosing the i-th point yi of II. It
would be more correct to write uis because the number of unoccupied elements is taken
after placing the point xi.
The best choice for yi is to minimise the danger Di+1 at the next stage. Let yi and

xi+1 denote the next two moves. What is their effect on Di+1? The point yi “kills” all
the survivors As ∋ yi, which means we have to subtract the sum

∑

As∋yi
2−us

from Di. On the other hand, xi+1 doubles the danger of each survivor As ∋ xi+1, that
is, we have to add the sum

∑

As∋xi+1 2
−us back. If some survivor As contains both yi and

xi+1, then we do not have to give the corresponding term 2−us back because that As was
previously killed by yi.
Now the best choice for yi is that unoccupied z for which

∑

As∋z 2
−us is maximum.
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Then clearly

Di+1 ≤ Di −
∑

As∋yi
2−us +

∑

As∋xi+1
2−us

≤ Di −
∑

As∋yi
2−us +

∑

As∋yi
2−us = Di.

In other words, II can force the decreasing property D0 ≥ D1 ≥ D2 ≥ · · · ≥ Dend.
II’s ultimate goal is to prevent I from completely occupying some Aℓ ∈ F , that is, to

avoid uℓ = 0. If uℓ = 0, then Dend ≥ 2−uℓ = 1. On the other hand,

D0 =
∑

A : x1∈A∈F
2−k+1 +

∑

A : x1 /∈A∈F
2−n ≤ |F | · 2−n+1 < 1,

so by the decreasing property of the danger function, Dend < 1. Therefore, no play is
possible from an initial position if the target position has a higher value. This completes
the proof of the Erdős-Selfridge theorem. �

Theorem 6.10 is sharp. The full branches of a binary tree T with n levels form an
n-uniform family of 2n−1 winning sets (see Figure 6.16) such that the first player can
occupy a full branch in n moves.

Fig. 6.16. A board with 2n−1 winning lines where the first player wins.

The strategy of the first player is following. In the first step he takes the root. In
the second step he takes some point from the second level of vertices, then from the third
level, and so on. Finally, he takes some leaf. This all is done in such a way that the first
player keeps building a connected path from the root downwards. Each vertex v ∈ T is a
root of some subtree of T , and every such v (except the leaves) has two sons v1, v2, which
are roots of two subtrees T1, T2.
The strategy is simple. Let us denote the bottom vertex of the actual path by v. First

player waits for the second player to move, i.e. to occupy a vertex y. If y ∈ T1 then first
player takes v2, otherwise he takes v1. Clearly, the second player cannot prevent the first
player from taking a whole path from root to some leaf.
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6.2.6 Sufficient Condition for Weak Win

A straightforward adaptation of the Erdős-Selfridge resource counting gives Weak Win
Criterion.

Theorem 6.11. (Weak Win Criterion [10]) Assume that we are playing the weak game
on a k-uniform hypergraph F = (V, F ). Assume that, fixing any two distinct points of
V , there are no more than ∆2 = ∆2(F) hyperedges A ∈ F containing both points. If
|F | > 2k−3 ·∆2 · |V |, then the Maker has a weak win in F .

Proof. The proof is according to [10]. It is an easy modification of Erdős-Selfridge
theorem. Assume we are at the stage of the play where I has already occupied the points
x1, x2, . . . , xi and II has occupied y1, y2, . . . , yi. The question is how to choose first player’s
next point xi+1. Those winning sets which contain at least one yj, j ≤ i, are useless for I,
we call them dead sets . The winning sets which are not dead (yet) are called alive. Alive
sets have a chance to be completely occupied by I (the weak win). We will estimate the
total “chance” of the position.
We evaluate the given position by the following chance function: Ci =

∑

ℓ∈L 2
−uℓ

where L is the set of alive indices, uℓ is the number of unoccupied points of the alive set
Aℓ, ℓ ∈ L, and index i indicates that we are at the stage of choosing the (i + 1)-st point
xi+1 of first player.
The best choice for xi+1 is to maximise the chance Ci+1 at the next stage. Let xi+1

and yi+1 denote the next moves of the two players. Then, xi+1 doubles the chances for
each alive set Aℓ ∋ xi+1, this means we have to add the sum

∑

Aℓ∋xi+1 2
−uℓ to Ci, and yi+1

kills all the alive sets Aℓ ∋ yi+1, which means we have to subtract the sum

∑

Aℓ∋yi+1
2−uℓ

from Ci. Now we take care of those alive Aℓ which contain both xi+1 and yi+1. So what
we have subtract from Ci the sum

∑

Aℓ⊇{xi+1,yi+1}
2−uℓ+1.

Therefore,
Ci+1 = Ci +

∑

Aℓ∋xi+1
2−uℓ −

∑

Aℓ∋yi+1
2−uℓ −

∑

Aℓ⊇{xi+1,yi+1}
2−uℓ .

Now the best choice for xi+1 is such unoccupied z for which
∑

Aℓ∋z 2
−uℓ is maximum.

Then clearly
Ci+1 ≥ Ci −

∑

Aℓ⊇{xi+1,yi+1}
2−uℓ .

We may deduce
∑

Aℓ⊇{xi+1,yi+1}
2−uℓ ≤ ∆2

4
.
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There are at most ∆2 winning sets Aℓ containing the given two points {xi+1, yi+1}, and
2−uℓ ≤ 2−2 since xi+1 and yi+1 were unoccupied at the previous stage. Therefore, Ci+1 ≥
Ci − ∆2

4
.

Let s denote the number of stages, i.e. the s-th stage is the last one. Clearly s = |V |/2.
Inequality Cs = Clast > 0 means that II could not block all the winning sets. At the last
stage all points are occupied, so Cs = Clast > 0 means that I was able to completely
occupy a winning set, yielding a weak win for him.
Therefore, if Cℓ = Clast > 0, we are done. As C0 = |F | · 2−k, we have

Clast ≥ |F | · 2−k − |V |
2

∆2
4
.

It follows that Clast > 0 if |F | > 2k−3 · |V | ·∆2, which completes the proof. �

We should mention that the proofs of Theorem 6.10 and Theorem 6.11 are construc-
tive, that means they give an explicit strategy description.

Proposition 6.12. Let H = (V, F ) be an arbitrary finite hypergraph. Assume there
exists a hypergraph H ′ = (V ′, F ′), V ′ ⊆ V , F ′ ⊆ F such that the weak game on H ′ is won
for Maker. Then Maker has a winning strategy also in the weak game on H.

Proof. Consider the weak game on the hypergraph H ′ and the appropriate winning
strategy S of Player I. Then apply S in the weak game on H. Clearly, if we restrict the
winning sets on F ′ and Player I still wins, Player II is unable to block him on the set
F . �

Note that Proposition 6.12 does not hold for the class of strong games.

6.3 Structural Ramsey Games

Here we present the proof of Theorem 6.4.

Proof. Let C = Bk ∈ C be the inflation of the structure B ∈ C by a factor of k =
2u−3 · u+ 1. The game takes place on C. Let us define the hypergraph G as follows: The
set of vertices V (G) consists of all copies of A in C with the exception of copies having two
or more vertices in a single multivertex of Bk. The set of edges E(G) contains all sets S of
vertices V (G), that satisfy the following condition: For a given S there exists substructure
B′ of C isomorphic to B, such that all copies A′ ⊆ B′ of A and any multivertex of Bk

intersect in at most one vertex.

V (G) =

{

A′ ∈
(
C

A

)

; |A′ ∩ Vi| ≤ 1 for all i
}

,

E(G) =

{

S ⊆ V (G); S =

(
B′

A

)

, B′ ∈
(
C

B

)

, |B′ ∩ Vi| ≤ 1 for all i
}

.

Note that the number of copies of A in C may be higher than |V (G)|, and similarly the
number of copies of B in C may be higher than |E(G)|. However, due to Proposition 6.12,
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if Player I wins the weak game on G, then he wins also the original Ramsey (A,B)-game
on C.
The uniformity u of G is equal to number of copies of A in B. Using the fact that

every substructure of B gets inflated by the same factor k, we have |V (G)| = u · k|V (A)|
and |E(G)| = k|V (B)|. In order to compute ∆2(G), we choose two arbitrary vertices
A1, A2 ∈ V (G) (i.e., copies of A in C). They intersect with at least |V (A)|+1 multivertices
of C. To extend A1 ∪ A2 to a copy of B, one can choose the remaining vertices from at
most |V (B)|−|V (A)|−1 multivertices of C, so this can be done by in most k|V (B)|−|V (A)|−1

ways. Therefore, as long as

|E(G)| = k|V (B)| >2u−3 · |V (G)| ·∆2(G) = 2u−3 · u · k|V (B)|−1

k >2u−3 · u,

Player I wins, due to Theorem 6.11 (Weak Win Criterion). Furthermore, |V (C)| =
2u−3 · u · |V (B)|+ |V (B)|, consequently rgC(A,B) ≤ 2u · u · |V (B)|. �

6.3.1 Colouring Vertices

We can easily adapt Theorem 6.4 for the vertex colouring, i.e., the (K1, B)-game. How-
ever, in this case we can easily analyse even the strong vertex game:

Theorem 6.13. Let C be a class of structures which is closed under inflation. Let B ∈ C
and p = |V (B)|. Then there exists C ∈ C on 2p − 1 vertices such that Player I wins the
strong Ramsey (K1, B)-game on C. Moreover, the size 2p− 1 cannot be improved.

Proof. For B = ({w1, . . . , wp}, E), let us define the structure C = ({w1} ∪ V2 ∪ · · · ∪
Vp, E(C)) as the inflated B where each vertex w ∈ V (B), w 6= w1, gets inflated by a
factor 2. Observe that C ∈ C.
The strategy of Player I is the following: In the first move, Player I occupies w1.

When Player II takes one point from Vi, take the remaining point from Vi. Observe
that after p moves I wins. Clearly, to colour a copy of B, C has to have at least 2p − 1
vertices. �

By a cycle Cs we mean every hypergraph satisfying the following condition: there
exists a sequence (v1, E1, v2, E2, . . . , vs, Es) such that all vi and all Ei are distinct and
vi ∈ V (Cs), Ei ∈ E(Cs), and vi, vi+1 ∈ Ei for i = 1, . . . , s − 1 and vs, v1 ∈ Es. For a
hypergraph G, by girth(G) we mean the minimum s such that G contains a cycle Cs.
In the case when the class C contains only cycle-free structures, we have to use different

technique. Our basic tool is the following lemma, which shows that there exist “dense”
hypergraphs without short cycles. Its proof is an application of probabilistic method and
it follows Erdős and Spencer [27] where the original proof can be found. We use the
approach presented by Nešetřil and Rödl [76].

Lemma 6.14. For all positive integers k and s there exists a k-uniform hypergraph
G = (V,E), |V | = n, without cycles of length less than s and with |E| > n1+1/s edges for
all n sufficiently large.
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We mention that the proof of Lemma 6.14 is not constructive, i.e., it gives the desired
hypergraph G by purely existential argument.

Theorem 6.15. Let F be a set of 2-connected hypergraphs and let C = Forb(F). Let
B ∈ C, p = |V (B)| and

ℓ = max
i=1,...,t

girth(Fi).

Then there exists C ∈ C on O(2pℓ) vertices such that C g→(B)K1.

Proof. Let |V | = n = 2(p−3)(ℓ+1)+1. By Lemma 6.14 there exists a p-uniform hypergraph
C ′ = (V,E ′) such that C ′ does not contain a cycle of length less than ℓ + 1 and |E ′| >
n1+1/(ℓ+1). Let ∆ be the type of B. Let us define the structure C = (V,M) of type ∆ by
taking C ′ and arbitrarily replacing each edge by a copy of B. That is, C =

⋃

S∈E′(S,MS)
where (S,MS) ≃ B for each S ∈ E ′.

B C ′ C

Fig. 6.17. “Stuffing” the p-uniform hypergraph C ′ by copies of the graph B.

Let us show that C is Fi-free for i = 1, . . . , t, i.e., that C ∈ C. For the sake of
contradiction, assume there is an Fi-substructure in C. Clearly, since Fi 6⊆ B, the vertices
of Fi cannot be entirely contained in a single hyperedge of C ′. Thus, the vertices of Fi
must be incident with more than one hyperedge of C ′. Then Fi must lie on a cycle in C ′

of length less or equal ℓ; otherwise Fi could not be 2-connected, since |S ∩ T | ≤ 1 for any
two distinct S, T ∈ E(C ′) and the single common vertex would be a cut vertex of Fi. Due
to the construction of C ′, there are no cycles shorter than ℓ, therefore C cannot contain
a copy of Fi.
Let us construct a hypergraph G such that playing the weak game on G is equivalent

to the original game on C. That is, V (G) = V (C) and

E(G) = {S ⊆ V (C); C[S] ≃ B},

where C[S] is the substructure induced by S. That means each edge in E(G) corresponds
to a set of vertices on which there is a copy of B in C. Observe that C ′ ⊆ G; by the
“stuffing” procedure, there are at least the edges of C ′ in G and maybe some more. Due
to Proposition 6.12, we can restrict ourselves only to the weak game on C ′; if we show I
wins on C ′, then he wins on G and therefore also on C.
The hypergraph G has n vertices, at least n1+1/(ℓ+1) edges, and ∆2(G) = 1 since it

does not contain a 2-cycle. Provided the size n of C satisfies

n1+
1

ℓ+1 > 2p−3 · n,
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by Theorem 6.11 (Weak Win Criterion) there exists a winning strategy of I. �

6.3.2 Strong Ramsey Games

Here we prove Theorem 6.6.

Proof. We give an example of small K4-free graph, where two players alternately colour
the edges, trying to colour their own K3 subgraph first. We show the winning strategy of
Player I.

vb
1

va
1

c

va
2

vb
2

vb
4

va
4

va
3vb

3

Fig. 6.18. The K4-free board.

The graph on Figure 6.18 does not contain K4 (easy observation) and there exists the
following explicit winning strategy of I in the strong game. As the first move, I takes the
edge {c, va1}. Then II responds. Let us distinguish two cases:
(1) II’s move was one of {c, vai } or {vai , vaj }. Then I takes the edge {c, vb1} and II is
forced to take the edge {va1 , vb1} (otherwise in the next move I takes it and wins).
Then I takes the edge {c, vb2} and II is forced to take {vb1, vb2}, then I takes {c, vb3}
and II is forced to take {vb2, vb3}, and finally I takes {c, vb4} and II is forced to take
{vb3, vb4}. Now the edge {vb4, vb1} is left unoccupied, allowing I to win.

(2) II’s move was one of {c, vbi} or {vbi , vbj} or {va1 , vb1}. Then I takes the edge {c, va2}
and II is forced to take the edge {va1 , va2} (otherwise in the next move I takes it and
wins). Then I takes the edge {c, va3} and II is forced to take {va2 , va3}, then I takes
{c, va4} and II is forced to take {va3 , va4}. Now the edge {va4 , va1} is left unoccupied,
allowing I to win.

�
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6.4 Arithmetic Progression Games

The following theorem, conjectured by Schur and proved in 1928 by Brauer [15], is an
extension of the van der Waerden theorem.

Theorem 6.16. (Brauer [15]) For a positive integer n, there exists a positive integer N
such that in an arbitrary colouring of the set [N ] by r colours, we can find in one of the
colour classes the arithmetic progression a0, a0+d, . . . , a0+nd together with the difference
d.

For a latter proof, using van der Waerden theorem, see Graham et al. [42], Chapter
3. Due to the results of Shelah [93], this gives better upper bound on the number N than
the original proof.

For two integers k ≥ 3 and n, we define the arithmetic progression game with difference
on the set S = {1, 2, . . . , n} as follows. Maker and Breaker alternately pick elements of
S. Maker wins if he picks some (k + 1) elements of S where the first k elements form
an arithmetic progression P , and the remaining element d is the difference of P . If he is
unable to pick such set, Breaker wins. By rg(APd(k)) we mean the smallest n such that
Maker has a winning strategy.
The arithmetic progression game (i.e., based on the original van der Waerden theorem)

was investigated by Beck [11] (see Theorem 6.2). We generalise the proof ideas of Beck
to work on arithmetic progression games with difference. We also give a lower bound on
the board size.

Theorem 6.17. Let k ≥ 2 be an integer. Assume Maker and Breaker play the k-term
arithmetic progression game with difference. Then Maker has a winning strategy on board
of size O(2kk3) and Breaker has a winning strategy on board of size Ω(2k/2

√
k), i.e.,

Ω(2k/2
√
k) ≤ rg(APd(k)) ≤ O(2kk3).

Proof. For a fixed n, let us define the following (k + 1)-uniform hypergraph H =
({1, . . . , n}, F ). The set F contains all (k + 1)-element subsets S ⊆ {1, . . . , n} such
that some k elements of S form an arithmetic progression P of length k, and the one
remaining element d of S is the difference d of P . Clearly, playing the weak game on H
is equivalent to the original weak arithmetic progression game with difference. We are
going to find the smallest n such that the inequality |F | > 2k−2 ·n ·∆2(H) from the Weak
Win Criterion (Theorem 6.11) holds.
Let us fix two distinct points a, b ∈ {1, . . . , n}, a < b, and we count the maximal

number of edges incident both with a and b. Three cases are possible:

(1) The point a denotes the arithmetic progression difference. Therefore, b can lie on
k positions of the arithmetic progression, so we get at most k possibilities.

(2) The point b denotes the difference. Similarly, there is at most k possibilities.
(3) Both a and b are members of the arithmetic progression. The number of possibil-
ities is therefore at most

(
k
2

)
as this is the number of all positions the two points

can occupy in a k-term progression.
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Thus we have
(
k
2

)
+ 2k ≥ ∆2(H).

Observe there are Θ(n2/k) arithmetic progressions of length k in {1, . . . , n}. By
solving the inequality

c
n2

k
> 2k−2

((
k

2

)

+ 2k

)

n,

and due to the Weak Win Criterion, Maker has a winning strategy onH with n = O(2kk3)
vertices, therefore also in the original game.
Let us now show the lower bound. Recall there are Θ(n2/k) arithmetic progressions.

By solving the inequality cn2/k < 2k, we get n = O(2k/2
√
k). Theorem 6.10 applied on

H with n vertices proves the existence of Player II’s drawing strategy. �

Note that the lower bound (and the corresponding drawing strategy) of the pre-
vious theorem holds both for the strong and weak version of the game. It would be
interesting to close the gap in Theorem 6.17. Particularly, we do not know whether
limk→∞ (rg(APd(k))

2/k exists. Another interesting question is to study the game, where
the players keep taking arithmetic progressions of length ℓ and the goal of Maker is to
find arithmetic progression of length k > ℓ with all progressions of his colour.
Let us consider the Maker-Breaker game, where the the players keep taking (k − 1)-

tuples of {1, . . . , n} and the goal of Maker is to occupy all (k−1)-tuples on some arithmetic
progression of length k. Then this game is win for Breaker for every n and k ≥ 4. To
see this, observe that every such k-term arithmetic progression P contains at least two
(k − 1)-tuples that do not form a progression but they precisely define P . Breaker can
then take always the second (k − 1)-tuple from every k-term progression.

6.5 Open Questions

We present an open problem inspired by the following theorem of Paris and Harring-
ton [86].

Theorem 6.18. (Paris, Harrington [86]) For every three integers k, p, n there exists
an integer N such that any complete p-uniform hypergraph on the vertex set {1, . . . , N}
with edges arbitrarily coloured by k colours contains a monochromatic S ⊆ {1, . . . , N}
satisfying |S| ≥ max{n,min(S)}. Moreover, the previous statement cannot be proven
within the theory of finite sets (or deduced from the Peano axioms).

Let us now define the corresponding game. Given an integer n and a complete p-
uniform hypergraph Kp

N on the vertex set V = {1, . . . , N}, two players alternately pick
previously unpicked edges of Kp

N . Player I (Maker) wins if he is able to obtain a set
S ⊆ V such that all edges induced by S belong to him and S satisfies the condition
|S| ≥ max{n,min(S)}. Otherwise player II (Breaker) wins.
By Strategy Stealing and Paris and Harrington theorem, this game is a win for I for N

very large. However, what is the minimum N such that I wins and how does his winning
strategy look like? The resource counting method seems to be inapplicable in this case.
A provability question (as in Paris and Harrington theorem) arises: Does there exist some
strategy for I which is provably winning in finite set theory?
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There is a strong evidence indicating that the answer to the previous question is yes.
In 1982 Kirby and Paris [51] introduced the game of Hercules and hydra on rooted trees
as a natural example of an undecidable statement in Peano Arithmetic. For details see
eg. Loebl [65], [66]. In 1991 Matoušek and Loebl [69] introduced the generalisation called
“Hercules versus Hidden Hydra Helper”, where there are two players, the first player
is trying to make the game as short as possible and the second as long as possible. For
different speeds of the players, how long (provable in finite set theory) can the strategy be?
Matoušek and Loebl [69] have shown that for equal speed of both players the strategy of
the first player has a strategy provable in finite set theory. In 1992 Loebl and Nešetřil [67]
have given another proof of the unprovability in Peano Arithmetic of Theorem 6.18 by
strongly linking the theorem with the Hercules and hydra game.
We believe that this means that this is the evidence indicating that there is a strategy

for the mention problem, which could be derived from the similarity in [67], and we are
aiming to try solving this problem in a near future.
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7. Summary

In Chapter 2, we have given an introduction to the algorithmic game theory. Here we
introduced the definitions of games, strategies, costs and payoffs, we discussed several
solution concepts and most notably pure and mixed Nash equilibria. We have also dealt
with the complexity of computing Nash equilibria. and finally we discussed the measures
of equilibria efficiency.
Chapter 3 contains a thorough survey on results in vertex cover and set cover ap-

proximation. In the following sections of Chapter 3 we survey a set of papers of previous
attempts to define and study covering games, that means, games which in some way
simulate the computation of vertex cover or set cover.
In Chapter 4 we have given the main results of our thesis, in the field of algorithmic

game theory, based on our paper [87]. In Section 4.2 we have given the definition of our
weighted vertex covering game and then we have studied its properties. Most notably, we
have proven that a Nash equilibrium always exists and that every equilibrium is in fact a
vertex cover 2-approximation. We have further generalised our approach to weighted set
cover and even to the case of submodular weight function. In all cases, we have proven
that some Nash equilibrium always exists and that every equilibrium attains a low price of
anarchy, which means it gives a good approximation ratio of the optimal solution. Finally,
in Section 4.3 we discussed and described the dynamics for fast convergence to a Nash
equilibrium in most variants of the game.
Chapter 5 contains our results in the field of cops and robber games, based on our

papers [95] and [96]. We have first defined the guarding game on graphs and given a
survey on the previous and related results. Then, in Section 5.2, we have established the
complexity of the problem to be E-complete for the directed case, and later in Section 5.3
we have extended the result to the undirected case. Finally, Section 5.4 contains additional
results on another variant of the game.
In Chapter 6, we present our results in the field of positional games, based on our

paper [79]. In Sections 6.3 and 6.4 we investigate games corresponding to structural
extensions of Ramsey and van der Waerden theorems – the theorem of Brauer, structural
and restricted Ramsey theorems. Additionally, we have included and built the necessary
theory of positional games from scratch in Section 6.2, according to the book by Beck [10].
At the end of Chapters 4, 5 and 6 we discussed further questions and open problems

arising from our results.
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