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letov problém, slabo kompaktný operátor
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Introduction

This thesis consists of the following four research papers:

• M. Kačena, ‘Products and projective limits of function spaces’, Commen-
tat. Math. Univ. Carol. 49 (2008), no. 4, 547–578.

• M. Kačena and J. Spurný, ‘Affine images of compact convex sets and max-
imal measures’, Bull. Sci. Math. 133 (2009), no. 5, 493–500.

• M. Kačena and J. Spurný, ‘Affine Baire functions on Choquet simplices’,
Cent. Eur. J. Math. 9(1) (2011), 127–138.

• M. Kačena, ‘On sequentially Right Banach spaces’, submitted.

The principal areas of study are the Choquet theory of function spaces, in partic-
ular, the stability of several properties of function spaces under products, projective
limits and continuous images, the abstract Dirichlet problem and isomorphic prop-
erties of Banach spaces.

In the first chapter, we develop a theory on products and projective limits of
function spaces. By a function space we mean a subspace of the space of contin-
uous functions C(K) on a compact Hausdorff space K containing constants and
separating points of K. An important special case is the space of all continuous
affine functions on a compact convex set. A definition of a sensible ‘product’ is not
entirely straightforward even in the convex case. Let us consider a simple example.
A compact interval on the real line is a simplex. However, the cartesian product of
the interval with itself is not. The first constructions of a simplex, which could be
reasonably called a product of a family of simplices, were given independently by
A. J. Lazar [5], E. B. Davies and G. F. Vincent-Smith [2]. They defined the product
of a family of simplices {Xi}i∈I as the state space of the space of all continuous
multiaffine functions on the cartesian product

∏
i∈I Xi and showed that this set is

indeed a simplex.
Our aim in this chapter is not merely to study properties of the natural general-

ization of this concept to the framework of function spaces but also to investigate all
function spaces which can be reasonably called a product space. It turns out that
there are several possible definitions yielding a space with desired properties, that
there is the least and the greatest such space and we investigate all these spaces
simultaneously.

There are three main results in this chapter. The first one characterizes the Cho-
quet boundary of a product space as the cartesian product of Choquet boundaries
of the original spaces (see Chapter 1, Theorem 3.42). More generally, it is shown
that the cartesian product of extremal sets is extremal and that every projection
of an extremal set is extremal. Certainly the most difficult is the result that a
product of simplicial function spaces is simplicial (see Chapter 1, Theorem 3.52).
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INTRODUCTION 2

It follows from an approximation lemma which in turn is a generalized version of
a non-trivial result of A. J. Lazar from [6]. As another consequence of this lemma,
it is shown that in a certain sense the product of simplicial spaces is unique (see
Chapter 1, Proposition 3.49). Finally, the Radon measures maximal with respect
to the Choquet ordering are investigated. We prove that a measure on a product
space is maximal if and only if every projection is maximal (see Chapter 1, Theo-
rem 3.58). In particular, we get that the Radon product of maximal measures is a
maximal measure. All these results converge to a simple theorem stating that the
unique maximal measure representing a point in the product of simplicial function
spaces is precisely the Radon product of the unique maximal measures representing
each of its coordinates (see Chapter 1, Theorem 3.59). This theorem is used later,
in Chapter 3, to construct a counterexample to a question concerning the abstract
Dirichlet problem.

At the end of the first chapter we study projective limits of function spaces.
Characterizations of the Choquet boundary, simplicial function spaces and maxi-
mal measures similar to those in the previous section are provided. Some of the
results on maximal measures are postponed until the next chapter.

It was during the writing of the paper from the first chapter and my study of
continuous images of maximal measures when Jǐŕı Spurný found several examples
contradicting results and conjectures of S. Teleman [11]. The object of Chapter 2 is
to show that if ϕ : X → Y is a continuous affine mapping of a compact convex set X
into a compact convex set Y then a certain behaviour of ϕ on the set of extreme
points extX of X does not imply the same behaviour of ϕ on the set of maxi-
mal measures M1

max(X) in general, but only under some additional assumptions.
In particular, we show that if the set of extreme points extY of Y is a Lindelöf
space or if Y is a simplex then ϕ(extX) ⊂ extY (and ϕ is injective on extX) if
and only if ϕ](M1

max(X)) ⊂ M1
max(Y ) (and ϕ] is injective on M1

max(X)). Here
ϕ] :M1(X)→M1(Y ) denotes the induced map on the set of all probability Radon
measures on X (see Chapter 2 for more information). Subsequently, the following
three examples are provided: an example of ϕ mapping extX into extY injectively
which does not map M1

max(X) into M1
max(Y ) (see Chapter 2, Example 1.1), an

example of ϕ mapping injectively M1
max(X) into M1

max(Y ) which is not injective
on all of X (see Chapter 2, Example 1.4) and an example of ϕ mappingM1

max(X)
into M1

max(Y ) which is injective on extX, but not injective on the set M1
max(X)

(see Chapter 2, Example 1.5). My contribution to this paper was around 30%.

In Chapter 3 we study the abstract Dirichlet problem. That is, for a given
metrizable simplex X and a bounded Borel function f on extX, a question of
an affine extension of f to the whole set X that preserves the Baire class of the
function f . By the minimum principle, the only affine extension of f is the function
Tf given by

Tf(x) = δx(f), x ∈ X,

where δx is the unique maximal measure representing the point x ∈ X. The
problem of continuous extensions was solved by H. Bauer. He showed in [1] that
T (C(extX)) ⊂ C(X) if and only if extX is closed. An analogous question for
Baire–one functions was solved by Jǐŕı Spurný in [9], namely T (Bb1(extX)) ⊂ Bb1(X)
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if and only if extX is an Fσ set. It has turned out in [10] that such a characteri-
zation is impossible for functions of higher Baire classes.

Thus there exist simplices such that the operator T does not preserve continuous
or Baire–one functions. By the result in [10] there is also a simplex such that T
does not preserve Baire–two functions. On the other hand, it is not difficult to
realize that T (Bbα(extX)) ⊂ Bbα(X) for each metrizable simplex X and α ∈ [ω0, ω1)
(see Chapter 3, Theorem 1.1(a)). The aim of our paper is to show that the shift of
classes can occur for any finite Baire class. Precisely, we use results of Chapter 1
to construct a metrizable simplex X such that T (Bbα(extX)) 6⊂ Bbα(X) for each
α ∈ [0, ω0) (see Chapter 3, Theorem 1.1(b)). In fact, this construction was the
main motivation to develop the theory from Chapter 1 in the first place. The
question that is left open is whether the shift of classes can stop exactly at a given
α ∈ [0, ω0). We provide examples for α ∈ {0, 1} (see Chapter 3, Theorem 1.1(c)).

Based on Theorem 1.1(a) we further show a characterization of all functions of
affine class α for α ∈ [ω0, ω1) (see Chapter 3, Theorem 1.2). Finally, it is proved
that in harmonic spaces the abstract Dirichlet problem always has a solution for
functions of Baire class 2 (see Chapter 3, Theorem 1.3).

Contributions of both authors to this paper are comparable. The idea of using
products of function spaces to construct a counterexample from Theorem 1.1(b)
comes from Jǐŕı Spurný, the actual construction was done by myself. The section
on spaces of harmonic functions is due to Jǐŕı Spurný and partly Professor Wolfhard
Hansen.

It is well-known that the space A(X) of all affine continuous functions on a
simplex X is an L1-predual. By the result of W. B. Johnson and M. Zippin [4],
L1-preduals inherit many isomorphic properties of C(K) spaces. In Chapter 4,
we are particularly interested in so-called ‘reciprocal Dunford-Pettis properties’
possessed by every C(K) space. The main object of study in this chapter is the
recently introduced class of sequentially Right Banach spaces and its relations to
other isomorphic properties of Banach spaces.

The definition comes from A. M. Peralta, I. Villanueva, J. D. M. Wright and
K. Ylinen. They proved in [8] that for a given Banach space X there is a locally
convex topology on X, called by them the ‘Right topology’, such that every oper-
ator T from X into a Banach space Y is weakly compact if and only if it is Right-
to-norm continuous. This topology is obtained as the restriction of the Mackey
topology τ(X∗∗, X∗) to X. It is the topology of uniform convergence on abso-
lutely convex σ(X∗, X∗∗)-compact subsets of X∗. In general, the Right topology is
stronger than the weak topology and weaker than the norm topology, thus compat-
ible with the dual pair 〈X,X∗〉. Every Right-to-norm continuous operator is surely
Right-to-norm sequentially continuous. A simple look at the identity operator on
`1 reveals, however, that the converse is not true. Authors in [8] call Right-to-
norm sequentially continuous operators pseudo weakly compact and Banach spaces,
on which every pseudo weakly compact operator is weakly compact, sequentially
Right. They have shown that every Banach space possessing Pe lczyński’s property
(V) is sequentially Right and they asked whether the converse holds.

We first introduce a stronger property (RD) which is an analogue of the Dieudonné
property introduced by A. Grothendieck in [3] alongside the Dunford-Pettis prop-
erty and the Reciprocal Dunford-Pettis property. (For precise definitions of these
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properties and the Pe lczyński’s property (V) see Chapter 4.) Then we investigate
relations between these properties. We improve the result of [8] and show that prop-
erty (V) actually implies property (RD). Several examples are provided to complete
the picture. In particular, an example of a sequentially Right Banach space without
property (V) is shown which answers a question from [8].

Further, dual characterizations of property (RD) and sequential Rightness are
given. We use them to generalize a result of A. Pe lczyński from [7] and show that
every sequentially Right Banach space has weakly sequentially complete dual.

We also take an interest in topological behaviour of the Right topology. Two
most important special cases are in the centre of our attention. It is shown that
the sequential coincidence of the Right topology with the weak one is just another
characterization of the Dunford-Pettis property. Multiple characterizations are also
given for the sequential coincidence of the Right topology with the norm topology.

Finally, we show that if K is a scattered compact Hausdorff space, then C(K,X),
the Banach space of all continuous functions fromK to a Banach spaceX, is sequen-
tially Right (resp. has property (RD)) if and only if X has the same property. The
chapter ends with some results on extensions of pseudo weakly compact operators
on C(K,X) spaces.
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function spaces
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PRODUCTS AND PROJECTIVE LIMITS OF FUNCTION SPACES

MIROSLAV KAČENA

Abstract. We introduce a notion of a product and projective limit of func-

tion spaces. We show that the Choquet boundary of the product space is the

product of Choquet boundaries. Next we show that the product of simplicial
spaces is simplicial. We also show that the maximal measures on the product

space are exactly those with maximal projections. We show similar character-

izations of the Choquet boundary and the space of maximal measures for the
projective limit of function spaces under some additional assumptions and we

prove that the projective limit of simplicial spaces is simplicial.

1. Introduction

Let {Xi}i∈I be a family of Choquet simplexes. We can construct a compact
convex set X as the state space of the space of all continuous multiaffine functions
on
∏
i∈I Xi. It has been shown in [6] and [16] that X itself is a simplex with

extreme points being the evaluation functionals at the points (xi)i∈I ∈
∏
i∈I Xi

with xi ∈ extXi for every i ∈ I. Generalizations to products of arbitrary compact
convex sets followed (see [11], [18]). Characterization of maximal measures on the
product of two compact convex sets, as the measures whose every ‘projection’ is a
maximal measure, appeared later in [3] and [2].

In Section 3 we transfer these results to the context of function spaces. We first
introduce a notion of a product of function spaces with several special products. We
compare these products and prove appropriate associative laws. Then we show that
the Choquet boundary of a product space is the product of Choquet boundaries.
We prove that the product is simplicial if and only if every of the original spaces
is simplicial. Finally we show that maximal measures on the product of arbitrary
many spaces are exactly those with maximal projections.

In Section 4 we transfer known results from [6] and [13] on projective limits
of compact convex sets to function spaces. We use Grossman’s definition of the
projective limit of function spaces from [10] and prove that the projective limit
of simplicial spaces is simplicial. We also derive similar characterizations of the
Choquet boundary and maximal measures as in the case of product of function
spaces.

2. Preliminaries

Let K be a compact Hausdorff space. We denote by C(K) the space of all
continuous functions on K, by M+(K) the set of all positive Radon measures
on K and byM1(K) the set of all probability Radon measures on K. Let εx stand
for the Dirac measure at x ∈ K. We say that a linear subspace H of C(K) is a

6



CHAPTER 1. PRODUCTS AND PROJECTIVE LIMITS OF FUNCTION SPACES 7

function space, if it contains 1K (the function identically 1 on K) and separates the
points of K. Let Mx(H) be the set of all H-representing measures for x ∈ K, i.e.,

Mx(H) := {µ ∈M1(K) : h(x) =

∫
K

h dµ for every h ∈ H}.

The set ChH K := {x ∈ K :Mx(H) = {εx}} is called the Choquet boundary of H.
It is a Gδ–set if K is metrizable (see [1, Corollary I.5.17]). We denote by ∇HK
the Šilov boundary of H (see [1, p. 50] for definition) and we remark that ∇HK
is equal to the closure of ChH K (see [1, Theorem I.5.15] for the proof). A non-
empty closed set E ⊂ K is called H-extremal, if sptµ ⊂ E for every x ∈ E and
µ ∈Mx(H). Finally, for every x ∈ K we denote Fx(H) :=

⋃
{sptµ : µ ∈Mx(H)}.

We define the space Ac(H) of all continuous H-affine functions as the space of
all continuous functions on K satisfying the following formula:

f(x) =

∫
K

f dµ for each x ∈ K and µ ∈Mx(H) .

Clearly Ac(H) is a uniformly closed function space withMx(H) =Mx(Ac(H)) for
every x ∈ K.

Here we recall main examples of function spaces:

(a) Convex case - Let X be a compact convex subset of a locally convex space
and let H be the linear space A(X) of all continuous affine functions on
X. The Choquet boundary is the set extX of all extreme points of X.

(b) Harmonic case - Let U be a bounded open subset of the Euclidean space
Rn and let the corresponding function space H(U) be the family of all con-
tinuous functions on U which are harmonic on U . The Choquet boundary
coincides with the set ∂regU of all regular points.

An upper bounded Borel function f is called H-convex if f(x) ≤ µ(f) for any
x ∈ K and µ ∈ Mx(H). Let Kc(H) denote the family of all continuous H-convex
functions on K. Notice that the space Kc(H)−Kc(H) is uniformly dense in C(K)
due to the lattice version of the Stone–Weierstrass theorem.

The convex cone Kc(H) determines a partial ordering �H (called the Choquet
ordering) on the space M+(K):

µ �H ν if µ(f) ≤ ν(f) for each f ∈ Kc(H).

(If the space H is obvious, we simply write µ � ν.)
We remark that µ � ν if and only if µ(f) ≤ ν(f) for every f ∈ W(H), where

W(H) is the smallest family of functions containing H and closed with respect to
taking supremum of finite families.

For any measure µ ∈ M+(K) there exists a maximal measure ν with µ � ν. In
particular, for every x ∈ K there exists a maximal H-representing measure. This
is the content of the Choquet–Bishop–de-Leeuw theorem [1, Theorem I.5.19].

If K is metrizable, then a measure µ ∈M+(K) is maximal if and only if µ(K \
ChH K) = 0. In nonmetrizable spaces every maximal measure µ satisfies µ(G) = 0
for any Gδ–set disjoint from ChH K (see [1, Proposition I.5.22]).

Theorem 2.1. Let µ ∈M+(K). Then the following assertions are equivalent:

(i) µ is maximal,
(ii) there exists a set S ⊂ C(K) separating points of K such that every function

from S is constant on Fx(H) for µ-a.e. x ∈ K,
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(iii) every function from C(K) is constant on Fx(H) for µ-a.e. x ∈ K.

Proof. See [2, Proposition 2]. �

Proposition 2.2. Let (K ′,G) be a function space and ρ : K → K ′ a continuous
mapping such that Fρ(x)(G) ⊂ ρ(Fx(H)) for every x ∈ ChH K. Then the image
measure ρµ is a maximal measure on K ′ for every maximal measure µ on K.

Proof. See [2, Corollary 3]. �

If for every x ∈ K the maximal H-representing measure is uniquely determined,
we say that H is simplicial. In the convex case it is equivalent to say that X is
a Choquet simplex. We denote the unique maximal measure representing x ∈ K
by δx.

We say that H has the weak Riesz interpolation property (W.R.I.P.), if for every
a1, a2, b1, b2 ∈ H such that ai < bj , i, j = 1, 2, there exists c ∈ H such that
ai < c < bj , i, j = 1, 2. It can be shown that H is simplicial if and only if Ac(H)
has W.R.I.P. (see [1, Corollary II.3.11] or [4, Theorem 3.3]).

For a function f : K → R we define the upper envelope f∗ as

f∗(x) := inf{h(x) : h ≥ f, h ∈ H}, x ∈ K,

and the lower envelope as f∗ := −(−f)∗. We denote Ĥ := {f ∈ C(K) : f∗ = f∗}.
It is true that Ac(H) = Ĥ. By [1, Proposition I.5.9 and Corollary I.5.10], we have:

Proposition 2.3. Let µ ∈M+(K). Then the following statements are equivalent:

(i) µ is maximal,
(ii) µ(f) = µ(f∗) for every f ∈ C(K),
(iii) µ(k) = µ(k∗) for every k ∈ Kc(H).

Corollary 2.4. Let x ∈ K. Then the following statements are equivalent:

(i) x ∈ ChH K,
(ii) f(x) = f∗(x) for every f ∈ C(K),
(iii) k(x) = k∗(x) for every k ∈ Kc(H).

If f and g are functions on K, we write f ∨ g for their pointwise maximum and
f ∧ g for minimum.

Now we introduce a notation concerning cartesian products: Let {Ei}i∈I be a
family of topological spaces and let E :=

∏
i∈I Ei be their cartesian product with

the usual topology. We use the convention
∏
i∈∅Ei := {∅}.

Let J ⊂ I. The natural projection from E onto
∏
i∈J Ei is denoted by πJ . Let

A ⊂ E and z ∈
∏
i∈I\J Ei. We denote by πzJ(A) the set {x ∈

∏
i∈J Ei : (x, z) ∈ A}.

We use a similar notation for functions. Let f : E → R and y ∈
∏
i∈I\J Ei.

Then πyJ(f) :
∏
i∈J Ei → R is defined as

πyJ(f)(x) := f(x, y), x ∈
∏
i∈J

Ei.

In case f is independent on y, we use notation πJ(f).
Finally, for f1 : E1 → R and f2 : E2 → R we define f1 ⊗ f2 : E1 × E2 → R by

(f1 ⊗ f2)(x, y) = f1(x)f2(y), x ∈ E1, y ∈ E2.
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We conclude this section with known results on products of Radon measures: Let
{(Ki,Si, µi)}i∈I be a family of compact Hausdorff spaces with Radon probability
measures. There exists a unique product measure µ on

∏
i∈I Ki with µ(

∏
i∈I Ei) =∏

i∈I µi(Ei), whenever Ei ∈ Si for each i ∈ I and Ei 6= Ki for finitely many i ∈ I
(see [12, Chapter VI, Theorem 5.3]). By [8, Theorem 417Q], µ can be uniquely
extended to a Radon measure

⊗
i∈I µi. We call this measure the Radon product

measure. Radon products satisfy associative law (see [8, Theorem 417J]) and we
can also use Fubini’s theorem (see [8, Theorem 417H]). Finally we remark that if
two Radon measures coincide on the cylinder sets

∏
i∈I Ei, where Ei ⊂ Ki is Borel

for each i ∈ I and Ei 6= Ki for finitely many i ∈ I, then they are equal (see [12,
Chapter I, Proposition 5.3] and the proof of [8, Corollary 417F]).

3. Products of function spaces

3.1. Definitions and relations.

Definition 3.1. Let {(Ki,Hi)}i∈I be a family of function spaces and let K :=∏
i∈I Ki. We define

(a) algebraic tensor product
⊙

i∈I Hi as the linear span of the set

{h1 ⊗ . . .⊗ hn ⊗ 1∏{Ki:i∈I\{i1,...,in}} : hk ∈ Hik , ik ∈ I, 1 ≤ k ≤ n, n ∈ N},

(b) injective tensor product
⊗

i∈I Hi as the closure of
⊙

i∈I Hi,
(c) multiaffine product by

�
i∈I
Hi := {f ∈ C(K) : πyj (f) ∈ Hj for all j ∈ I and y ∈

∏
i∈I\{j}

Ki}.

We say that a function space H on K is a product of function spaces Hi, i ∈ I,
if ⊙

i∈I
Hi ⊂ H ⊂�

i∈I
Ac(Hi).

In case I is an empty set, we put all products to be equal {∅}.

Remark 3.2. It can be shown, that H1 �H2 is really the ‘algebraic tensor prod-
uct’, and if H1 and H2 are closed, i.e., Banach spaces, then H1 ⊗H2 is their ‘weak
(injective) tensor product’ (see [19, 20.5.5]). If Hi = A(Xi) for some compact con-
vex sets Xi, i ∈ I, then �i∈I Hi is the space of all continuous multiaffine functions
on K.

Example 3.3. Let U1 ⊂ Rm, U2 ⊂ Rn, be bounded open sets. We take Hi :=
H(Ui), i = 1, 2 (see Example (b) in Section 2). IfH is a product ofHi, i = 1, 2, then
H ⊂ H(U1 × U2). Indeed, choose h ∈ H ⊂ Ac(H1) � Ac(H2) = H(U1) � H(U2).
Then we have

∆h(x1, x2) = ∆πx2
1 (h)(x1) + ∆πx1

2 (h)(x2) = 0, x1 ∈ U1, x2 ∈ U2.

However, even the largest product does not have to contain all harmonic functions
on the cartesian product. Consider Ui := (0, 1) ⊂ R, i = 1, 2. Then H(Ui) =
A(Ui), i = 1, 2. So every product consists only of biaffine functions. Now take
f(x, y) := x2 − y2 for x, y ∈ [0, 1]. Clearly, f is harmonic, but not biaffine.

Proposition 3.4. The following assertions hold:

(i)
⊙

i∈I Hi ⊂�i∈I Hi.
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(ii) If all Hi are closed, then
⊙

i∈I Hi ⊂
⊗

i∈I Hi ⊂ �i∈I Hi. Moreover,

�i∈I Hi is closed.
(iii) If Hj is not closed for some j ∈ I, then

⊙
i∈I Hi (

⊗
i∈I Hi and

⊗
i∈I Hi 6⊂

�i∈I Hi.

Proof. Statement (i) and the first inclusion in (ii) are trivial. Since (i) holds, the
second inclusion in (ii) will be proved if we show that �i∈I Hi is closed. So let
{fn}n∈N ⊂ �i∈I Hi be such that fn ⇒ f ∈ C(K). Further, let j ∈ I and y ∈∏
i∈I\{j}Ki. Then πyj (fn) ⇒ πyj (f), and since πyj (fn) ∈ Hj for each n and Hj is

closed, we have πyj (f) ∈ Hj . Thus f ∈�i∈I Hi.
Using previous inclusions, it suffices to find f ∈ (

⊗
i∈I Hi) \ (�i∈I Hi) to prove

(iii). Let j ∈ I be such that Hj is not closed and put K ′ :=
∏
i∈I\{j}Ki. There are

functions {hn}n∈N ⊂ Hj such that hn ⇒ h /∈ Hj . Then also hn ⊗ 1K′ ⇒ h ⊗ 1K′ .
Since hn ⊗ 1K′ ∈

⊙
i∈I Hi for every n ∈ N, we have h ⊗ 1K′ ∈

⊗
i∈I Hi. But

πj(h⊗ 1K′) = h /∈ Hj , therefore h⊗ 1K′ /∈�i∈I Hi. �

Remark 3.5. Using previous proposition, we can see that all products defined in
Definition 3.1 are indeed function spaces, since they are linear spaces and contain
algebraic tensor product, which contains constants and separates points.

In the rest of this subsection we will show that the two inclusions in Proposi-
tion 3.4 (ii) may be proper.

Example 3.6. Let Ki := [0, 1] ⊂ R, Hi := C(Ki), i = 1, 2, and denote K :=

K1 × K2. The functions of H1 � H2 are of the form
∑n
j=1 f

j
1 ⊗ f

j
2 , where f ji ∈

C(Ki), i = 1, 2, j = 1, . . . , n, n ∈ N. Since H1 � H2 contains all polynomials, we
have H1 ⊗H2 = C(K). However H1 �H2 ( C(K), as can be seen by considering
the function f(x, y) := exy, x ∈ K1, y ∈ K2.

This example also shows that algebraic tensor product of closed function spaces
does not have to be closed.

Definition 3.7. A Banach space E is said to have the approximation property, if,
for every compact set C ⊂ E and every ε > 0, there is a continuous linear operator
T : E → E of finite rank so that ‖Tx− x‖ < ε for every x ∈ C.

(We refer the reader to [14, Chapter 7] for more information on the approximation
property.)

Theorem 3.8 (Namioka-Phelps). The following statements are equivalent:
(i) For every two compact convex subsets X1, X2 of locally convex Hausdorff

spaces is A(X1)⊗A(X2) = A(X1) � A(X2).
(ii) Every Banach space has the approximation property.

Proof. See [18, Theorem 2.4 and the subsequent remark]. �

Using Theorem 3.8 and Enflo’s counterexample [7] of a Banach space not having
the approximation property, we may state the following:

Corollary 3.9. There exist compact convex sets X1 and X2 such that

A(X1)⊗A(X2) ( A(X1) � A(X2).



CHAPTER 1. PRODUCTS AND PROJECTIVE LIMITS OF FUNCTION SPACES 11

3.2. Associative laws. In order to be able to use products defined above effec-
tively, we need to establish ‘associative laws’ for them.

Definition 3.10. We say, that {Jγ}γ∈Γ is a partition of a set I, if
⋃
γ∈Γ Jγ = I

and Jα ∩ Jβ = ∅ for every α, β ∈ Γ such that α 6= β.

To the end of this subsection, let {(Ki,Hi)}i∈I be a family of function spaces and
{Jγ}γ∈Γ a partition of I. In the following, we naturally identify spaces C(

∏
i∈I Ki)

and C(
∏
γ∈Γ(

∏
i∈Jγ Ki)).

Proposition 3.11. The following assertions hold:
(i)
⊙

i∈I Hi =
⊙

γ∈Γ(
⊙

i∈Jγ Hi),

(ii) Ac(
⊙

i∈I Hi) = Ac(
⊙

γ∈Γ(
⊙

i∈Jγ Hi)).

Proof. To prove (i), it clearly suffices to show, that the generating functions of both
spaces are the same. Function f is a generating function of

⊙
i∈I Hi, if

f = h1
1 ⊗ . . .⊗ h

m1
1 ⊗ . . .⊗ h1

n ⊗ . . .⊗ hmnn ⊗ 1∏{Ki:i∈I\{i11,...,imnn }},

for some hlk ∈ Hilk , i
l
k ∈ Jγk , l = 1, . . . ,mk, k = 1, . . . , n. Since

fk := h1
k ⊗ . . .⊗ h

mk
k ⊗ 1∏{Ki:i∈Jγk\{i1k,...,imkk }} ∈

⊙
i∈Jγk

Hi for each k = 1, . . . , n,

we have

f = f1 ⊗ . . .⊗ fn ⊗ 1∏{Ki:i∈I\(Jγ1∪...∪Jγn )},

which is a generating function of
⊙

γ∈Γ(
⊙

i∈Jγ Hi). Reverting the proof we obtain

the converse inclusion.
Assertion (ii) follows from (i) and the fact that Ac(H) = Ĥ. �

Proposition 3.12. The following assertions hold:
(i)
⊗

i∈I Hi =
⊗

γ∈Γ(
⊗

i∈Jγ Hi),

(ii) Ac(
⊗

i∈I Hi) = Ac(
⊗

γ∈Γ(
⊗

i∈Jγ Hi)).

Proof. Using Proposition 3.11, we have⊗
i∈I
Hi =

⊙
i∈I
Hi =

⊙
γ∈Γ

(⊙
i∈Jγ

Hi
)
⊂
⊙
γ∈Γ

(⊗
i∈Jγ

Hi
)

=
⊗
γ∈Γ

(⊗
i∈Jγ

Hi
)
.

For the converse inclusion, it suffices to prove
⊙

γ∈Γ(
⊗

i∈Jγ Hi) ⊂
⊗

i∈I Hi, since

the latter space is closed. Let f be a generating function of
⊙

γ∈Γ(
⊗

i∈Jγ Hi). We

can write

f = f1 ⊗ . . .⊗ fn ⊗ 1∏{Ki:i∈I\(Jγ1∪...∪Jγn )},

where fi ∈
⊗

j∈Jγi
Hj , i = 1, . . . , n. We may assume that fi > 0, i = 1, . . . , n

(otherwise we write fi = (‖fi‖ + 1) − (‖fi‖ + 1 − fi) and use distributive law).
Denote M := maxi=1,...,n ‖fi‖. Now choose 0 < ε < 1 so that fi > ε, i = 1, . . . , n.
For each fi we can find hi ∈

⊙
j∈Jγi

Hj such that fi − ε < hi < fi. We define

h := h1 ⊗ . . .⊗ hn ⊗ 1∏{Ki:i∈I\(Jγ1∪...∪Jγn )} ∈
⊙
i∈I
Hi,
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(we used Proposition 3.11) and compute

‖f − h‖ = sup
x1∈

∏
i∈Jγ1

Ki

. . . sup
xn∈

∏
i∈Jγn

Ki

( n∏
i=1

fi(xi)−
n∏
i=1

hi(xi)
)

< sup
x1∈

∏
i∈Jγ1

Ki

. . . sup
xn∈

∏
i∈Jγn

Ki

( n∏
i=1

fi(xi)−
n∏
i=1

(fi(xi)− ε)
)

= sup
x1∈

∏
i∈Jγ1

Ki

. . . sup
xn∈

∏
i∈Jγn

Ki

ε
( n∑
k=1

(−1)k−1εk−1
∑

|α|=n−k

n−k∏
i=1

fαi(xαi)
)

≤ ε
( n∑
k=1

∑
|α|=n−k

n−k∏
i=1

‖fαi‖
)
≤ ε
(n−1∑
k=0

(
n

k

)
Mk
)
.

Since ε is arbitrary, we conclude that f ∈
⊗

i∈I Hi.
Assertion (ii) follows from (i) and the fact that Ac(H) = Ĥ. �

Proposition 3.13. The following assertions hold:
(i) �i∈I Hi = �γ∈Γ(�i∈Jγ Hi),

(ii) Ac(�i∈I Hi) = Ac(�γ∈Γ(�i∈Jγ Hi)).

Proof. Let f ∈ �i∈I Hi. Pick γ0 ∈ Γ and k′ ∈
∏
i∈I\Jγ0

Ki. We want to prove

that πk
′

Jγ0
(f) ∈ �i∈Jγ0 Hi, i.e., that πk

′′

j (πk
′

Jγ0
(f)) ∈ Hj for every j ∈ Jγ0 and

k′′ ∈
∏
i∈Jγ0\{j}

Ki. But this is true, since πk
′′

j (πk
′

Jγ0
(f)) = π

(k′,k′′)
j (f) ∈ Hj .

Conversely, let f ∈ �γ∈Γ(�i∈Jγ Hi). Pick j ∈ I and k ∈
∏
i∈I\{j}Ki. Then

j ∈ Jγ0 for some γ0 ∈ Γ. Using the assumption, we have

πkj (f) = π
πJγ0\{j}

(k)

j (π
πI\Jγ0

(k)

Jγ0
(f)) ∈ Hj .

Assertion (ii) follows from (i) and the fact that Ac(H) = Ĥ. �

From now on, we consider (K,H) to be a product of (Ki,Hi), i ∈ I, unless said
otherwise.

3.3. Representing measures.

Notation 3.14. Let J ⊂ I. We denote by HJ the space of all functions from H
depending on coordinates from J , i.e.,

HJ := {h ∈ H : x, y ∈ K, πJ(x) = πJ(y)⇒ h(x) = h(y)},
and let Hf be the space of all functions from H depending on a finite number of
coordinates, i.e.,

Hf := {h ∈ H : ∃J ⊂ I finite, so that h ∈ HJ}.

Observation 3.15. Using the above notation, we observe:
(a) I1 ⊂ I2 ⊂ I, h ∈ HI1 ⇒ h ∈ HI2 ,
(b) h ∈ HJ ⇔ h = πJ(h)⊗ 1∏{Ki:i∈I\J},
(c) µ ∈M+(K), h ∈ HJ ⇒ µ(h) = (πJµ)(πJ(h)),
(d) Hf is a product of Hi, i ∈ I.

Proposition 3.16. Let us assume either



CHAPTER 1. PRODUCTS AND PROJECTIVE LIMITS OF FUNCTION SPACES 13

(a) H ⊂
⊗

i∈I Hi, or
(b) H = �i∈I Hi.

Then Hf is dense in H.

Proof. Assuming (a), conclusion is trivial, since
⊙

i∈I Hi ⊂ Hf . Assuming (b), we
can use the same technique as in the proof of [16, Theorem 3.1] or [6, Lemma 4]. �

Corollary 3.17. Cf (K) is dense in C(K).

Proof. Notice that C(K) = �i∈I C(Ki) and use Proposition 3.16 (b). �

Example 3.18. The conclusion of Proposition 3.16 does not have to be true for
all products. Suppose we have f ∈ (�i∈I Hi) \ (

⊗
i∈I Hi), which does not depend

on finitely many coordinates. Let H be the linear span of
⊙

i∈I Hi ∪ {f}. Then

Hf =
⊙

i∈I Hi, but f /∈ Hf .
Now we construct such a function f . Let (Ki,Hi) := (Xi, A(Xi)), i = 1, 2, be

as in Corollary 3.9. Then there is f1 ∈ (H1 � H2) \ (H1 ⊗ H2). This function
is not constant with respect to any of the two coordinates, since f1 /∈ H1 � H2.
Set H2n+1 := H1, H2n+2 := H2, n ∈ N, and let fn+1 := f1 be the function from
(H2n+1 � H2n+2) \ (H2n+1 ⊗H2n+2) for every n ∈ N. Set

f :=

∞∑
n=1

2−n+1fn ⊗ 1∏{Ki:i∈N\{2n−1,2n}}.

Obviously, f does not depend on finite number of coordinates and f ∈ �i∈NHi
since this space is closed. Also f /∈

⊗
i∈NHi. Indeed, if we suppose the contrary,

then

f ∈
⊗
i∈N
Hi = (H1 ⊗H2)⊗ (

∞⊗
i=3

Hi) ⊂ (H1 ⊗H2) � (

∞⊗
i=3

Hi).

Thus, for y ∈
∏∞
i=3Ki is πy{1,2}(f) ∈ H1 ⊗H2. But πy{1,2}(f) = f1 + c, where c is a

constant, which is a contradiction, since f1 /∈ H1 ⊗H2.

Definition 3.19. Let (K,H) be a product of (Ki,Hi), i ∈ I. For J ⊂ I we define
the projection of H by

πJ(H) := {f ∈ C(
∏
i∈J

Ki) : f ⊗ 1∏{Ki:i∈I\J} ∈ H}.
Observation 3.20. The following assertions hold:

(a) πJ(H) is a product of Hi, i ∈ J ,
(b) πJ(

⊙
i∈I Hi) =

⊙
i∈J Hi,

(c) πJ(
⊗

i∈I Hi) =
⊗

i∈J Hi,
(d) πJ(�i∈I Hi) = �i∈J Hi.

Proposition 3.21. Let x ∈ K, µ ∈Mx(H) and J ⊂ I. Then πJµ ∈MπJ (x)(πJ(H)).

Proof. Let hJ ∈ πJ(H) and define h := hJ ⊗ 1∏{Ki: i∈I\J}. Then h ∈ H and

hJ(πJ(x)) = h(x) = µ(h) = (πJµ)(hJ).

�

Proposition 3.22. Let x = (xi)i∈I ∈ K and µi ∈ Mxi(Hi) for every i ∈ I. Then
µ :=

⊗
i∈I µi ∈Mx(H).

Proof. It suffices to prove the assertion for H = �i∈I Ac(Hi).
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(i) First, let |I| = n ∈ N. Choose h ∈ H. By Fubini’s theorem,

µ(h) =

∫
K

h dµ =

∫
K1

. . .

∫
Kn

h(y1, . . . , yn) dµn(yn) . . . dµ1(y1).

Since the function yn 7→ h(y1, . . . , yn) is in Ac(Hn) and µn ∈ Mxn(Hn),
we have∫

Kn

h(y1, . . . , yn−1, yn) dµn(yn) = h(y1, . . . , yn−1, xn)

for every (y1, . . . , yn−1) ∈
∏n−1
i=1 Ki. Using induction, we can see that

µ(h) = h(x1, . . . , xn) = h(x). Therefore µ ∈Mx(H).
(ii) Now, let I be an arbitrary index set. Choose h ∈ H and ε > 0. By

Proposition 3.16 (b), there is g ∈ HJ for some finite J ⊂ I so that

‖g − h‖ < ε

2
.

Using the first part of the proof, we write

µ(g) =
(⊗
i∈J

µi
)
(πJ(g)) = πJ(g)(πJ(x)) = g(x).

Let us estimate

|µ(h)− h(x)| ≤ |µ(h)− µ(g)|+ |µ(g)− g(x)|+ |g(x)− h(x)| < ε.

Since ε is arbitrary, µ(h) = h(x). Hence µ ∈Mx(H).

�

Notation 3.23. Let Ai ⊂ M1(Ki) for every i ∈ I. We denote
⊗

i∈I Ai :=
{
⊗

i∈I µi : µi ∈ Ai, i ∈ I}.

Example 3.24. If |I| = 2, Proposition 3.22 yields the inclusion

cow
∗
(Mx1

(H1)⊗Mx2
(H2)) ⊂Mx(H), x = (x1, x2) ∈ K.

Now we show that the inclusion may be proper.
Let Ki := {ri, si, ti}, Hi := {f ∈ C(Ki) : f(si) = 1

2 (f(ri) + f(ti))}, i = 1, 2.

ThenMsi(Hi) = co {εsi ,
εri+εti

2 }. Suppose (K,H) is a product of these two spaces.
Denote

C := co {εs1 ⊗ εs2 , εs1 ⊗
εr2 + εt2

2
,
εr1 + εt1

2
⊗ εs2 ,

εr1 + εt1
2

⊗ εr2 + εt2
2

}.

We see that cow
∗
(Ms1(H1)⊗Ms2(H2)) = C. Define

µ :=
ε(s1,t2)

2
+
ε(r1,r2)

4
+
ε(t1,r2)

4
.

Obviously µ ∈M(s1,s2)(H). For every x ∈ K\{(s1, t2), (r1, r2), (t1, r2)} is µ({x}) =
0. However, if µ was an element of C, then at least one of the points (s1, s2), (s1, r2),
(r1, s2), (r1, t2) would have a non-zero measure.

Example 3.25. Let x ∈ K. Denote Mπ
x(H) the set of all µ ∈ M1(K) such that

πi(µ) ∈Mπi(x)(Hi) for every i ∈ I. Proposition 3.21 yields

Mx(H) ⊂Mπ
x(H).

Once again, we show that the inclusion may be proper.
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Let (Ki,Hi), i = 1, 2, be as in Example 3.24. Consider

µ :=
ε(r1,r2)

2
+
ε(t1,t2)

2
.

We see that πi(µ) =
εri
2 +

εti
2 ∈Msi(Hi), i = 1, 2. Thus µ ∈Mπ

(s1,s2)(H). However

µ /∈ M(s1,s2)(H). Indeed, take fi ∈ Hi such that fi(ri) = 0, fi(si) = 1, fi(ti) = 2,
for i = 1, 2. Define f := f1 ⊗ f2. Then f ∈ H, but

f(s1, s2) = 1 6= 2 = µ(f).

Question 3.26. Is there a way to characterize Mx(H) by Mπi(x)(Hi), i ∈ I?

Proposition 3.27. Let x = (xi)i∈I ∈ K. Then Fx(H) =
∏
i∈I Fxi(Hi).

Proof. First we show Fx(H) ⊂
∏
i∈I Fxi(Hi). For each µ ∈ Mx(H) and i ∈ I we

have πi(sptµ) = sptπiµ and since, by Proposition 3.21, πiµ ∈ Mxi(Hi), we get
πi(sptµ) ⊂ Fxi(Hi). Therefore πi(Fx(H)) ⊂ Fxi(Hi) for every i ∈ I.

Conversely, let µi ∈Mxi(Hi) for every i ∈ I. Proposition 3.22 yields
⊗

i∈I µi ∈
Mx(H) and thus

∏
i∈I sptµi = spt

⊗
i∈I µi ⊂ Fx(H). �

3.4. H-affine functions.

Proposition 3.28. Ac(H) ⊂�i∈I Ac(Hi).
Proof. Choose f ∈ Ac(H), j ∈ I and y = (yi) ∈

∏
i∈I\{j}Ki. We prove that

fj := πyj (f) ∈ Ac(Hj). Let xj ∈ Kj and µj ∈ Mxj (Hj). Define x := (xj , y) and

µ := µj ⊗ (
⊗

i∈I\{j} εyi). According to Proposition 3.22, µ ∈Mx(H), so we have

fj(xj) = f(x) = µ(f) = µj(fj).

Hence fj ∈ Ac(Hj). �

Lemma 3.29. Let |I| = 2. Then Ac(H1)⊗Ac(H2) ⊂ Ac(H).

Proof. Consider a1 ∈ Ac(H1), a2 ∈ Ac(H2). We show that a1 ⊗ a2 ∈ Ac(H) by

using the characterization Ac(H) = Ĥ.
First suppose that a1, a2 ≥ 0. Choose x = (x1, x2) ∈ K and ε > 0. Find δ > 0

so that
δ(a1(x1) + a2(x2) + δ) < ε.

Since a∗i = ai, i = 1, 2, there are h1 ∈ H1, h1 ≥ a1 and h2 ∈ H2, h2 ≥ a2 such that

h1(x1) < a1(x1) + δ and h2(x2) < a2(x2) + δ.

Obviously h1 ⊗ h2 ∈ H, h1 ⊗ h2 ≥ a1 ⊗ a2 and

a1(x1)a2(x2) ≤ h1(x1)h2(x2) < (a1(x1) + δ)(a2(x2) + δ)

= a1(x1)a2(x2) + δ(a1(x1) + a2(x2) + δ) < a1(x1)a2(x2) + ε.

Thus (a1 ⊗ a2)∗ = a1 ⊗ a2.
Now suppose a1 ≥ 0 and a2 is arbitrary. Then a2 + ‖a2‖ ≥ 0. Since f 7→ f∗ is a

sublinear functional on C(K) and (a1 ⊗ c)∗ = a1 ⊗ c for every constant function c
on K2, we get

a1 ⊗ a2 ≤ (a1 ⊗ a2)∗ = (a1 ⊗ (a2 + ‖a2‖ − ‖a2‖))∗

= (a1 ⊗ (a2 + ‖a2‖)− a1 ⊗ ‖a2‖)∗

≤ (a1 ⊗ (a2 + ‖a2‖))∗ + (a1 ⊗ (−‖a2‖))∗

= a1 ⊗ (a2 + ‖a2‖) + (a1 ⊗ (−‖a2‖)) = a1 ⊗ a2.
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For the lower envelope we have

(a1 ⊗ a2)∗ = −(a1 ⊗ (−a2))∗ = −(a1 ⊗ (−a2)) = a1 ⊗ a2.

Thus a1 ⊗ a2 ∈ Ĥ = Ac(H).
Finally, let a1, a2 be arbitrary. Then

a1 ⊗ a2 = (a1 + ‖a1‖)⊗ a2 − ‖a1‖ ⊗ a2 ∈ Ac(H).

Since Ac(H) is a closed linear space, the conclusion follows. �

Proposition 3.30.
⊗

i∈I Ac(Hi) ⊂ Ac(H).

Proof. It suffices to prove
⊙

i∈I Ac(Hi) ⊂ Ac(H), since the latter space is closed.
(i) Assume first, that |I| = n ∈ N and the assertion holds for |I| = n − 1.

Using the assumption, previous Lemma 3.29 and the associative law, we
get

n⊙
i=1

Ac(Hi) =
(n−1⊙
i=1

Ac(Hi)
)
�Ac(Hn) ⊂ Ac

(n−1⊙
i=1

Hi
)
�Ac(Hn)

⊂ Ac
(
(

n−1⊙
i=1

Hi)�Hn
)

= Ac
( n⊙
i=1

Hi
)
⊂ Ac(H).

(ii) Now, let I be an arbitrary index set. Choose f ∈
⊙

i∈I Ac(Hi). Then
there is a finite J ⊂ I such that f depends only on coordinates from J .
So, according to the first part of the proof, πJ(f) ∈

⊙
i∈J Ac(Hi) ⊂

Ac(
⊙

i∈J Hi). Since f = πJ(f)⊗ 1∏{Ki:i∈I\J}, we have

f ∈ Ac
(⊙
i∈J
Hi
)
�Ac

( ⊙
i∈I\J

Hi
)
⊂ Ac

(
(
⊙
i∈J
Hi)� (

⊙
i∈I\J

Hi)
)

= Ac
(⊙
i∈I
Hi
)
⊂ Ac(H).

�

Corollary 3.31. Ac(H) is a product of both Hi, i ∈ I, and Ac(Hi), i ∈ I.

Proof. From Proposition 3.30 we have⊙
i∈I
Hi ⊂

⊙
i∈I
Ac(Hi) ⊂ Ac(H),

and from Proposition 3.28

Ac(H) ⊂�
i∈I
Ac(Hi) =�

i∈I
Ac(Ac(Hi)).

�

Proposition 3.32. If Ac(H) ⊂�i∈I Hi, then Hi = Ac(Hi) for every i ∈ I.

Proof. Choose i ∈ I. We prove that Ac(Hi) ⊂ Hi. Pick fi ∈ Ac(Hi) and define
f := fi ⊗ 1∏{Kj :j∈I\{i}}. Choose x = (xj)j∈I ∈ K and µ ∈ Mx(H). From
Proposition 3.21 we have µi := πiµ ∈Mxi(Hi), which implies

f(x) = fi(xi) = µi(fi) = µ(f).

Thus f ∈ Ac(H) ⊂�i∈I Hi, so fi = πi(f) ∈ Hi. �
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Proposition 3.33. Let H = �i∈I Hi. Then H = Ac(H) if and only if Hi =
Ac(Hi) for every i ∈ I.

Proof. If H = Ac(H), we use Proposition 3.32. Conversely, from Proposition 3.28
we have

H ⊂ Ac(H) ⊂�
i∈I
Ac(Hi) =�

i∈I
Hi = H.

�

Corollary 3.34. There are function spaces H1 and H2 such that

Ac(H1)⊗Ac(H2) ( Ac(H1 � H2).

Proof. By Corollary 3.9, there are H1 and H2 such that H1 ⊗H2 ( H1 � H2 and
Hi = Ac(Hi), i = 1, 2. Proposition 3.33 implies H1 � H2 = Ac(H1 � H2). Thus

Ac(H1)⊗Ac(H2) = H1 ⊗H2 ( H1 � H2 = Ac(H1 � H2).

�

Example 3.35. Example 3.6 shows there are function spaces such that

Ac(H1)�Ac(H2) ( Ac(H1 �H2).

Question 3.36. Is
⊗

i∈I Ac(Hi) = Ac(
⊙

i∈I Hi)?

Question 3.37. Is Ac(
⊙

i∈I Hi) = Ac(�i∈I Hi)?

Question 3.38. Is Ac(�i∈I Hi) = �i∈I Ac(Hi)?

3.5. H-extremal sets.

Proposition 3.39. Let E ⊂ K be an H-extremal set. Let J ⊂ I, y ∈
∏
i∈I\J Ki,

and let G be a product of Hi, i ∈ J . Then πyJ(E) is either empty or a G-extremal
set.

Proof. Suppose Ey := πyJ(E) is non-empty and not G-extremal. Then there is
x ∈ Ey and µJ ∈ Mx(G) so that sptµJ 6⊂ Ey. According to Proposition 3.21,
µi := πiµJ ∈ Mπi(x)(Hi) for every i ∈ J . Since sptµJ ⊂ spt

⊗
i∈J µi, we can see

that spt
⊗

i∈J µi 6⊂ Ey. Define

µ :=
(⊗
i∈J

µi
)
⊗
( ⊗
i∈I\J

επi(y)

)
.

Hence, we have (x, y) ∈ E and by Proposition 3.22 also µ ∈ M(x,y)(H). But
sptµ 6⊂ E, which is a contradiction. �

The next two propositions are generalizations of Proposition 4.1 and Theorem 4.2
from [16] to function spaces:

Proposition 3.40. Let E ⊂ K be an H-extremal set. Let ∅ 6= J ⊂ I and let G be
a product of Hi, i ∈ J . Then πJ(E) is a G-extremal set.

Proof. Let x ∈ πJ(E) and µ ∈ Mx(G). Then there is y ∈
∏
i∈I\J Ki such that

(x, y) ∈ E, i.e., x ∈ πyJ(E). By Proposition 3.39, πyJ(E) is a G-extremal set,
therefore sptµ ⊂ πyJ(E) ⊂ πJ(E). �

Proposition 3.41. Let Ei ⊂ Ki be an Hi-extremal set for every i ∈ I. Then
E :=

∏
i∈I Ei is an H-extremal set.
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Proof. Obviously, E is a closed set.
(i) Assume |I| = 2. Suppose there is x = (x1, x2) ∈ E and µ ∈ Mx(H) so

that µ(K \ E) > 0. Denote µ1 := π1µ and µ2 := π2µ. Since

K \ E = ((K1 \ E1)×K2) ∪ (K1 × (K2 \ E2)),

we have

0 < µ(K \ E) ≤ µ1(K1 \ E1) + µ2(K2 \ E2).

We may assume µ1(K1 \ E1) > 0. By Proposition 3.21, µ1 ∈ Mx1
(H1).

But this is a contradiction, because x1 ∈ E1.
We proceed similarly for arbitrary finite products.

(ii) Now, let I be infinite. Suppose there is x = (xi)i∈I ∈ E and µ ∈Mx(H) so
that µ(K \E) > 0. Then there is some g ∈ C(K) such that g = 0 on E and
µ(g) > 0. Choose ε > 0. According to Corollary 3.17, there is f ∈ CJ(K),
where J ⊂ I is finite and ‖g − f‖ < ε. Then πJµ ∈ MπJ (x)(πJ(H)) and
by the first part of the proof, πJ(x) is an element of the πJ(H)-extremal
set EJ :=

∏
i∈J Ei. Thus sptπJµ ⊂ EJ and |πJ(f)| < ε on EJ . Therefore

|µ(f)| = |(πJµ)(πJ(f))| ≤
∫
EJ

|πJ(f)| d(πJµ) +

∫
(
∏
i∈J Ki)\EJ

|πJ(f)| d(πJµ) < ε.

Hence we get

0 < |µ(g)| ≤ |µ(g)− µ(f)|+ |µ(f)| < 2ε,

which is a contradiction, since ε is arbitrary.
�

Using previous results, we can derive the main theorem of this subsection (cf.
also [6, Lemma 5], [16, Theorem 3.2] and [10, Lemma 5.11]):

Theorem 3.42. ChHK =
∏
i∈I ChHi Ki.

Proof. Immediately follows from Propositions 3.40 and 3.41. �

Corollary 3.43. ∇HK =
∏
i∈I ∇Hi Ki.

Proof. Using Theorem 3.42 we can write

∇HK = ChHK =
∏
i∈I

ChHi Ki =
∏
i∈I

ChHi Ki =
∏
i∈I
∇Hi Ki.

�

Remarks 3.44. As has been shown by Grossman [9], the characterizations of
Choquet and Šilov boundary hold also for the space H1 +H2 defined by

H1 +H2 := {h1 + h2 : h1 ∈ H1, h2 ∈ H2}, where

[h1 + h2](x, y) = h1(x) + h2(y), (x, y) ∈ K1 ×K2.

It is clear that H1+H2 does not have to be a product, since the inclusion H1�H2 ⊂
H1 +H2 does not have to hold.

Versions of Theorem 3.42 for various tensor products of compact convex sets has
been proved by I. Namioka and R.R. Phelps in [18].
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Example 3.45. In Example 3.3 we have shown that the space of all harmonic
functions on a cartesian product does not have to be a product of harmonic spaces.
Moreover, it is not even possible to extend the notion of a product so that the
product of harmonic spaces would be a harmonic space and Theorem 3.42 would
still hold. Indeed, consider the sets from Example 3.3 and denote U := U1 × U2.
Then

ChH(U) U = ∂regU = ∂U 6= {0, 1} × {0, 1} = ChH(U1) U1 × ChH(U2) U2.

3.6. Approximation in product spaces. In the following, we will need some
results on approximation of functions in simplicial spaces. So we first state here
results that are adaptation of Section 2 from [17].

Definition 3.46. Let (K,H) be a function space. A collection of nonnegative
functions {ψj}mj=1 ⊂ H is called a partition of unity on K, if

∑m
j=1 ψj = 1K .

Lemma 3.47. Let (K,H) be a simplicial function space. Let {fi}ni=1 ⊂ Ac(H)
and ε > 0. Suppose that {φj}mj=1 are nonnegative functions defined on ChH K,
{kl}ml=1 ⊂ ChH K and {αij : 1 ≤ i ≤ n, 1 ≤ j ≤ m} are real numbers such that

(i)
∑m
j=1 φj = 1,

(ii) φj(kl) = δjl, 1 ≤ j, l ≤ m,
(iii) |fi(k)−

∑m
j=1 αijφj(k)| ≤ ε, k ∈ ChH K, 1 ≤ i ≤ n.

Then there exists a partition of unity {ψj}mj=1 ⊂ Ac(H) such that

(iv) ψj(kl) = δjl, 1 ≤ j, l ≤ m,
(v) |fi(k)−

∑m
j=1 αijψj(k)| ≤ ε, k ∈ K, 1 ≤ i ≤ n.

Proof. See [17, Corollary 2.2]. �

The proof of the next lemma is based on the proof of [17, Lemma 2.4]:

Lemma 3.48. Let (K1,H1) and (K2,H2) be two function spaces, where H1 is
simplicial. Suppose that {fi}ni=1 ⊂ Ac(H1) � H2 and ε > 0. Then there is a
partition of unity {ψj}mj=1 ⊂ Ac(H1), {kl}ml=1 ⊂ ChH1

K1 and {yij} ⊂ H2, 1 ≤ i ≤
n, 1 ≤ j ≤ m, so that

(i) ψj(kl) = δjl, 1 ≤ j, l ≤ m,
(ii) ‖fi −

∑m
j=1 ψj ⊗ yij‖ < ε, 1 ≤ i ≤ n.

Proof. Denote by Hn2 the n-tuple cartesian product of H2 with the maximum norm,
i.e.,

‖y‖max = max
1≤i≤n

‖πi(y)‖ for all y ∈ Hn2 ,

where πi is the projection to the i-th coordinate. We denote by Br(x) the open
ball with center x and radius r > 0.

Let f be a function from K1 to Hn2 defined by

f(k) := (πk2 (f1), . . . , πk2 (fn)), k ∈ K1.

Since πi ◦ f is a continuous function for every i = 1, . . . , n (we use the fact that
C(K1 ×K2) is isometric to C(K1, C(K2))), f is also a continuous function on K1.

For each y ∈ Hn2 set

(1) Uy :=
{
k ∈ K1 : ‖y − f(k)‖max <

ε

3

}
.
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The family {Uy}y∈Hn2 is an open covering of K1. Let Uy1 , . . . , Uyp be a finite
subcovering. Define

Vyj := Uyj ∩ ChH1
K1, 1 ≤ j ≤ p.

Without loss of generality we may assume that there is m ≤ p such that {Vyl}ml=1

is an open covering of ChH1
K1 and for every l ∈ {1, . . . ,m} there exists kl ∈ Vyl

such that kl /∈ Vyj for j 6= l, 1 ≤ j ≤ m.
Denote

C := {y1, . . . , yp} − co(y1, . . . , ym),

D := C +B ε
3
(0).

Choose i ∈ {1, . . . , n}. Since C is a compact subset of Hn2 , also πi(C) is a compact
subset of H2. By Arzelà-Ascoli’s theorem, the set πi(C) is equicontinuous. There-
fore, for each ξ ∈ K2 we can find its open neighbourhood Wξ such that oscWξ

h < ε
3

for every h ∈ πi(C). From the open covering {Wξ}ξ∈K2 we choose a finite subcov-
ering {Wξir}

qi
r=1. For every h ∈ πi(C) there is xh ∈ K2 such that |h(xh)| = ‖h‖.

The point xh is an element of some Wξir and so ‖h‖ − ε
3 < |h(ξir)|. Thus

‖h‖ − ε

3
< max

1≤r≤qi
|h(ξir)| ≤ ‖h‖, h ∈ πi(C),

and since πi(D) ⊂ πi(C) +B ε
3
(0), also

(2) ‖h‖ − 2

3
ε < max

1≤r≤qi
|h(ξir)| ≤ ‖h‖, h ∈ πi(D).

Let Γir ∈ (Hn2 )∗ be a continuous linear functional defined by

Γir(y) := πi(y)(ξir), 1 ≤ i ≤ n, 1 ≤ r ≤ qi, y ∈ Hn2 .

From (2) we can write

(3) ‖h‖max −
2

3
ε < max

1≤i≤n
1≤r≤qi

|Γir(h)| ≤ ‖h‖max, h ∈ D.

Set

φj(k) :=

{
1, if j = min{l : k ∈ Vyl , 1 ≤ l ≤ m},
0, otherwise,

1 ≤ j ≤ m, k ∈ ChH1
K1.

Clearly φj ≥ 0, φj(kl) = δjl, 1 ≤ j, l ≤ m, and
∑m
j=1 φj = 1. Moreover, for every

k ∈ ChH1
K1 there is a unique index jk so that φjk(k) 6= 0. For this index is

k ∈ Vyjk . Thus, from (1) we have

‖f(k)− yjk‖max <
ε

3
.

We can rewrite this inequality as

(4) ‖f(k)−
m∑
j=1

φj(k)yj‖max <
ε

3
, k ∈ ChH1

K1.
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Since f(k)−
∑m
j=1 φj(k)yj ∈ D, using (3) and (4) we have

|Γir(f(k))−
m∑
j=1

φj(k)Γir(yj)| = |Γir(f(k)−
m∑
j=1

φj(k)yj)|

≤ ‖f(k)−
m∑
j=1

φj(k)yj‖max

<
ε

3
, 1 ≤ i ≤ n, 1 ≤ r ≤ qi, k ∈ ChH1

K1.

Lemma 3.47 yields a partition of unity {ψj}mj=1 ⊂ Ac(H1) such that

|Γir(f(k))−
m∑
j=1

ψj(k)Γir(yj)| ≤
ε

3
, 1 ≤ i ≤ n, 1 ≤ r ≤ qi, k ∈ K1,(5)

ψj(kl) = δjl, 1 ≤ j, l ≤ m.(6)

Since f(k)−
∑m
j=1 ψj(k)yj ∈ D for every k ∈ K1, using (3) and (5) we get

‖f(k)−
m∑
j=1

ψj(k)yj‖max −
2

3
ε < max

1≤i≤n
1≤r≤qi

|Γir(f(k)−
m∑
j=1

ψj(k)yj)|

= max
1≤i≤n
1≤r≤qi

|Γir(f(k))−
m∑
j=1

ψj(k)Γir(yj)|

≤ ε

3
, k ∈ K1.

Hence

(7) ‖f(k)−
m∑
j=1

ψj(k)yj‖max < ε, k ∈ K1.

Finally, define yij := πi(yj) ∈ H2, 1 ≤ i ≤ n, 1 ≤ j ≤ m. Assertion (i) then follows
from (6) and (ii) follows from (7). �

3.7. Products of simplicial spaces.

Proposition 3.49. Suppose that at most one of the spaces Hi, i ∈ I, is not sim-
plicial. Then ⊗

i∈I
Ac(Hi) = Ac(H) =�

i∈I
Ac(Hi).

Proof. Due to Propositions 3.30 and 3.28, it suffices to prove �i∈I Ac(Hi) ⊂⊗
i∈I Ac(Hi).

(i) First we prove the assertion for finite products. Let |I| = n ≥ 2 and
suppose that H1, . . . ,Hn−1 are simplicial. We repeatedly use associative
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laws and Lemma 3.48 to get
n

�
i=1

Ac(Hi) = Ac(H1) � (Ac(H2) � (. . . (Ac(Hn−1) � Ac(Hn)) . . .))

⊂ Ac(H1)⊗ (Ac(H2) � (. . . (Ac(Hn−1) � Ac(Hn)) . . .))

⊂ . . . ⊂ Ac(H1)⊗ (Ac(H2)⊗ (. . . (Ac(Hn−1)⊗Ac(Hn)) . . .))

=

n⊗
i=1

Ac(Hi).

(ii) Now, let I be infinite. Choose f ∈ �i∈I Ac(Hi) and ε > 0. According to
Proposition 3.16 (b), there is some h ∈�i∈I Ac(Hi) depending on finitely
many coordinates J such that ‖f−h‖ < ε. From the first part of the proof
we have πJ(h) ∈ �i∈J Ac(Hi) ⊂

⊗
i∈J Ac(Hi). Thus, h ∈

⊗
i∈I Ac(Hi).

Since the space is closed, we get f ∈
⊗

i∈I Ac(Hi).
�

Example 3.50. The assumption on the number of simplicial spaces in Proposi-
tion 3.49 may not be weakened. We show that for every index set I with |I| ≥ 2
there is a family of function spaces Hi, i ∈ I, with two non-simplicial spaces, which
does not satisfy the equality in Proposition 3.49. Once again, we use Corollary 3.9
to construct a counterexample.

Let Hi, i ∈ I, be a family of function spaces such that there are i1, i2 ∈ I so
that Hi1 ,Hi2 are as in Corollary 3.9. Thus, there is f ′ ∈ (Ac(Hi1) � Ac(Hi2)) \
(Ac(Hi1) ⊗ Ac(Hi2)). Using Proposition 3.49, we can see that neither of the two
spaces is simplicial. Now, define

f := f ′ ⊗ 1∏{Ki:i∈I\{i1,i2}}.
We have f ∈�i∈I Ac(Hi), but f /∈

⊗
i∈I Ac(Hi).

Lemma 3.51. Let |I| = 2 and suppose H1 and H2 are simplicial. Then H is
simplicial.

Proof. It is sufficient to show that Ac(H) has W.R.I.P. Let a, b, c, d be functions
from Ac(H) = Ac(H1) � Ac(H2) such that a ∨ b < c ∧ d. By Lemma 3.48,
there is a partition of unity {ψj}mj=1 ⊂ Ac(H1), {kl}ml=1 ⊂ ChH1 K1 and functions
{aj , bj , cj , dj}mj=1 ⊂ Ac(H2) so that

(8) ψj(kl) = δjl, 1 ≤ j, l ≤ m,
and for

a′ :=

m∑
j=1

ψj ⊗ aj , b′ :=

m∑
j=1

ψj ⊗ bj ,

c′ :=

m∑
j=1

ψj ⊗ cj , d′ :=

m∑
j=1

ψj ⊗ dj ,
(9)

is

(10) a ∨ b < a′ ∨ b′ < c′ ∧ d′ < c ∧ d.
Then also

(11) πk2 (a′) ∨ πk2 (b′) < πk2 (c′) ∧ πk2 (d′), k ∈ K1.
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For every j = 1, . . . ,m, we get from (8) and (9)

π
kj
2 (a′) = aj , π

kj
2 (b′) = bj , π

kj
2 (c′) = cj , π

kj
2 (d′) = dj ,

and from (11)

aj ∨ bj < cj ∧ dj .
Since Ac(H2) has W.R.I.P., there are hj ∈ Ac(H2), j = 1, . . . ,m, such that

(12) aj ∨ bj < hj < cj ∧ dj .

Define h :=
∑m
j=1 ψj ⊗ hj ∈ Ac(H1) ⊗ Ac(H2) = Ac(H). The non-negativity of

{ψj}mj=1 and inequalities (12) and (10) imply

a ∨ b < h < c ∧ d.

Hence Ac(H) has W.R.I.P. and the proof is complete. �

Now we may prove the theorem, which is a generalization of [6, Theorem 11] and
[16, Theorem 3.1]:

Theorem 3.52. Suppose that Hi is simplicial for each i ∈ I. Then H is simplicial.

Proof. First we prove the theorem for finite I. By Lemma 3.51, theorem holds for
|I| = 2. Suppose that |I| = n > 2 and the theorem holds for |I| < n. Clearly

�n
i=1Hi = (�n−1

i=1 Hi) � Hn is simplicial and Ac(H) = Ac(�n
i=1Hi) has W.R.I.P.

Therefore H is simplicial.
Now, let I be infinite. Choose a, b, c, d from Ac(H) = �i∈I Ac(Hi) such that

a ∨ b < c ∧ d. According to Proposition 3.16 (b), there are

a′ ∈

[
�
i∈I
Ac(Hi)

]
Ia

, b′ ∈

[
�
i∈I
Ac(Hi)

]
Ib

,

c′ ∈

[
�
i∈I
Ac(Hi)

]
Ic

, d′ ∈

[
�
i∈I
Ac(Hi)

]
Id

,

so that

a ∨ b < a′ ∨ b′ < c′ ∧ d′ < c ∧ d
and J := Ia ∪ Ib ∪ Ic ∪ Id is a finite subset of I. Then also

πJ(a′) ∨ πJ(b′) < πJ(c′) ∧ πJ(d′).

From the first part of the proof we know that �i∈J Hi is simplicial, so we can find
h′ ∈ Ac(�i∈J Hi) = �i∈J Ac(Hi) such that

πJ(a′) ∨ πJ(b′) < h′ < πJ(c′) ∧ πJ(d′).

Function h := h′ ⊗ 1∏{Ki:i∈I\J} ∈�i∈I Ac(Hi) = Ac(H) clearly satisfies

a ∨ b < h < c ∧ d.

Hence Ac(H) has W.R.I.P. and H is simplicial. �

The converse, whose special case has been proved in [18, Proposition 2.10], is
also valid:

Theorem 3.53. Suppose that H is simplicial. Then Hi is simplicial for each i ∈ I.
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Proof. We use the W.R.I.P. property of simplicial spaces again. Choose j ∈ I. Let
aj , bj , cj , dj ∈ Ac(Hj) be such that aj ∨ bj < cj ∧ dj . Denote K ′ :=

∏
i∈I\{j}Ki.

According to Proposition 3.30,

a := aj ⊗ 1K′ , b := bj ⊗ 1K′ , c := cj ⊗ 1K′ , d := dj ⊗ 1K′ ,

are elements of Ac(H). Moreover, a ∨ b < c ∧ d. Using simpliciality of H, there
exists h ∈ Ac(H) so that

a ∨ b < h < c ∧ d.
Pick y ∈ K ′. By Proposition 3.28, h ∈ �i∈I Ac(Hi), therefore πyj (h) ∈ Ac(Hj).
Since

aj ∨ bj < πyj (h) < cj ∧ dj ,
we conclude that the space Ac(Hj) has W.R.I.P. �

Example 3.54. The space H1 + H2, defined by Grossman (see Remarks 3.44),
does not have to be simplicial, if H1 and H2 are simplicial. Indeed, let K1 = K2 =
[0, 1] ⊂ R and H1 = H2 = A([0, 1]). Obviously, H1 and H2 are simplicial spaces.
Denote K := K1 ×K2. It is easy to prove that H1 +H2 = A(K). However, K is
not a simplex, which is the sought contradiction.

3.8. Maximal measures. We start with two propositions, which are analogies of
[2, Theorem 4]:

Proposition 3.55. Let µ ∈ M+(K) be H-maximal. Let J ⊂ I and let G be a
product of Hi, i ∈ J . Then πJµ is a G-maximal measure.

Proof. According to Proposition 2.2, it suffices to show FπJ (x)(G) ⊂ πJ(Fx(H)) for
every x ∈ K. Using Proposition 3.27, we have

FπJ (x)(G) =
∏
i∈J

Fxi(Hi) = πJ(
∏
i∈I

Fxi(Hi)) = πJ(Fx(H)),

for every x = (xi)i∈I ∈ K. �

Lemma 3.56. Let µ, ν ∈ M+(K) be such that µ �H ν. Then for every J ⊂ I is
πJµ �πJ (H) πJν.

Proof. Choose wJ ∈ W(πJ(H)). Then w := wJ ⊗ 1∏{Ki:i∈I\J} ∈ W(H). Thus
µ(w) ≤ ν(w), and we get

(πJµ)(wJ) = µ(w) ≤ ν(w) = (πJν)(wJ).

Since wJ is arbitrary, we have πJµ � πJν. �

Proposition 3.57. Let |I| = 2 and let µ ∈ M+(K) be such that πiµ is an Hi-
maximal measure for i = 1, 2. Then µ is H-maximal.

In particular, if µi ∈ M1(Ki) is an Hi-maximal measure for i = 1, 2, then
µ1 ⊗ µ2 is H-maximal.

Proof. We may proceed exactly as in the second part of the proof of [2, Theorem 4]
to show that for every h ∈ H and µ-almost all x ∈ K is

h(x1, x2) = h(π1(x), π2(x)), x1 ∈ Fπ1(x)(H1), x2 ∈ Fπ2(x)(H2).

According to Proposition 3.27, Fx(H) = Fπ1(x)(H1) × Fπ2(x)(H2) for every x ∈
K. Therefore h is constant on Fx(H) for µ-almost all x ∈ K. As follows from
Theorem 2.1, µ is an H-maximal measure. �
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Theorem 3.58. Let µ ∈ M+(K) be such that πiµ is an Hi-maximal measure for
every i ∈ I. Then µ is H-maximal.

In particular, if µi ∈ M1(Ki) is an Hi-maximal measure for every i ∈ I, then⊗
i∈I µi is H-maximal.

Proof. It suffices to show that µ is a (
⊙

i∈I Hi)-maximal measure.
First we prove the assertion for finite products. Suppose that it holds for |I| ≤ n

and let |I| = n + 1. We know that πn+1µ is an Hn+1-maximal measure. Since
πi(π{1,...,n}µ) = πiµ is an Hi-maximal measure for every i = 1, . . . , n, the induc-

tion hypothesis implies that π{1,...,n}µ is a (
⊙n

i=1Hi)-maximal measure. Thus,
both projections are maximal measures and Proposition 3.57 implies that µ is a
((
⊙n

i=1Hi) � Hn+1)-maximal measure, therefore also (
⊙n+1

i=1 Hi)-maximal mea-
sure.

Now, let I be infinite. According to Choquet-Bishop-de Leeuw’s theorem, there
exists a (

⊙
i∈I Hi)-maximal measure ν ∈M+(K) such that µ �⊙

i∈I Hi ν. Suppose

J ⊂ I is finite. By Lemma 3.56, πJµ �⊙
i∈J Hi πJν. From the first part of the

proof is πJµ a (
⊙

i∈J Hi)-maximal measure and therefore πJµ = πJν. Hence, for
every finite subset J ⊂ I and every E =

∏
i∈I Ei, where Ei is a Borel subset of Ki

for each i ∈ I and Ei = Ki for i ∈ I \ J ,

µ(E) = (πJµ)(
∏
i∈J

Ei) = (πJν)(
∏
i∈J

Ei) = ν(E).

Since µ and ν coincide on the Borel cylinder sets, they must coincide as Radon
measures. Therefore µ is a (

⊙
i∈I Hi)-maximal measure. �

Theorem 3.59. Suppose that Hi is simplicial for each i ∈ I. Then δx =
⊗

i∈I δxi
for every x = (xi)i∈I ∈ K.

Proof. From Proposition 3.22 we have
⊗

i∈I δxi ∈ Mx(H) and by Theorem 3.58,
this measure is H-maximal. Since H is simplicial, according to Theorem 3.52, we
get δx =

⊗
i∈I δxi . �

At the end of this section we investigate relationship between maximal measures
in product spaces and Radon products of maximal measures. We denote by Z1(H)
the set of H-maximal measures from M1(K). Let εChHK := {εx : x ∈ ChHK}
and let D(H) denote the linear span of C(K) ∪ {f∗ : f ∈ C(K)}. We denote by τ
the weak topology on M1(K) generated by D(H). Then we have:

Proposition 3.60. The following assertions hold:

(a) co εChHK ⊂ Z1(H) ⊂ cow
∗
εChHK ,

(b) Z1(H) = coτεChHK .

Proof.

(a) The first inclusion is obvious. The second follows from the fact that

cow
∗
εChH K =M1(ChH K)

and all maximal measures are supported by ChH K.
(b) We may proceed as in the proof of [1, Theorem I.6.14] to show that Z1(H)

is a τ -closed set and that for every µ ∈ Z1(H) \ coτεChH K , there are
f ∈ C(K) and α ∈ R such that

sup
x∈ChH K

εx(f) = α < µ(f).
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Therefore f(x) ≤ α for every x ∈ ChH K. But since sptµ ⊂ ChH K, also
µ(f) ≤ α, which is a contradiction.

�

Example 3.61. From Theorem 3.58 we have co
⊗

i∈I Z1(Hi) ⊂ Z1(H). By

Proposition 3.60 (a), Z1(H) ⊂ cow
∗
εChHK . Since εChHK =

⊗
i∈I εChHi Ki

⊂⊗
i∈I Z1(Hi), we get

co
⊗
i∈I
Z1(Hi) ⊂ Z1(H) ⊂ cow

∗⊗
i∈I
Z1(Hi).

Now we show that both inclusions may be proper:

Let Ki := [0, 2] ⊂ R, Hi := {f ∈ C(Ki) : f(1) = f(0)+f(2)
2 }, i = 1, 2. Then

ChHi Ki = [0, 1) ∪ (1, 2], i = 1, 2. Choose {xn}n∈N ⊂ [0, 1) ∪ (1, 2] so that xn → 1
and let (K,H) be a product of (Ki,Hi), i = 1, 2.

(a) Define µ :=
∑∞
n=1 2−nε(xn,xn). Clearly µ ∈ Z1(H), since it is supported by

ChHK. However, µ /∈ co (Z1(H1) ⊗ Z1(H2)). Indeed, µ is supported by
the diagonal ∆ of K, but the only measures of Z1(H1)⊗Z1(H2) supported
by ∆ are εx, x ∈ ∆. Thus, µ would be supported by a finite set.

(b) Obviously ε(1,1) /∈ Z1(H). However, ε(xn,xn)
w∗→ ε(1,1). Thus, ε(1,1) ∈

cow
∗
(Z1(H1)⊗Z1(H2)).

Proposition 3.62. Z1(H) = coτ
⊗

i∈I Z1(Hi).

Proof. Using Proposition 3.60 (b) and Theorems 3.42 and 3.58, we can write

Z1(H) = coτεChHK = coτ
⊗
i∈I

εChHi Ki
⊂ coτ

⊗
i∈I
Z1(Hi) ⊂ Z1(H).

�

4. Projective limits of function spaces

Definition 4.1. Let (K1,H1) and (K2,H2) be function spaces. We say that a
continuous surjection ϕ : K2 → K1 is an admissible map, if H1 ◦ ϕ := {h ◦ ϕ : h ∈
H1} ⊂ H2.

Let I be an up-directed index set. We say that ((Ki,Hi), πij)i,j∈I is a projective
system of function spaces, if every πij : Kj → Ki, i ≤ j, is an admissible map such
that

(i) πii is the identity on Ki for each i,
(ii) πij ◦ πjk = πik for all i ≤ j ≤ k.

Projective limit, denoted by lim←− ((Ki,Hi), πij)i,j∈I , of this projective system is the

function space (K,H), where

K := {(xi)i∈I ∈
∏
i∈I

Ki : xi = πij(xj) for every i ≤ j, i, j ∈ I}

and H is the restriction to K of the function space
⋃
i∈I Hi ◦ πi with πi the i-th

projection map.

It follows from standard results on projective limits of compact Hausdorff spaces
(see e.g. [5]), that K is a non-empty compact Hausdorff space, if Ki is non-empty
for every i ∈ I, and that each πi is a surjection. Notice that πij ◦ πj = πi for
every i ≤ j. Clearly, H contains constant functions and separates points of K. If
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h = hi ◦ πi ∈ H for some i ∈ I, then also αh ∈ H for every α ∈ R, since αhi ∈ Hi.
Now, let h1, h2 ∈ H. Suppose h1 = hi1 ◦ πi1 , h2 = hi2 ◦ πi2 for some i1, i2 ∈ I and
hi1 ∈ Hi1 , hi2 ∈ Hi2 . Let j ∈ I be such that i1, i2 ≤ j. Then h1 = hi1 ◦ πi1j ◦ πj
and h2 = hi2 ◦ πi2j ◦ πj where hi1 ◦ πi1j , hi2 ◦ πi2j ∈ Hj . Now it is easy to see that
h1 + h2 ∈ H, since Hj is a linear space. Thus H is a function space with each πi
being an admissible map.

Remark 4.2. If (Ki,Hi) = (Xi, A(Xi)) where Xi is a compact convex set for every
i ∈ I, then the projective limit defined above is dense in A(K) as shown in [13].

Lemma 4.3. Let (Ki,Hi), i = 1, 2, be function spaces, ϕ : K2 → K1 admissible
map and x ∈ K2. If µ ∈Mx(H2), then ϕµ ∈Mϕ(x)(H1).

Proof. Choose h ∈ H1. Then

(ϕµ)(h) = µ(h ◦ ϕ) = (h ◦ ϕ)(x) = h(ϕ(x)),

since h ◦ ϕ ∈ H2. �

Observation 4.4. If µ ∈ M+(K), then (πiµ, πij)i,j∈I forms a projective system
of measures.

Theorem 4.5. Let (µi, πij)i,j∈I be a projective system of measures with µi ∈
M1(Ki) for each i ∈ I. Then there is a unique measure µ = lim←−µi ∈ M

1(K)
such that πiµ = µi for every i ∈ I.

Proof. See [8, Theorem 418M and Proposition 418O]. �

Proposition 4.6. Let x = (xi)i∈I ∈ K and µ ∈M1(K). Then µ ∈Mx(H) if and
only if (πiµ, πij)i,j∈I is a projective system of measures with πiµ ∈ Mxi(Hi) for
each i ∈ I.

Proof. First assume µ ∈ Mx(H). It follows from Lemma 4.3 that πiµ ∈ Mxi(Hi)
for each i ∈ I, since each πi is admissible, and from Observation 4.4 that this system
is projective.

On the contrary, suppose πiµ ∈ Mxi(Hi), i ∈ I. Let h ∈ H. Then h = hj ◦ πj
with hj ∈ Hj for some j ∈ I. Thus

µ(h) = µ(hj ◦ πj) = (πjµ)(hj) = hj(xj) = h(x).

�

Corollary 4.7. Let x = (xi)i∈I ∈ K and let (µi, πij)i,j∈I be a projective system of
measures with µi ∈Mxi(Hi) for each i ∈ I. Then µ := lim←−µi ∈Mx(H).

Lemma 4.8. Let ϕ : (K2,H2)→ (K1,H1) be an admissible map. Then Kc(H1) ◦
ϕ ⊂ Kc(H2).

Proof. Let k ∈ Kc(H1). Choose x ∈ K2 and µ ∈Mx(H2). Since ϕµ ∈Mϕ(x)(H1),
we have

(k ◦ ϕ)(x) = k(ϕ(x)) ≤ (ϕµ)(k) = µ(k ◦ ϕ).

Thus k ◦ ϕ ∈ Kc(H2). �

Lemma 4.9. Let ϕ : (K2,H2)→ (K1,H1) be an admissible map. Then Ac(H1) ◦
ϕ ⊂ Ac(H2). In particular,

⋃
i∈I Ac(Hi) ◦ πi ⊂ Ac(H).

Proof. Follows from Lemma 4.8, since Ac(Hi) = Kc(Hi)∩ (−Kc(Hi)), i = 1, 2. �
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Proposition 4.10. If Hi is simplicial for every i ∈ I, then
⋃
i∈I Ac(Hi) ◦ πi is

dense in Ac(H).

Proof. Let a ∈ Ac(H) and ε > 0. Since a ∈ Ĥ, for every x ∈ K there are h−x , h
+
x ∈ H

such that h−x < a < h+
x and

a(x)− ε < h−x (x) < a(x) < h+
x (x) < a(x) + ε.

These inequalities hold on some open neighbourhood Ux of x. By compactness,
we can choose Ux1 , . . . , Uxn covering K. Suppose that h−xm and h+

xm depend on
coordinates i−m, i

+
m ∈ I, respectively, for m = 1, . . . , n. Let j ∈ I be an upper bound

of the set {i−m, i+m}nm=1. Denote h− := h−x1
∨ . . . ∨ h−xn and h+ := h+

x1
∧ . . . ∧ h+

xn .
Now we have h− < a < h+ and ‖a − h−‖, ‖a − h+‖ < ε. Since both h−, h+

depend on coordinate j, using W.R.I.P. for Hj we find aj ∈ Ac(Hj) such that
h− < aj ◦ πj < h+. Hence aj ◦ πj ∈

⋃
i∈I Ac(Hi) ◦ πi and ‖a− aj ◦ πj‖ < ε. �

Theorem 4.11. If Hi is simplicial for every i ∈ I, then H is simplicial.

Proof. We show that Ac(H) has W.R.I.P. Let a1, . . . , a4 ∈ Ac(H) be such that a1∨
a2 < a3∧a4. By Proposition 4.10, we may assume that a1, . . . , a4 ∈

⋃
i∈I Ac(Hi)◦πi

with am depending on coordinate im, m = 1, . . . , 4. Let j ∈ I be an upper bound
of i1, . . . , i4. Since am, m = 1, . . . , 4, depend on coordinate j, from W.R.I.P. for Hj
there is aj ∈ Ac(Hj) such that

a1 ∨ a2 < aj ◦ πj < a3 ∧ a4.

By Lemma 4.9, aj ◦ πj ∈ Ac(H), which completes the proof. �

Proposition 4.12. Let ϕ : (K2,H2) → (K1,H1) be an admissible map. Then
ϕ(ChH2

K2) ⊃ ChH1
K1.

Proof. See [1, Proposition I.5.20]. �

Proposition 4.13. Let ϕ : (K2,H2)→ (K1,H1) be an admissible map, where H1

is simplicial. Then the following assertions are equivalent:

(i) ϕ(ChH2
K2) = ChH1

K1,
(ii) (k ◦ ϕ)∗ = k∗ ◦ ϕ for every k ∈ Kc(H1),
(iii) ϕ maps H2-maximal measures onto H1-maximal measures.

Proof. The proof of (i) ⇒ (ii) is included in the proof of [15, Theorem 1.3]. More-
over, the proof mentioned above shows that (ii) is a sufficient condition for ϕ to
map maximal measures onto maximal measures. The last implication (iii) ⇒ (i) is
immediate. �

A convex versions of the next theorem can be found in [6, Theorem 14] and [13,
Theorem 2]. A proof for closed function spaces has been given in [10, Corollary
4.13]. For the sake of completeness we include the proof using different approach:

Theorem 4.14. Let x = (xi)i∈I ∈ K. The following assertions hold:

(i) If xi ∈ ChHi Ki for every i ∈ I, then x ∈ ChH K.
(ii) Suppose that Hi is simplicial for every i ∈ I and πij(ChHj Kj) ⊂ ChHi Ki

for every i ≤ j, i, j ∈ I. Then x ∈ ChH K if and only if xi ∈ ChHi Ki for
every i ∈ I.
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Proof. First assume xi ∈ ChHi Ki for every i ∈ I. Let µ ∈ Mx(H). According
to Proposition 4.6, (πiµ, πij)i,j∈I is a projective system of measures with πiµ ∈
Mxi(Hi) for each i ∈ I. Thus πiµ = εxi for each i ∈ I and from the uniqueness of
the projective limit of measures we see that µ = lim←− (εxi , πij)i,j∈I = εx.

Now assume x ∈ ChH K and the conditions of (ii) are satisfied. Choose i ∈ I.
According to Corollary 2.4, it is enough to prove that ki(xi) = k∗i (xi) for every
ki ∈ Kc(Hi). So let ki ∈ Kc(Hi) and ε > 0. Denote k := ki ◦ πi ∈ Kc(H). Since
x ∈ ChH K, there is some h ∈ H such that k ≤ h and k(x) ≤ h(x) < k(x) + ε.
Without loss of generality suppose that h = hj ◦ πj for some j ≥ i, j ∈ I, and
hj ∈ Hj . Then (ki ◦ πij)(xj) ≤ hj(xj) < (ki ◦ πij)(xj) + ε. Using these inequalities
and Proposition 4.13 we get

(k∗i ◦ πij)(xj) = (ki ◦ πij)∗(xj) ≤ (ki ◦ πij)(xj) + ε.

Hence k∗i (xi) ≤ ki(xi)+ε. Since ε is arbitrary, we conclude that ki(xi) = k∗i (xi). �

Example 4.15. This example shows that the characterization in Theorem 4.14
(ii) does not have to hold, if we omit the assumption of simpliciality, and also that
the converse to Theorem 4.11 is not valid.

Choose a sequence {qn}n∈N ⊂ (0, 1) of real numbers such that qn → 0. For every
i ∈ N set Ki := {0} ∪ {−qn, qn}n∈N ⊂ R and

Hi := {f ∈ C(Ki) : f(0) =
f(−qn) + f(qn)

2
, n ≥ i, n ∈ N}.

Let (K,H) := lim←−((Ki,Hi), Idij)i,j∈N, where Idij : Kj → Ki denotes the identity

map. Clearly ChHi Ki = Ki \ {0} for every i ∈ N. We claim that x := (0, 0, . . .) ∈
ChH K. Indeed, choose µ ∈ Mx(H). By Proposition 4.6, πiµ ∈ M0(Hi) for every
i ∈ N and (πiµ, Idij)i,j∈N is a projective system, so πiµ = πjµ for every i, j ∈ N.
But the only measure representing 0 in all spaces (Ki,Hi), i ∈ N, is ε0. Hence
µ = lim←− (ε0, Idij)i,j∈N = εx, which proves the claim. Using Theorem 4.14 (i) we
conclude that ChH K = K.

Therefore the conclusion of Theorem 4.14 (ii) does not hold and we also see that
the projective limit of non-simplicial spaces may be simplicial.

Example 4.16. Now we show that we cannot take the restriction of a product
space from Section 3 as the definition of the projective limit of function spaces, if
we want Theorem 4.14 to hold.

Let Ki := [−1, 1] ⊂ R and Hi := A(Ki) for i = 1, 2. Let K stand for the topo-
logical projective limit of the projective system (Ki, Idij)i,j=1,2 (i.e., the diagonal
of K1 ×K2) and define H := (H1 �H2) �K .

Clearly all conditions of Theorem 4.14 (ii) are satisfied. However, we can see
that 0 /∈ ChHi Ki, i = 1, 2, but (0, 0) ∈ ChH K, since f1 ⊗ f2 ∈ H is an exposing
function of (0, 0), where fi(x) = x, x ∈ Ki, i = 1, 2. The point (0, 0) is also in the
Choquet boundary of the restriction of any other product space, since H1 �H2 is
the smallest product.

Lemma 4.17. Let ϕ : (K2,H2) → (K1,H1) be an admissible map and let µ, ν ∈
M+(K2) be such that µ � ν. Then ϕµ � ϕν.

Proof. Let k ∈ Kc(H1). Since k ◦ ϕ ∈ Kc(H2), we have

(ϕµ)(k) = µ(k ◦ ϕ) ≤ ν(k ◦ ϕ) = (ϕν)(k).

�
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Proposition 4.18. Suppose Hi is simplicial for every i ∈ I and πij(ChHj Kj) ⊂
ChHi Ki for every i ≤ j, i, j ∈ I. Let µ ∈ M1(K). Then µ is H-maximal if and
only if πiµ is Hi-maximal for every i ∈ I.

Proof. First assume that µ is maximal and choose i ∈ I. According to Theo-
rem 4.14, πi(ChH K) = ChHi Ki. Using Proposition 4.13 we conclude that πiµ is
maximal.

Conversely, let πiµ be maximal for every i ∈ I. Let ν ∈ M1(K) be such that
µ � ν. By Lemma 4.17, πiµ � πiν for every i ∈ I. Therefore πiµ = πiν for every
i ∈ I and from the uniqueness of the projective limit µ = ν. �

Definition 4.19. We say that J ⊂ I is cofinal, if for every i ∈ I there is j ∈ J
such that i ≤ j.

Proposition 4.20. Let J ⊂ I be cofinal and let (K ′,H′) := lim←− ((Ki,Hi), πij)i,j∈J .
Then

(a) there is a homeomorphism φ : K → K ′,
(b) H is isometrically isomorphic to H′,
(c) φ(ChH K) = ChH′ K

′,
(d) µ ∈M+(K) is maximal if and only if φµ is maximal,
(e) H is simplicial if and only if H′ is simplicial.

In particular, if there is the greatest element m ∈ I, then previous statements
hold with (Km,Hm) in place of (K ′,H′).

Proof.

(a) The canonical bijection φ : (xi)i∈I 7→ (xi)i∈J is a homeomorphism by
standard results (see e.g. [5]).

(b) Mapping Φ : f 7→ f ◦ φ is an isometrical isomorphism of C(K ′) onto
C(K). Let us denote by πi projections on K and by π′i projections on K ′.
Suppose h = hj◦π′j ∈ H′ for some hj ∈ Hj and j ∈ J . Then Φ(h) = h◦φ =
hj ◦ π′j ◦φ = hj ◦ πj ∈ H. Conversely, let h = hi ◦ πi ∈ H for some hi ∈ Hi
and i ∈ I. Choose j ∈ J such that i ≤ j and denote hj := hi ◦ πij ∈ Hj .
Then Φ−1(h) = h ◦ φ−1 = hj ◦ πj ◦ φ−1 = hj ◦ π′j ∈ H′.

(c) Notice that the mapping Φ above is also order preserving. The statement
follows easily from the characterization of the Choquet boundary (Corol-
lary 2.4) and properties of Φ.

(d) Since φ is a homeomorphism, φ :M+(K)→M+(K ′) is a bijection. Now
we use Proposition 2.3. Suppose µ isH-maximal and let k ∈ Kc(H′). From
the proof of (b) we can see that φ is admissible map and (k ◦φ)∗ = k∗ ◦φ.
Thus

(φµ)(k) = µ(k ◦ φ) = µ((k ◦ φ)∗) = µ(k∗ ◦ φ) = (φµ)(k∗).

Since k is arbitrary, maximality of φµ follows. Converse is analogical.
(e) Let x ∈ K. We claim that φ maps Mx(H) onto Mφ(x)(H′). Indeed, sup-

pose µ ∈ Mx(H) and let h ∈ H′ be arbitrary. Now (φµ)(h) = µ(Φ(h)) =
Φ(h)(x) = h(φ(x)). Therefore φµ ∈ Mφ(x)(H′). Converse is analogical.
Hence, using statement (d), φ maps maximal representing measures onto
maximal representing measures and the conclusion follows.

�
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M. Kačena and J. Spurný, ‘Affine images of compact convex sets and maximal
measures’, Bull. Sci. Math. 133 (2009), no. 5, 493–500. (original paper)



AFFINE IMAGES OF COMPACT CONVEX SETS AND MAXIMAL
MEASURES

MIROSLAV KAČENA AND JIŘÍ SPURNÝ

Abstract. Let ϕ : X → Y be an affine continuous mapping of a compact con-
vex set X onto a compact convex set Y . We show that the induced mapping

ϕ] need not map maximal measures on X to maximal measures on Y even

in case ϕ maps extreme points of X to extreme points of Y . This disproves
Théorème 6 of [17]. We prove the statement of Théorème 6 under an additional

assumption that extY is Lindelöf or Y is a simplex. We also show that under
either of these two conditions injectivity of ϕ on extX implies injectivity of

ϕ] on maximal measures. A couple of examples illustrate the results.

Résumé. Soit ϕ : X → Y une application affine et continue d’un compact

convexe X sur un compact convexe Y . Nous montrons que l’image d’une

mesure maximale par l’application induite ϕ] n’est pas nécessairement une
mesure maximale, même pas, si les images des points extrémaux sont des

points extrémaux. Ceci réfute Théorème 6 dans [17]. Nous prouvons l’énoncé

de ce théorème sous l’hypothèse supplémentaire que extY est Lindelöf ou Y est
un simplex. En plus, nous démontrons que, en supposant l’une ou l’autre de

ces deux propriétés, l’injectivité de ϕ sur extX implique l’injectivité de ϕ pour

les mesures maximales. Quelques exemples explicitent les résultats.

1. Introduction

All topological spaces are considered to be Hausdorff. If X is a compact convex
subset of a real locally convex space, we write extX for the set of extreme points
of X and M1

max(X) for the set of all maximal probability Radon measures on X
(see [1, Chapter I, §3], we also refer the reader to [5, Chapter 6], [9, Sections
1–3], [2, Chapter 1], [14] and [12, Chapter 7]). If ϕ : X → Y is a continuous
mapping of a compact space X to a compact set Y , it induces a continuous mapping
ϕ] : M1(X)→M1(Y ) from the set of all probability Radon measures on X to the
set of all probability Radon measures on Y by the formula ϕ]µ = µ ◦ ϕ−1 (see [10,
Theorem 418I]). The induced mapping ϕ] is surjective if ϕ is surjective.

For any µ ∈ M1(X) we write r(µ) for the barycenter of µ (see [1, Chapter I,
§2]). If x ∈ X, we write Mx for the set of all measures µ ∈ M1(X) satisfying
r(µ) = x. We recall that a set F ⊂ X is extremal if x, y ∈ F whenever x, y ∈ X,
α ∈ (0, 1) and αx + (1 − α)y ∈ F . It is a face if F is a convex extremal set. We
also mention the well–known fact that extF = F ∩ extX for any face F .

Let ϕ : X → Y be a continuous affine mapping of a compact convex set X to a
compact convex set Y . If ϕ : X → Y is surjective, it is easy to see that ϕ(extX) ⊃
extY and ϕ](M1

max(X)) ⊃ M1
max(Y ). In order to ensure the reverse inclusion

33
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ϕ](M1
max(X)) ⊂M1

max(Y ), it is necessary to assume that ϕ(extX) ⊂ extY . This
observation prompts the following two questions.

Question. Let ϕ : X → Y be a continuous affine mapping of a compact convex X
to a compact convex set Y .

(1) If ϕ(extX) ⊂ extY , does it imply that ϕ](M1
max(X)) ⊂M1

max(Y )?
(2) If ϕ(extX) ⊂ extY and ϕ is injective on extX, does it imply that ϕ] is

injective on M1
max(X)?

If Y is a simplex (see [1, Chapter II, §3]), both questions were answered affir-
matively in [7, Corollary 2 and 3]. For X and Y being simplices, the result can
be found in [6, Lemma 6] and [11, Theorem 1]. It is claimed in [17, Théorème 6]
without a proof that Question 1 has the affirmative answer without any restrictions.
The author also suggests to study Question 2 in [17, Conjecture].

Unfortunately, the answer to Question 1 is in general negative as the following
example shows.

Example 1.1. There exists a continuous affine surjection ϕ of a simplex X onto
a compact convex set Y and a measure µ ∈M1

max(X) such that

• ϕ(extX) = extY and ϕ is injective on extX,
• ϕ]µ /∈M1

max(Y ).

Nevertheless, we prove in Theorem 1.2 that the answer to both questions is
positive if we assume that extY is a Lindelöf space (see [8, Section 3.8]).

Theorem 1.2. Let ϕ : X → Y be a continuous affine map of a compact convex set
X to a compact convex set Y and let extY be a Lindelöf space.

(a) Then the following assertions are equivalent:
(i) ϕ(extX) ⊂ extY ,

(ii) ϕ](M1
max(X)) ⊂M1

max(Y ).
(b) Further, the following assertions are equivalent:

(i’) ϕ(extX) ⊂ extY and ϕ is injective on extX,
(ii’) ϕ](M1

max(X)) ⊂M1
max(Y ) and ϕ] is injective on M1

max(X).

We also provide in Theorem 1.3(a) a slightly different proof of [7, Corollary 2].
The case of injectivity is described in Theorem 1.3(b), where the proof is based
upon the results of E.A. Reznichenko from [15]. We indicate in Remark 2.4 an
alternative proof of this assertion that uses a notion of induced measures on the set
of extreme points, which is a technique developed by S. Teleman and C.J.K. Batty
in [18] and [3].

Theorem 1.3. Let ϕ : X → Y be a continuous affine map of a compact convex set
X to a simplex Y .

(a) Then the following assertions are equivalent:
(i) ϕ(extX) ⊂ extY ,

(ii) ϕ](M1
max(X)) ⊂M1

max(Y ),
(iii) ϕ(F ) is a face for each closed face F ⊂ X,
(iv) ϕ(F ) is a closed extremal set for each closed extremal F ⊂ X.

(b) Further, the following assertions are equivalent:
(i’) ϕ(extX) ⊂ extY and ϕ is injective on extX,

(ii’) ϕ](M1
max(X)) ⊂M1

max(Y ) and ϕ] is injective on M1
max(X),

(iii’) ϕ is a homeomorphism onto ϕ(X).
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The following example shows that Theorem 1.3(b) need not hold if we omit the
condition imposed on Y .

Example 1.4. There exists a continuous affine surjection ϕ of a metrizable simplex
X onto a compact convex set Y such that

• ϕ is injective on extX,
• ϕ](M1

max(X)) ⊂M1
max(Y ) and ϕ] is injective on M1

max(X),
• ϕ is not injective on X.

Our last example shows that even if ϕ] maps maximal measures to maximal
measures and ϕ is injective on extX, the induced mapping need not be injective
on M1

max(X).

Example 1.5. There exists a continuous affine surjection ϕ of a simplex X onto
a compact convex set Y such that

• ϕ is injective on extX,
• ϕ](M1

max(X)) ⊂M1
max(Y ),

• ϕ] is not injective on M1
max(X).

2. Proofs of the positive results

If f : X → R is a function on a compact convex set X, we recall the definition
from [1, p. 4] of the upper enevelope f∗ of f defined as

f∗(x) = inf{h(x) : h ≥ f, h continuous affine on X}, x ∈ X.

Before embarking on the proof of the main theorems, we need a couple of auxiliary
results.

Proposition 2.1. Let f , g, be upper semicontinuous real functions on X such that
f is concave, g is convex and f ≥ g on extX. Then f ≥ g on X.

Proof. Given f and g as in the premise, let x be a point of X. We fix ε > 0 and
use [1, Corollary I.1.3 ] to find a concave continuous function f ′ such that f ′ ≥ f
and f(x) ≥ f ′(x)− ε.

Then f ′−g is a lower semicontinuous concave function on X such that f ′−g ≥ 0
on extX. According to Bauer’s minimum principle [1, Theorem I.5.3], f ′ − g ≥ 0
on X. Thus

g(x) ≤ f ′(x) ≤ f(x) + ε.

Since ε > 0 is arbitrary, we are done. �

Proposition 2.2. Let extX be Lindelöf and µ ∈ M1(X). Then the following
assertions are equivalent:

(i) µ ∈M1
max(X),

(ii) µ∗(X \ extX) = 0 (here µ∗ stands for the inner measure induced by µ).

Proof. Let µ ∈ M1
max(X) be given and F ⊂ X \ extX be an arbitrary closed set.

For any point x ∈ extX we can find a cozero set Ux such that x ∈ Ux ⊂ X \ F .
(We recall that a subset of a normal space is cozero if and only if it is an open Fσ
set, see [8, p. 42].) By the Lindelöf property of extX, there exists a cozero set U
such that

extX ⊂ U ⊂ X \ F.
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According to [5, Theorem 27.11], µ(U) = 1 and hence µ(F ) = 0. Thus µ∗(X \
extX) = 0 and (i) =⇒ (ii).

For the proof of (ii) =⇒ (i), let µ satisfy (ii). For any continuous function f on
X, [1, p. 32] yields

extX ⊂ {x ∈ X : f∗(x) = f(x)}.
Hence µ({x ∈ X : f∗(x) = f(x)}) = 1 and µ(f∗) = µ(f). By [1, Proposition I.4.5],
µ ∈M1

max(X). �

Proof of Theorem 1.2. For the proof of (a) we first notice that the implications
(ii) =⇒ (i) and (ii’) =⇒ (i’) are obvious. We start the proof of the converse
implications by showing (i) =⇒ (ii). To this end, let µ ∈ M1

max(X) be given. We
fix an arbitrary closed set F ⊂ Y \ extY . Since extY is Lindelöf, there exists a
countable family of cozero sets {Un : n ∈ N} in Y such that

extY ⊂
∞⋃
n=1

Un ⊂ Y \ F.

Then G = ϕ−1(
⋃∞
n=1 Un) is an Fσ set. By the assumptions, extX ⊂ G and hence

µ(G) = 1. Thus

(ϕ]µ)(

∞⋃
n=1

Un) = µ(G) = 1,

and hence µ(F ) = 0.
Thus (ϕ]µ)∗(Y \ extY ) = 0, and ϕ]µ ∈M1

max(Y ) by virtue of Proposition 2.2.
We proceed with the proof of (i’) =⇒ (ii’). We start by proving

(1) ϕ(X \ extX) ⊂ Y \ extY.

Indeed, given y ∈ extY ∩ ϕ(X), the set ϕ−1(y) is a closed face. Since

ϕ−1(y) = co(extϕ−1(y)) = co(ϕ−1(y) ∩ extX),

the assumption yields that ϕ−1(y) is a singleton. Hence (1) follows.
Let µ ∈M1

max(X) be given. For any set F ⊂ X \ extX, inclusion (1) gives

ϕ(F ) ⊂ Y \ extY.

This along with Proposition 2.2 and the first part of the proof yields

(ϕ]µ)(ϕ(F )) = 0, F ⊂ X \ extX closed.

Hence

µ(F ) ≤ µ(ϕ−1(ϕ(F ))) = (ϕ]µ)(ϕ(F )) = 0, F ⊂ X \ extX closed,

and thus

(2) µ(ϕ−1(ϕ(F ))) = µ(F ), F ⊂ X closed.

If µ, ν ∈M1
max(X) are measures with ϕ]µ = ϕ]ν, then (2) yields

µ(F ) = µ(ϕ−1(ϕ(F ))) = (ϕ]µ)(ϕ(F ))

= (ϕ]ν)(ϕ(F )) = ν(ϕ−1(ϕ(F ))) = ν(F )

for any closed F ⊂ X. Hence µ = ν and ϕ] is injective on M1
max(X). �
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Remark 2.3. It can be easily verified that the mapping ϕ : X → Y is a homeo-
morphism of extX onto ϕ(extX) if ϕ(extX) ⊂ extY and ϕ is injective on extX.

Indeed, since

ϕ(extX) ⊂ extY and ϕ(X \ extX) ⊂ Y \ extY,

it is not difficult to realize that ϕ(F ∩extX) = ϕ(F )∩extY for any F ⊂ X. Hence
ϕ : extX → extY is a closed mapping, and thus a homeomorphism on extX.

Hence we obtain that extX is a Lindelöf space if extY is Lindelöf and ϕ as
above.

Proof of Theorem 1.3. For the proof of (a), we first verify (i) =⇒ (ii). To this
end, let µ be a maximal probability measure on X. To show that ϕ]µ is maximal
on Y , we use Mokobodzki’s maximality test [1, Proposition I.4.5].

Let g be a convex continuous function on Y . Since Y is a simplex, g∗ is an affine
function (see [1, Theorem II.3.7]). By the assumption and [1, Proposition I.4.1],

g∗ ◦ ϕ = (g ◦ ϕ)∗ on extX.

By Proposition 2.1, g∗ ◦ ϕ ≤ (g ◦ ϕ)∗ on X.
On the other hand, given x ∈ X, there exists a measure λ ∈ Mx such that

λ(g ◦ ϕ) = (g ◦ ϕ)∗(x) (see [1, Proposition I.3.5]). Then ϕ]λ ∈Mϕ(x) and

(g ◦ ϕ)∗(x) = λ(g ◦ ϕ) = (ϕ]λ)(g) ≤ g∗(ϕ(x)).

Hence g∗ ◦ ϕ = (g ◦ ϕ)∗ on X.
Thus the equality

(ϕ]µ)(g) = µ(g ◦ ϕ) = µ((g ◦ ϕ)∗) = µ(g∗ ◦ ϕ) = (ϕ]µ)(g∗)

shows that ϕ]µ is a maximal measure on Y .
We proceed with the proof by showing (ii) =⇒ (iii). Let F ⊂ X be a closed face.

Since ϕ(F ) is obviously convex, we need to check its extremality.
Let ν ∈M1

max(Y ) satisfy r(ν) ∈ ϕ(F ). We find a point x ∈ F with ϕ(x) = r(ν)
and select a measure µ ∈ M1

max(X) such that r(µ) = x. Since F is a closed
face, µ ∈ M1(F ). Then ϕ]µ is supported by ϕ(F ) and by the assumption, ϕ]µ is
maximal. Since

r(ϕ]µ) = ϕ(r(µ)) = r(ν)

and Y is a simplex, ϕ]µ = ν. Hence ν ∈M1(ϕ(F )).
Let now an arbitrary ν′ ∈ M1(Y ) satisfy r(ν′) ∈ ϕ(F ). We find a maximal

measure ν ∈ M1
max(Y ) such that ν′ � ν (here � is the Choquet ordering, see [1,

Chapter I, §3] and [1, Lemma I.4.7]). Since r(ν) = r(ν′), ν is supported by ϕ(F )
according to the paragraph above. Since it is easy to see that spt ν′ ⊂ co spt ν, the
measure ν′ is supported by ϕ(F ) as well. Thus ϕ(F ) is a face as needed.

Since a closed set is extremal if and only if it is a union of closed faces (see [13,
§4, Theorem 7]), we get (iii) =⇒ (iv). We proceed to the proof of (iv) =⇒ (i). But
this is immediate, because a set {x} is extremal if and only if x ∈ extX. This
concludes the proof of (a).

We start the proof of (b) by showing (i’) =⇒ (iii’). We know from the part (a)
that ϕ(X) is a face of Y and hence a simplex. Since extϕ(X) = ϕ(X) ∩ extY , we
may assume from now on that ϕ is a surjective mapping onto a simplex Y .

Thus we may use [15, Proposition 1.6] to get that ϕ is a simplicial map, that is,
the function

ã(y) = inf{a(x) : x ∈ ϕ−1(y)}, y ∈ Y,
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is affine on Y for any continuous affine function a on X (see [15, Definition 1.3]).
Since ϕ is injective on extX, [15, Theorem 1.5] yields that ϕ is a homeomorphism.

Since the remaining implications are obvious, the proof is finished. �

Remark 2.4. We remark that Theorem 1.3(b) can be deduced from results of
S. Teleman and C.J.K. Batty on maximal measures.

For the proof of (i’) =⇒ (ii’) we realize that F = ϕ−1(ϕ(F )) for any closed face
F ⊂ X and hence also for any closed extremal set F ⊂ X. It is shown in [3, Section
6] or in [18, Theorem 5.2] and [19, Theorem 6] that

µ(B) = sup{µ(F ) : F ⊂ B is closed extremal}, B ⊂ X Baire,

for any measure µ ∈ M1
max(X). From this fact we get that ϕ] is injective on

M1
max(X).
To verify (ii’) =⇒ (iii’), it is enough to check injectivity of ϕ onX. Let x1, x2 ∈ X

satisfy y = ϕ(x1) = ϕ(x2). For i = 1, 2, we find a maximal measure µi ∈ Mxi .
Then the measure ϕ]µi ∈ My, i = 1, 2, and thus ϕ]µ1 = ϕ]µ2 (we remind that Y
is a simplex). By the assumption, µ1 = µ2 and thus x1 = x2.

Obviously, (iii’) =⇒ (i’) which finishes this remark.

3. Construction of examples

All the construction are based upon the notion of a function space H, which is
a subspace of the space C(K) of all continuous functions on a compact space K
such that H contains constant functions and separates points of K. Then the state
space

X = {ξ ∈ H∗ : ξ ≥ 0, ξ(1) = 1}
endowed with the weak∗ topology is a convex compact set that inherits many prop-
erties from H. The mapping φ : K → X, where φ(x) is the evaluation mapping at a
point x ∈ K, is a homeomorphic embedding. (We refer the reader to [14, Chapter
6], [5, Chapter 6, §29] and [16] for a detailed information on the issue.)

Construction of Example 1.1. Let K1 = [0, 1]×{−1, 0, 1} with the “porcupine”
topology (see [4, Section VII] or [1, Proposition I.4.15]) and let K2 be the quotient
of K1 where all points of [0, 1] × {0} are identified with the point (0, 0) (see [8,
Section 2.4]). We write q : K1 → K2 for the quotient mapping and take

H1 = {f ∈ C(K1) : 2f((t, 0)) = f((t,−1)) + f((t, 1)), t ∈ [0, 1]} and

H2 = {f ∈ C(K2) : 2f((0, 0)) = f((t,−1)) + f((t, 1)), t ∈ [0, 1]}.

Let X, Y be the state space of H1, H2, respectively, and φ1, φ2 be the respective
embeddings. Then extX = φ1(K1 \ ([0, 1] × {0})) and extY = φ2(K2 \ {(0, 0)}).
We denote by ϕ : X → Y the restriction of the adjoint operator h 7→ h ◦ q, h ∈ H2.
Then X is a simplex and φ]λ ∈ M1(X) is maximal for any continuous measure
λ ∈ M1([0, 1]× {0}), eventhough φ]λ is supported by a compact set disjoint with
extX (see [1, Chapter I, §4, p. 42]). (We recall that λ is continuous if λ({x}) = 0
for each x ∈ X.)

Then ϕ(extX) = extY and ϕ is even injective on extX. On the other hand,
if λ is any continuous probability measure on φ1([0, 1] × {0}), then λ is maximal
on X, yet the measure ϕ]λ equals the Dirac measure at the point φ2((0, 0)), and
hence ϕ]λ is not maximal. �
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Construction of Example 1.4. Let K1 = {x1, x2, x3, y1, y2, y3} and K2 be the
quotient of K2, if we identify y2 with x2. Again we denote by q : K1 → K2 the
quotient mapping. Let

H1 = {f ∈ C(K1) : 2f(x2) = f(x1) + f(x3), 2f(y2) = f(y1) + f(y3)} and

H2 = {f ∈ C(K2) : f(x1) + f(x3) = 2f(x2) = f(y1) + f(y3)}.

We take X, Y , φ1, φ2 and ϕ : X → Y as above. Then X is a simplex, extX =
φ1(K1 \ {x2, y2}), extY = φ2(K2 \ {x2}), ϕ : extX → extY is a bijection, yet ϕ is
not injective on X. Obviously, ϕ] maps injectively maximal measures to maximal
measures. �

Construction of Example 1.5. Let K1 = [0, 1]∪[2, 3]×{−1, 0, 1} endowed again
with the “porcupine” topology and let K2 be the quotient of K1 after identifying
points (t+ 2, 0) with (t, 0), t ∈ [0, 1]. Let

H1 = {f ∈ C(K1) : 2f((t+ i, 0)) = f((t+ i,−1)) + f((t+ i, 1)), t ∈ [0, 1], i = 0, 2},
H2 = {f ∈ C(K2) : 2f((t, 0)) = f((t+ i,−1)) + f((t+ i, 1)), t ∈ [0, 1], i = 0, 2},

and let X, Y , φ1, φ2 and ϕ be as above.
Then

extX = φ1(K1 \ ([0, 1] ∪ [2, 3]× {0})), extY = φ2(K2 \ ([0, 1]× {0})),

and ϕ maps injectively extX onto extY .
We claim that ϕ](M1

max(X)) ⊂ M1
max(Y ). Indeed, a probability measure λ

is maximal on X if and only if λ = (φ1)]µ for some measure µ ∈ M1(K1) that
is continuous on [0, 1] ∪ [2, 3] × {0}. Similarly, any maximal probability measure
on Y is of the form (φ2)]µ for some measure µ ∈ M1(K2) that is continuous on
[0, 1]× {0}. From these observations the claim follows.

Finally, if we take the Lebesgue measure λ1 on [0, 1]×{0} and λ2 on [2, 3]×{0},
then

ϕ]((φ1)]λ1) = ϕ]((φ1)]λ2).

Hence ϕ] is not injective on M1
max(X). �
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AFFINE BAIRE FUNCTIONS ON CHOQUET SIMPLICES

MIROSLAV KAČENA AND JIŘÍ SPURNÝ

Abstract. We construct a metrizable simplex X such that for each n ∈ N
there exists a bounded function f on extX of Baire class n that cannot be

extended to a strongly affine function of Baire class n. We show that such an
example cannot be constructed via the space of harmonic functions.

1. Introduction

Throughout the paper, we consider a function space H on a compact Hausdorff
topological space K. By this we mean a subspace H of the space C(K) of all
continuous functions on K that contains constant functions and separates points of
K. We focus on a particular class of function spaces, so-called simplicial function
spaces (see the definitions below), which can be viewed as a more general version
of spaces of affine continuous functions on simplices and, from the point of view
of Banach space theory, come under the theory of L1-preduals (see [14, p. 59]).
Abstract affine classes of functions with respect to H (defined below) coincide with
the so-called intrinsic Baire classes and Baire classes of the Banach space H as
defined in [2, p. 1044] and thus our results aim to provide a better understanding
of these classes within the framework of L1-preduals.

If K is a compact space, we write M(K) for the space of all signed Radon
measures on K. By a (positive) Radon measure we mean a complete measure that
is inner regular with respect to compact sets and is defined on a σ-algebra including
all Borel subsets of K. A signed measure is Radon if the total variation |µ| of µ
is a Radon measure. We refer the reader to [13, Section 416] for more information
on Radon measures. Let M1(K) denote the set of all Radon probability measures
on K. We always consider M(K) endowed with the weak∗ topology. We say
that a function f : K → R is universally measurable if f is µ-measurable for
every µ ∈ M1(K). Let M+(K) and M1(K) stand for the set of all positive and
probability Radon measures on K, respectively. We write sptµ for the support of
a measure µ ∈M+(K).

If F is a set of functions, we inductively define the following sets of functions:
we set F0 = F and having Fβ , β < α, already defined for an ordinal number
α ∈ (0, ω1), we define Fα to be the space of all pointwise limits of bounded sequences
of functions from

⋃
β<α Fβ . We write Bb(K) for the space of all bounded Borel

functions on K and Bbα(K) = (C(K))α for the space of all bounded Baire functions
of class α, α ∈ [0, ω1).

If F is a set of bounded universally measurable functions on K, we write F⊥ for
the space of all measures µ ∈ M(K) with µ(f) = 0 for each f ∈ F , and F⊥⊥ for

42
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the space of all bounded universally measurable functions f satisfying µ(f) = 0 for
each µ ∈ F⊥.

For any x ∈ K, let Mx(H) denote the set of all H–representing measures, i.e.,
µ ∈ Mx(H) if and only if µ ∈ M+(K) and µ(h) = h(x) for each h ∈ H. Let
ChHK = {x ∈ K : Mx(H) = {εx}} stand for the Choquet boundary of K. It
follows from the Choquet theorem that for every x ∈ K there exists µ ∈ Mx(H)
such that µ(ChHK) = 1 (see [1, Theorem I.5.19]). We denote by A(H) the space
of all H–affine functions, i.e., the space of all bounded universally measurable
functions f on K satisfying µ(f) = f(x) for every x ∈ K and µ ∈ Mx(H). The
space of all continuous elements in A(H) is denoted as Ac(H).

A function space H on a metrizable compact space K is simplicial if for every
x ∈ K there exists a unique measure δx ∈ M1(K) carried by ChHK that H–
represents x. If K is not metrizable, the set ChHK need not be a measurable set
and thus simpliciality of H has to be defined differently. One way to do this is
to say that H is simplicial if Ac(H) has the Riesz interpolation property (see [1,
Corollary II.3.11]), which means that, for every quadruple f1, f2, g1, g2 ∈ Ac(H)
satisfying fi ≤ gj , i, j ∈ {1, 2}, there exists a function h ∈ Ac(H) with fi ≤ h ≤ gj ,
i, j ∈ {1, 2}.

A detailed survey of properties of function spaces can be found in any of the
following sources: [1, Chapter I, §5], [11, Chapter 6], [19, Section 6], [17, Chapter
7], [7, Chapter I], [9] or [21, Section 2].

For a simplicial function spaceH, we define an operator T : Bb(K)→ (Ac(H))⊥⊥

as

(1) Tf(x) := δx(f), x ∈ K, f ∈ Bb(K).

We refer the reader Proposition 2.2 below for the proof of the fact that Tf ∈
(Ac(H))⊥⊥ for any bounded Borel function f on K. If f is a bounded Borel

function defined on a Borel subset F of K, we set Tf = T f̂ , where f̂ = f on F and
0 elsewhere.

If X is a compact convex subset of a locally convex space and H equals the space
A(X) of all continuous affine functions, then ChA(X)X = extX (the set of extreme
points of X) and A(X) is simplicial if and only if X is a simplex (see [1, Chapter II,
§3], [4, Chapter 3]). The functions contained in A(X)⊥⊥ are called strongly affine
in [24, Introduction] or the functions satisfying the barycentric formula.

Given a simplicial function space H on a metrizable compact space K and a
bounded Borel function f on ChHK, we may consider the abstract Dirichlet prob-
lem, i.e., the question of anH–affine extension of f to the whole set K that preserves
topological properties of f . By the minimum principle (see e.g. [20, Proposition
3.6]), the only H–affine extension of f is the function Tf . The problem of con-
tinuous H–affine extensions was solved by H. Bauer. He showed in [5, Satz 13]
that T (C(K)) ⊂ C(K) if and only if ChHK is closed. An analogous question for
Baire–one functions was solved in [20, Theorem 3.1], namely T (Bb1(K)) ⊂ Bb1(K) if
and only if ChHK is an Fσ set. It has turned out in [23, Theorem 1.1] that such
a characterization is impossible for functions of higher Baire classes.

Thus there exist simplicial function spaces such that the operator T does not
preserve continuous or Baire–one functions. On the other hand, it is not difficult to
realize that T (Bbα(K)) ⊂ Bbα(K) for each α ∈ [ω0, ω1) (see Theorem 1.1(a) below).
The aim of our paper is to show that the shift of classes can occur for any finite
Baire class. Precisely we get the following results.
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Theorem 1.1.

(a) If H is a simplicial function space on a metrizable compact space K, then
T (Bbα(K)) ⊂ (Ac(H))α for each α ∈ [ω0, ω1).

(b) There exists a metrizable simplex X such that T (Bbα(X)) 6⊂ Bbα(X) for
each α ∈ [0, ω0).

(c) If n ∈ {0, 1}, then there exists a metrizable simplex X such that T (Bbn(X)) 6⊂
Bbn(X) and T (Bbα(X)) ⊂ Bbα(X) for each α ∈ (n, ω1).

If X is a compact convex set and α < ω1, functions Aα(X) of affine class α are
introduced in [10] as functions from (A(X))α. By a theorem of G. Choquet and
G. Mokobodzki, any affine Baire–one function on X is in A1(X) (see [1, Theorem
I.2.6] or [2, Theorem II.1.2(a)]). On the other hand, by a result of M. Talagrand
in [24, Theorem], there exists a metrizable compact convex set X and a function
f ∈ Bb2(X) ∩ (A(X))⊥⊥ such that f /∈

⋃
α<ω1

Aα(X). If X is a simplex, M. Capon

showed in [10, Théorème 2] that Bbα(X) ∩ (A(X))⊥⊥ ⊂ Aα+1(X) for any α < ω1.
By combining the method of a separable reduction from [10] and Theorem 1.1(a)
we get the following improvement.

Theorem 1.2.

(a) If X is a simplex, then Bbα(X)∩ (A(X))⊥⊥ = Aα(X) for any α ∈ [ω0, ω1).
(b) If H is a simplicial function space on a compact space K, then Bbα(K) ∩
A(H) = (Ac(H))α for each α ∈ [ω0, ω1).

If U is an open bounded subset of the Euclidean space Rd, we get a particular
example of a simplicial function space H(U) of all continuous functions on U that

are harmonic on U . In this case, δx = ε
Rd\U
x , x ∈ U (see [8, Theorem 3.3 and

Theorem 4.1] or [7, Proposition 5.6]). Then T need not preserve continuous or
Baire–one functions. It turns out that the shift of classes ceases to exist for α ≥ 2
as the following result shows.

Theorem 1.3. Let U ⊂ Rd be a bounded open set and H(U) be the space of all
continuous functions on U harmonic on U . Then T (Bbα(U)) ⊂ Bbα(U) for each
α ∈ [2, ω1).

2. Auxiliary results on simplicial spaces and state spaces

In the sequel we will need the following results on function spaces. The first one
is proved in [18, Theorem 5.1].

Proposition 2.1. Let H be a function space on a compact space K. Then Bb1(K)∩
H⊥⊥ = H1.

Proposition 2.2. Let H be a simplicial function space on a metrizable compact
space K and let T be the operator defined by (1).

(a) For every f ∈ Bb(K), Tf ∈ (Ac(H))⊥⊥.
(b) We have T (C(K)) ⊂ (Ac(H))1.

(c) We have A(H) = (Ac(H))
⊥⊥

.

Here assertions (a) and (b) follow from Corollary 6.2, Proposition 6.1 and The-
orem 6.3 in [18]. Assertion (c) can be found in [21, Thereom 2.6(b2)].

If H is a function space on a compact space K, we consider its state space S(H)
defined as

S(H) = {s ∈ H∗ : s ≥ 0, s(1) = 1}.
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Then S(H), endowed with the weak∗ topology, is a compact convex set. The
mapping φ : K → S(H) defined as φ(x)(h) = h(x), h ∈ H, is a homeomorphic
embedding of K to S(H) that maps ChHK onto ext S(H) (see [1, Theorem II.2.1]).
By the Hahn-Banach theorem, the restriction mapping π : M1(K) → S(H) is an
affine continuous surjection. According to [21, Theorem 2.5], the formula

(2) If(s) = µ(f), µ ∈M1(K), π(µ) = s, s ∈ S(H),

defines an isometric isomorphism I : H⊥⊥ → (A(S(H)))
⊥⊥

, that preserves natural
order of functions. Moreover,

(3) I(Hα) = Aα(S(H)) and I
(
Bbα(K) ∩H⊥⊥

)
= Bbα(X) ∩ (A(X))⊥⊥

for every α ∈ [0, ω1). Its inverse I−1 : (A(S(H)))
⊥⊥ → H⊥⊥ is given by the formula

I−1f̂ = f̂ ◦ φ, f̂ ∈ (A(S(H)))
⊥⊥

.

Proposition 2.3. Let H be a function space on a compact space K and let X :=
S(Ac(H)) be the state space of the function space Ac(H). Let φ : K → X denote
the embedding defined above.

(a) The space H is simplicial if and only if X is a simplex.

(b) Assume that H is simplicial and K is metrizable. Let T̂ : Bb(X) →
(A(X))

⊥⊥
be the operator from (1) considered for the function space A(X).

If f is a bounded Borel function on K, let

f̂(s) :=

{
f(x), s = φ(x),

0, s ∈ X \ φ(K).

Then

T̂ f̂(φ(x)) = Tf(x), x ∈ K.

Proof. Assertion (a) is a content of [6, Theorem]. To prove (b), let f be a bounded

Borel function on K and let f̂ be defined as in (b). For any x ∈ K, we need to
show that

δφ(x)(f̂) = δx(f).

Since δφ(x) is supported by extX ⊂ φ(K), we can write

δφ(x)(f̂) = δφ(x)(f ◦ φ−1) = (φ−1δφ(x))(f).

Thus it is enough to show that φ(δx) = δφ(x). (Here φ−1δφ(x) and φ(δx) denote the

image measures under the mappings φ−1 and φ, respectively.)
A straightforward verification shows that φ(δx) A(X)–represents φ(x). Since

φ(δx) is carried by φ(ChHK) = extX and X is a simplex by (a), φ(δx) = δφ(x) as
required. This concludes the proof. �

3. Auxiliary results on Borel sets and products of function spaces

Before the proofs of the main results, we recall several facts from the descriptive
set theory. If X is a Polish (i.e., separable completely metrizable) space, we write
Σ0
α(X),Π0

α(X) for the additive and multiplicative classes of Borel subsets of X
(see [16, p. 68]). The following classical result can be found in [16, Theorem 24.3
and Theorem 24.10].
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Theorem 3.1. Let f be a function on a Polish space X and α ∈ [0, ω1).Then f
is of Baire class α if and only if f−1(U) ∈ Σ0

α+1(X) for every open set U ⊂ R.

In particular,
⋃
α<ω1

Bbα(X) is the class of all bounded Borel functions.

If A is a subset of a set X, we write χA for the characteristic function of A.
From the preceding theorem we see that χA ∈ Bbα(X) if and only if A,X \ A ∈
Σ0
α+1(X). The following proposition is proved in [16, Theorem 22.10, Exercise 23.3

and Exercise 24.20].

Proposition 3.2. Let α ∈ [1, ω1) and let Xn, n ∈ N, be Polish spaces. Let An ⊂ Xn

satisfy An ∈ Σ0
α(Xn) \Π0

α(Xn), n ∈ N, and let X =
∏
n∈NXn. Then∏

n∈N
An ∈ Π0

α+1(X) \Σ0
α+1(X).

Our construction of simplicial spaces is based upon the notion of products of
function spaces. We briefly recall the construction and the properties relevant for
our purposes. We consider {(Ki,Hi)}i∈I a family of function spaces and we denote
by K =

∏
i∈I Ki the cartesian product of spaces Ki. For any f ∈ C(K), j ∈ I and

y ∈
∏
i∈I\{j}Ki we define a function fy on Kj by fy(x) = f(x, y), x ∈ Kj . We say

that the function space

H := {f ∈ C(K) : fy ∈ Hj for all j ∈ I and y ∈
∏

i∈I\{j}

Ki}

is the product of Hi, i ∈ I.
If µi ∈M1(Ki), i ∈ I, we denote by

⊗
i∈I µi the unique Radon measure extend-

ing the ordinary product measure (see [13, Theorem 417Q]).

Theorem 3.3. Let H be the product of Hi, i ∈ I. Then ChHK =
∏
i∈I ChHi Ki.

Further, H is simplicial if and only if Hi is simplicial for every i ∈ I. In that case
we have δx =

⊗
i∈I δxi for each x = (xi)i∈I ∈ K.

For a proof see [15, Theorems 3.42, 3.52, 3.53 and 3.59].

4. Baire solutions of the abstract Dirichlet problem

Lemma 4.1. Let H be a simplicial function space on a metrizable compact space K,
let α0 ∈ [0, ω1) and let F be a set of functions on K. If T (Bbα0

(K)) ⊂ Fα0 , then

T (Bbα(K)) ⊂ Fα for every α ∈ [α0, ω1).

Proof. We proceed by induction. We fix α > α0 and suppose that T (Bbζ(K)) ⊂ Fζ
for every α0 ≤ ζ < α. Choose f ∈ Bbα(K). Then there is a uniformly bounded
sequence of functions fn ∈ Bbαn(K), α0 ≤ αn < α, n ∈ N, such that fn → f . Since
Tfn ∈ Fαn for every n ∈ N and, by Lebesgue’s dominated convergence theorem,
Tfn → Tf , we get Tf ∈ Fα. �

Proposition 4.2. Let H be a simplicial function space on a metrizable compact
space K and let α ∈ [0, ω1). If f ∈ Bbα(K), then Tf ∈ (Ac(H))α+1.

Proof. It follows e.g. from [1, Proposition II.3.14] or [18, Proposition 6.1 and The-
orem 6.3] that T (C(K)) ⊂ Bb1(K) ∩ (Ac(H))⊥⊥ = (Ac(H))1. The assertion now
follows from Lemma 4.1 with F = (Ac(H))1 and α0 = 0. �
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Proof of Theorem 1.1(a). According to Lemma 4.1, it is sufficient to prove the
assertion for α = ω0. Hence, choose f ∈ Bbω0

(K). There is a uniformly bounded

sequence of functions fn ∈ Bbαn(K), αn, n ∈ N, such that fn → f . By Proposi-
tion 4.2, Tfn ∈ (Ac(H))αn+1 for every n ∈ N and by the dominated convergence
theorem Tfn → Tf . Therefore Tf ∈ (Ac(H))ω0 . �

Theorem 4.3. There exists a simplicial function space H on a metrizable compact
space K such that Ac(H) = H and T (Bbα(K)) 6⊂ Bbα(K) for every α ∈ [0, ω0).

Proof. Step 1. First we prove the following claim:
For every 0 ≤ α < ω0 there exists a simplicial function space Hα on a metrizable

compact space Kα and subsets Aα, Dα ⊂ Kα such that:

(i) Aα ∈ Π0
α+1(Kα) \Σ0

α+1(Kα),

(ii) D0 ∈ Π0
1(K0) ∩Σ0

1(K0) and Dα ∈ Π0
α(Kα) if α ≥ 1,

(iii) if x ∈ Aα, then spt δx ⊂ Dα,
(iv) if x /∈ Aα, then spt δx ⊂ Kα \Dα,
(v) Ac(Hα) = Hα.

We construct such a space (Kα,Hα) and sets Aα, Dα for each α ∈ [0, ω0) by
induction:

Choose q ∈ (0, 1) ⊂ R and a sequence {sn}n∈N ⊂ (0, 1) \ {q} such that sn → q.
Define K0 := {0, 1, q} ∪ {sn}n∈N and

H0 := {f ∈ C(K0) : f(q) =
1

2
(f(0) + f(1))}.

The space (K0,H0) is obviously simplicial with ChH0 K0 = K0 \ {q} and δq =
1
2 (ε0 + ε1). We take A0 := {0, 1, q} and D0 := {0, 1}. It is easy to verify that
conditions (i)–(v) above are satisfied.

Now suppose we have (Kα−1,Hα−1), Aα−1, Dα−1 satisfying the conditions, where
α ∈ N. Let (Kα,Hα) be the product of countably many copies of the space
(Kα−1,Hα−1). Define Aα :=

∏
(Kα−1 \Aα−1) and Dα :=

∏
(Kα−1 \Dα−1). Then

all the required conditions are satisfied:

• From the assumption (i) on Aα−1 and Proposition 3.2 we have Aα ∈
Π0
α+1(Kα) \Σ0

α+1(Kα).

• Using the assumption (ii) on Dα−1, it is easy to see that Dα ∈ Π0
α(Kα) for

α > 1. If α = 1, notice that K0 \D0 is a compact set, so D1 is compact.
• Suppose x = (xi)i∈N ∈ Aα. Then xi /∈ Aα−1 for each i ∈ N. Using

Theorem 3.3 and the assumption (iv) we see that

spt δx =
∏
i∈N

spt δxi ⊂
∏
i∈N

(Kα−1 \Dα−1) = Dα.

• Conversely, let x = (xi)i∈N /∈ Aα. Then there is some j ∈ N such that
xj ∈ Aα−1 and from the assumption (iii) spt δxj ⊂ Dα−1. Thus, we get

spt δx =
∏
i∈N

spt δxi ⊂ Kα \ (
∏
i∈N

(Kα−1 \Dα−1)) = Kα \Dα.

• Condition (v) follows from [15, Proposition 3.33].

Step 2. Now we show that for each α ∈ [0, ω0) the function space (Kα,Hα)
constructed above satisfies T (Bbα(K)) 6⊂ Bbα(K). So let α ∈ [0, ω0). Define fα :=
χDα . Clearly, fα ∈ Bbα(Kα). If x ∈ Aα, then Tfα(x) = δx(fα) = 1, since spt δx ⊂
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Dα. On the other hand, if x /∈ Aα, then Tfα(x) = 0. Therefore Tfα = χAα /∈
Bbα(Kα) and so T (Bbα(Kα)) 6⊂ Bbα(Kα).

Step 3. Finally, we show that (K1,H1) is the sought function space. There is a
homeomorphism φ : K1 → K2 such that φ(δx) = δφ(x) for every x ∈ K1. Indeed, let
φ be a natural bijection between K1 =

∏
i∈NK0 and K2 =

∏
j∈N

∏
k∈NK0. Using

Theorem 3.3 and an associative law for Radon product measures (see [13, Theorem
417J]) we arrive at

φ(δx) = φ(
⊗
i∈N

δxi) =
⊗
j∈N

⊗
k∈N

δxj,k = δφ(x)

for every x = (xi)i∈N ∈ K1 with φ(x) = ((xj,k)k∈N)j∈N ∈ K2. Now suppose
α ∈ N. If fα ∈ Bbα(K2), then fα ◦ φ ∈ Bbα(K1), since φ is a homeomorphism. If
Tfα /∈ Bbα(K2), then T (fα ◦ φ) /∈ Bbα(K1), because

T (fα ◦ φ)(x) = δx(fα ◦ φ) = (φδx)(fα) = δφ(x)(fα) = Tfα(φ(x)), x ∈ K1.

By induction and Step 2, for every α ∈ N there is fα ∈ Bbα(K1) with Tfα /∈ Bbα(K1).
If α = 0, the existence of such a function is ensured by Lemma 4.1. �

Theorem 4.4. Let n ∈ {0, 1}. Then there exists a simplicial function space H
on a metrizable compact space K such that Ac(H) = H, T (Bbn(K)) 6⊂ Bbn(K) and
T (Bbα(K)) ⊂ Bbα(K) for each α ∈ (n, ω1).

Proof. If n = 0, it is enough to take any simplicial function space H on a metrizable
compact K such that Ac(H) = H and ChHK is a non-closed Fσ-subset of K (take
e.g. (K0,H0) from the proof of Theorem 4.3). Then there exists a continuous
function f such that Tf is not continuous and T (Bb1(K)) ⊂ Bb1(K).

If n = 1, let H be the function space constructed in [20, Example 3.10]. We
briefly recall this construction. Let {qn} be an enumeration of rational numbers
contained in [0, 1]. We define a subset K ⊂ R2 as follows

K := ([0, 1]× {0}) ∪ {(qn, n−1), (qn,−n−1) : n ∈ N} .
(We write (a, b) for a point in R2 with the coordinates a and b.) Obviously, K is a
compact set in R2 (considered with the usual Euclidean topology). Let

H := {f ∈ C(K) : f(qn, 0) =
1

2

(
f(qn,−n−1) + f(qn, n

−1)
)
, n ∈ N} .

Then H is a simplicial function space with ChHK = K \ {(qn, 0) ∈ K : n ∈ N}.
Obviously,

δ(x,y) =

{
1
2

(
ε(qn,n−1) + ε(qn,−n−1)

)
, x = qn for some n ∈ N and y = 0,

ε(x,y), otherwise.

Hence T (χ[0,1]×{0}) has no point of continuity on [0, 1]×{0}, and thus T (Bb1(K)) 6⊂
Bb1(K). On the other hand, if f is any bounded function of Baire class α, α ∈ [2, ω1),
then the set

{x ∈ K : Tf(x) 6= f(x)}
is at most countable. Hence T (Bbα(K)) ⊂ Bbα(K) for each α ∈ [2, ω1). �

Proof of Theorem 1.1(b),(c). For the proof of (b), let H be the function space
on the compact space K constructed in Theorem 4.3 and let X be the state space
of H. By Proposition 2.3, X is a metrizable simplex. Let φ : K → X be the
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homeomorphic embedding and T̂ : Bb(X) → (A(X))⊥⊥ be the operator from (1)
considered for the simplicial function space A(X).

For any α ∈ N, let f ∈ Bbα(K) be such that Tf /∈ Bα(K). Then f̂ defined as

f̂(s) :=

{
f(x), s = φ(x),

0, s ∈ X \ φ(K),

is in Bbα(X) and satisfies T f̂ /∈ Bbα(X). Indeed, Proposition 2.3(b) gives

Tf = T̂ f̂ ◦ φ = I−1T̂ f̂ ,

from which the conclusion follows because I−1 preserves Borel classes. For α = 0 we

deduce the existence of a function f̂ ∈ C(X) satisfying T̂ f̂ /∈ C(X) from Lemma 4.1.
For the verification of (c) we use the same method as in (b), the required simplices

are taken to be the state spaces of the function spaces constructed in Theorem 4.4.
This concludes the proof. �

Proof of Theorem 1.2. For the proof of (a), let f ∈ (A(X))⊥⊥ be a Baire–α
function on a simplex X for some α ∈ [ω0, ω1). By the method of the proof of [10,
Théorème 2], there exists a metrizable simplex Y , a continuous affine surjective
mapping ϕ : X → Y and a Baire function g on Y such that f = g ◦ ϕ. By [22,
Examples 2.4], g ∈ Bbα(Y )∩ (A(Y ))⊥⊥ as well. Since g ∈ (A(Y ))⊥⊥, Tg = g. Hence
g ∈ Aα(Y ) by Theorem 1.1(a). It follows that f ∈ Aα(X) as well.

For the proof of (b), if H is a simplicial function space on a compact space K,
we know from Proposition 2.2 that A(H) = (Ac(H))⊥⊥. Further, the state space
X = S(Ac(H)) is a simplex by Proposition 2.3(a). Let I : (Ac(H))⊥⊥ → A(X) be
the mapping defined by (2). If α ∈ [ω0, ω1) and

f ∈ Bbα(K) ∩ A(H) = Bbα(K) ∩ (Ac(H))⊥⊥,

then

If ∈ Bbα(X) ∩ (A(X))⊥⊥ = Aα(X)

by (3) and assertion (a). Hence

f ∈ (Ac(H))α,

again by (3). This finishes the proof. �

5. Spaces of harmonic functions

Lemma 5.1. Let H be a simplicial function space on a metrizable compact space
K and F ⊂ ChHK be compact. Then T (Bbα(F )) ⊂ (Ac(H))α, α ∈ [1, ω1).

Proof. Let F ⊂ ChHK be a compact set. First we prove that T (Bb1(F )) ⊂
(Ac(H))1. If f is a bounded Baire–one function on F , Tf ∈ (Ac(H))⊥⊥ by Propo-
sition 2.2(a). Further, we want to show that Tf ∈ Bb1(K). According to [16,
Theorem 24.3], Tf is a Baire–one function if and only if both {x ∈ X : Tf(x) > c}
and {x ∈ X : Tf(x) < c} are sets of type Fσ for each c ∈ R.

If f = χA for A ⊂ F closed, then Tf is Baire–one. This follows from the fact
that

TχA = (χA)∗ (= inf{h ∈ H : h ≥ χA})
is upper semicontinuous and thus Baire–one (see [1, Theorem II.3.7 and Theorem
II.3.8]).
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If f = χA, where A ⊂ K is both Fσ and Gδ set, then TχA is also a Baire–one
function. To verify this, we write A =

⋃∞
n=1 Fn, where the sets Fn are closed in K.

Then for each c ∈ R, the set

{x ∈ X : TχA(x) > c} =

∞⋃
n=1

{x ∈ X : TχFn(x) > c}

is of type Fσ according to the reasoning above. Similarly we get that {x ∈ X :
TχK\A > c} is of type Fσ for every c ∈ R.

Thus for arbitrary c ∈ R, the set

{x ∈ X : TχA(x) < c}

=
⋃

q1−q2<c
q1,q2∈Q

{x ∈ X : TχK(x) < q1} ∩ {x ∈ X : TχK\A(x) > q2}

is of type Fσ. Thus the function TχA is Baire–one.

Hence T (
∑k
n=1 cnχAn) is Baire–one whenever the sets An are both Fσ and Gδ in

F and cn, n = 1, . . . , k, are real numbers. Since functions of this type are uniformly
dense in the space of all bounded Baire–one functions on F and Baire–one functions
are stable with respect to uniform convergence, T (Bb1(F )) ⊂ Bb1(K).

Since

Bb1(K) ∩ (Ac(H))⊥⊥ = (Ac(H))1

by Proposition 2.1, T (Bb1(F )) ⊂ (Ac(H))1.
The rest of the proof now follows from Lemma 4.1. �

Theorem 5.2. Let H be a simplicial function space on a metrizable compact space
K. Assume that there exist compact sets Kn ⊂ ChHK, n ∈ N, such that δx(K \⋃∞
n=1Kn) = 0 for each x ∈ K \ ChHK. Then T (Bbα(K)) ⊂ Bbα(K), α ∈ [2, ω1).

Proof. Given a sequence {Kn} of compact sets in ChHK as in the premise, we
assume without loss of generality that {Kn} is increasing and denote

H1 :=

∞⋃
n=1

Kn, H2 := ChHK \
∞⋃
n=1

Kn.

Let f be a bounded Baire–two function on K. We find a bounded sequence {fn}
of Baire–one functions converging to f . According to Lemma 5.1,

T (fnχKn) ∈ (Ac(H))1 ⊂ Bb1(K), n ∈ N.

It is easy to see that

T (fnχKn)→ T (fχH1).

Since

Tf = T (fχH1
) + T (fχH2

) = T (fχH1
) + fχH2

and χH2
is a Baire–two function, Tf ∈ Bb2(K) as well. Since the assertion for higher

Baire classes follows by Lemma 4.1, the proof is finished. �

Proof of Theorem 1.3. Throughout the proof, we write Bc for the set Rd \ B
whenever B ⊂ Rd. By Theorem 5.2, it is enough to find compact sets Kn ⊂ ∂regU ,
n ∈ N, such that

δx(

∞⋃
n=1

Kn) = εU
c

x (

∞⋃
n=1

Kn) = 1
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for each x ∈ U \ ∂regU . We divide the proof in a couple of steps.

Step 1. There exist compact sets Kn ⊂ ∂regU , n ∈ N, such that εU
c

x (
⋃∞
n=1Kn) =

1 for each x ∈ U .
To verify this, let {xn : n ∈ N} be a dense subset of U . For each n ∈ N we select

compact sets Lnk ⊂ ∂regU , k ∈ N, such that εU
c

xn (
⋃∞
k=1 Lnk) = 1. If we enumerate

the sets {Lnk : n, k ∈ N} into a single sequence {Kn}, we get the desired sets.
Indeed, writing A for the set

⋃∞
n=1Kn, let h denote the PWB–solution of the

generalized Dirichlet problem on U with the boundary function χA (see [7, Chapter
VII, Section 2] or [3, Chapter 6]). Since 1 = h(xn) = εU

c

xn (A) for each n ∈ N and h

is a harmonic function on U , h = 1 on U . Hence εU
c

x (A) = h(x) = 1 for all x ∈ U .
Step 2. If A is chosen as above, then εU

c

x (A) = 1 for every x ∈ U \ ∂regU .
By the previous paragraph, the claim holds true for every point x ∈ U . Let now

x be an irregular point of the boundary of U .
Let ε > 0 be given. Since εU

c

z ({x}) = 0, there exists an open neighborhood V
of x such that εU

c

x (V ) < ε. We select an increasing sequence of compact sets {Fn}
in U such that

⋃∞
n=1 Fn = U . Then εFn∪U

c

x → εx in the weak∗–topology by [7,
Chapter VI, Corollary 10.3]. Hence there exists a compact set L ⊂ U so that the
measure µ = εL∪U

c

x satisfies µ(V ) > 1 − ε. Since µ is supported by U c ∪ L, using
[7, Chapter VI, Proposition 9.4] we get

(4) εU
c

x = µ|Uc + (µ|L)U
c

.

(Here µ|B denotes the restriction of the measure µ to a set B.) By our choice of A,

(5) (µ|L)U
c

(Ac) =

∫
L

εU
c

t (Ac) dµ(t) = 0.

Since
µ(V c) = µ(Rd)− µ(V ) ≤ 1− (1− ε) = ε,

and by (4)

µ(U c ∩ V ) ≤ εU
c

x (V ) < ε,

we get µ(U c) < 2ε. Thus by (4)

εU
c

x (Ac) = µ(U c ∩Ac) + (µ|L)U
c

(Ac) ≤ 2ε.

This concludes the proof of the second step as well as the proof of the theorem. �

6. Open problems

Question 6.1. We do not know any general construction that would lead, for a
given n ∈ N, to a simplicial function space H on a compact space K such that
T (Bbn(K)) 6⊂ Bbn(K) and T (Bbα(K)) ⊂ Bbα(K) for each α ∈ (n, ω1).

Question 6.2. Let H be a simplicial function space on a metrizable compact space
K. By [18, Theorem 6.3], Bb1(K) ∩ (Ac(H))⊥⊥ = (Ac(H))1. It is witnessed by the
function space constructed in [21] that this equality does not hold for higher classes,
precisely it is shown that Bb2(K)∩ (Ac(H))⊥⊥ 6⊂ (Ac(H))2. It might be interesting
to know whether such an example can be of type H(U) for some bounded open set
U ⊂ Rd.
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ON SEQUENTIALLY RIGHT BANACH SPACES

MIROSLAV KAČENA

Abstract. In this paper, we study the recently introduced class of sequen-

tially Right Banach spaces. We introduce a stronger property (RD) and com-

pare these two properties with other well-known isomorphic properties of Ba-
nach spaces such as property (V) or the Dieudonné property. In particular, we

show that there is a sequentially Right Banach space without property (V).

This answers a question of A.M. Peralta, I. Villanueva, J.D.M. Wright and K.
Ylinen. We also generalize a result of A. Pe lczyński and prove that every se-

quentially Right Banach space has weakly sequentially complete dual. Finally,

it is shown that if K is a scattered compact Hausdorff space then the space
C(K,X) of X-valued continuous functions on K is sequentially Right (resp.

has property (RD)) if and only if X has the same property.

1. Introduction

In [23], A.M. Peralta, I. Villanueva, J.D.M. Wright and K. Ylinen proved that
for a given Banach space X there is a locally convex topology on X, called by them
the ’Right topology’, such that every operator T from X into a Banach space Y
is weakly compact if and only if it is Right-to-norm continuous. This topology
is obtained as the restriction of the Mackey topology τ(X∗∗, X∗) to X. It is the
topology of uniform convergence on absolutely convex σ(X∗, X∗∗)-compact subsets
of X∗. In general, the Right topology is stronger than the weak topology and weaker
than the norm topology, thus compatible with the dual pair 〈X,X∗〉. Every Right-
to-norm continuous operator is surely Right-to-norm sequentially continuous. A
simple look at the identity operator on `1 reveals, however, that the converse is not
true. Authors in [23] call Right-to-norm sequentially continuous operators pseudo
weakly compact and Banach spaces, on which every pseudo weakly compact operator
is weakly compact, sequentially Right. They have shown that every Banach space
possessing property (V) is sequentially Right (see [23, Corollary 15]) and in the
subsequent papers [22] and [35] they asked whether the converse holds. We provide
a negative answer to this question.

In fact, we study relations of pseudo weakly compact operators and sequen-
tially Right Banach spaces with respect to several other well-known classes of op-
erators and isomorphic properties of Banach spaces. Among these properties are
the Dunford-Pettis property, the Reciprocal Dunford-Pettis property, the Dieudonné
property and the aforementioned Pe lczyński’s property (V). We also introduce a new
property (RD) which is an analogue of the Dieudonné property and is (at least for-
mally) stronger than the property of being sequentially Right. A Banach space
X is said to have property (RD) if every operator T from X into a Banach space
Y which maps Right-Cauchy sequences into Right-convergent sequences is weakly

54
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compact. We improve the result of [23] and show that property (V) actually implies
property (RD). Characterizations of property (RD) and sequential Rightness are
provided. We generalize the result of A. Pe lczyński [21, Corollary 5] and show that
every sequentially Right Banach space has weakly sequentially complete dual.

We also take an interest in topological behaviour of the Right topology. Two
most important special cases are in the centre of our attention. It is shown that
the sequential coincidence of the Right topology with the weak one is just another
characterization of the Dunford-Pettis property. Multiple characterizations are also
given for the sequential coincidence of the Right topology with the norm topology.

Finally, we show that if K is a scattered compact Hausdorff space, then C(K,X),
the Banach space of all continuous functions from K to a Banach space X, is
sequentially Right (resp. has property (RD)) if and only if X has the same property.

2. Preliminaries

Throughout this paper, we follow standard notation as in [8] or [17]. The term
operator means a bounded linear map, all Banach spaces are over real numbers.
For a Banach space X, we denote by BX its closed unit ball.

Let X be a Banach space. Given a Banach space Y , an operator T : X → Y
is called completely continuous (cc) if it maps weakly Cauchy sequences into norm
convergent sequences. Banach space X has the Dunford-Pettis property (DP) if,
for any Banach space Y , every weakly compact operator T : X → Y is completely
continuous. This is equivalent to saying that for any weakly null sequences (xn)
and (x∗n) in X and X∗, respectively, limn x

∗
n(xn) = 0 (see, e.g., [7, Theorem 1]).

X is said to have the Reciprocal Dunford-Pettis property (RDP) if, for any Banach
space Y , every completely continuous operator T : X → Y is weakly compact.
Examples of Banach spaces with (RDP) trivially include all reflexive spaces while,
on the other hand, an infinite-dimensional reflexive space can never possess (DP).
C(K) spaces are known to enjoy both (DP) and (RDP). We refer to [7] for more
information on the Dunford-Pettis property.

We say that an operator T : X → Y is weakly completely continuous (wcc)
if it sends weakly Cauchy sequences into weakly convergent sequences. Let us
denote by B1(X) the subspace of X∗∗ formed by all σ(X∗∗, X∗)-limits of weakly
Cauchy sequences in X. In case X is a C(K) space, B1(X) is precisely the space
of all bounded Baire-one functions on K ([14, p. 160]). X is said to have the
Dieudonné property (D) if, for any Banach space Y , every wcc operator T : X → Y
is weakly compact. This happens if and only if every operator T : X → Y , such
that T ∗∗(B1(X)) ⊂ Y , satisfies T ∗∗(X∗∗) ⊂ Y (see, e.g., [11, Proposition 9.4.9]).
Clearly, any weakly compact operator is wcc and also any cc operator is wcc. So
the Dieudonné property implies (RDP). It follows from Rosenthal’s `1-theorem
([26]) that all spaces not containing `1 have property (D). The identity operator
on L1([0, 1]) is an example of a wcc operator which is not cc, since L1 is weakly
sequentially complete space without the Schur property (see, e.g., [17, pp. 16–18]).
To the best of our knowledge, it is still unknown, whether (D) and (RDP) are
equivalent.

A series
∑
n xn inX is called weakly unconditionally Cauchy (wuC) if

∑
n |x∗(xn)| <

∞ for every x∗ ∈ X∗. We say that an operator T : X → Y is unconditionally con-
verging (uc) if it sends every wuC series into an unconditionally convergent series.
This is the same as saying that X does not contain a subspace isomorphic to c0 on
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which T is an isomorphism (see, e.g., [7, p. 37]). Banach space X is said to have
Pe lczyński’s property (V) if, for any Banach space Y , every uc operator T : X → Y
is weakly compact. Using the Orlicz-Pettis theorem ([8, p. 24]), it is easy to see
that every wcc operator is uc. Therefore, every Banach space with property (V)
has property (D). The converse does not hold generally (see, e.g., Example 3.32
below). Examples of Banach spaces with property (V) include all reflexive spaces,
C(K) spaces ([21, Theorem 1]), L1-preduals ([18]) and C∗-algebras ([24]). For more
information on these and other isomorphic properties of Banach spaces, we refer to
[27].

The relative topology induced onX by restricting the Mackey topology τ(X∗∗, X∗)
will be termed the RightX topology (or simply Right if the space X is obvious). Let
us recall that the Mackey topology τ(X∗∗, X∗) is the finest locally convex topology
for the dual pair 〈X∗∗, X∗〉. It is the topology of uniform convergence on absolutely
convex σ(X∗, X∗∗)-compact subsets of X∗. Since X∗ is a Banach space, it follows
from the theorem of Krein (see, e.g., [28, Chapter IV, Theorem 11.4]) that the
closed absolutely convex hull of a relatively weakly compact subset of X∗ is weakly
compact. So τ(X∗∗, X∗) can also be viewed as the topology of uniform convergence
on relatively σ(X∗, X∗∗)-compact subsets of X∗. The space X∗∗ is complete in the
τ(X∗∗, X∗)-topology (see [29, Proposition 1.1]). In reflexive spaces, τ(X∗∗, X∗)-
topology agrees with the norm topology. For more information on topological
vector spaces, we refer to [11] or [28].

A linear map between Banach spaces is bounded if and only if it is Right-to-
Right continuous ([23, Lemma 12]). An operator T : X → Y is called pseudo
weakly compact (pwc) if it transforms Right-null sequences into norm-null sequences.
Banach space X is said to be sequentially Right (SR) if, for any Banach space Y ,
every pwc operator T : X → Y is weakly compact. The following theorem has been
proved in [23].

Theorem 2.1 ([23, Corollary 5]). Let T : X → Y be an operator. Then the
following assertions are equivalent:

(i) T is Right-to-norm continuous,
(ii) T �BX is Right-to-norm continuous,

(iii) T is weakly compact,
(iv) T ∗∗ : X∗∗ → Y ∗∗ is τ(X∗∗, X∗)-to-norm continuous.

Clearly, every weakly compact operator is pwc. The converse does not hold, as
the identity operator on `1 shows ([23, Example 8]). In fact, no infinite-dimensional
Schur space can be sequentially Right. Since every pwc operator is uc ([23, Propo-
sition 14]), every Banach space with property (V) is sequentially Right ([23, Corol-
lary 15]).

We say that an operator T : X → Y is Right completely continuous (Rcc) if
it maps Right-Cauchy sequences into Right-convergent sequences. Let us denote
by R1(X) the subspace of X∗∗ formed by all τ(X∗∗, X∗)-limits of Right-Cauchy
sequences in X. Clearly, R1(X) ⊂ B1(X). We call a set K ⊂ X∗ an R-set if for any
Right-null sequence (xn) in X one has limn supx∗∈K x

∗(xn) = 0. Banach space X is
said to have the Right Dieudonné property (RD) if, for any Banach space Y , every
Rcc operator T : X → Y is weakly compact.
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3. Main results

For better clarity, we start with the scheme of classification of operators we will
shortly establish:

weakly compact

cc

↘
↗
↗
↘

pwc

wcc

↘
↗ Rcc→ uc

For Banach space properties we will have:

(V)→ (RD)
↗
↘

(SR)

(D)

↘
↗ (RDP)

The following lemma will be used implicitly throughout this paper without fur-
ther mentioning.

Lemma 3.1. Let (X, τX) and (Y, τY ) be two topological vector spaces. Then a
linear map T : X → Y maps τX-null sequences into τY -null sequences if and only
if T maps τX-Cauchy sequences into τY -Cauchy sequences.

In particular, if τ1 and τ2 are two vector topologies on X, then every τ1-null
sequence in X is τ2-null if and only if every τ1-Cauchy sequence in X is τ2-Cauchy.

Proof. Notice first that a sequence (xn) in a topological vector space is Cauchy if
and only if for every increasing sequence of natural numbers jn < kn < jn+1, the
sequence (xkn − xjn) converges to zero. Suppose T maps τX -null sequences into
τY -null sequences. Let (xn) be a τX -Cauchy sequence in X. If jn < kn < jn+1

is an arbitrary increasing sequence of natural numbers, then (xkn − xjn) converges
to zero in X and hence (T (xkn) − T (xjn)) converges to zero in Y . It follows that
(T (xn)) is a τY -Cauchy sequence.

On the other hand, suppose T maps τX -Cauchy sequences into τY -Cauchy se-
quences and let (xn) be τX -null. Then the sequence 0, x1, 0, x2, . . . is also τX -null,
hence it is τX -Cauchy and so the sequence 0, T (x1), 0, T (x2), . . . is τY -Cauchy. By
the observation in the beginning of the proof, (T (xn)− 0) = (T (xn)) is τY -null.

The special case follows by considering the identity map T : (X, τ1) → (X, τ2).
�

Proposition 3.2. Let X,Y be Banach spaces and T : X → Y an operator. Then
the following assertions hold:

(i) If T is completely continuous, then it is pseudo weakly compact.
(ii) If T is pseudo weakly compact, then it is Right completely continuous.

Proof. Assertion (i) is trivial. As for (ii), since T is pwc, every Right-Cauchy se-
quence in X is mapped into norm-Cauchy and therefore norm-convergent sequence
in Y . Since RightY topology is weaker than norm, the assertion follows. �

Corollary 3.3. Every Banach space with property (RD) is sequentially Right. Ev-
ery sequentially Right Banach space has property (RDP).

Proposition 3.4. Let X be a Banach space. The following assertions hold:

(a) For any Banach space Y , an operator T : X → Y is Rcc if and only if
T ∗∗(R1(X)) ⊂ Y .

(b) X has property (RD) if and only if, for any Banach space Y , any operator
T : X → Y such that T ∗∗(R1(X)) ⊂ Y , satisfies T ∗∗(X∗∗) ⊂ Y .
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Proof. This proposition is a special case of more general [11, Proposition 9.4.9]. We
refer the reader to its proof. �

Corollary 3.5. Every wcc operator is Rcc. Every Banach space with property
(RD) has property (D).

Proof. The assertions follow from the characterizations given in Proposition 3.4,
since R1(X) ⊂ B1(X) and T being a wcc operator is equivalent to T ∗∗(B1(X)) ⊂
Y . �

Corollary 3.6. Let X be a Banach space such that R1(X) = X∗∗. Then the space
X has property (RD).

Proof. Follows immediately from Proposition 3.4(b). �

Remark 3.7. The condition in Corollary 3.6 is satisfied if, for example, the unit
ball BX∗∗ is metrizable in the τ(X∗∗, X∗) topology. Characterizations of such
Banach spaces can be found in [29].

Proposition 3.8. Let X and Y be two Banach spaces. If Y is a quotient space of
X (in particular, if Y is a complemented subspace of X or if Y is isomorphic to
X) and X is sequentially Right (resp. has property (RD)), then Y has the same
property.

Proof. Let q : X → Y be the quotient map from X to Y . Suppose X is sequentially
Right (resp. has property (RD)). Then for any pwc (resp. Rcc) operator T : Y → Z,
where Z is a Banach space, T ◦q is a pwc (resp. an Rcc) and thus a weakly compact
operator on X. Since q is a quotient map, by the open mapping theorem T is weakly
compact. �

Proposition 3.9. Let X be a Banach space and let Y ⊂ X be its closed subspace.
Then RightY is finer than RightX �Y and both topologies coincide if there is a weakly
continuous extension map T : Y ∗ → X∗, i.e., a weakly continuous map T such that
for every y∗ ∈ Y ∗ one has T (y∗) �Y = y∗ (in particular, if Y is complemented in X
or if X = Y ∗∗).

Proof. We denote by i : Y → X the natural inclusion. Since every operator is
Right-to-Right continuous by [23, Lemma 12], i is RightY -to-RightX continuous.
Hence, RightY is finer than RightX �Y .

Suppose there is a weakly continuous extension map T : Y ∗ → X∗. Let (yα) ⊂ Y
be a RightX -null net and let K be an arbitrary weakly compact subset of Y ∗. Then
T (K) is weakly compact in X∗ and we have

lim
α

sup
y∗∈K

|y∗(yα)| = lim
α

sup
y∗∈K

|T (y∗)(yα)| = lim
α

sup
x∗∈T (K)

|x∗(yα)| = 0.

Hence, (yα) is RightY -null, which was to show.
If Y is complemented in X, then an extension operator is given by T : y∗ 7→ y∗ ◦

p, y∗ ∈ Y ∗, where p : X → Y is a continuous projection of X onto Y . If X = Y ∗∗,
then the natural inclusion of Y ∗ into Y ∗∗∗ provides the required extension. �

Corollary 3.10. Let X,Y be Banach spaces and let T : X → Y be a pwc (resp.
Rcc) operator. Then for every closed subspace Z ⊂ X, T �Z : Z → Y is pwc (resp.
Rcc).
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Proof. Let (zn) be a RightZ-Cauchy sequence in Z. Then, by Proposition 3.9, (zn)
is RightX -Cauchy and the assumption of the operator T finishes the proof. �

Corollary 3.11. A Banach space X is sequentially Right (resp. has property (RD))
if every separable subspace has the same property.

Proof. Let T : X → Y be a pwc (resp. Rcc) operator and let (xn) be a sequence
in BX . We need to show that there is a subsequence such that (T (xnk)) is weakly
convergent in Y . Put Z := span{xn : n ∈ N}. Then Z is a separable subspace of
X and by Corollary 3.10, T �Z is pwc (resp. Rcc). Using the assumption, T �Z is
weakly compact and therefore there exists the sought subsequence. It follows that
T is weakly compact. �

Remark 3.12. Corollary 3.11 cannot be reversed. Indeed, consider `1 as a subspace
of C([0, 1]). By [21, Theorem 1], C(K) spaces have property (V). Corollary 3.18
below shows that property (V) implies property (RD). However, `1 does not even
possess property (RDP).

Lemma 3.13. Let X be a Banach space and (x∗∗n ) a w∗-null sequence in X∗∗. The
following assertions are equivalent:

(i) x∗∗n → 0 in the τ(X∗∗, X∗) topology.
(ii) limn x

∗∗
n (x∗n) = 0 for every weakly null sequence (x∗n) in X∗.

(iii) limn x
∗∗
n (x∗n) = 0 for every weakly Cauchy sequence (x∗n) in X∗.

(iv) The operator T : X∗ → c0 given by T (x∗) = (x∗∗n (x∗))n∈N is completely
continuous.

In case (x∗∗n ) ⊂ X, the statements above are equivalent to x∗∗n
RightX→ 0 and the

operator T in (iv) moreover satisfies T ∗(`1) ⊂ X.

Proof. Suppose (i) holds and let (x∗n) be a weakly null sequence in X∗. Since
{x∗n : n ∈ N} is a relatively weakly compact subset of X∗, (x∗∗n ) converges to zero
uniformly on {x∗n : n ∈ N}. This proves (ii).

For (ii)⇒ (iii), let (x∗n) be a weakly Cauchy sequence in X∗. If (iii) does not hold
then by passing to a subsequence if necessary we may assume that |x∗∗n (x∗n)| > ε
for some ε > 0 and all n ∈ N. Since (x∗∗n ) is w∗-null, there is an increasing sequence
of natural numbers (kn) such that |x∗∗kn(x∗kn−1

)| < ε
2 . Now (x∗kn − x

∗
kn−1

) is weakly

null in X∗, but

|x∗∗kn(x∗kn − x
∗
kn−1

)| = |x∗∗kn(x∗kn)− x∗∗kn(x∗kn−1
)| > ε

2
,

which is a contradiction.
Let T be defined as in (iv). Assuming (iii), it is easy to show that (x∗∗n ) converges

to zero uniformly on every weakly Cauchy sequence in X∗. Let (x∗n) be such a
sequence. Then limn supk |x∗∗n (x∗k)| = 0. A quick computation now shows that
(T (x∗n)) is norm Cauchy in c0. Thus T is completely continuous.

Finally, to prove (iv) ⇒ (i), let K be a weakly compact subset of X∗ and let T
be as in (iv). Since T is completely continuous, T (K) is norm compact in c0. By a
well-known characterization of compact sets in c0, limn→∞ supx∗∈K |(T (x∗))n| = 0.
So x∗∗n converges uniformly to zero on K. Assertion (i) now follows.

The last statement follows immediately from the definition of the RightX topol-
ogy and the fact that the operator T ∗ maps (tn) ∈ `1 to

∑
n tnx

∗∗
n . �



CHAPTER 4. ON SEQUENTIALLY RIGHT BANACH SPACES 60

For any Banach space X, the RightX topology is the weakest locally convex
topology τ that makes every weakly compact operator, with X as its domain, τ -
to-norm continuous. Indeed, suppose τ is a locally convex topology on X that is
strictly weaker than RightX . Then there is a semi-norm p on X which is continuous
with respect to the RightX topology, but not with respect to τ (see, e.g., [28, p.
48]). According to [22, Proposition 2.2], we can assume p is of the form p(x) =
‖T (x)‖, x ∈ X, where T : X → Y is an operator into a reflexive space Y . Clearly,
T is weakly compact, but not τ -to-norm continuous. For sequential continuity we
can state the following.

Proposition 3.14. Let X be a Banach space and let τ be a locally convex topol-
ogy on X compatible with the duality 〈X,X∗〉 and weaker than RightX . Then the
following assertions are equivalent:

(i) For any Banach space Y , every weakly compact operator T : X → Y is
τ -to-norm sequentially continuous.

(ii) Topologies τ and RightX coincide sequentially on X.

Proof. By [16, Theorem 2], every weakly compact operator T : X → Y is τ -to-norm
sequentially continuous if and only if for any weakly null sequence (x∗n) in X∗ and
any τ -null sequence (xn) in X we have limn x

∗
n(xn) = 0. Using Lemma 3.13 and

the fact that τ is stronger than σ(X,X∗), it is the same as saying that every τ -null
sequence is Right-null. This completes the proof. �

Proposition 3.15 (cf. [14, Proposition 1 bis]). For a Banach space X, the follow-
ing assertions are equivalent:

(i) X has the Dunford-Pettis property.
(ii) Topologies σ(X,X∗) and RightX coincide sequentially.

(iii) Every (relatively) σ(X,X∗)-compact subset of X is (relatively) RightX-
compact.

(iv) For any Banach space Y , every pseudo weakly compact operator T : X →
Y is completely continuous.

Proof. The equivalence (i) ⇔ (ii) is just a restatement of Proposition 3.14 with
τ = σ(X,X∗). Equivalence of (ii) and (iii) follows from the fact that both topologies
σ(X,X∗) and RightX are angelic ([25, Definition 0.2]), in particular, from the
fact that every subset of X is (relatively) compact if and only if it is (relatively)
sequentially compact in the respective topologies (see [25, Theorem 1.2]). Trivially,
(ii) ⇒ (iv) and using Theorem 2.1, (iv) ⇒ (i). �

As a direct consequence we have:

Corollary 3.16. Let X be a Banach space with the Dunford-Pettis property. Then
the following assertions hold:

(a) For any Banach space Y , an operator T : X → Y is pseudo weakly compact
if and only if it is completely continuous.

(b) X is sequentially Right if and only if it has property (RDP).
(c) For any Banach space Y , an operator T : X → Y is Right completely

continuous if and only if it is weakly completely continuous.
(d) X has property (RD) if and only if it has property (D).
(e) R1(X) = B1(X).
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Remark 3.17. While condition (a) of Corollary 3.16 actually implies the Dunford-
Pettis property (see Proposition 3.15(iv)), this is not true for conditions (b)–(e).
Indeed, just consider an arbitrary infinite-dimensional reflexive space.

The next corollary improves [23, Proposition 14 and Corollary 15].

Corollary 3.18. Every Rcc operator is uc. Every Banach space with property (V)
has property (RD).

Proof. Let T : X → Y be an Rcc operator between two Banach spaces. Suppose
T is not unconditionally converging. Then there is an injection I : c0 → X such
that T ◦ I is an isomorphism (see, e.g., [8, p. 54]). Let us denote by (en) the
unit vector basis in c0. The sequence (

∑n
k=1 ek)n is weakly Cauchy but not weakly

convergent in c0. So the isomorphism T ◦ I is not a wcc operator. Since c0 has the
Dunford-Pettis property (see, e.g., [8, p. 113]), by Corollary 3.16(c) T ◦ I is not an
Rcc operator. This, however, contradicts the assumption. The second statement is
immediate. �

Proposition 3.19. Let X be a Banach space and let K ⊂ X∗ be a bounded subset.
The following assertions are equivalent:

(i) K is an R-set.
(ii) The σ(X∗, X)-closed absolutely convex hull of K is an R-set.

(iii) Every completely continuous operator T : X∗ → c0 such that T ∗(`1) ⊂ X
maps K into a relatively compact subset of c0.

(iv) For every ε > 0 there is an R-set Kε ⊂ X∗ such that

K ⊂ Kε + εBX∗ .

Proof. Let us start with (i)⇒ (ii). We denote by A the σ(X∗, X)-closed absolutely
convex hull of K. It is easily seen that A is an R-set if and only if every countable
subset of A is an R-set. It is also easy to see that an absolutely convex hull of an
R-set is an R-set. Without loss of generality, we may assume that K is absolutely
convex. Suppose (ii) does not hold. Then there is a Right-null sequence (xn) in X
and a sequence (x∗n) in A such that x∗n(xn) > ε for all n ∈ N and some ε > 0. For
every n, since x∗n is in the w∗-closure of K, there is y∗n ∈ K such that y∗n(xn) > ε.
Since {y∗n : n ∈ N} is not an R-set, neither is K. Converse implication (ii) ⇒ (i) is
trivial.

(i) ⇔ (iii): Lemma 3.13 shows there is one to one correspondence between
Right-null sequences in X and completely continuous operators T : X∗ → c0 with
T ∗(`1) ⊂ X. Indeed, if (xn) is a Right-null sequence in X, then the corresponding
operator T is defined as in Lemma 3.13(iv). Conversely, if T is such an operator
and (en) the unit basis in `1 then (T ∗(en)) defines the Right-null sequence in X
corresponding to T (again by Lemma 3.13).

If K is an R-set and T as in (iii), then by the observation above (T ∗(en)) is a
Right-null sequence in X. Hence

0 = lim
n

sup
x∗∈K

|〈T ∗(en), x∗〉| = lim
n

sup
x∗∈K

|〈en, T (x∗)〉|.

By the well-known characterization of compact sets in c0, T (K) is relatively com-
pact.

If, on the other hand, we suppose (iii) is true and (xn) is a Right-null sequence
in X, then the corresponding operator T maps K into a relatively compact set.
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Again, the characterization of compact subsets of c0 gives the uniform convergence
of (xn) to zero on K. Thus (iii) ⇒ (i).

(iv) ⇒ (iii): Suppose (iv) holds. Let T be as in (iii). Then, for every ε > 0,

T (K) ⊂ T (Kε) + εT (BX∗) ⊂ T (Kε) + ε‖T‖Bc0 ,
and T (Kε) is relatively compact. Hence, T (K) is relatively compact (see, e.g., [12,
p. 275]).

The implication (i) ⇒ (iv) is obvious. �

Proposition 3.20. Let X and Y be Banach spaces and let T : X → Y be an
operator. The following assertions are equivalent:

(i) T is pseudo weakly compact.
(ii) T ∗(BY ∗) is an R-set.

Proof. Assume (i) holds. Let (xn) be a Right-null sequence in X. Then

lim
n

sup
x∗∈T∗(BY ∗ )

|〈x∗, xn〉| = lim
n

sup
y∗∈BY ∗

|〈y∗, T (xn)〉| = lim
n
‖T (xn)‖ = 0.

This implies (ii). The argument above can be reversed to obtain (ii) ⇒ (i). �

Remark 3.21. An analogue of the Gantmacher’s theorem (see, e.g., [19, Theorem
3.5.13]) does not hold for pseudo weakly compact operators. Consider the identity
operator i : c0 → c0. The space c0 and all of its duals have the Dunford-Pettis
property (see, e.g., [7, p. 19]). Using Corollary 3.16(a), the identity operator on
a Banach space with the Dunford-Pettis property is pwc if and only if the space
is Schur. Thus we see immediately that i is not pwc, while i∗ : `1 → `1 is, and
again both i∗∗ and i∗∗∗ are not pwc. We remark that the space `∗∞ is not a Schur
space, because its predual contains `1 (see [7, p. 23]). The only conclusion in this
direction is a consequence of Corollary 3.10: An operator T is pwc if T ∗∗ is pwc.

A set U in a Hausdorff topological vector space (X, τ) is called sequentially open
if for every sequence (xn) ⊂ X converging to a point x ∈ U , xn belongs to U
eventually. I.e., if the complement of U is sequentially closed. The space X is said
to be C-sequential if every convex sequentially open subset of X is open. We refer
to [32] and [34] for more information on C-sequential spaces.

We say that the topological vector space X is a Ck-space if for each convex set
A ⊂ X, the set A is open in X provided that A ∩K is open in K for any compact
subset K of X.

Lemma 3.22. Let (X, τ) be a Hausdorff topological vector space such that the class
of compact subsets of X coincides with the class of sequentially compact subsets
of X. Then X is C-sequential if and only if X is a Ck-space.

Proof. Suppose first thatX is C-sequential. Let A be a convex subset ofX such that
A ∩K is open in K for every compact K ⊂ X. To prove that A is open, it suffices
to show that A is sequentially open. Let (xn) ⊂ X be a sequence converging to
some x ∈ A. Then the set L = {x, x1, x2, . . .} is compact in X. By the assumption,
A ∩ L is open in L and thus there is n0 ∈ N such that xn ∈ A for all n ≥ n0. So A
is sequentially open and hence open in X. This shows that X is a Ck-space.

Assume now that X is a Ck-space. Let U be a convex sequentially open subset
of X. Consider a compact subset K ⊂ X such that K 6⊂ U . We want to show that
U ∩ K is open in K, or equivalently, that (X \ U) ∩ K is closed in K. Let (xn)
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be a sequence in (X \ U) ∩ K. Since K is sequentially compact in X, there is a
subsequence (xnk) converging to a point x ∈ K. Since the set X \U is sequentially
closed, x ∈ X \ U . This shows that (X \ U) ∩K is sequentially compact in X and
hence compact in X. Since X is a Hausdorff space, (X \ U) ∩ K is a closed set
in X (see, e.g., [12, Theorem 3.1.8]). So we have shown that U ∩K is open in K
for every compact set K ⊂ X. Since X is a Ck-space, U is open. �

Theorem 3.23. Let X be a Banach space. The following assertions are equivalent:

(i) X is sequentially Right.
(ii) Every pseudo weakly compact operator T : X → `∞ is weakly compact.

(iii) Every R-subset of X∗ is relatively σ(X∗, X∗∗)-compact.
(iv) (X,RightX) is C-sequential.
(v) (X,RightX) is a Ck-space.

Proof. (ii) ⇒ (i): Suppose there is a Banach space Y and an operator T : X → Y
which is pwc but not weakly compact. Then there is an operator U : Y → `∞ such
that U ◦ T is not weakly compact (see [8, Chapter VII, Exercise 6]). Obviously,
U ◦ T is pwc. But this contradicts (ii).

(i) ⇒ (iii): Let K be an R-set in X∗. Denote by B(K) the space of all bounded
real valued functions on K with the norm ‖f‖ = supx∗∈K |f(x∗)|. The operator
T : X → B(K), defined by Tx(x∗) = x∗(x), for any x ∈ X and x∗ ∈ K, is easily
seen to be pwc, since K is an R-set. By the assumption (i), T is weakly compact,
and therefore also T ∗ is weakly compact (see, e.g., [19, Theorem 3.5.13]). For any
x∗ ∈ K, if we define F ∈ B(K)∗ by F (f) = f(x∗), then ‖F‖ = 1 and T ∗(F ) = x∗.
So K ⊂ T ∗(BB(K)∗), but the latter set is relatively weakly compact. Hence, K is
relatively weakly compact. (Cf. the proof of [21, Proposition 1].)

(iii) ⇒ (ii): Let T : X → `∞ be a pwc operator. By Proposition 3.20, T ∗(B`∗∞)
is an R-set, and so by (iii) it is relatively weakly compact. Hence T ∗, and therefore
T , is weakly compact.

The equivalence (i) ⇔ (iv) follows from Theorem 2.1 and the fact that a topo-
logical vector space X is C-sequential if and only if, for any Banach space Y , every
sequentially continuous operator T : X → Y is continuous (see [32, Theorem 2]).

The equivalence (iv) ⇔ (v) is a consequence of Lemma 3.22 and the fact that
the topology RightX is angelic (see [25, Theorem 1.2]). �

The next corollary generalizes [21, Corollary 5] stating that every Banach space
with property (V) has weakly sequentially complete dual.

Corollary 3.24. If X is a sequentially Right Banach space, then X∗ is weakly
sequentially complete.

Proof. Let (x∗n) be a weakly Cauchy sequence in X∗. Using Lemma 3.13, it is
easy to show that any Right-null sequence in X converges to zero uniformly on
K := {x∗n : n ∈ N}. Thus K is an R-set. Since X is sequentially Right, by
Theorem 3.23, K is relatively weakly compact. Hence (x∗n) is weakly convergent in
X∗. This shows that X∗ is weakly sequentially complete. �

In the previous paragraphs we have seen that coinciding of the Right topology
with the weak one sequentially is just another characterization of the Dunford-
Pettis property. Now we take a look at the other extreme: the norm topology.
Let X be a Banach space. Using Theorem 2.1, we can clearly see by looking at
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the identity operator that the Right topology coincides with the norm toplogy on
X if and only if X is reflexive. According to J. Borwein ([4]), Banach space X
is called sequentially reflexive provided the Mackey topology τ(X∗, X) coincides
sequentially with the norm topology on X∗. A result of P. Ørno ([20]) says that X
is sequentially reflexive if and only if X contains no copy of `1.

Proposition 3.25. A Banach space X is reflexive if and only if it is sequentially
Right and X∗ is sequentially reflexive.

Proof. The necessity is trivial. Let us show sufficiency. From the definition, if
X∗ is sequentially reflexive then the RightX topology coincides sequentially with
the norm topology. Hence the identity operator on X is pwc. Since X is also
sequentially Right, the identity is weakly compact and therefore X is reflexive. �

In spite of the fact that, by Rosenthal’s `1-theorem ([26]), the next corollary
is a weaker version of Corollary 3.24, we demonstrate an alternative proof using
Proposition 3.25.

Corollary 3.26. Let X be a sequentially Right Banach space. Then either

(i) X is reflexive, or
(ii) X∗ contains a copy of `1.

Proof. By Proposition 3.25, a non-reflexive sequentially Right Banach space cannot
have sequentially reflexive dual. Using the result of P. Ørno [20], X∗ must contain
a copy of `1. �

Example 3.27. Although non-containment of `1 in X∗ characterizes sequential co-
incidence of τ(X∗∗, X∗) and the norm topology on X∗∗, this condition is too strong
to characterize sequential coincidence of the RightX and the norm topology on X.
This example shows there is a Banach space which contains (even complemented)
copy of `1 in its dual, yet the Right and norm topologies coincide sequentially.

Indeed, the first Bourgain-Delbaen space X constructed in [5] is a non-reflexive
Schur space whose dual is weakly sequentially complete (and as such contains `1
by [26]). In fact, the dual space X∗ is isomorphic to M([0, 1]), the Banach space of
Radon measures on [0, 1].

Since, of course, X as a Schur space is not sequentially Right, this also shows
that Corollary 3.24 cannot be reversed.

Remark 3.28. There is, in general, no connection between ’sequential Rightness’
of a Banach space X and its bidual X∗∗. The classical chain of sequence spaces
c0, `1, `∞, `

∗
∞, shows that both can have the same sequential Rightness. The space

from Example 3.27 is not sequentially Right, but its bidual is isomorphic to a C(K)
space (see, e.g., [17, p. 20]) and thus has even property (V) ([21, Theorem 1]). On
the other hand, the Banach space X = (

∑
⊕`n1 )c0 has property (V) though its

bidual X∗∗ = (
∑
⊕`n1 )`∞ contains a complemented copy of `1 (see [27, p. 389]).

Proposition 3.29. Let X be a Banach space. The following assertions are equiv-
alent:

(i) The RightX topology coincides sequentially with the norm topology on X.
(ii) Every (relatively) RightX-compact subset of X is (relatively) norm-compact.

(iii) For any Banach space Y , every operator T : X → Y is pseudo weakly
compact.
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(iv) BX∗ is an R-set.
(v) Every bounded subset of X∗ is an R-set.

(vi) For any Right-null sequence (xn) in X and any bounded sequence (x∗n)
in X∗ one has limn x

∗
n(xn) = 0.

(vii) Every completely continuous operator T : X∗ → c0 such that T ∗(`1) ⊂ X
is compact.

Proof. (i) ⇔ (ii): Assume (i). If K ⊂ X is a (relatively) RightX -compact set,
then, by [25, Theorem 1.2], K is (relatively) sequentially RightX -compact. Using
the assumption (i), K is (relatively) sequentially norm-compact and hence (rela-
tively) norm-compact. The converse is obvious, since every RightX -null sequence
is relatively RightX -compact.

The implication (i) ⇒ (iii) is trivial.
(iii) ⇒ (iv): If (iii) holds and we consider the identity operator on X then, by

Proposition 3.20, BX∗ is an R-set.
Since every subset of an R-set is an R-set, the implication (iv) ⇒ (v) is obvious.
(v) ⇒ (vi): Assume (v) and let (xn) and (x∗n) be as in (vi). Then

lim
n
|x∗n(xn)| ≤ lim

n
sup
k∈N
|x∗k(xn)| = 0,

since {x∗n : n ∈ N} is a bounded set in X∗ and so, by the assumption, an R-set.
(vi) ⇒ (i): If (i) does not hold, then there is a Right-null sequence (xn) in X

which does not converge to zero in norm. Hence there is a sequence (x∗n) in BX∗

such that (x∗n(xn)) does not converge to zero. This contradicts (vi).
The equivalence of (iv) and (vii) follows from Proposition 3.19, where we put

K := BX∗ . �

Corollary 3.30. A Banach space X is a Schur space if and only if X has the
Dunford-Pettis property and BX∗ is an R-set.

Proof. The space X is Schur if and only if the weak and norm topologies coincide
sequentially on X, i.e., if and only if the RightX topology coincides with both
the weak and the norm topology sequentially. Combining Proposition 3.15 with
Proposition 3.29 yields the requested equivalence. �

Remark 3.31. Let us only remark that X∗ is a Schur space if and only if X has
the Dunford-Pettis property and X contains no copy of `1 (see [7, p. 23]).

Concerning compactness, it follows from [30, Proposition 3.1] that BX∗∗ is
τ(X∗∗, X∗)-compact if and only if X∗ is a Schur space. The situation is differ-
ent for the RightX topology. Indeed, if BX is RightX -compact, then it is weakly
compact and so X must be reflexive. Since in reflexive spaces the RightX and norm
topologies coincide, X is necessarily finite-dimensional.

Now we return back to the classification of operators and Banach spaces. Here,
for the convenience of the reader, we summarize the relations we have already estab-
lished. There is generally no connection between weakly compact and cc operators.
The identity operator on `2 is an example of a weakly compact operator that is
not cc, the identity on `1 is a non-weakly compact cc operator. That weakly com-
pact operators are both pwc and wcc has been mentioned in Preliminaries. Every
cc operator is trivially wcc. By Proposition 3.2, every cc operator is pwc and all
pwc operators are Rcc. Corollary 3.5 states that all wcc operators are Rcc and
Corollary 3.18 that every Rcc is uc. The identity on L1 provides an example of a
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wcc operator which is not pwc, since L1 has the Dunford-Pettis property and so
we can use Corollary 3.16. What remains is to show that there is a pwc operator
which is not wcc (see Example 3.33 below) and a uc operator that is not Rcc (see
Example 3.32 below).

As for Banach space properties, (V) ⇒ (RD) is shown in Corollary 3.18, (RD)
⇒ (SR) and (SR) ⇒ (RDP) in Corollary 3.3 and (RD) ⇒ (D) in Corollary 3.5.
(D) ⇒ (RDP) is mentioned in Preliminaries. Examples 3.32 and 3.33 below show
(RD) 6⇒ (V) and (D) 6⇒ (SR), respectively.

Example 3.32. Let Y be the second Bourgain-Delbaen space constructed in [5].
It is a non-reflexive Banach space with the Dunford-Pettis property that does not
contain c0 or `1 and its dual is isomorphic to `1.

Since Y does not contain `1, it has the Dieudonné property. As a Dunford-
Pettis space, it has also property (RD) by Corollary 3.16(d). However, since Y
is not reflexive and does not contain c0, it cannot possess property (V) (see [21,
Proposition 8]). This answers the question raised in [22] and [35] whether every
sequentially Right Banach space has property (V).

The identity operator i : Y → Y is clearly uc, since Y does not contain a copy of
c0. Since Y is not reflexive and does not contain `1, it cannot be weakly sequentially
complete (by [26]). Hence, i is not wcc. By Corollary 3.16(c), i is not Rcc.

Example 3.33. In [15], R.C. James constructed a separable non-reflexive Banach
space X isomorphic to its bidual. In particular, since X∗∗ is separable, neither X
nor X∗ contains an isomorphic copy of `1.

Since X does not contain `1, X has property (D). By Corollary 3.26, X cannot
be sequentially Right.

Since the dual space X∗ does not contain `1, the RightX topology coincides
with the norm topology on X sequentially (see the comments preceding Proposi-
tion 3.25). The identity operator i : X → X is therefore pwc. However, since X is
neither reflexive nor contains `1, X is not weakly sequentially complete and hence
i is not wcc.

Remark 3.34. The only loose end left is an example for (SR) 6⇒ (D). As far as we
know, the implication (RDP) 6⇒ (D) has been an open problem ever since it was
introduced by A. Grothendieck in [14]. The implication (SR) 6⇒ (RD) seems to be
analogical.

4. Vector-valued continuous functions

For a compact Hausdorff space K and a Banach space X we denote by C(K,X)
the Banach space of all X-valued continuous functions defined on K, endowed with
the supremum norm. It is a long-standing open problem whether the space C(K,X)
has property (V) (resp. (D), (RDP)) whenever X has the same property (see [27]).
For the Dunford-Pettis property this has been shown to be false by M. Talagrand
(see [33]). However, if the compact space K is scattered, then C(K,X) has property
(V) (resp. (D), (RDP), (DP)) if and only if X has the same property (see [6]).
Recall that a compact space K is scattered if every subset A of K has a point
relatively isolated in A. The aim of this section is to show that the equivalence above
holds also for properties (RD) and (SR). We use the same ideas and techniques as
in [6].
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Let K be a compact Hausdorff space and X a Banach space. We denote by B
the σ-algebra of Borel subsets of K. It is well-known that the dual space C(K,X)∗

is isometrically isomorphic to the Banach space M(K,X∗) of all regular countably
additive X∗-valued measures of bounded variation defined on the σ-algebra B and
equipped with the variation norm ‖m‖ = |m|(K). In fact, for any Banach space
Y and any operator T : C(K,X) → Y , there is a finitely additive set function
m : B → L(X,Y ∗∗), from B to the space of all operators from X to Y ∗∗, having
finite semi-variation m̂(K) with m̂(K) = ‖T‖ such that

T (f) =

∫
K

f dm for every f ∈ C(K,X)

(see, e.g., [9, p. 182]). This set function m is called the representing measure of T .
We recall that the semi-variation of m is defined by

m̂(E) = sup{
∥∥∥ n∑
i=1

m(Ei)(xi)
∥∥∥ : Ei ∈ B, Ei ⊂ E, {Ei}ni=1 pairwise disjoint,

xi ∈ BX , i = 1, . . . , n, n ∈ N}, E ∈ B

(see [2, p. 217]). The semi-variation m̂ is said to be continuous at ∅ if limn→∞ m̂(En) =
0 for every decreasing sequence En ↘ ∅ in B, or equivalently, if there exists a con-
trol measure for m̂, that is, a positive countably additive regular Borel measure λ
on K such that limλ(E)→0 m̂(E) = 0.

The representing measure m determines an extension T̂ : B(B, X) → Y ∗∗ of T ,
where B(B, X) denotes the Banach space of all strongly measurable functions on
B with values in X, i.e., the Banach space of all functions g : K → X which are
the uniform limit of a sequence of B-simple functions, endowed with the supremum
norm, given by

T̂ (g) =

∫
K

g dm, g ∈ B(B, X),

with ‖T̂‖ = ‖T‖ (see [2, Theorem 1]). This extension is just the restriction to
B(B, X) of the biadjoint T ∗∗ of T .

It has been shown in [10, Theorem 3] that if T is unconditionally converging
then m is L(X,Y )-valued and m̂ is continuous at ∅. In this case, by [2, Theorem

2], the extension T̂ maps B(B, X) into Y .
In the following we consider a compact Hausdorff space K and Banach spaces

X,Y .

Proposition 4.1. Let K be metrizable. Then an operator T : C(K,X) → Y is

Rcc if and only if its extension T̂ : B(B, X)→ Y ∗∗ is Rcc.

Proof. Let T : C(K,X) → Y be an Rcc operator. Then, by Corollary 3.18, T is

uc and so m is L(X,Y )-valued with a control measure λ and T̂ is Y -valued. Let (gn)
be a Right-Cauchy sequence in B(B, X) and let y∗∗ ∈ Y ∗∗ be the τ(Y ∗∗, Y ∗)-limit

of (T̂ (gn)) (recall that by [23, Lemma 12] every operator is Right-Right continuous

and so the sequence (T̂ (gn)) is Right-Cauchy in Y , hence τ(Y ∗∗, Y ∗)-convergent in
Y ∗∗).

Suppose, for contradiction, that y∗∗ 6∈ Y . Since y∗∗ is not σ(Y ∗, Y )-continuous,
by Grothendieck’s completeness theorem ([28, Chapter IV, Theorem 6.2]) it is not
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σ(Y ∗, Y )-continuous on BY ∗ . Hence there exist ε > 0 and a net (y∗α) ⊂ BY ∗ which
is σ(Y ∗, Y )-convergent to zero such that

|y∗∗(y∗α)| > ε for all α.(1)

Choose δ > 0, δ < λ(K), so that

m̂(E) <
ε

4 sup ‖gn‖
for each E ∈ B with λ(E) < δ.

According to Lusin’s theorem, for every n ∈ N, there exists a compact set Kn ⊂ K
such that λ(K \ Kn) < δ

2n and the restriction gn �Kn is continuous. Put K0 :=⋂∞
n=1Kn. Then λ(K \ K0) < δ and K0 6= ∅ since δ < λ(K). Let us denote

fn := gn �K0
for every n ∈ N.

We show that (fn) is Right-Cauchy in C(K0, X). Consider the restriction oper-
ator r : B(B, X) → B(B �K0 , X). Since (gn) is Right-Cauchy in B(B, X), (fn) is
Right-Cauchy in B(B �K0 , X). Every measure µ ∈ M(K0, X

∗) = C(K0, X)∗ can
be naturally extended to an element of B(B �K0

, X)∗. Using Proposition 3.9, (fn)
is Right-Cauchy in C(K0, X).

By the Borsuk-Dugundji theorem (see, e.g., [31, Theorem 21.1.4]), there is an
extension operator S : C(K0, X) → C(K,X), with ‖S‖ = 1, so that S(f) �K0= f
for every f ∈ C(K0, X). Since T ◦ S is an Rcc operator, (TS(fn)) is RightY -
convergent to an element y ∈ Y . Since (y∗α) is σ(Y ∗, Y )-convergent to zero there
exists an index α0 so that

|y∗α(y)| < ε

6
for all α ≥ α0.

Let α ≥ α0. There is n ∈ N verifying

|〈T̂ (gn)− y∗∗, y∗α〉| <
ε

6
and |〈TS(fn)− y, y∗α〉| <

ε

6
.

Thus we have

|y∗∗(y∗α)| ≤ |〈y∗∗ − T̂ (gn), y∗α〉|+ |〈T̂ (gn)− TS(fn), y∗α〉|
+ |〈TS(fn)− y, y∗α〉|+ |〈y, y∗α〉|

<
ε

2
+ ‖y∗α‖‖T̂ (gn)− TS(fn)‖

≤ ε

2
+
∥∥∥∫

K\K0

gn − S(fn) dm
∥∥∥

≤ ε

2
+ 2‖gn‖m̂(K \K0) < ε.

But this contradicts (1).

Conversely, if T̂ : B(B, X)→ Y ∗∗ is Rcc then, by Corollary 3.10, T : C(K,X)→
Y ∗∗ is Rcc. Hence, every Right-Cauchy sequence (fn) in C(K,X) is mapped into
a Right-convergent sequence in Y ∗∗. Since RightY ∗∗ -topology is compatible with
the norm topology and (T (fn)) is contained in the closed convex set Y ⊂ Y ∗∗, the
limit point y of (T (fn)) must be a member of Y (see, e.g., [28, Chapter IV, 3.1]).
Now, Proposition 3.9 implies that T (fn)→ y in the RightY -topology. �

Proposition 4.2. Let K be metrizable. Then an operator T : C(K,X) → Y is

pseudo weakly compact if and only if its extension T̂ : B(B, X) → Y ∗∗ is pseudo
weakly compact.
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Proof. Let T : C(K,X) → Y be a pwc operator. By Proposition 3.2(ii) and
Corollary 3.18, T is uc. Let m and λ be as in the proof of Proposition 4.1. Let

(gn) be a Right-null sequence in B(B, X). Suppose, for contradiction, that T̂ is not
pwc. Without loss of generality we may assume that there is ε > 0 so that

‖T̂ (gn)‖ > ε for all n ∈ N.(2)

Choose δ > 0, δ < λ(K), verifying

m̂(E) <
ε

4 sup ‖gn‖
for each E ∈ B with λ(E) < δ.

Reasoning as in the proof of Proposition 4.1, there exist a non-empty compact set
K0 ⊂ K with λ(K \K0) < δ such that fn = gn �K0 is continuous for all n ∈ N and
an isometric extension operator S : C(K0, X)→ C(K,X). By the same argument
as in the proof of Proposition 4.1, (fn) is Right-null in C(K0, X). So TS(fn)→ 0
in Y and there exists n0 ∈ N such that

‖TS(fn)‖ < ε

2
for all n ≥ n0.

Thus if n ≥ n0 one has

‖T̂ (gn)‖ ≤ ‖T̂ (gn)− TS(fn)‖+ ‖TS(fn)‖

<
∥∥∥∫

K\K0

gn − S(fn) dm
∥∥∥+

ε

2

≤ 2‖gn‖m̂(K \K0) +
ε

2
< ε.

But this contradicts (2).
The converse follows from Corollary 3.10. �

Lemma 4.3 ([6, Lemma 6]). Let K be a metrizable scattered compact space and
let T : C(K,X)→ Y be an operator whose representing measure m verifies

(i) m(B) ⊂ L(X,Y ),
(ii) m(E) : X → Y is weakly compact for each E ∈ B,

(iii) m̂ is continuous at ∅.
Then T is weakly compact.

Theorem 4.4. Suppose that K is scattered. Then C(K,X) is sequentially Right
(resp. has property (RD)) if and only if X has the same property.

Proof. The necessity follows from Proposition 3.8, since X can be identified with a
complemented subspace of C(K,X).

For the sufficiency, assume that X is sequentially Right (resp. has property
(RD)) and T : C(K,X)→ Y is a pwc (resp. Rcc) operator.

(A) Suppose first that K is metrizable. Since T is uc, by [10, Theorem 3] its
representing measure m satisfies conditions (i) and (iii) of Lemma 4.3. For each
E ∈ B we define an operator ΦE : X → B(B, X) by ΦE(x) = xχE , x ∈ X, where
χE is the characteristic function of E on K. It follows from Proposition 4.2 (resp.

4.1) that the operator m(E) = T̂ ◦ΦE : X → Y is pwc (resp. Rcc) and so, since X is
sequentially Right (resp. has property (RD)), m(E) is weakly compact. Therefore,
all conditions of Lemma 4.3 are satisfied and thus T is weakly compact.

(B) For a general K, let (fn) be an arbitrary sequence in the unit ball of C(K,X).
The method used in [2, p. 236] shows there is a subspace H of C(K,X) such that
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(fn) ⊂ H and H is isometric to some C(L,X), where L is a compact metric space
and a quotient space of K. Since a metrizable quotient space of a scattered space is
scattered (see [31, Proposition 8.5.3]), L is scattered. Corollary 3.10 in conjunction
with the part (A) of this proof shows that T �H is weakly compact. So there is
a subsequence (fnk) of (fn) such that (T (fnk)) is weakly convergent in Y . This
shows that T is weakly compact. �

Analogues of Propositions 4.1 and 4.2 for cc, wcc and uc operators and general
compact Hausdorff space K have been shown in [3]. The arguments of [3] cannot be
employed here, since, unlike the weak topology, the Right topology is not preserved
under subspaces in general. We do not know whether the metrizability assumption
in Propositions 4.1 and 4.2 can be dropped completely. In the rest of this paper we
show, however, that it is possible under the Continuum Hypothesis (CH) or if the
weight of K is at most ℵ1.

Let M and N be arbitrary Hausdorff topological spaces and let F be a map
from M to non-empty subsets of N . We say that F is upper semi-continuous (usc)
if {m ∈ M : F (m) ∩ C 6= ∅} is closed for every closed subset C of N . A map
f : M → N is called a selection for F if f(m) ∈ F (m) for all m ∈ M . The
weight w(M) of the topological space M is the smallest cardinality of a base for
the topology of M . We denote by B(M) the σ-algebra of Borel subsets of M . If M
is completely regular in addition then B0(M) will be the σ-algebra of Baire subsets
of M , i.e., the σ-algebra generated by the zero-sets of continuous functions on M .
We recall that if M is a normal space then the zero-sets of continuous functions
on M are precisely the closed Gδ-subsets of M and if M is a metric space then
B0(M) = B(M) (see, e.g., [31, Proposition 6.5.2]).

Lemma 4.5. Let (gn) be a Right-null sequence in B(B(K), X). Let K0 be a
compact subset of K such that gn �K0

∈ C(K0, X) for all n ∈ N. Assume (CH)

or w(K0) ≤ ℵ1. Then there is a Right-null sequence (f̃n) in C(K,X) such that

‖f̃n‖ ≤ ‖gn‖ and f̃n(t) = gn(t) for every t ∈ K0 and n ∈ N.

Proof. Put fn := gn �K0 for all n ∈ N. We have already shown in the proof of
Proposition 4.1 that (fn) is Right-null in C(K0, X).

We will continue by employing the method from [2, p. 236]. Let us define the
pseudo-metric p (see, e.g., [1, p. 15] for the definition of pseudo-metric) on K0 by

p(t, t′) =

∞∑
n=1

2−n‖fn(t)− fn(t′)‖, t, t′ ∈ K0.

Let L be the set of equivalence classes τ of K0 under the relation: t ∼ s if and only if
p(t, s) = 0. The continuous mapping φ : t 7→ τ of a point t ∈ K0 into its equivalence
class is a continuous mapping from K0 onto L and thus L is a compact metric space
equipped with the metric ρ(τ, τ ′) = p(t, t′), t ∈ τ, t′ ∈ τ ′. The mapping i : h 7→ h◦φ
defines an isometric embedding of C(L,X) into C(K0, X). We denote by H the
image of C(L,X) in C(K0, X) under i. Clearly, fn ∈ H for all n ∈ N.

Now we show that (fn) is Right-null in H. Consider the multi-valued map
F : L→ 2K0 defined by F (τ) = φ−1(τ), τ ∈ L. Since φ is continuous, F is compact-
valued and usc. If we assume (CH) (resp. w(K0) ≤ ℵ1) then, by [13, Theorem 7]
(resp. [13, Theorem 3]), there exists a B(L)-B0(K0)-measurable selection ϕ for
F . It is easy to verify that every continuous function f ∈ C(K0, X) is a uniform
limit of B0(K0)-simple functions. Since Φ : g 7→ g ◦ ϕ defines a bounded linear
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map from the normed vector space of all B0(K0)-simple functions to B(B(L), X),
extending Φ by continuity to all of B(B0(K0), X) and then restricting to C(K0, X)
provides an operator, denoted again by Φ, from C(K0, X) into B(B(L), X) such
that Φ(f) ∈ C(L,X) and i(Φ(f)) = f for every f ∈ H. Hence, (Φ(fn)) is Right-null
in B(B(L), X) and so, by the same argument as in the proof of Proposition 4.1,
Right-null in C(L,X). Since fn = i(Φ(fn)) for all n ∈ N, (fn) is Right-null in H.

The theorem of Arens [1, Theorem 4.2] (put A := K0, X := K,F := BH ,K :=
BX , L := X and q := p) yields an extension operator S : H → C(K,X) with

‖S‖ = 1. Defining f̃n := S(fn), n ∈ N, finishes the proof. �

Proposition 4.6. Assume (CH) or w(K) ≤ ℵ1. Then Propositions 4.1 and 4.2
hold without the metrizability assumption.

Proof. The only reason for the metrizability asumption on K in Propositions 4.1
and 4.2 was the Borsuk-Dugundji theorem. We used this theorem only to obtain
the conclusion of Lemma 4.5. �
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