
Univerzita Karlova v Praze

Matematicko – Fyzikálńı Fakulta

Propositional Proof Complexity
and Rewriting

Stefano Cavagnetto

Doktorská Disertačńı Práce
2008

Školitel: Prof. RNDr. Jan Kraj́ıček, DrSc.

Obor M1 – Algebra, teorie č́ısel a matematická logika

Charles University in Prague

Faculty of Mathematics and Physics

Propositional Proof Complexity
and Rewriting

Stefano Cavagnetto

Doctoral Dissertation
2008

Thesis Advisor: Prof. RNDr. Jan Kraj́ıček, DrSc.

Branch M1 – Algebra, Number Theory and Mathematical Logic

Propositional Proof Complexity 3

Abstract

In this work we want to find a new framework for propositional proofs (and in
particular for resolution proofs) utilizing rewriting techniques. We interpret
the well-known propositional proof system resolution using string rewriting
systems (semi-Thue system [70], [71]) Σ∗

n and Σn corresponding to tree-like
proofs and sequence-like proofs, respectively. We prove that the system Σ∗

n

is complete and sound with respect to tree-like Resolution R∗ (and we show
how it is possible to obtain the same result for R). Using this interpretation
we give a representation of Σ∗

n using planar diagrams in van Kampen style.
In this representation we show how the classical complexity measures for
Resolution (size, width and space) can be interpreted.

Subsequently, we consider rewriting in a synchronous, parallel fashion as
it is used in the theory of cellular automata. In this respect, we give a new
proof of Richardson theorem [63](a global function GA of a cellular automaton
A is injective if and only if the inverse of GA is a global function of a cellular
automaton), a classical result in the field, exploiting only propositional logic.
In particular, we show how compactness of propositional logic and Craig’s
interpolation theorem suffice in order to prove the theorem. Moreover, we
show a way how to construct the inverse cellular automaton using the method
of feasible interpolation from [49].

We also solve two problems regarding complexity of cellular automata for-
mulated by Durand [32]. The first problem can be stated as follows: consider
finite bounded configurations and a reversible cellular automaton that is given
by a “simple” algorithm. Is the inverse automaton given by a “simple” al-
gorithm too? The second problem is the following: the injectivity problem
of cellular automata on bounded size is coNP-complete, [32]; does the result
still hold if we consider instead of the size of the transition table, the smallest
program (circuit) which computes its transition table?

Finally, we present a new proof system based on cellular automata. Most
of the results in this work have been written up in articles, see [16] and [17].

4 S. Cavagnetto

Acknowledgements

I am deeply grateful to my supervisor Jan Kraj́ıček for many reasons. First,
by him I have been introduced to the interesting field of Propositional Proof
Complexity. Second, the variety and the beauty of topics he exposed to me
have contributed to shape my knowledge on Mathematical Logic and increase
my love for the Mathematics and its history. In fine, he gave me encourage-
ment and I really got a vigorous help and every possible support from him
during all these years of study.

I wish to thank also other people that during these last four years con-
tributed to influence my view of relevant mathematics in various ways. I am
indebted with Pavel Pudlák for many discussions on mathematics. I thank
Neil Thapen for his effort on teaching me a lot of model theory and for be-
ing so patient and kind in front of all my questions on Mathematical Logic.
I also thank Emil Jeřábek, Radek Honzik and Pavel Hrubeš of the Institute
for many discussions over the years. Finally, I want to thank the Institute
of Mathematics of the Academy of Sciences of Czech Republic for the envi-
ronment of its seminars, activities and the financial support during all these
years.1

I wish to thank and dedicate this work to Maddalena who has followed me
to Prague for my doctoral studies in Mathematics and has enthusiastically
supported me all this time.

1Grants #A1019401, AVOZ10190503, Institute of Mathematics, Academy of Sciences
of Czech Republic.

Contents

Abstract . 3
Acknowledgements . 4
Preface . 6

1 Propositional Proof Complexity 9
1.1 Some technical preliminaries 10
1.2 The complexity of propositional proofs 14
1.3 Resolution . 17
1.4 Interpolation and effective interpolation 19
1.5 “Mathematical” proof systems 25

2 String Rewriting and Propositional Proof Complexity 29
2.1 The String rewriting system Σ∗

n 31
2.2 Σ∗

n and R∗: the tree-like case 33
2.3 Planar Diagrams representing proofs in Σ∗

n 40
2.4 Resolution and Σn: the dag-like case 47
2.5 Some remarks . 55

3 Applications of Propositional Logic to Cellular Automata 57
3.1 Cellular Automata: definitions and some basic results 59
3.2 A proof of the Richardson theorem via propositional logic . . . 64
3.3 Some complexity results . 68

4 Inverse Cellular Automata as propositional proofs 75
4.1 Durand’s Theorem . 75
4.2 A proof system based on cellular automata 78
4.3 Some remarks . 79
Concluding remarks . 81
List of Figures . 83
Bibliography . 84

5

6 S. Cavagnetto

Preface

In this work we take the basic idea of rewriting as transformation of some ob-
ject by step by step activity and we embed it in the context of the complexity
of propositional proofs. This transformation is obtained by the application
of some rewriting rules suitably choosen. We interpret these applications of
rewriting rules in sequence as a proof in the classical sense; and this offers
some room for a proper mathematical investigation.

In more detail, we want understand how the formalism of rewriting allows
us to formulate basic proof systems. We study Resolution and its tree-like
version. This simulation by rewriting system is fairly straightforward but
requires certain patience with technical details. Exploiting this new formal-
ization we give a representation of the tree-like case by planar diagrams in
van Kampen style. As a by-product we have an interpretation of several proof
complexity measures such as the space or the width in essentially geometric
terms. This in some sense extends to Resolution some geometric interpre-
tations that were known only for the so called group-based proof systems
considered in [47].

A second motivation for studying proof systems in terms of rewriting
is the hope to gain, using also the diagrammatic interpretation mentioned
earlier, some intuition for proof search heuristic. One may expect that a
heuristic formulated in terms of strategies for rewriting systems could apply
also to more complex rewriting systems that would simulate stronger proof
systems than Resolution. Virtually no heuristic for proof search in strong
proof systems is known. In particular, we also consider our present work as
a first step toward using rewriting systems in proof complexity that oper-
ate synchronously in parallel on all symbols of a string (or an array) as for
example, cellular automata do. These discrete dynamical systems and mod-
els of massively parallel computation [31] are away from the contemporary
research in proof complexity and the area is rich of numerous “experimen-
tal/heuristic” methods. This is not the miraculous recipe for proving that
TAUT is polynomial size, but to enhance our proof-search methods, in par-
ticular, in searching for very long proofs. In the second part of this work
we introduce cellular automata in the field of proof complexity. We show
also that a powerful method such as that of feasible interpolation can be ex-
ploited in order to solve problems concerning cellular automata. Thus, it is a
fundamental step to build a suitable framework in order to investigate prop-
erly their capability in the study of the complexity of proofs. The rewriting
approach can give us this unified framework, since one of the basic ways to
formalize them is to use tables of local rewriting rules [42]. Moreover, we re-
call that from the computability point of view Turing Machines and cellular

Propositional Proof Complexity 7

automata, the latter ones considered on finite configurations, are equivalent,
but from the complexity point of view, cellular automata are much more effi-
cient; see [31], Part 3 and [77]. This fact could also have some consequences
in proof complexity concerning the way in which we formulate proof systems.
At the moment, we do not prove new lower bounds (which are considered
the most appreciated results of the field of propositional proof complexity)
but we hope the approach proposed here can open a new perspective on the
analysis of the complexity of propositional proofs.

The work is organized as follows. The first chapter is a self-contained
exposition of some of the most important concepts in complexity theory and
propositional proof complexity. Almost all the concepts from these two fields
used later on in this work are presented here. As general references the reader
can see [45], [59], [46], [26], [65], [57] and [77].

The second chapter deals with the rewriting techniques and it introduces
the semi-Thue systems. We define a new semi-Thue system and we prove
that this system is complete and sound with respect to tree-like Resolution
R∗. Exploiting this new formalization we give a representation of the tree-like
case by planar diagrams in van Kampen style. We give also a characterization
of all the complexity measures regarding R using planar diagrams. Finally
we consider the dag-like case for resolution proofs and we propose an example
of formalization of usual proofs using rewriting.

In the third chapter we consider rewriting from a different perspective.
Rewriting is not performed sequentially anymore, as it happens for classi-
cal semi-Thue system, but in parallel and in a synchronous way. Thus the
natural place where to look at is the theory of cellular automata. In this
chapter we consider several applications of propositional logic to cellular au-
tomata. We give a new proof of one of the classical result about cellular
automata, the Richardson Theorem. Our proof exploits the compactness of
propositional logic and Craig’s interpolation theorem. In the same chapter
we show how to use feasible interpolation to find the description of inverse
cellular automata. We conclude this chapter by solving two problems about
complexity of cellular automata left open in [32].

The last chapter deals with inverse cellular automata as propositional
proofs. In this chapter we combine Richardson’s theorem with a coNP-
completeness result obtained by Durand [32] and we define a new proof
system. We show that this new proof system can be thought of also as a
propositional proof system in the sense of Cook and Reckhow [25].

8 S. Cavagnetto

Chapter 1

Propositional Proof Complexity

Two fields connected with computers, automated theorem proving on one
side and computational complexity theory on the other side, gave the birth
to the field of propositional proof complexity in the late ’60s and ’70s. In
this chapter we recall some basics about computational complexity theory
and we introduce some fundamental concepts of propositional proof com-
plexity. It is organized as follows: in the next section we recall some of the
basic definitions in computational complexity theory; for a self-contained ex-
position of the field the interested reader can see [65], [57]. In section 2 we
introduce some basic definitions from propositional proof complexity and we
recall an important result by Cook and Reckhow [24] which gives an inter-
esting link between complexity of propositional proofs and one of the most
beautiful open problem in contemporary mathematics (the famous P versus
NP problem, [26], [58], [66], [76], [67]). There are many survey papers on
propositional proof complexity offering different emphasis, see [75], [21] and
[59]. The reader interested in connections with bounded arithmetic can see
[45]. Section 3 considers one of the most investigated proof system for propo-
sitional logic, the proof system Resolution R. Section 4 introduces feasible
interpolation. This technique has been applied successfully in several part of
the field in proving lower bounds and in order to gain a better understanding
of automatizability of proof search. For a greater completness we recall in
some detail the proof of feasible interpolation for R, [49]. We conclude the
chapter with a section devoted to the idea of “mathematical” proof system;
as an example in this section we present the proof system Cutting Planes
CP .

9

10 S. Cavagnetto

1.1 Some technical preliminaries

In 1936 Alan Turing [74] introduced the standard computer model in com-
putability theory, the Turing machine. A Turing machine M consists of
a finite state control (a finite program) attached to read/write head which
moves on an infinite tape. The tape is divided into squares. Each square is
capable of storing one symbol from a finite alphabet Γ. b ∈ Γ, where b is the
blank symbol. Each machine has a specified input alphabet Σ ⊆ Γ where
b /∈ Σ. M is in some finite state q (in a specified finite set Q of possible
states), at each step in a computation. At the beginning a finite input string
over Σ is written on adjacent squares of the tape and all other squares are
blank. The head scans the left-most symbol of the input string, and M is
in the initial state q0. At every step M is in some state q and the head
is scanning a square on the tape containing some symbol s, and the action
performed depends on the pair (q, s) and is specified by the machine’s trans-
action function (or program) δ. The action consists of printing a symbol on
the scanned square, moving the head left or right of one square, and taking
a new state.

Formally the model introduced by Turing can be presented as follows.
It is a tuple 〈Σ,Γ, Q, δ〉 where Σ, Γ, Q are nonempty sets with Σ ⊆ Γ and
b ∈ Γ−Σ. The state set Q contains three special states q0, qaccept and qreject.
The transition function δ satisfies:

δ : (Q − {qaccept, qreject}) × Γ → Q × Γ × {−1, 1}.
δ(q, s) = (q′, s′, h) is interpreted as: if M is in the state q scanning the symbol
s then q′ is the new state, s′ is the new symbol printed on the tape, and the
tape head moves left or right of one square (this depends whether h is −1
or 1). We assume Q ∩ Γ = ∅. A configuration of M is a string xqy with
x, y ∈ Γ∗, y is not the empty string, q ∈ Q. We interpret the configuration
xqy as follows: M is in state q with xy on its tape, with its head scanning
the left-most symbol of y.

Definition 1.1.1 If C and C ′ are configurations, then C
M→ C ′ if C = xqsy

and δ(q, s) = (q′, s′, h) and one of the following holds:

1. C ′ = xs′q′y and h = 1 and y is nonempty.

2. C ′ = xs′q′b and h = 1 and y is nonempty.

3. C ′ = x′q′as′y and h = −1 and x = x′a for some a ∈ Γ.

4. C ′ = q′bs′y and h = −1 and x is empty.

Propositional Proof Complexity 11

A configuration xqy is halting if q ∈ {qaccept, qreject}.

Definition 1.1.2 A computation of M on input w ∈ Σ∗, where Σ∗ is the set
of all finite string over Σ, is the unique sequence C0, C1, . . . of configurations

such that C0 = q0w (or C0 = q0b if w is empty) and Ci
M→ Ci+1 for each i

with Ci+1 in the computation, and either the sequence is infinite or it ends
in a halting configuration.

If the computation is finite, then the number of steps is one less than the
number of configurations; otherwise the number of steps is infinite.

Definition 1.1.3 M accepts w if and only if the computation is finite and
the final configuration contains the state qaccept.

Informally the complexity class P is the class of decision problems solv-
able by an some algorithm within a number of steps bounded by some fixed
polynomial in the lenght of the input. Formally the elements belonging to the
class P are languages. Let Σ be a finite alphabet with at least two elements,
and Σ∗, as above, the set of all finite strings over Σ. A language over Σ is
L ⊆ Σ∗. Each Turing machine M has an associated input alphabet Σ. For
each string w ∈ Σ∗ there exists a computation associated with M and with
input w. We said above1 that M accepts w if this computation terminates in
the accepting state.2 The language accepted by M that we denote by L(M)
has associated alphabet Σ and is defined by

L(M) = {w ∈ Σ∗| M accepts w}.

Let tM(w) be the number of steps in the computation of M on input w. If
this computation never halts then tM (w) = ∞. For n ∈ N we denote by
TM (n) the worst case run time of M ; i.e.

TM (n) = max{tM (w)| w ∈ Σn}

where Σn is the set of all strings over Σ of lenght n. Thus, we say that M runs
in polynomial time if there exists k such that for all n, TM(n) ≤ nk +k. Then
the class P of languages can be defined by the condition that a language L
is in P if L = L(M) for some Turing machine M which runs in polynomial
time.

1See Definition 1.1.3.
2Notice that M fails to accept w if this computation ends in the rejecting state, or if

the computation fails to terminate.

12 S. Cavagnetto

The complexity class NP can be defined as follows using the notion of
a checking relation, which is a binary relation R ⊆ Σ∗ × Σ∗

1 for some finite
alphabets Σ and Σ1. We associate with each such relation R a language LR

over Σ∪Σ1∪{#} defined by LR = {w#y| R(w, y)}, where the symbol # /∈ Σ.
R is polynomial time if and only if LR ∈ P . The class NP of languages can
be defined by the condition that a language L over Σ is in NP if there is
k ∈ N and a polynomial time checking relation R such that for all w ∈ Σ∗,

w ∈ L ⇐⇒ ∃y(|y| ≤ |w|k ∧ R(w, y))

where |w| and |y| denote the lenghts of w and y, respectively.

The question of whether P = NP is one of the greatest unsolved prob-
lem in theoretical computer science and in contemporary mathematics. Most
researchers believe that the two classes are not equal (of course, it is easy to
see that P ⊆ NP). At the beginning of the ’70s Cook and Levin, indepen-
dently, pointed out that the individual complexity of certain problems in NP
is related to that of the entire class. If a polynomial time algorithm exists
for any of these problems then all problems in NP would be polynomially
solvable. These problems are called NP-complete problems. Since that time
thousands of NP-complete problems have been discovered. We recall here
only the first and probably one of the most famous of them, the satisfiability
problem. For a collection of these problems the interested reader can see [35].

Let φ be a Boolean formula in the De Morgan language with constants
0, 1 (the truth values FALSE and TRUE) and propositional connectives:
unary ¬ (the negation) and binary ∧ and ∨ (the conjunction and the dis-
junction, respectively). A Boolean formula is said to be satisfiable if some
assignment of 0s and 1s to the variables makes the formula evaluate to 1. The
satisfiability problem is to test whether a Boolean formula φ is satisfiable;
this problem is denoted by SAT . Let SAT = {〈φ〉 |φ is a satisfiable Boolean
formula}.

Theorem 1.1.4 (Cook [23], Levin [50]) SAT ∈ P if and only if P =
NP.

Suppose that Li is a language over Σi, i = 1, 2. Then L1 ≤p L2 (L1

is polynomially reducible to L2) if and only if there is a polynomial time
computable function f : Σ∗

1 → Σ∗
2 such that

x ∈ L1 ⇐⇒ f(x) ∈ L2,

for all x ∈ Σ∗
1.

Propositional Proof Complexity 13

Definition 1.1.5 A language L is NP-complete if L ∈ NP and every lan-
guage L′ ∈ NP is polynomial time reducible to L.

A language L is said NP-hard if all languages in NP are polynomial time
reducible to it, even though it may not be in NP itself.

The heart of Theorem 1.1.4 is the following one.

Theorem 1.1.6 SAT is NP-complete.

Consider the complement of SAT . Verifying that something is not present
seems more difficult than verifying that it is present, thus it seems not ob-
viously a member of NP. There is a special complexity class, coNP, con-
taining the languages that are complements of languages of NP . This new
class leads to another open problem in computational complexity theory. The
problem is the following: is coNP different from NP? Intuitively the answer
to this problem, as in the case of the P versus NP problem, is positive. But
again we do not have a proof of this.

Notice that the complexity class P is closed under complementation. It
follows that if P = NP then NP = coNP . Since we believe that P �=
NP the previous implication suggests that we might attack the problem by
trying to prove that the class NP is different from its complement. In the
next section we will see that this is deeply connected with the study of the
complexity of propositional proofs in mathematical logic.

We conclude this section by recalling some basic definitions from circuit
complexity which will be used afterwards and the classical notation for the
estimate of the running time of algorithms, the so called Big-O and Small-o
notation for time complexity.

Definition 1.1.7 A Boolean Circuit C with n inputs variables x1, . . . , xn

and m outputs variables y1, . . . , xm and basis of connectives Ω = {g1, . . . ,
gk} is a labelled acyclic directed graph whose out-degree 0 nodes are labeled by
yj’s, in-degree 0 nodes are labeled by xi’s or by constants from Ω, and whose
in-degree � ≥ 1 nodes are labeled by functions from Ω of arity �.

The circuit computes a function C : 2n → 2m in an obvious way, where
we identify {0, 1}n = 2n.

Definition 1.1.8 The size of a circuit is the number of its nodes. Circuit
complexity C(f) of a function f : 2n → 2m is the minimal size of a circuit
computing f .

14 S. Cavagnetto

In one form of estimation of the running time of algorithms, called the
asymptotic analysis, we look for understanding the running time of the al-
gorithm when large inputs are considered. In this case we consider just the
highest order term of the expression of the running time, disregarding both
coefficient of that term and any other lower term. Throughout this work we
will use the asymptotic notation to give the estimate of the running time of
algorithms and procedures. Thus we think that for a self-contained presen-
tation it is perhaps worth to recall the Big-O and Small-o notation for time
complexity. Let R

+ be the set of real numbers greater than 0. Let f and g
be two functions f , g : N → R

+. Then f(n) = O(g(n)) if positive integers c
and n0 exist so that for every integer n ≥ n0, f(n) ≥ cg(n).3 In other words,
this definition points out that if f(n) = O(g(n)) then f is less than or equal
to g if we do not consider differences up to a constant factor. The Big-O
notation gives a way to say that one function is asymptotically no more than
another. The Small-o gives a way to say that one function is asymptotically
less than another. Formally, let f and g be two functions f , g : N → R

+.
Then f(n) = o(g(n)) if

lim
n→∞

f(n)/g(n) = 0.

1.2 The complexity of propositional proofs

The complexity of propositional proofs has been investigated systematically
since late ’60s.4 Cook and Reckhow in [24], [25] gave the general definition of
propositional proof system. To be able to introduce their definition that plays
a central role in our work and is foundamental in the theory of complexity
of the propositional proofs, we start from an example that must be familiar
to anyone who has some basic knowledge of mathematical logic.

Let TAUT be the set of tautologies in the De Morgan language5 with
constants 0, 1 (the truth values FALSE and TRUE) and propositional
connectives: unary ¬ (the negation) and binary ∧ and ∨ (the conjunction and
the disjunction, respectively). The language also contains auxiliary symbols
such as brackets and commas. The formulas are built up using the constants,
the atoms (propositional variables) p0,. . . , pn, and the connectives. Consider
the following example of set of axioms taken from Hilbert’s and Ackermann’s
work [37], where A → B is just the abbreviation of ¬A ∨ B,

1. A ∨ (A → A)

3When f(n) = O(g(n)) we say that g(n) is an asymptotic upper bound for f(n).
4The earliest paper on the subject is an article by Tseitin [73].
5Introduced in the previous section when we defined the problem SAT

Propositional Proof Complexity 15

2. A → (A ∨ B)

3. (A ∨ B) → (B ∨ A)

4. (B → C) → ((A ∨ B) → A ∨ C))

The only inference rule is modus (ponendo) ponens6 (MP), A → B,A/B (i.e.
A,¬A ∨ B/B).

The literature of mathematical logic contains a wide variety of proposi-
tional proof systems formalized with a finite number of axiom schemes and
a finite number of inference rules. The example above is just one of many
possible different formalizations. Any of such systems is called a Frege Sys-
tem and denoted by F . A more general definition for Frege systems can be
given using the concept of a Frege rule.

Definition 1.2.1 A Frege rule is a pair ({φ1(p0, ..., pn), ..., φk(p0, ..., pn)},
φ(p0, ...,pn)), such that the implication

φ1 ∧ ... ∧ φk → φ

is a tautology. We use p0,. . . , pn for propositional variables and usually we
write the rule as

φ1, . . . , φk

φ
.

Notice that a Frege rule can have zero premisses and in which case it is called
an axiom schema (as the example above for the axioms (1) to (4)).

Definition 1.2.2 A Frege system F is determined by a finite complete set
of connectives and a finite set of Frege rules. A formula φ has a proof in F
if and only if φ ∈ TAUT .7 F is implicationally complete.8

As consequence of the schematic formalization we have that, the relation
“w is a proof of φ in F” is a polynomial time relation of w and φ.

We consider all finite objects in our proofs as encoded in the binary
alphabet {0, 1}. In particular, we consider TAUT as a subset of {0, 1}∗. The
length of a formula φ is denoted |φ|. The properties above lead to a more
abstract definition of proof system [24],

6In Latin, the mode that affirms by affirming.
7The “if” direction is the completeness and the “only” direction is the soundness of F .
8Recall that F is implicationally complete if and only if any φ can be proved in F from

any set {δ1,· · · ,δn} if every truth assignment satisfying all δi’s satisfies also φ.

16 S. Cavagnetto

Definition 1.2.3 (Cook Reckhow [24]) A propositional proof system is
any polynomial time computable function P : {0, 1}∗ → {0, 1}∗ such that
Rng(P) = TAUT . Any w ∈ {0, 1} such that P (w) = φ is called a proof of φ
in P .

Any Frege system can be seen as a propositional proof system in this
abstract perspective. In fact, consider the following function PF ,

PF (w) =

{
φ if w is a proof of φ in P

1 otherwise

Definition 1.2.4 A propositional proof system P is polynomially bounded if
there exists a polynomial p(x) such that any φ ∈ TAUT has a proof w in P
of size |w| ≤ p(|φ|).

In other words, any propositional proof system P that proves all tautolo-
gies in polynomial size is polynomially bounded. In [24] has been proved
the following fundamental theorem relating propositional proof complexity
to computational complexity theory. We report the theorem and the sketch
of the proof.

Theorem 1.2.5 (Cook Reckhow [24]) NP = coNP if and only if there
exists a polynomially bounded proof system P .

Proof. Notice that since SAT is NP-complete and for all ¬φ, ¬φ /∈ TAUT
if and only if φ ∈ SAT , TAUT must be coNP-complete. Assume NP =
coNP . Then by hypothesis TAUT ∈ NP . Hence there exists a polynomial
p(x) and a polynomial time relation R such that for all φ,

φ ∈ TAUT if and only if ∃y(R(φ, y) ∧ |y| ≤ p(|φ|)).
Now define the propositional proof system as follows:

P (w) =

{
φ if ∃y(R(φ, y) and w = (φ, y)

1 otherwise

It is clear that P is polynomially bounded.
For the opposite direction assume that P is a polynomially bounded proposi-
tional proof system for TAUT . Let p(x) be a polynomial satisfying Definition
1.2.4. Since for all φ,

φ ∈ TAUT if and only if ∃w(P (w) = φ ∧ |w| ≤ p(|φ|),

Propositional Proof Complexity 17

we get that TAUT ∈ NP . Let R ∈ coNP . By the coNP-completeness of
TAUT , R is polynomially reducible to TAUT . Since TAUT ∈ NP then so is
R. This shows that coNP ⊆ NP and consequently also that coNP = NP .

�

Hence, if we believe that NP �= coNP then there is no polynomially
bounded propositional proof system for classical tautologies. Recall from
the previous section that if NP �= coNP then P �= NP. To prove that
NP �= coNP is equivalent, by Theorem 1.2.5, to prove that there is no
propositional proof system that proves all classical tautologies in polynomial
size. This line of research gave rise to the program of proving lower bounds
for many propositional proof systems. As mentioned in [46] it would be
unlikely to prove that NP �= coNP in this incremental manner by showing
exponential lower bounds for all the proof systems known.9 This is like
trying to prove a universal statement by proving all its instances. Despite
that, we may hope to uncover some hidden computational aspect in these
lower bounds and thus to reduce the conjecture to some intuitively more
rudimentary one. For more discussion on this the reader can see [46].

We conclude this section with the notion of polynomial simulation intro-
duced in [24]. The definition 1.2.6 is simply a natural notion of quasi-ordering
of propositional proof systems by their strength.

Definition 1.2.6 Let P and Q be two propositional proof systems. The sys-
tem P polynomially simulates Q, P ≥p Q in symbols, if and only if there is
polynomial time computable function g : {0, 1}∗ → {0, 1}∗ such that for all
w ∈ {0, 1}∗, P (g(w)) = Q(w).

The function g translates proofs in Q into proofs in P of the same formula.
Since in the definition above g is a polynomial time function, then the length
of the proofs in P will be at most polynomially longer than the length of the
original proofs in the system Q.

1.3 Resolution

The logical calculus Resolution R is a refutation system for formulas in con-
junctive normal form. This calculus is popularly credited to Robinson [64]
but it was already contained in Blake’s thesis [10] and is an immediate con-
sequence of Davis and Putnam work [30].

9Unless there is an optimal proof system.

18 S. Cavagnetto

A literal � is either a variable p or its negation p̄. The basic object
is a clause, that is a finite or empty set of literals, C = {�1, . . . , �n} and is
interpreted as the disjunction

∨n
i=1 �i. A truth assignment α : {p1, p2, . . . } →

{0, 1} satisfies a clause C if and only if it satisfies at least one literal li in C.
It follows that no assignment satisfies the empty clause, which it is usually
denoted by {}. A formula φ in conjunctive normal form is written as the
collection C = {C1,. . . , Cm} of clauses, where each Ci corresponds to a
conjunct of φ. The only inference rule is the resolution rule, which allows us
to derive a new clause C ∪ D from two clauses C ∪ {p} and D ∪ {p̄}

C ∪ {p} D ∪ {p̄}
C ∪ D

where p is a propositional variable. C does not contain p (it may contain p̄)
and D does not contain p̄ (it may contain p). The resolution rule is sound:
if a truth assignment α : {p1, p2, . . . } → {0, 1} satisfies both upper clauses of
the rule then it also satisfies the lower clause.

A resolution refutation of φ is a sequence of clauses π = D1,. . . ,Dk where
each Di is either a clause from φ or is inferred from earlier clauses Du, Dv, u,
v < i by the resolution rule and the last clause Dk = {}. Resolution is sound
and complete refutation system; this means that a refutation does exist if
and only if the formula φ is unsatisfiable.

Theorem 1.3.1 A set of clauses C is unsatisfiable if and only if there is a
resolution refutation of the set.

Proof. The “only-if part” follows easily from the soundness of the resolution
rule. Now, for the opposite direction, assume that C is unsatisfiable and such
that only the literals p1, ¬p1,. . . , pn, ¬pn appear in C. We prove by induction
on n that for any such C there is a resolution refutation of C.

Basis Case: If n = 1 there is nothing to prove: the set C must contains
{p1} and {¬p1} and then by the resolution rule we have {}.

Induction Step: Assume that n > 1. Partition C in for disjoints sets:

C00 ∪ C01 ∪ C10 ∪ C11

of those clauses which contain no pn and no ¬pn, no pn but do contain ¬pn,
do contain pn but not ¬pn and contain both pn and ¬pn, respectively. Pro-
duce a new set of clauses C′ by:

Propositional Proof Complexity 19

(1) Delete all clauses from C11.

(2) Replace C01 ∪ C10 by the set of clauses that are obtained by the applica-
tion of the resolution rule to all pairs of clauses C1 ∪ {¬pn} from C01 and to
C2 ∪ {pn} from C10.

The new set of clauses do not contain either pn or ¬pn. It is easy to see
that the new set of clauses C′ is also satisfiable. Any assignment α′ : {p1,
. . . , pn−1} → {0, 1} satisfies all clauses C1 such that C1 ∪ {¬pn} ∈ C01, or all
clauses C2 such that C2 ∪ {pn} ∈ C01. Hence α′ can be extended to a truth
assignment α satisfying C, which is a contradiction because by our hypothesis
C is unsatisfiable.

�

A resolution refutation π = D1,. . . , Dk can be represented as a directed
acyclic graph (dag-like) in which the clauses are the vertices, and if two
clauses C ∪ {p} and D ∪ {p̄} are resolved by the resolution rule, then there
exists a direct edge going from each of the two clauses to the resolvent C ∪ D.
A resolution refutation π = D1,. . . , Dk is tree-like if and only if each Di is
used at most once as a hypothesis of an inference in the proof. The underlying
graph of π is a tree. The proof system allowing exactly tree-like proofs is
called tree-like resolution and denoted by R∗.

In propositional proof complexity, perhaps the most important relation
between dag-like refutations and refutations in R∗ is that the former can
produce exponentially shorter refutations then the latter. A simple remark
on this is that in a tree-like proof anything which is nedeed more than once
in the refutation must be derived again each time from the initial clauses. A
superpolynomial separation between R∗ and R was given in [75], and later
by others in [20] and [38]. Later on, in [11] has been presented a family of
clauses for which R∗ suffers an exponential blow-up with respect to R. For
an improvement of the exponential separation the reader can see [7].

1.4 Interpolation and effective interpolation

The Craig interpolation theorem is a basic result in mathematical logic [28].
The theorem says that whenever an implication A → B is valid then there
exists a formula I , called an interpolant, which contains only those symbols of
the language occurring in A and B and such that the two implications A → I
and I → B are both valid formulas. The theorem holds for propositional logic

20 S. Cavagnetto

as well as for first order logic.10

The problem of finding an interpolant for the implication is quite relevant
to computational complexity theory. To see this, it is enough to observe what
follows. Let U and V be two disjoints NP-sets, subsets of {0, 1}∗. By the
proof of the NP-completeness of satisfiability [23] there are sequences of
propositional formulas An(p1,. . . , pn, q1,. . . , qsn) and Bn(p1,. . . , pn, r1,. . . ,
rtn) such that the size of An and Bn is nO(1) and such that

Un := U ∩ {0, 1}n = {(δ1, . . . , δn ∈ {0, 1}n|∃α1, . . . , αsnAn(δ̄, ᾱ) holds}
and

Vn := V ∩ {0, 1}n = {(δ1, . . . , δn ∈ {0, 1}n|∃β1, . . . , βtnAn(δ̄, β̄) holds}.
The assumption that the sets U and V are disjoint sets is equivalent to the
statement that the implications An → ¬Bn are all tautologies. By Craig’s
interpolation theorem there is a formula In(p̄) constructed only using atoms
p̄ such that

An → In

and
In → ¬Bn

are both tautologies. Thus the set

W :=
⋃

n
{δ̄ ∈ {0, 1}n|In(δ̄) holds}

defined by the interpolant In separates U from V : U ⊆ W and W ∩ V = ∅.
Hence an estimate of the complexity of propositional interpolation formulas
in terms of the complexity of an implication yields an estimate to the com-
putational complexity of a set separating U from V . In particular, a lower
bound to a complexity of interpolating formulas gives also a lower bound
on the complexity of sets separating disjoint NP-sets. Of course, we cannot
really expect to polynomially bound the size of a formula or a circuit defining
a suitable W from the lenght of the implication An → ¬Bn. This is because,
as remarked by Mundici [53], it would imply that NP ∩ coNP ⊆ P/poly.
In fact, for U ∈ NP ∩ coNP we can take V to be the complement of U and
hence it must hold that W = U .

Kraj́ıček formulated the idea of effective interpolation in [47]. The idea
is nice and more subtle than that one displayed above. For a given propo-
sitional proof system, try to estimate the circuit-size of an interpolant of an

10Throghout all this work by Craig interpolation’s theorem we mean the propositional
version of it.

Propositional Proof Complexity 21

implication in terms of the size of the shortest proof of the implication. In
other words, for a given propositional proof system establish an upper bound
on the computational complexity of an interpolant of A and B in terms of
the size of a proof of the validity of An → ¬Bn. Then any pair A and B
which is hard to interpolate yields a formula which must have large proofs of
validity. This fact can be exploited in proving lower bounds, and indeed sev-
eral new lower bounds came out from its application, see [49], [60]. The idea
has been also applied fruitfully in other areas such as bounded arithmetic in
proving results of independence [62] and on establishing links between proof
complexity and cryptography and in automatizability of proof search. The
reader interested in some overviews can see [46] and [59].

Definition 1.4.1 A propositional proof system P admits effective interpola-
tion if and only if there is a polynomial p(x) such that any implication A → B
with a proof in P of size m has an interpolant of a circuit size ≤ p(m).

The main point of the effective interpolation method is that by establish-
ing a good upper bound for a proof system P in the form of the effective
interpolation we prove lower bounds on the size of the proofs in P . That is,

Theorem 1.4.2 Assume that U and V are two disjoints NP-sets such that
Un and Vn are inseparable by a set of circuit complexity ≤ s(n), all n ≥ 1.
Assume that P admits effective interpolation. Then the implications An →
¬Bn require proofs in P of size ≥ s(n)ε, for some ε > 0.

The main point in this section is to prove that R admits effective inter-
polation. To be able to give the proof in some detail we must recall few
notions and facts from communication complexity. Let Un,Vn ⊆ {0, 1}n be
two disjoint sets. Karchmer-Wigderson game [39] on Un and Vn is played by
two players A and B. Player A receives an element u from Un and player
B receives an element v from Vn. A and B have a protocol on which they
agreed on. The two players communicate bits of information until both agree
on the same i ∈ [n] such that ui �= vi. A measure of the complexity of the
game is the minimum of the number of bits they need to communicate in the
worst case over all protocols. This minimum is denoted by C(Un,Vn) and is
called the communication complexity of the game.

Consider a propositional formula φ(p1,. . . , pn) with ¬ just in front of
atoms, that takes constantly value 1 on Un and value 0 on Vn. Then φ
separate Un from Vn. The players can use φ as follows. They start from the
principal connective and will, step by step, work down to smaller subformulas
until a literal is not reached. The property that they will preserve is that the

22 S. Cavagnetto

current subformula takes value 1 on u and 0 on v. At the beginning this is
true by hypothesis. If the principal connective is a conjunction the player B
indicates to A which of the two subformulas takes value 0 on v. On the other
hand, if the principal connective is a disjunction A indicates to B which of
the two subformulas is 1 on u. The reader can find a proof of the following
theorem in [39],

Theorem 1.4.3 (Karchmer-Wigderson [39]) Let Un,Vn ⊆ {0, 1}n be two
disjoint sets. Then C(Un,Vn) is equal to the minimal depht of a De Morgan
formula separating Un and Vn.

Suppose that there is a circuit C separating Un from Vn instead of φ. The
players can use the same communication protocol. C(Un,Vn) will be bounded
by the depth of C, but no information about the size of C is obtained. For
this reason the notion of protocol has been generalized in [49], generalizing
Razborov [62], as follows

Definition 1.4.4 Let Un,Vn ⊆ {0, 1}n be two disjoint sets. A protocol for the
Karchmer-Wigderson game on the pair (Un, Vn) is a labelled directed graph
G satisfying the following conditions:

1. G is acyclic and has one source denoted �. The nodes with the out-
degree 0 are leaves and all other are inner nodes.

2. Leaves are labeled by one of the following formulas:

ui = 1 ∧ vi = 0 or ui = 0 ∧ vi = 1

for some i = 1, . . . , n.

3. There is a function S(u, v, x) such that S assigns to a node x and a
pair (u, v) ∈ Un × Vn an edge from the node x (the function S is called
the strategy).

Fixing a pair (u, v) ∈ Un × Vn the strategy defines for every node x a
directed path P x

(u,v) = x1,. . . , xh in G: start at x and go toward a leaf

xh, always going from xi using the edge S(u, v, xi).

4. For every (u, v) ∈ Un × Vn there is a set F (u, v) ⊆ G satisfying:

(a) � ∈ F (u, v).

(b) x ∈ F (u, v) → P x
(u,v) ⊆ F (u, v).

(c) The label of any leaf from F (u, v) is valid for u, v.
The set F is called the consistency condition.

Propositional Proof Complexity 23

Then given a protocol for the game on Un and Vn a suitable circuit separating
Un and Vn can be found. The following theorem was stated and proved in
[62].

Definition 1.4.5 The communication complexity of G is the minimal num-
ber t such that for every x ∈ G the players (one knowing u and x, the other
one v and x) decide whether x ∈ F (u, v) and compute S(u, v, x) with at most
t bits exchanged in the worst case.

A new proof of Theorem 1.4.6 is contained in [46].

Theorem 1.4.6 Let Un,Vn ⊆ {0, 1}n be two disjoint sets. Let G be a protocol
for the game on Un, Vn which has k nodes and the communication complexity
t. Then there exists a circuit C of size k2O(t) separating Un from Vn. On
the other hand, any circuit C of size s separating Un from Vn determines a
protocol G with s nodes whose communication complexity is 2.

Now we have all the essential background for proving effective interpola-
tion for R. The proof of Theorem 1.4.7 below follows in detail [46].

Theorem 1.4.7 (Kraj́ıček [49]) Assume that the set of clauses

{A1, ..., Am, B1, ..., Bl}

where

1. Ai ⊆ {p1,¬p1, ..., pn,¬pn, q1,¬q1, ..., qs,¬qs}, all i ≤ m

2. Bj ⊆ {p1,¬p1, ..., pn,¬pn, r1,¬r1, ..., rt,¬rt}, all j ≤ l

has a resolution refutation with k clauses.
Then the implication ∧

i≤m

(
∨

Ai) → ¬
∧
i≤l

(
∨

Bj)

has an interpolant I whose circuit-size is knO(1).

Proof. Let π be a resolution refutation with k clauses of {A1, ..., Am, B1, ..., Bl}.
Let U and V be the subsets of {0, 1}n defined by

U := {p ∈ {0, 1}n|∃q ∈ {0, 1}s,
∧

i

∨
Ai}

24 S. Cavagnetto

and
V := {p ∈ {0, 1}n|∃r ∈ {0, 1}t,

∧
j

∨
Bj}

respectively. Before to show how to transform π into a protocol for the
Karchmer-Wigderson game and the formal construction of the protocol, con-
sider the following argument. Assume that π = D1,. . . ,Dk. For a clause D
we denote by D̃ the set of all truth assignment satisfying D. Now asssume
that the player A gets u ∈ U and the player B gets v ∈ V . The player A
fixes some qu ∈ {0, 1}s such that

∧ ∨
Ai(u, qu) holds. Similarly B picks a

witness of the membership of v in V .
The two players will construct a path P = S0,. . . ,Sh through π from S0

to the initial sequents. They will try to keep the following property: the
truth evaluations (u, qu, rv) and (v, qu, rv) do not satisfy the clauses on the
path (that is, they are not in S̃a, a = 0,. . . ,h.)

Assume that A and B reach Sa which was deduced in π by the inference
X,Y/Sa. They first determine whether (u, qu, rv) ∈ X̃ and (v, qu, rv) ∈ Ỹ
and then continue depending on a possible outcome:

1. (u, qu, rv) ∈ X̃ ∧ (v, qu, rv) ∈ X̃.

2. (u, qu, rv) /∈ X̃ ∧ (v, qu, rv) /∈ X̃.

3. Exactly one of (u, qu, rv), (v, qu, rv) is in X̃.

In the first case none of the two tuples can be in Ỹ , then the players
put Sa+1 := Y . In the second case they put Sa+1 := X . The third case is
more complicated. Since U and V are disjoint sets u �= v and the players
stop constructing the path enter a protocol aimed at finding i ≤ n such that
ui �= vi. Each initial sequent is satisfied either by (u, qu, rv) or by (v, qu, rv).
Then the players must sooner or later introduce the third possibility and find
i ≤ n such that ui �= vi. We need to show that each of the three following
problem has small communication complexity. Let D be a clause,

1. Decide whether (u, qu, rv) ∈ D̃.

2. Decide whether (v, qu, rv) ∈ D̃.

3. If (u, qu, rv) ∈ D̃ �= (v, qu, rv) ∈ D̃ find i ≤ n such that ui �= vi.

The first two can be decided by each player sending one bit and the
third task needs only log(n) bits by a binary search. Now we show how to
construct the protocol G formally. G has (k + 2n) nodes, the k clauses from

Propositional Proof Complexity 25

π together 2n extra vertices. These extra vertices are labelled by formulas
ui = 1∧vi = 0 and ui = 0∧vi = 1, i = 1, . . . ,n. The consistency condition is
constituted by those clauses Dj that are not satisfied by (v, qu, qv), and also
by those of extra 2n nodes whose label is valid for the pair (u, v). Finally,
the strategy function S(u, v,D) is defined as follows:

1. If (u, qu, rv) /∈ D̃j then

S(u, v,Dj) :=

{
X if (v, qu, rv) /∈ X̃

Y if (v, qu, rv) ∈ X̃ (and (v, qu, rv) /∈ Ỹ).

2. If (u, qu, rv) ∈ D̃j then the players use binary search for finding i ≤ n
such that ui �= vi. S(u, v,Dj) is then the one of the two node labeled
by ui = 1∧vi = 0 and ui = 0∧vi whose label is valid for the pair (u, v).

The strategy function S(u, v, x) as well as the membership relation x ∈
F (u, v) can be determined exchanging at most log(n) bits. Since G has
(k + 2n) nodes then by Theorem 1.4.6 we obtain a circuit separating U from
V nad having the size ≤ (k + 2n)2O(log(n)) = knO(1).

�

1.5 “Mathematical” proof systems

The set of propositional tautologies TAUT is a coNP-complete set. In gen-
eral a proof system is a relation R(x, y) computable in polynomial time such
that

x ∈ TAUT if and only if ∃y(R(x, y)).

A proof of x is a y such that R(x, y) holds. Thus one can take an coNP-
complete set and a suitable relation R over it and investigate the complexity
of such proofs. In this section we recall a few proof systems (only one in
some detail) “mathematically” based on coNP-complete sets.

A nice example of well-known “mathematical11” proof system is the proof
system Cutting Plane CP . The Cutting Plane proof system (CP) is a refu-
tation system based on showing the non-existence of solutions for a family
of linear equalities. A line in a proof in th system CP is an expression of the
form ∑

ai · xi ≥ B

11This expression is taken from Pudlák [59]

26 S. Cavagnetto

where a1,..., an, B are integers. Then for a given clause C, and the variables
xi, i ∈ P , occur positively in C, and variables xi, i ∈ N , occur negatively in
C, then C is represented by the linear inequality∑

i∈P

xi −
∑
i∈N

xi ≥ 1 − |N |.

A CNF formula is represented by the family of linear inequalities correspond-
ing to its clauses. Thus for example the formula (x1∨x̄2∨x3)∧(x̄1∨x3∨x4∨x̄5)
is represented by the inequalities x1−x2+x3 ≥ 0 and −x1+x3+x4−x5 ≥ −1.
The axioms of the proof system are xi ≥ 0, −xi ≥ −1. The rules of inference
are:

• ∑
ai · xi ≥ A

∑
bi · xi ≥ B∑

(ai + bi) · xi ≥ A + B

• ∑
ai · xi ≥ A∑

(c · ai) · xi ≥ c · A
where c ≥ 1 is an arbitrary integer;

• ∑
(c · ai) · xi ≥ A∑
ai · xi ≥

⌈
A
c

⌉
where c > 1 is an arbitrary integer.

A derivation D of the inequality I from inequalities I1, ..., Im is a sequence
D1,...,Dn such that I = Dn and for all i < n either Di is an axiom, or one of
Ii, ..., Im or inferred from Dj, Dk for j, k < i by means of a rule of inference.
A CP refutation of I1,...,Im is a derivation of 0 ≥ 1 from I1, ..., Im.

We have seen above the soundness and the completeness of Resolution for
CNF formulas, see Theorem 1.3.1. Soundness in the sense that given any
formula φ which has a resolution refutation refutation π, φ is not satisfiable
and completeness in the sense that given any unsatisfiable formula φ, there
is a resolution refutation π of φ. Theorem 1.5.1 can be proved exploiting the
completeness of R, since CP easily simulates resolution as observed in [27].

Propositional Proof Complexity 27

Theorem 1.5.1 The proof system CP is sound and complete with respect
to CNF formulas.

For the soundness part we can argue as follows. Let φ be a CNF formula
with a CP refutation γ. Suppose φ is satisfied by the assignment α. Instan-
tiate each inequality in γ of φ by assigning the boolean variables their value
under α. By induction on the length of γ we can prove that each instantiated
inequality in the refutation γ holds. This is contradiction, because we cannot
have the inequality 0 ≥ 1 as the last element of the refutation. Goerdt [36]
proved that Frege systems polynomially simulate the CP proof system.

Other examples of mathematical proof systems are for instance the Null-
stellensatz system introduced in [5], the Polynomial Calculus [19] and the
Gaussian Calculus first defined in [6].

The interesting fact is that almost all the mathematical proof systems
known are in some sense algebraically based. One of the aim behind this
work is to find a new proof system but with a different origin. Indeed, we
propose a new mathematical proof system and it comes out from the field of
cellular automata.

28 S. Cavagnetto

Chapter 2

String Rewriting and
Propositional Proof Complexity

Rewriting is a technique for defining complex objects by successively replac-
ing parts of a simple initial object using a set of rewriting rules. The object
can be a finite string of characters or more complicated, like for example
a polygon. For instance, consider the continuous snowflakes curve of Fig-
ure 2.1 proposed by von Koch [44] as an example of curve not differentiable
anywhere. It can be defined using this approach using as initial object an
equilateral triangle and rewriting procedures replacing parts of its edges.

The most extensively studied and best understood rewriting systems deal
with character strings. The main reason for that is Chomsky’s work on
formal grammars, in late 1950s, in which he applied the concept of rewriting
in order to describe the syntactic features of natural languages, [18]. Thus
a string rewriting system can be interpreted as a device for generating and
recognizing formal languages; sometimes in the literature they are also called
combinatorial systems, [29].

In this rewriting context we are considering transformations of some ob-
ject by step by step activity. Given a finite alphabet and a definition of
word over it, we allow a set of rewriting rules in order to transform words
from the set of all words. The sequence of application of rules can be seen
as a proof in the classical sense. In this chapter we show how this idea can
be implemented and used to interpret the well known propositional calculus
Resolution considered in the Section 3 of the previous chapter. We give a
characterization of the rewriting system which represents tree-like resolution
using diagrams in van Kampen style [12]; the dag-like case is less natural, but
by allowing more complex rules it can be interpreted in the same manner.

Formerly van Kampen diagrams have been discussed by Kraj́ıček, in [47];
he gave a link between the Dehn function of finitely presented groups and the

29

30 S. Cavagnetto

Figure 2.1: The von Koch curve.

length of proofs function in propositional proof complexity. A motivation for
this is the hope to get a new perspective on proof systems using a different
approach and exploiting also geometric interpretations to characterise several
proof complexity measures.

The chapter is organized as follows. In section 1 we introduce string
rewriting systems, also known as semi-Thue systems.1 In section 2 we inter-
pret tree-like resolution as semi-Thue system. We show that the new rewrit-
ing system is complete and sound with respect to Resolution, see Theorem
2.2.3 and 2.2.5 respectively. In this section we also discuss more in detail
the motivation for considering rewriting systems in the context of proof com-
plexity. Then section 3 introduces a representation by planar diagrams of
the proofs in the semi-Thue system interpreting tree-like resolution. Section
4 is devoted to the dag-like case: we interpret dag-like resolution as string
rewriting system. Section 5 has some concluding remarks on this topic.

1Axel Thue (1863-1922) introduced the first systematic treatement of string rewriting
systems in the early 20th century, see [70], [71].

Propositional Proof Complexity 31

2.1 The String rewriting system Σ∗
n

In general, a string rewriting system is a substitution system used to trans-
form a given string according to specified rewriting rules. A semi-Thue sys-
tem Σ is a string rewriting system. Throughout this chapter, “semi-Thue
system” and “string rewriting system” are used meaning the same mathe-
matical concept. It is a tuple (A,Δ) where A is a finite alphabet and Δ is
a set of ordered pairs Δ ⊆ A∗ × A∗, where A∗ is the set of all words over A.
The elements of Δ, (q, z), are referred as string rewriting rules and denoted
by q → z. If a semi-Thue system Σ is symmetric, Δ = Δ−1, then Σ is called
a Thue system. In order to obtain the semi-Thue system, that we call Σ∗

n,
we define its alphabet An.

Definition 2.1.1 Let An be a finite alphabet containing two uppercase letters
L, R, and two types of lowercase letters xi and x̄i, for i = 1, . . . , n. A word
w over An is a finite string consisting of zero or more elements of An. The
set of all words over An is denoted by A∗

n. The empty word is denoted by Λ.

In Σ∗
n a special kind of words over An, called regular-words, will play

an important role. By u ⊆ w we mean that u is a subword of w.

Definition 2.1.2 A word w ∈ A∗
n is regular if and only if w = Λ or it has

the following form:

w = Lu1RLu2R . . . LurR

where each ui ∈ (An \ {L,R})∗, for 1 ≤ i ≤ r. Any of ui can be empty. A
word wi that is regular and wi ⊆ wj is called a regular subword of wj.

Of course, by the definition given above the following strings are regular
words: LR, Lx1x̄3R, and Lx1RLx̄2R; by definition Lx1R is a regular subword
of Lx1RLx̄2R, and Lx1x̄3R is a regular subword of Lx1x̄3R. It is implicit in
the definition above that L and R must alternate, i.e. we cannot have two
consecutive Ls or Rs in the word if the word is regular. Moreover LR is also
a regular subword of LR.

The size of a word w is the number of symbols contained in it2; excluding
Λ which has size 0, the smallest size of a regular word is 2, namely is the
first word given in the example above, LR. Then we define a special type of
words which is minimal with respect to that of regular word. They are called
clause-words.

2Note that the L,R letters in the regular words are just delimiters, but they contribute
to the size.

32 S. Cavagnetto

Definition 2.1.3 A clause-word is a regular word of A∗
n that starts with L

and ends with R and it does not include any other occurrences of L and R
in it.

Thus given Lx1x̄2RLx3x̄4x̄5RLx5x7R, the words Lx1x̄2R, Lx3x̄4x̄5R and
Lx5x7R are clause-words. It follows easily that all clause-words are regular
words; the viceversa does not hold. We distinguish between these two no-
tions when needed, otherwise we will use the general notion of regular word
introduced before. Then the semi-Thue system Σ∗

n can be defined as follows:

Definition 2.1.4 Let Σ∗
n be a semi-Thue system in the alphabet An with

rewriting rules, Σ∗
n-rules:

1. Elimination rules:

(a) xiRLx̄i → Λ;

(b) x̄iRLxi → Λ;

for any i.

2. Exchanging rules:

(a) xixj → xjxi;

(b) x̄ix̄j → x̄jx̄i;

(c) xix̄j → x̄jxi;

(d) x̄ixj → xjx̄i;

for any i, j.

Some comments on the rewriting rules that we have chosen. Rules (1a)
and (1b) are string rewriting rules simulating the resolution rule given in
Section 1. The rules (2a)-(2d) can be useful because sometime we have
regular words in which rules (1a), (1b) cannot be directly applied and we
need to permute lower case letters first. Then by the exchanging rules we
can move lower case letters in order to obtain suitable strings such that the
elimination rules can be applied. Notice that from the previous definition
follows easily that for any given finite set of lowercase characters x1 . . . xn

determining An we obtain a specific semi-Thue system Σ∗
n.

To be able to define properly the notion of proof in Σ∗
n we introduce a

special set of regular words called initial-words. We denoted this set by I.
Moreover, we introduce in the definition below the rules (i) and (ii) that allow
us to manipulate the elements of I. These rules are called introduction-
rules (I-rules).

Propositional Proof Complexity 33

Definition 2.1.5 Let I = {w1, . . . , wt} be a non empty set of regular words.
I-rules are:

(i) L → uL, where u ∈ I;
(ii)R → Ru, where u ∈ I.

The notion of Σ∗
n-proof is defined as follows

Definition 2.1.6 A proof π′ in Σ∗
n of the regular word w from a non empty

set of regular words I, denoted by

π′ : I �Σ∗
n

w

is a finite sequence of regular words w1, . . . , wk such that w1 ∈ I, wk = w and
each wi, for 1 < i ≤ k, wi is obtained from wi−1 by an I-rule or a Σ∗

n-rule.
w1 is called the source-word of π′.

Example. We conclude this section giving an example of proof of LR in Σ∗
n.

Let I = {Lx1x2R, Lx̄1R, Lx̄2R} be a set of initial words. Let Lx1x2R be
the source-word. The words Lx̄1R, Lx̄2R are entered using I-rules (i) and
(ii):

By the introduction rule (ii), we have

Lx1x2R → Lx1x2RLx̄2R

then by rule (1a):

Lx1x2RLx̄2R → Lx1R

by rule (ii) (or we can use also (i)):

Lx1R → Lx1RLx̄1R

Finally, by rule (1a) if we have used in the previous step the rule (ii) (other-
wise, if rule (i) has been applied we use (1b)), we obtain:

Lx1RLx̄1R → LR.

2.2 Σ∗
n and R∗: the tree-like case

In order to interpret R∗ as the semi-Thue system Σ∗
n we need to set some

correspondences.

34 S. Cavagnetto

Definition 2.2.1 If C = {�1, . . . , �l} is a clause, then wC = L�1 . . . �lR is a
clause-word in the language of Σ∗

n. For definiteness we assume the ordering
on variables given by their indices. If C = {C1, . . . , Ct} is a set of clauses,
then wC = wC1

. . . wCt is a regular word in the language of Σ∗
n. We assume

clauses are canonically ordered in a fixed way.

Using Definition 2.2.1 we take a clause Ci in the language of Resolution
and we obtain a regular word wCi

in the language of Σ∗
n. For example, take

the clause {x1x2}; by definition we have the regular word Lx1x2R. Notice
that by our definition a set of clauses C corresponds to a regular word wC.
In fact, let C = {C1, C2}={{x1}, {x2x3x6}} be a set of clauses. Then by the
definition above wC = Lx1RLx2x3x6R.

The clause-words defined in the Definition 2.1.3 give the correspondence
with the basic object of the resolution calculus, clauses. Indeed, if wi is a
clause-word then it has the form L�1 . . . �nR that corresponds to a clause
{�1, . . . , �n} where �i are literals (with 1 ≤ i ≤ n). Notice that while the
ordering of variables in the language of Resolution is not important, in the
case of the language of Σ∗

n this has some relevance during the manipulation.

Definition 2.2.2 Let C = {C1, . . . , Ct} be a set of clauses. Then

IC = {wC1
, . . . , wCt}

where wC1
,. . . , wCt are clause-words corresponding to the clauses C1,. . . , Ct.

Thus a resolution refutation π starting from a set of clauses C and ending
with {} in R∗ can be conceivably interpreted as a Σ∗

n-proof of LR from IC.
This is what we do next. Notice that the string rewriting system allowing
I-rules gives the opportunity to use words from IC when needed.

Remark: In classical Resolution we can always back-out from a dead-end.
In this new approach the situation is analogous, in fact using I-rules we
can always reintroduce an element from IC, the set of initial clause-words
corresponding to the set of initial clauses, a clause-word many times anywhere
in the proof.

Theorem 2.2.3 3 Let π be a resolution refutation in R∗ of a set of clauses
C in variables x1,. . . , xn. Assume that π has k clauses. Then there exists a
Σ∗

n-proof π′ of LR from IC such that the number of steps k′ in π′ satisfies:

k′ < 2(kn) .

3Theorem 2.2.11 about width gives a more effective version of the simulation, estimating
also the sizes of the lines of the rewriting proof.

Propositional Proof Complexity 35

Proof. Let a tree-like refutation π of C be fixed. For a clause D in π let
k(D) denotes the number of clauses in the subproof of π ending with D4.
Then k(D) = 1 for initial clauses and k({}) = k for the end clause {}. If

D1 ∪ {�} D2 ∪ {�̄}
D1 ∪ D2

is an inference in π then, as π is tree-like,

k(D1 ∪ D2) = k(D1 ∪ {�}) + k(D2 ∪ {�̄}) + 1.

By induction on k(D) we show that for any clause D ∈ π there is π′
D,

a derivation in Σ∗
n of wD from IC, such that the number of steps k′

D of π′
D

satisfies:

k′
D < 2(k(D)n).

Taking for D the end-clause of π gives the theorem.

Basis Case: D is an initial clause in π. Then wD is derived from I in one
step using the I-rules; wD is the source-word of the derivation π′

D consisting
of one step (k′

D = 1).
Induction Step: Assume D is in π derived from D1 (containing �) and D2

(containing �̄) by resolving �. By induction assumption applied to D1 there
are a derivation π′

D1
of wD1

and a derivation π′
D2

of wD2
in Σ∗

n from I with

k′
D1

< 2(k(D1)n)

and
k′

D2
< 2(k(D2)n)

steps respectively. Construct a derivation π′
D in Σ∗

n from I as follows:

1. Initial part of π′
D is π′

D1
.

2. Then continue with derivation carrying wD1
as the left-most clause-

word of every step. This subderivation uses the same inferences as π′
D2

except for introducing the first line: instead of using a clause C for a
source-word wC as in π′

D2
, use I-rule (ii) to infer from wD1

the word
wD1

wC.

4k(D) is the size of the tree rooted at D.

36 S. Cavagnetto

3. After the steps (1) and (2) we have a derivation in Σ∗
n of wD1

wD2
. Now,

use exchanging rules to move � in wD1
towards R and �̄ in wD2

towards
L such that

�RL�̄

becomes a subword. This proocess needs at most 2(n − 1) application
of exchanging rules.

4. Finally apply the elimination rules to delete the subword �RL�̄, getting
wD.

The number of steps k′
D in this derivation is bounded above by:

k′
D ≤ k′

D1
+ k′

D2
+ 2(n − 1) + 1

As k′
D1

< 2k(D1)n, k′
D2

< 2k(D2)n and k(D) = 1 + k(D1) + k(D2), we also
have k′ < 2k(D)n.

�

Now, we want to establish that the simulation of R∗ by Σ∗
n is sound,

namely that any derivation of LR from IC in Σ∗
n can be transformed into a

refutation of C in R∗. A small obvious technical lemma is the following:

Lemma 2.2.4 Let C be a set of clauses and IC the corresponding set of
clause-words. Then any derivation in Σ∗

n from IC contains only regular words.

Theorem 2.2.5 Let C be a set of clauses and IC = {wC : C ∈ C} be the
corresponding set of clause-words. Assume that there is a derivation π′ in
Σ∗

n of LR from IC. Then the set of clauses C is refutable in R∗. In fact, if
π′ has k′ steps then there is a refutation π in R∗ of C with k ≤ k′ steps.

Proof. Let π′ be w1,. . . , wk′ . By induction on i, we prove that if wi =
wD1

. . . wDt, with Dj clauses (we know by Lemma 2.2.4 that wi is a regular
word), then there are derivations πj, j = 1,. . . ,t, in R∗ of Dj from C with
k(πj) clauses each such that

t∑
j=1

k(πj) ≤ i

For i = k′ this gives the theorem.

Basis Case: By definition the source-word w1 is wC for some C ∈ C. Thus
the claim holds for i = 1.

Propositional Proof Complexity 37

Induction Step: If wi+1 has been obtained by other than the elimination
rules or the I-rules it corresponds to the same set of clauses of wi and there
is nothing to prove. The elimination rule is simulated by the resolution rule
and the I-rules are initial clauses rule of R∗.

�

We can describe a direct way how to extract the derivation in R∗ from
the derivation in Σ∗

n, using the following procedure. The procedure has a
derivation in Σ∗

n from IC as input and marks by † all occurrences of a clause-
word that:

1. is not the source-word;

2. it was not derived by an I-rule;

3. it was not derived by an elimination rule.

Then delete all clause-words marked by †, and replace each regular word
wD1

,. . . , wDt that remains by a set of clauses {D1, . . . , Dt}.

The proof of the preceding theorem shows that the sequence of these sets
of clauses contains not only the refutation in R∗ but, in fact, also information
what an algorithm needs to keep in memory in order to check the correctness
of the refutation. Before we state a formal theorem we recall a relevant
concept of space complexity of resolution derivations introduced in [13] and
refined in [33]. We take the definition given by Esteban and Torán in [33] for
tree-like proofs.

Definition 2.2.6 Let k ∈ N, we say that an unsatisfiable set of clauses C has
a tree-like resolution refutation bounded by space k if there exists a sequence
of clauses C1,. . . , Cs such that C1 ⊆ C, {} ∈ Cs, in any Ci there are at most
k clauses, and for each i < s, Ci+1 is obtained from Ci by one of:

(i) deleting some of its clauses,
(ii) adding the resolvent of two clauses of Ci and deleting the parent

clauses,
(iii) adding some of the clauses of C (initial clauses).

The definition of space in tree-like resolution expresses the idea of consid-
ering list of clauses kept in memory during the refutation, with the particu-
larity that when a clause is used to derive other clauses, it is removed from
the memory.

38 S. Cavagnetto

Now, we state a theorem that follows immediately from the proofs of
Theorems 2.2.3 and 2.2.5.

Theorem 2.2.7 Let C be a set of clauses in variables x1,. . . , xn. Assume
that there is a refutation in R∗ of C of space t. Then there is a derivation in
Σ∗

n of LR from IC such that every line in it contains at most t clause-words.
Assume, on the other hand, that there is a derivation in Σ∗

nof LR from
IC in which all lines contain at most t clause-words. Then C has a refutation
in R∗ of space at most t.

In an effort to better understand Resolution another important measure
has been introduced: resolution width. The notion of resolution width was
made explicit by Galil in [34] and the importance of it was pointed out
by Ben-Sasson and Wigderson in [8]. Roughly speaking, the width of a
resolution is the largest number of literals in a clause used in the refutation
to obtain {}. We recall the formal definition given in [34].

Definition 2.2.8 Let C be a set of clauses, over variables x1,. . . , xn. The
width(C) is the number of literals in the largest clause in C. If π is a resolution
refutation of C, width(π) is the number of literals in the largest clause in π.
Let proofwidth(C) denote the minimum of width(π) over all refutations π of
C.

Similar complexity characterizations can be given for Σ∗
n.

Definition 2.2.9 Let IC be a set of regular word representing a set of clauses
C = {C1, . . . , Cm}. wC = wC1

. . .wCm. Then width(wC) is the number of
symbols in the largest clause-word wCj

⊆ wC, with 1 ≤ j ≤ m. Thus, if
π′ is a proof in Σ∗

n, then width(π′) is the number of symbols in the largest
clause-word in π′. At the same manner can be defined the proof-width(π′),
namely the minimum of width(π′) over all proofs π′ of LR from IC.

Thus, if wC = Lx1RLx3x5x2x̄2x4RLx8x̄1x̄5R, representing the set of
clauses C = {{x1}, {x3, x5, x2, x̄2, x4}, {x8, x̄1, x̄5}}, then width(wC) = 7. No-
tice that it is easy to obtain from width(wC) the width of the corresponding
set of clauses C. It is enough eliminate the upper case letters L, R from the
designated subword with biggest size and then find the width of correspond-
ing set clauses.

The following theorem is due to Ben-Sasson and Wigderson [8] and it
relates size lower bounds on tree like resolution refutations to lower bounds
on the width of resolution proofs:

Propositional Proof Complexity 39

Theorem 2.2.10 (Ben-Sasson Wigderson [8]) Any tree-like resolution proof
π of C of size k can be converted to one of width �log2(k)�+ width C.

Combining Theorem 2.2.10 with Theorems 2.2.3 and 2.2.5 yields a non-
trivial estimate of the width of derivations in Σ∗

n.

Theorem 2.2.11 Let C be a set of clauses and assume w0 =width(C). As-
sume there is a derivation in Σ∗

n of LR from IC with k′ lines. Then there is
a derivation in Σ∗

n of LR from IC of width bounded above by log(k′) + w0.

The previous theorem allow us to derive weak forms of automatizability
as introduced in [2]. Recall that given a proof system P for a language L
and a function f : N×N → N, we say that P is f(n, k)-automatizable if and
only if there is an algorithm ΠP such that given any input x with |x| = n, if
x ∈ L, then ΠP outputs a proof π in P of this fact in at most f(n, k) steps,
where k is the size of the shortest proof in P of the fact that x ∈ L.

Definition 2.2.12 Σ∗
n is automatizable if and only if it is f(n, k)-automatizable

for some function f that is (n + k)O(1).

In this sense automatizable means that for Σ∗
n is possible to find a proof

in polynomial time in the size of the smallest one. In fact, it follows by [8]
that:

Theorem 2.2.13 There is an algorithm Ω having the following properties:

1. On input C (an unsatisfiable set of clauses) it constructs a derivation
in Σ∗

n of LR from IC;

2. Ω runs in time kO(log(n)), where n is the number of variables and k is
the number of clause-words in π′.

We conclude this section with some observations on this restating of tree-
like Resolution. The simulation by rewriting system is fairly straightforward
for the tree-like case of R. As a by-product we obtain a different interpreta-
tion of several complexity measures such as the space and the width. This
different interpretation gives us the possibility in the next section to charac-
terize in essentially geometric terms these measures using planar diagrams.
This extends to Resolution some geometric interpretations that were known
only for the so called group-based proof systems considered in [47].

40 S. Cavagnetto

2.3 Planar Diagrams representing proofs in

Σ∗
n

One motivation in [47] was the study of connections between the Dehn func-
tion5, the word problem, various geometric constructions and propositional
proof systems. In particular, with the exception of Cutting plane system and
their generalizations to discretely ordered modules, these geometric situations
are totally absents in proof complexity. Propositional proof complexity re-
lies mostly on finite combinatorics, with connections to bounded arithmetic
and computational complexity; to find geometric characterizations would be
useful, as suggested in [47], because it could enlarge the set of methods that
we have at our disposal. It should be mentioned that in the few cases in
which this enlargement was achieved, using for example algebraic or model
theoretic methods, not only lower bounds were obtained but also results of
a structural type6. We propose a characterization using planar diagrams of
the proofs in the semi-Thue system Σ∗

n. Finally, at the end of this section,
we give an example of geometric construction (in three dimensions) of these
proofs in Σ∗

n. In this case rules of construction are easily derived from the
two-dimensional case.

A diagram representing a proof in Σ∗
n is a directed planar labeled graph,

where every edge xy is labelled by a letter from An. The contour of every
cell (face) is labelled by a regular word w. We describe how to construct
the diagram starting with a proof π′ in Σ∗

n. Let w1 be the source-word and
w2, . . . , wt be all the words introduced by I-rules in this order. Note that the
same clause-words may have several occurrences in the sequence. Each word
wi is a clause-word from I. Let δ be a disc. We fix an origin (usually on
the bottom of the disc), denoted by O. Let σ be the concatenation of all the
words w1, w2, . . . , wt. Let q be the number of characters in σ; then we mark
the disc δ with q−1 nodes (other than O). Thus we obtain a disc divided in q
edges, since the origin gives the starting node. Then going counterclockwise
from O we write for each edge e a character from σ. This means that if we
had an original proof π′ in which have been introduced the regular words

5A finitely presented group is given by a finite number of generators and a finite number
of basic equations between words defined by the generators (the so called relators). Two
words from generators (and their inverses) are equal in the group if their equivalence can
be deduced using only the basic relators. The Dehn function measures the minimal number
of deduction steps need. For details see [12] and [47].

6For example, lower bounds for algebraic systems like Nullstellensatz [5] or Polynomial
Calculus (this system was originally introduced under the name Gröbner system, because
of the well-known Gröbner basis algorithm) [19] also explicitely described the set of all
“short provable”(i.e. in their degree) formulas by giving its basis as a linear space.

Propositional Proof Complexity 41

Lx̄2R, Lx̄1R and the source-word is Lx1x2R then δ is divided in 10 labelled
edges by 9 nodes plus the origin O.

Consider the following three rules of composition (Figure 2.2, Figure 2.3,
Figure 2.4):

1. (Join) If there are four consecutive edges, xy, yz, zu and uv, labeled
by xi,R,L, and x̄i (or labeled by x̄i,R,L, and xi) then we can join the nodes
x,v by a dashed edge.7

Figure 2.2: The rule Join.

2. (Projection) Let xv be two nodes connected by a dashed edge and let
ve be the next edge, going counterclockwise. Then a new edge can be drawn
connecting the nodes e, x. The new edge ex will be labeled by the same
symbol labeling ve.8

3. (Swap) This rule allows to swap two edges which are consecutives.
Let xy and yz be two consecutives edges, going counterclockwise, labeled by
li and lj. Then two new edges connecting x and z can be drawn such that
the order of the labeling letters is reversed. This rule can be applied only to
lowercase letters.9

7This is a simulation of Rule 1(a)[Rule 1(b)].
8This is a simulation of the contraction rule.
9This is a simulation of the exchanging rules.

42 S. Cavagnetto

Figure 2.3: The rule Projection.

Figure 2.4: The rule Swap.

Definition 2.3.1 A cell β is a region delimited by solid edges contained in
δ; we denote it by β ⊆ δ.10

Definition 2.3.2 The perimeter p of a given labeled disc δ is the number of
edges on its border. The perimeter p of given cell β is the number of edges
of β.

Then in the example given in Figure 2.5, where Lx̄1R, Lx̄2R and Lx1x2R
are the initial clause-words, the perimeter of the disc is 10.

In case of application of the Swap rule the new cell contained in the disc
has still perimeter 10. When we apply the Join rule by definition the cell has
still perimeter 10; then the Projection rule gives a new cell with perimeter 6
(labeled by Lx1RLx̄1R).

We search for configurations suitable for the application of the rule Join.
We try to reduce the complexity of δ and the Join rule gives us the chance to
use the Projection rule; this last one is the only rule (by creating a new edge
with a new label) which reduces the perimeter of our disc. During search
there are two possibilities:

10Note that by Definition 2.3.1 a cell can contain properly another cell. As a limit case
the disc itself is a cell.

Propositional Proof Complexity 43

Figure 2.5: The proof given in section 2.

• The sequence of edges represented in Figure 2.1 exists.

• The sequence of edges represented in Figure 2.1 does not exist.

If the sequence exists we apply the rules Join; next we apply Projection
and we consider the new cell which has perimeter (p− 4); in the second case
we search, going counterclockwise, for edges labeled by letters xi and x̄i; then
we apply the Swap rule many times is necessary in order to have suitable
sequences of edges on which we can apply Join. Then we consider the result-
ing cell with the labels attached and we write down, going counterclockwise
from the origin O, the remaining letters. This is the last step of the proof
π′ in Σ∗

n. In order to discuss more extensively this construction, we need to
introduce some additional definitions.

Definition 2.3.3 A disc δ is regular if and only if the word attached to it
is regular. A cell β ⊆ δ is regular if and only if the attached word to it is
regular (going counterclockwise from the origin O).

Lemma 2.3.4 Let δ (β) be a regular disc (a regular cell). If one of the
composition rules Join, Projection and Swap can be applied to δ (β), then
the application creates a regular cell α ∈ δ (α ∈ β).

Proof. For Join it is easy since no new edges are added to the disc; thus,
after their application the disc (that is regular by hypothesis) it remains
regular. The application of the Swap rule add edges connecting only edges

44 S. Cavagnetto

labeled by lowercase letters (this is the restriction on the rule) and do not
involve movement of uppercase letters; then the new cell is still labeled by
the same letters. So if by hypothesis the disc (or the previous cell) is regular
then the cell β obtained by Swap is regular. When is applied the Projection
rule has two cases.

1. The label of the edge is a lowercase letter.

2. The label of the edge is R.

In the first case, by hypothesis the disc (or the previous cell) is regular then
is labeled by a regular word and by soundness the new cell is regular. In the
second case a similar argument gives the claim.

�

Definition 2.3.5 If a regular disc δ after finitely many steps ends with a cell
labeled by LR (having p = 2) then the disc δ is called regular and complete.

Theorem 2.3.6 If there exists in Σ∗
n a proof

π′ : I �Σ∗
n

LR

such that I = {wC1
, wC2

, . . . , wCt}. Then there exists a regular disc δ labeled
by words from I, where for 1 ≤ i ≤ t each wCi

may occur more than once,
that is also complete.

Proof. Consider π′. By definition of proof in Σ∗
n, π′ is a sequence of regular

words w1, w2, . . . , wk. Start with a disc δ labeled by clause-words from I in
the order they are introduced in π′. It is regular and will be regular at any
stage, by Lemma 2.3.4. In order to show that the disc is also complete we
must prove that after finitely many steps the disc ends with LR. It suffice to
notice that the diagrams rules are used to simulate how the rewriting rules
of Σ∗

n are applied in π′ in an obvious way: Swap simulates the exchanging
rules, Join and Projection the elimination rules.

�

Further, we have that

Theorem 2.3.7 If there exists a regular and complete disc δ labelled by
words from a non empty set I of clause-words, then there exists a proof

π′ : I �Σ∗
n

LR.

Propositional Proof Complexity 45

Proof. Let δ be a regular and complete disc whose border is labeled by
clause-words from I. We shall construct the Σ∗

n-proof of LR from I back-
wards. Let δ1 be the cell labeled by LR with perimeter 2. Associate with it
the word w1 = LR. At any given stage we will have a subdisc δi of δ, a set
Ii of clause-words and a regular word wi such that:

1. Ii are the words occurring on the perimeter of δi;

2. clause subwords of wi are in Ii;

3. wi,wi−1,. . . ,w1 is a valid Σ∗
n-derivation.

We write down every border going counterclockwise of each cell that we meet
in the process. Every single line will be a regular word and to check if rules
are applied correctly and they correspond to the rules in Σ∗

n is easy. The
only point in this construction where we must be very careful is when we
get the border of the disc. Recall that it collects all the application of the
I-rules. In order to get the original proof we must operate as follows; first we
write down the complete border; then we consider the labels and we define
properly the corresponding clause-words. Then we introduce step by step
all the clause-words using the following procedure; if the number of clause-
words is n then we obtain a sequence of n lines such that each n−1 line does
not contain the last clause-word contained in the line n; at the end of this
process we have w1, the source-word of π′. This conclude our construction
in the proof.

�

Combining the results obtained so far we can prove the following state-
ment which give us the link between tree-like refutation proofs and regular
and complete discs.

Theorem 2.3.8 A set of clauses C = {C1, . . . , Cm} is unsatisfiable if and
only if there exists a regular and complete disc δ such that its border is labelled
by words from IC.

Definition 2.3.9 Let δ be a complete and regular disc. The number of cells
contained in δ is the size.

Then the following theorem can be proved by inspection on π and δ.

Theorem 2.3.10 Let k be the size of tree-like resolution refutation proof π.
Let k′ be the size of the corresponding regular and complete disc δ. Then
k′ < k.

46 S. Cavagnetto

We may conceive the construction of our diagrams in a three-dimensional
space. A nice representation in Euclidean solid geometry can be obtained.
In this context, a proof is represented by a cylinder sectioned by polygons
labeled with symbols from An. Thus, to represent a given proof11 means
to represent how the volume of the starting cylinder can be reduced. One
example is given in Figure 2.6, where we consider the proof represented before
in Figure 2.5. In this case the initial clause-words were Lx1x2R, Lx̄1R and
Lx̄2R.

Figure 2.6: The same proof as in Figure 2.5 in three dimensions.

We conclude the section considering a more complicated proof with re-
spect to that in Figure 2.5. Let Lx1x2x3R be the source-word. Let Lx̄2R,
Lx̄1R, Lx̄3R be the words given by I-rules. Having these informations we can
construct the disc δ representing the proof in Σ∗

3, see Figure 2.7. Analyzing
the resulting diagram we can obtain all the informations about the original
proof. The number of steps in the proof is the number of cells labelled by
regular words reading the diagram going counterclockwise with respect to O.
The number of variables is given by the number of dashed lines contained
in the disc. To find the size of the proof it is enough look at all the cells
(starting from the one with smallest perimeter) and obtain all the regular
words used in the proof and then find the clause-words. Thus we obtain the
proof starting from the bottom, namely from the regular word LR. Then
space and width can be defined similarly from the diagram in a geometric
way. By the previous results linking Σ∗

n and R∗, we may find the estimate of
complexity of resolution refutation proofs.

11It is easy to see how to translate the Swap, Join and Projection rules into the three-
dimensional case.

Propositional Proof Complexity 47

x2

x2

R

x3

x2

x1

L
O

R

L

R

L
L

x3

x1

R

R

R

R

x3

x1 x3

Figure 2.7: Proof of LR from Lx1x2x3R, Lx̄2R, Lx̄1R and Lx̄3R.

2.4 Resolution and Σn: the dag-like case

We are going to outline in this section a construction of a rewriting system
Σn that is equivalent to a general resolution R (i.e. no restriction to tree-like
proofs) in the same way as Σ∗

n is to R∗.
Tree-like proofs have a very transparent structure. Once a clause is used

in an inference it disappears; any other occurrence of the same clause has
its own subproof and can be treated completely independently from other
occurrences of the clause. In general, in dag-like proofs this is different. A
clause can be used as a hypothesis in one inference but does not necessarily
disappears: it can be reused as many times as needed.

Of course, we could simulate such proofs by transforming them first into
tree-like proofs and then using the simulation outlined in the preceding sec-
tion. However, this would blow-up the size of the proofs, sometimes expo-
nentially. If we want to keep the simulation polynomial (computed by a
polynomial time algorithm) we shall have to replace Σ∗

n by a more compli-
cated rewriting system Σn.

The rewriting system Σn those definition we outline will be able to per-
form two tasks. The first is the DOUBLING process: having a regular
word

uLvRw

48 S. Cavagnetto

with a clause-word LvR as a subword, rewrite it into

uLvRLvRwΓ

This will be used for saving an occurrence of the clause-word for possible
future inferences.

The second process is SHIFTING: having a regular word

uLvRLwRe

with the two clause-words LvR and LwR as subwords rewrite it into

uLwRLvRe.

This procedure will enable us to move a clause-word which is a subword inside
the regular word to a position where an elimination rule can be applied.

It is fairly obvious that if we augment Σ∗
n somehow to Σn such that the

stronger rewriting system can perform the two procedures, the simulation
from Theorem 2.2.3 can be extended to non-treelike proofs too. However,
we want to construct such a simulation so that it is sound analogously to
Theorem 2.2.5 about Σ∗

n. For this reason we have defined the system Σn not
in as minimal way, using the smallest possible number alphabet and rewriting
rules, but in a way in which the soundness is easy to verify. The drawback of
this is that the systems has a bigger alphabet and the number of rewriting
rules considerably increase.

Thus we explain the ideas how DOUBLING and SHIFTING are im-
plemented and how the soundness is proved; we do not do it formally since
full details are too tedious to follow. Now, we describe informally but with
some precision how are the DOUBLING and SHIFTING procedures sim-
ulated so that the resulting system Σn properly simulates R (analogously with
Theorem 2.2.5).

Let us consider the DOUBLING. The idea is to introduce in the alpha-
bet colored versions of letters from An (four copies of different colors suffice).
A clause-subword LvR of a regular word whose occurence is to be doubled
is first colored green; the rules are formulated in a way that allows to color
only one such subword (this use extra “super-script”symbol). Then green L
is replaced by uncolored L and blue L. The rules allow to move blue letter
right over all green and blue letters. Next the leftmost green letter (a literal
unless v is the empty word) is replaced by its uncolored version followed by
its blue version. The blue version is again moved as far right as possible over
all green and blue letters, etc... At the end of this process the occurrence of
LvR colored at the start green is now uncolored and it is followed by its blue

Propositional Proof Complexity 49

copy. Finally, the blue color is erased. In a very similar way can be treated
the SHIFTING procedure.

We give below two examples to illustrate the procedures. In the first we
formulate a possible set of rules that govern the SHIFTING procedure. In
the second example we consider the DOUBLING procedure and we define
a corresponding set of rewriting rules for it. In both examples we show how
a step in a dag-like proof can be simulated by a string rewriting system.

Example 1. Let A′
n be the alphabet containing L, R, h, hm, he and

x1,. . . , xn. We call h the ‘head’ symbol. The symbols hm and he are
called the ‘head-moving’ and the ‘head-erasing’ symbols respectively. If
a ∈ (A′

n \ he, hm), then each a may have the following form: a, â and a∗. 12

Now, consider the rewriting system Σ∗
n extended by the following four sets

of rewriting rules:

1. Structural rules

(Sa) L → hL;

(Sb) Lh → hL;

(Sc) Rh → hR;

(Sd) hR → Rh;

(Se) hL → Lh;

(Sf) hxi → xih;

(Sg) hx̄i → x̄ih;

(Sh) xih → hxi;

(Si) x̄ih → hx̄i;

(Sj) h → Λ;

These rules allow to introduce, erase and move through subwords the
‘head’ symbol.

2. Coloring rules:

(Ca) hL → L̂ĥ;

(Cb) ĥxi → x̂iĥ;

(Cc) ĥx̄i → ˆ̄xiĥ;

(Cd) ĥR → R̂h∗;

12We can interpret hat and star as green and blue.

50 S. Cavagnetto

(Ce) h∗L → L∗h∗;

(Cf) h∗xi → x∗
i h

∗;

(Cg) h∗x̄i → x̄i
∗h∗;

These rules are used to “color” (by hat and star) subwords.

3. Moving rules:

(Ma) h∗R → R∗hm;

(Mb) âb∗ → b∗â, where a, b ∈ {L,R, xi, xj} and i, j = 1, . . . n;

(Mc) âhm → hma where a �= L;

These rules allow to move colored symbols.

4. Erasing rules:

(Ea) R̂hm → heR;

(Eb) a∗he → hea, where a �= L;

(Ec) L∗he → hL;

(Ed) âhe → hea;

These rules erase colors.

Now, consider the following step (i) of a sequence-like proof where clauses
C1 and C3 are resolved to obtain the clause C4 at the next step (i+1).

(i) {x1x2x3}︸ ︷︷ ︸
C1

{x4x5}︸ ︷︷ ︸
C2

{x̄1x6}︸ ︷︷ ︸
C3

(i + 1) {x2x3x6}︸ ︷︷ ︸
C4

{x4x5}︸ ︷︷ ︸
C2

Let wC1C2C3
be the regular word constituted of the clause-words wC1

, wC2

and wC3
(apply Definition 2.2.1). Then, wC1C2C3

is

Lx1x2x3RLx4x5RLx̄1x6R

Now, we show how the step from (i) to (i+1) can be simulated using
the rewriting rules of Σ∗

n extended by Structural , Coloring , Moving and
Erasing rules.

We start our process by introducing the symbol h, thus:

hLx1x2x3RLx4x5RLx̄1x6R

by (1Sa);

Propositional Proof Complexity 51

L̂ĥx1x2x3RLx4x5RLx̄1x6R

by (2Ca);

L̂x̂1ĥx2x3RLx4x5RLx̄1x6R

by (2Cb);

L̂x̂1x̂2ĥx3RLx4x5RLx̄1x6R

by (2Cb);

L̂x̂1x̂2x̂3ĥRLx4x5RLx̄1x6R

by (2Cb);

L̂x̂1x̂2x̂3R̂h∗Lx4x5RLx̄1x6R

by (2Cd);

L̂x̂1x̂2x̂3R̂L∗h∗x4x5RLx̄1x6R

by (2Ce);

L̂x̂1x̂2x̂3R̂L∗x∗
4h

∗x5RLx̄1x6R

by (2Cf);

L̂x̂1x̂2x̂3R̂L∗x∗
4x

∗
5h

∗RLx̄1x6R

by (2Cf);

L̂x̂1x̂2x̂3R̂L∗x∗
4x

∗
5R

∗hmLx̄1x6R

by (3Ma);
Then apply the rule (3Mb) as many times we needed in order to obtain

the following regular word:

L∗x∗
4x

∗
5R

∗L̂x̂1x̂2x̂3R̂hmLx̄1x6R.

Thus by application of (4Ea):

L∗x∗
4x

∗
5R

∗L̂x̂1x̂2x̂3h
eRLx̄1x6R

Now, rule (4Ed) can be applied until we obtain the following regular word:

L∗x∗
4x

∗
5R

∗heLx1x2x3RLx̄1x6R

52 S. Cavagnetto

Then we can apply (4Eb):

L∗x∗
4x

∗
5h

eRLx1x2x3RLx̄1x6R

Rule (4Eb) can be applied until the symbol on the left hand side he is L;

L∗hex4x5RLx1x2x3RLx̄1x6R

Then by (4Ec) we obtain the regular word:

hLx4x5RLx1x2x3RLx̄1x6R

Then using the structural rule (1Sj) we obtain the regular regular word in
which the first two clause-words are exchanged:

Lx4x5RLx1x2x3RLx̄1x6R.

In order to complete our simulation we apply the exchanging rules from Σ∗
n

two times:
Lx4x5RLx2x3x1RLx̄1x6R

and then the elimination rule from Σ∗
n can be applied:

Lx4x5RLx2x3x6R

Now, it is easy to check that the resulting regular word is composed by two
clause-words wC2

and wC4
; these two words are by Definition 2.2.1 the clauses

C2 and C4.

Example 2. Let A′′
n be the alphabet containing L, R, h, h‡ and x1,. . . ,

xn. h is the ‘head’ symbol and h‡ is the ‘head-stop’ symbol. If a ∈ (A′
n\h, h‡),

then each a may have the following form: a, ǎ and ã. 13 Now, consider the
rewriting system Σ∗

n extended by the following two set of rewriting rules:

1. Structural rules

(Sa) L → hL;

(Sb) Lh → hL;

(Sc) Rh → hR;

(Sd) hR → Rh;

(Se)) hL → Lh;

13We can interpret ‘check’ and ‘tilde’ as red and yellow.

Propositional Proof Complexity 53

(Sf) hxi → xih;

(Sg) hx̄i → x̄ih;

(Sh) xih → hxi;

(Si) x̄ih → hx̄i;

(Sj) h → Λ;

These rules allow to introduce, erase and move through subwords the
‘head’ symbol.

2. Doubling rules

(Da) hL → ĽL̃h;

(Db) ha → ǎãh, where a ∈ (An \ {L,R})∗;
(Dc) hR → ŘR̃h‡;

(Dd) ǎb̃ → b̃ǎ, where a, b ∈ An;

(De) ãh‡ → h‡a, where a ∈ An;

(Df) ǎh‡ → h‡a, where a ∈ An;

(Dg) h‡a → ha, where a = L.

These rules allow to make a copy of a subword.

Now, consider the following step (i) in a dag-like proof where the clause
C2 is used two times: first, to derive in the step (i+1) the clause C4 and then
in the step (i+2) to obtain C5.

(i) {x1x2}︸ ︷︷ ︸
C1

{x̄2}︸︷︷︸
C2

{x̄2x3}︸ ︷︷ ︸
C3

(i + 1) {x1}︸︷︷︸
C4

{x̄2}︸︷︷︸
C2

{x2x3}︸ ︷︷ ︸
C3

(i + 2) {x1}︸︷︷︸
C4

{x3}︸︷︷︸
C5

Let wC1C2C3
be the regular word constituted of the clause-words wC1

, wC2

and wC3
(apply Definition 2.2.1). Then, wC1C2C3

is

Lx1x2RLx̄2RLx2x3R.

We show how to simulate the previous derivation from (i) to (i+2) using
the rewriting rules of Σ∗

n extended by Structural and Doubling rules. We
introduce the symbol h by the rule (1Sa), then:

Lx1x2RhLx̄2RLx2x3R.

54 S. Cavagnetto

Then by (2Da):
Lx1x2RĽL̃hx̄2RLx2x3R.

By rule (2Db) we obtain:

Lx1x2RĽL̃ ˇ̄x2 ˜̄x2hRLx2x3R.

Then we apply the rule (2Dc):

Lx1x2RĽL̃ ˇ̄x2 ˜̄x2ŘR̃h‡Lx2x3R.

After some applications of (2Dd), we obtain the following regular word:

Lx1x2RL̃ ˜̄x2R̃Ľ ˇ̄x2Řh‡Lx2x3R

then by (2Df) three times:

Lx1x2RL̃ ˜̄x2R̃h‡Lx̄2RLx2x3R

and by (2De) three times we have:

Lx1x2Rh‡Lx̄2RLx̄2RLx2x3R.

Then by (2Dg),
Lx1x2RhLx̄2RLx̄2RLx2x3R.

Thus by the structural rule (1Sj) we obtain:

Lx1x2RLx̄2RLx̄2RLx2x3R.

Then we can apply elimination rules from Σ∗
n

Lx1RLx̄2RLx2x3R

and
Lx1RLx3R.

It is easy to verify that the simulation is correct.

Analyzing the previous examples it is fairly clear that it is possible to
write down rules allowing the rewriting procedure described above. However,
it cannot be enforced that the rules can be applied in a unique way. For
example, anytime during the procedures we can insert few applications of
the other rules from Σ∗

n. Or we can color the word and then uncolor a part
and color again, etc . . .

Propositional Proof Complexity 55

Thus instead of formulating particular rules it seems to us more conve-
nient to formulate a general property of rules to be used in Σn that will
guarantee the soundness, i.e. whenever there is a derivation in Σn of LR
from IC then indeed C is unsatisfiable.

The property of Σn we want is:
There is a map associating to every word w that can occur in a Σn

derivation from IC a set of clauses Dw such that

• Any truth assignment satisfying all clauses in C satisfies also all clauses
in DwC .

• If a word v is derived in one step from a word u then any truth assign-
ment satisfying all clauses in Du satisfies also all clauses in Dv.

• DLR is unsatisfiable.

Such a map is constructed similarly as in the proof of Theorem 2.2.5.
Notice that the colors allow us to reconstruct which literals, which may be
being moved around, belong to the same clause-word. We skip the tedious
details.

2.5 Some remarks

In this chapter we have shown that a propositional proof system such as
Resolution can be interpreted as a string rewriting system; in particular as
a Semi-Thue system. The interpretation Σ∗

n of the tree-like case has an
interesting representation based on planar diagrams and they are similar to
Van Kampen diagrams. This representation can be exploited more also to
give a concrete geometrical representation, in Euclidean space. The system
Σ∗

n is very elegant and his formal representation does not require too many
rules and the proofs in Σ∗

n have a structure which is really transparent as the
structure of proofs in R∗. Indeed, all the complexity measures study for R∗

can be characterized in a very clear way also for the system Σ∗
n.

In the case of general resolution R things are less smooth, and this is
because the proofs in R may have very complicated structure. Thus, in
the simulation of them, using a string rewriting approach the number of
rules substantially blow up and the resulting translation in Σn is much more
tangled. Of course, in principle this is possible as we have outlined. We can
simulate using string rewriting systems also general resolution and the gap
between the proofs in R and in Σn is still polynomial, but it is not satisfactory
in terms of its formal representation.

56 S. Cavagnetto

Chapter 3

Applications of Propositional
Logic to Cellular Automata

In this chapter we consider the rewriting procedure applied in parallel and
in a synchronous way. Perhaps the most natural way to think about this
is to consider cellular automata. Cellular automata are dynamical systems
that have been extensively studied as discrete models for natural systems.
They can be described as large collections of simple objects locally interacting
with each other. A d-dimensional cellular automaton consists of an infinite
d-dimensional array of identical cells. Each cell is always in one state from a
finite state set. The cells change their states synchronously in discrete time
steps according to a local rule. The rule gives the new state of each cell as a
function of the old states of some finitely many nearby cells, its neighbours.
The automaton is homogeneous so that all its cells operate under the same
local rule. The states of the cells in the array are described by a configura-
tion. A configuration can be considered as the state of the whole array. The
local rule of the automaton induces a global function that tells how each con-
figuration is changed in one time step. 1 In literature cellular automata take
various names according to the way they are used. They can be employed
as computation models [31] or models of natural phenomena [72], but also
as tessellations structures, iterative circuits [14], or iterative arrays [22]. The
study of this computation model was initiated by von Neumann in the ’40s
[54], [55]. He introduced cellular automata as possible universal computing
devices capable of mechanically reproducing themselves. Since that time cel-
lular automata have also aquired some popularity as models for massively
parallel computations.

The main reason why cellular automata have been extensively studied

1For surveys on cellular automata the interested reader can see [42], [43].

57

58 S. Cavagnetto

as discrete models for natural system is that they have several basic prop-
erties of the physical world: they are massively parallel, homogeneous and
all interactions are local. Other physical properties such as reversibility and
conservation laws can be programmed by selecting the local rule suitably.
The main point is that cellular automata provide very simple models of com-
plex natural systems encountered in physics and biology. As natural systems
they consists of large numbers of very simple basic components that together
produce the complex behaviour of the system. Then, in some sense, it is
not surprising that several physical systems (spin systems, crystal growth
process, lattice gasses, . . .) have been modelled using these devices, see [72].

Probably the most popular of these automata is Life (or Game of Life),
created by Conway in 1970, [3]. This cellular automaton operates on an in-
finite two-dimensional grid. Each cell is in one of two possible states, alive
or dead, and interacts with its neighbours, which are the cells that are di-
rectly horizontally, vertically and diagonally adjacent. The eight neighbours
form the so called Moore neighborhood [51] (see Figure 3.1 where two other
neighborhoods widely used in literature are considered: the von Neumann
[56] and the Smith neighborhood [68]). At every time step, each cell can

Figure 3.1: The Moore neighborhood of the cell c, the von Neumann neigh-
borhood of the cell c

′
and the Smith neighborhood of the cell c

′′
.

change its state in a parallel and synchronous way according to the following
local rules: (1) A cell that is dead at time t becomes alive at time t+1 if and
only if three of its neighbours were alive at time t; (2) A cell that was alive

Propositional Proof Complexity 59

at time t will remain alive if and only if it had just two or three neighbours
alive at time t; (3) A cell that is alive at time t and has four or more of its
eight neighbours alive at t will be dead by time t+1; (4) A cell that has only
one alive neighbour, or none at all, at time t, will be dead at time t + 1.2

In this chapter we show how the study of propositional proof complexity
and some of its techniques can be exploited in order to investigate cellular
automata and their properties. The chapter is organized as follows. First,
in Section 1, we present a formal definition of cellular automaton. In the
same section we recall some of the most important results regarding cellular
automata. In Section 2 we give a new proof of a foundamental theorem in the
field, the Richardson theorem [63]. We use only compactness of propositional
logic and the Craig interpolation theorem. In the same section we show how
to apply feasible interpolation, discussed in Section 5 of the first chapter, to
find description of inverse cellular automata. In Section 3 we solve two open
problems formulated in [32]. The first can be stated as follows: consider finite
bounded configurations and a reversible cellular automaton that is given by a
“simple” algorithm. Is the inverse automaton given by a “simple”algorithm
too? The second problem is the following: the injectivity problem of cellular
automata on bounded size is coNP-complete, [32]; does the result still hold
if we consider instead of the size of the transition table, the smallest program
(circuit) which computes its transition table?

3.1 Cellular Automata: definitions and some

basic results

Formally a cellular automaton is an infinite lattice of finite automata, called
cells. The cells are located at the integer lattice points of the d-dimensional
Euclidean space. In general one can allow any Abelian group G in place of
Zd. In particular, we may consider (Z/m)d, a toroidal space, where Z/m is
the additive group of integers modulo m. In Z

d we identify the cells by their
coordinates. This means that the cells are adressed by the elements of Z

d.

Definition 3.1.1 Let S be a finite set of states and S �= ∅. A configuration of
the cellular automaton is a function c : Z

d → S. The set of all configurations
is denoted by C.

2As a game it can be seen as a zero-player game, i.e. a game whose evolution is
determined by its initial state, needing no input from players.

60 S. Cavagnetto

The cells change their states synchronously at discrete time steps. Simply
the next state of each cell depends on the current states of the neighboring
cells according to an update rule. All the cells use the same rule, and the
rule is applied to all cells in the same time. The neighboring cells may be
the nearest cells surrounding the cell, but more general neighborhoods can
be specified by giving the relative offsets of the neighbors.

Definition 3.1.2 Let N = (�x1, ..., �xn) be a vector of n elements of Z
d. Then

the neighbors of a cell at location �x ∈ Z
d are the n cells at locations �x + �xi,

for i = 1, ..., n.

The local transformation rule (transition function) is a function f : Sn →
S where n is the size of the neighborhood. State f(a1, ..., an) is the new state
of a cell at time t + 1 whose n neighbours were at states a1, ..., an at time t.

Definition 3.1.3 A local transition function defines a global function G :
C → C as follows,

G(c)(�x) := f(c(�x + �x1), . . . , c(�x + �xn)).

The cellular automataton evolves from a starting configuration c0 (at time
0), where the configuration ct+1 at time (t + 1) is determined by ct (at time
t) by,

ct+1 := G(ct).

Thus, cellular automata are dynamical systems that are updated locally
and are homogeneous and discrete in time and space. Most frequently in
literature cellular automata are specified by a quadruple

A = (d, S,N, f),

where d is a positive integer, S is the set of states (finite), N ∈ (Zd)n is the
neighborhood vector, and f : Sn → S is the local transformation rule.

Definition 3.1.4 A cellular automaton A is said to be injective if and only
if its global function GA is one-to-one. A cellular automaton A is said to be
surjective if and only if its global function GA is onto. A cellular automaton
A is bijective if its global function GA is one-to-one and onto.

Let A and B be cellular automata. Let GA and GB the two global func-
tions. Suppose that d is the same for A and B and that they have in common

Propositional Proof Complexity 61

also S. We may compose A with B as follows: first run A and then run B.
Denoting the resulting cellular automaton by B ◦ A we have

GB◦A = GB ◦ GA.

This composition can be formed effectively. If NA and NB are neighbor-
hoods of A and B, and GA and GB the global functions, then a neighborhood
of GB ◦ GA consists of vectors �x + �y for all �x ∈ NA and �y ∈ NB.

To establish if two given cellular automata A and B, with GA and GB, are
equivalent is decidable. In fact, if NA = NB then the local transformation
rules, fA and fB, are identical. If NA �= NB then one can take NA ∪ NB and
to test whether A and B agree on the expanded neighborhood.

The shift functions translate the configurations one cell down in one of
the coordinate direction. Formally, for each dimension i = 1, ..., d there is a
corresponding shift function σi whose neighborhood contains only the unit
coordinate vector �ei whose rule is the identity function id.3 Translations are
compositions of shift functions.

Often a particular state q ∈ S is specified as a quiescent state (simulating
empty cells). The state must be stable, i.e. f(q, q, ..., q) = q. A configuration
c is said to be quiescent if all its cells are quiescent, c(x̄) = q.

Definition 3.1.5 A configuration c ∈ SZd
is finite if only a finite number of

cells are non-quiescent, i.e. the set 4,

{�x ∈ Z
d| c(�x) �= q}

is finite.

Let CF be the subset of C that contains only the finite configurations.
Finite configurations remain finite in the evolution of the cellular automaton,
because of the stability of q, hence the restriction GF of G on the finite
configurations is a function GF : CF → CF .

Definition 3.1.6 A spatially periodic configuration is a configuration that
is invariant under d linearly independent translations.

This is equivalent to the existence of d positive integers t1, ..., td such that
c = σti

i (c) for every i = 1, ..., d. We denote the set of periodic configurations
by CP . The restriction of GP of G on the periodic configurations is hence a
function GP : CP → CP .

3The one-dimensional shift function is the left shift σ = σ1
4Usually in literature called the support.

62 S. Cavagnetto

Very often finite and periodic configurations are used in effective sim-
ulations of cellular automata on computers. Periodic configuarations are
referred to as the periodic boundary conditions on a finite cellular array. For
instance, when d = 2, this is equivalent to running the cellular automaton on
a torus that is obtained by joining together the opposite sides of a rectangle.
The relevant group is (Z/t1) × (Z/t2). This can be visualized as taping the
left and right edges of the rectangle to form a tube, then taping the top and
bottom edges of the tube to form a torus (doughnut shape), see Figure 3.2.

Figure 3.2: A toroidal arrangement: when one goes off the top, one comes in
at the corresponding position on the bottom, and when one goes off the left,
one comes in on the right.

Definition 3.1.7 Let A be a cellular automaton. A configuration c is called
a Garden of Eden configuration of A, if c is not in the range of the global
function GA.

A basic property of the class of finite sets is the following: a function from
a finite set into itself is injective if and only if the function is surjective. Sur-
prisingly, when we deal with cellular automata this is also partially true, even
if only in one direction: an injective cellular automaton is always surjective,
but the converse does not hold. When we consider finite configurations the
behaviour is more analogous to finite sets. The following theorem, a combi-
nation of two results proved by Moore [51] and by Myhill [52] respectively,
points out exaclty this fact.

Propositional Proof Complexity 63

Definition 3.1.8 A pattern α is a function α : P → S, where P ⊆ Z
d is a

finite set. Pattern α agrees with a configuration c if and only if c(x) = α(x)
for all x ∈ P .

Theorem 3.1.9 (Moore [51], Myhill [52]) Let A be a cellular automa-
ton. Then GF

A
is injective if and only if GF

A
has the property that for any

given pattern α there exists a configuration c in the range of GF
A

such that α
agrees with c.

The proof of the theorem is combinatorial and holds for any dimension
d. The following theorem summarizes the situation regarding the injectivity
and the surjectivity of cellular automata.

Theorem 3.1.10 (Richardson [63]) Let A be a cellular a automaton. Let
GA be its global function and GF

A
be GA restricted to the finite configurations.

Then the following implications hold:

1. If GA is one-to-one then GF
A

is onto.

2. If GF
A

is onto then GF
A

is one-to-one.

3. GF
A

is one-to-one if and only if GA is onto.

Definition 3.1.11 A cellular automaton A with global function GA is in-
vertible if there exists a cellular automaton B with global function GB, such
that GB ◦ GA = id, where id is the identity function on C.

It is decidable whether two given cellular automata A and B are inverses
of each other. This follows easily from the effectiveness of the composition
and the decidability of the equivalence.

In 1972 Richardson proved the following quite remarkable and important
theorem about cellular automata:5

Theorem 3.1.12 (Richardson [63]) Let A be an injective cellular automa-
ton. Then A is bijective and the inverse of GA, G−1

A
, is the global function

of a cellular automaton.

In the next section we provide a new proof of Richardson’s statement.
The same year of Richardson’s result Amoroso and Patt proved that:

5Recall that on finite configurations the global function may be onto and one-to-one
even if the cellular automaton is not reversible.

64 S. Cavagnetto

Theorem 3.1.13 (Amoroso and Patt [1]) Let d = 1. Then there exists
an algorithm that determines, given a cellular automaton A = (1, S,N, f), if
A is invertible or not.

In the same paper they also provided an algorithm to determine if a given
cellular automaton is surjective.6 In higher spaces the problem of showing if
a given cellular automaton is surjective or not, has been shown undecidable
by Kari [41]. In the same paper Kari proved that the reversibility of cellular
automata is undecidable too,

Theorem 3.1.14 (Kari [41]) Let d > 1. Then there is no an algorithm
that determines, given A = (d > 1, S,N, f), if A is invertible or not.

The proof of Theorem 3.1.14 is based on the transformation of the tiling
problem, which has been shown undecidable by Berger [9], into the invert-
ibility problem on a suitable class of cellular automata.

3.2 A proof of the Richardson theorem via

propositional logic

Richardson proved Theorem 3.1.12 by a topological argument plus the Gar-
den of Eden theorem. Richardson’s proof was non-constructive (it used
compactness of a certain topological space) and our new proof is formally
non-constructive too (we use compactness of propositional logic). This non-
constructivity is unavoidable by Theorem 3.1.14. Nevertheless our proof of-
fers a technical simplification: only basic logic is involved requiring straight-
forward formalism, and it allows us to apply an interpolation theorem. The
compactness can be eliminated, and the proof made fully constructive, if we
consider periodic configurations; considering d = 2 the working space be-
comes a torus. We will discuss this point below, after the proof of Theorem
3.2.1.

We shall concentrate on dimension d = 2 only and on the binary alpha-
bet. This simplifies the notation but displays the idea of the proof in full
generality.

Theorem 3.2.1 Let A be a cellular automata over Z
2 (with 0, 1 alphabet)

whose global function GA is injective. Then there is a cellular automata B

(with 0, 1 alphabet) with global function GB such that GB ◦ GA = id.

6Later Sutner designed elegant decision algorithms based on de Bruijn graphs, see [69].

Propositional Proof Complexity 65

Proof. For an n-tuple of Z
2-points N = ((u1, v1),. . . ,(un, vn)) defining the

neighborhood of A denote by

(i, j) + N

the n-tuple (i + u1, j + v1), . . . , (i + un, j + vn). For each i, j let pi,j be a
propositional variable. Denote by p(i,j)+N the n-tuple of variables

pi+u1,j+v1
, . . . , pi+un,j+vn .

Then the transformation function of A is a boolean function of n-variables

pt+1
(i,j) = f(pt

(i,j)+N)

where the superscript t and t + 1 denote the discrete time. An array

(r(i,j))(i,j)∈Z2

(we shall skip the indices and write simply �r) of 0 and 1 describes the con-
figurations obtained by GA from an array

(p(i,j))(i,j)∈Z2

if and only if conditions
r(i,j) = f(p(i,j)+N),

for all (i, j) are satisfied.
Denote the infinite set of all these conditions TA(�p,�r). We can define

f by a CNF (or DNF) formula; hence we can think of TA(�p,�r) as of a
propositional theory consisting of clauses.

A basic observation is that the injectivity of GA is equivalent to the fact
that the theory

T (�p,�r) ∪ T (�q, �r)

(where �p, �q and �r are disjoints arrays of variables) logically implies all equiv-
alences

p(i,j) ≡ q(i,j)

for all (i, j) ∈ Z
2. As the theory remains unchanged if we replace all indices

(i, j), by (i, j) + (i0, j0), (any fixed (i0, j0) ∈ Z
2) this is equivalent to the fact

that
T (�p,�r) ∪ T (�q, �r)

implies that
p(0,0) ≡ q(0,0).

66 S. Cavagnetto

This can be restated as follows:

T (�p,�r) ∪ {p(0,0)} ∪ T (�q, �r) ∪ {¬q(0,0)}

is unsatisfiable.
Now we can use the compactness theorem for propositional logic to deduce

that there are finite theories

T0(�p,�r) ⊆ T (�p,�r)

and
T0(�q, �r) ⊆ T (�q, �r)

such that
T0(�p,�r) ∪ {p(0,0)} ∪ T0(�q, �r) ∪ {¬q(0,0)}

is unsatisfiable. (We may assume w.l.o.g. that these finite parts are identical
up to renaming p’s to q’s.) By Craig’s interpolation theorem there is a
formula I(�r), such that:

T0(�p,�r) + p(0,0) � I(�r)

and
I(�r) � T0(�q, �r) → q(0,0).

Although we write the whole array �r in I(�r), the formula obviously contains
only finitely many r variables (at most those appearing in T0(�p,�r)).

Using deduction theorem four times we obtain

T0(�p,�r) � p(0,0) → I(�r)

and
T0(�q, �r) � I(�r) → q(0,0).

Renaming �q to �p the second fact gives

T0(�p,�r) � I(�r) → p(0,0)

i.e. together
T0(�p,�r) � I(�r) ≡ p(0,0).

In other words, the interpolant I(�r) computes the symbol of cell (0,0) in
the configuration prior to �r, i.e. it defines the inverse to A.

Let M ⊆ Z
2 be the finite set of (s, t) ∈ Z

2 such that r(s,t) appears in I(�r).
Define the cellular automaton B as follows:

Propositional Proof Complexity 67

1. Alphabet is 0,1;

2. The neighborhood is M ;

3. The transition function is given by I(�r), i.e.

pt+1
(i,j) = I(pt

(i,j)+M).

This concludes the proof.

�

Below we add some remarks about the previous proof.

1. The construction of the cellular automaton B has two key steps: (a) the
use of the compactness theorem for propositional logic and (b) the ap-
plication of Craig’s interpolation. Compactness leads to a non-recusrive
procedure while interpolation can be quite effective (see below).

2. The construction guarantees that

GB(GA(�p)) = �p

but it does not - a priori - imply that also

GA(GB(�r)) = �r.

That follows from the Garden of Eden theorem.

3. If the interpolant I(�r) contains M variables (i.e. the neighborood of B

has size |M |) then the size of B (as defined in [32], see Definition 3.3.1
below) is O(2|M |). This also bounds the size |I | of any formulas defining
the interpolant, but I could be in principle defined by a substantially
smaller formula (e.g. of size O(|M |).)

The same argument works for the version of the previous theorem with
(Z/m)2 in place of Z

2. In this case, already the starting theory T (�p,�r) is
finite: of size O(m2 2n) where m2 is the size of (Z/m)2 and O(2n) bound the
sizes of CNF s/DNF s formulas for the transition function of A. Hence we do
not need to use the compactness theorem and we can apply the interpolation
immediately. The interpolant may, in principle, be defined on all m2 r-
variables.

Given the finite subtheory T0(�p,�r) a method to find constructively the
interpolant I(�r) is described below; hence we also give the description of the
inverse cellular automaton B. The construction is as follows:

68 S. Cavagnetto

1. Apply one of the “usual” automated theorem provers to verify that

T0(�p,�r) ∪ {p(0,0)} ∪ T0(�q, �r) ∪ {¬q(0,0)} (∗)

is unsatisfiable;

2. Extract from the run of the algorithm a resolution refutation π of
clauses (∗). This can be done in polynomial time [4];

3. Apply Theorem 1.4.7 to get a polynomial time algorithm W (�r, π) that
computes the interpolant I(�r).

Hence the circuit size of I(�r) is polynomial in the run-time of the algorithm
from 1. Of course, we expect that in the worst case this is exponential in the
size of (∗), but it may, in principle, be better than the exhaustive search.

3.3 Some complexity results

Durand [32] proved the first complexity results concerning a global property
of cellular automata of dimension ≥ 2 (see Theorem 4.1.1). By Kari’s result
[40] the reversibility of a cellular automaton with d ≥ 2 is not decidable.
This implies that the inverse of a given cellular automaton cannot be found
by an algorithm: its size can be greater than any computable function of
the size of the reversible cellular automaton. Durand’s result shows that
even if we restrain the field of action of cellular automata (with d = 2) to
finite configuration bounded in size, it is still very difficult to prove that the
cellular automaton is invertible or not: the set of cellular automata invertible
on finite configurations is coNP-complete (see below). In [32] it is assumed
that the size of a cellular automaton corresponds to the size of the table of
its local function and of the size of its neighborhood. More precisely:

Definition 3.3.1 If s is the number of states of a cellular automaton A and
N = (x1, ..., xn) then the size of a string necessary to code the table of the
local function plus the vector N of A is sn · log(s) + o(sn · log(s)).

Durand [32] proved that the decision problem concerning invertibility of
cellular automata of dimension 2 belongs to the class of coNP-hard problems
or to the class of coNP-complete problems if some bound is introduced on
the size of the finite configurations considered.7 For the coNP-completeness

7Notice that result is obtained for a 2-dimensional cellular automata with von Neumann
neighborhood, see Fig. 3.1.

Propositional Proof Complexity 69

we assume that the size of the neighborhood is lower than the size of the
transition table of the cellular automaton, i.e. ∀x ∈ N , |x| ≤ sn.

Now, consider the following problem:

PROBLEM (CA-FINITE-INJECTIVE):
Instance: A 2-dimensional cellular automaton A with von Neumann neigh-
borhood. Two integers p and q less than the size of A.
Question: Is A injective when restricted to all finite configurations ≤ p × q?

The theorem below8 is the main result in [32],

Theorem 3.3.2 (Durand [32]) The problem CA-FINITE-INJECTIVE is
coNP-complete.

If one drops the restriction on the bound of the size of the neighborhood
then a proof of the coNP-hardness of CA-INFINITE-INJECTIVE can be
obtained; for more details on this the reader can see [32].

What is assumed in the previous result is basically that the size of the
representation of a cellular automaton corresponds to the size of its transition
table. Durand [32] asked if the coNP-completeness result can be true also
if we define the size of a cellular automaton as the length of the smallest
program (circuit) which computes its transition table. A second question
formulated in [32] is the following: suppose that we have an invertible cellular
automaton given by a simple algorithm and that we restrict ourself to finite
bounded configurations. Then is the inverse given by a simple algorithm too?
In this section we give answers to both questions. We start with the latter
problem first.

For succinctness we do it on Z1; it is fairly simple to get similar examples
for Z

2 or (Z/m)2.
Assume we have a boolean function f : {0, 1}n → {0, 1}n having the

following properties:

1. f is a permutation;

2. f is computed by a polynomial size circuit.

3. The inverse function f−1 requires an exponential size circuit, exp(Ω(n)).

8For a discussion on this theorem with the idea behind the proof, see Chapter 4, Section
1.

70 S. Cavagnetto

For example, if f were a one-way permutation (e.g. conjecturally based on
factoring or discrete logarithm) then it has the properties. Now define a
cellular automaton Af as follows:

1. Alphabet: 0, 1, #.

2. Neighborhood of i ∈ Z:

N = 〈i − n, i − n + 1, . . . , i, i + 1, . . . , i + n〉

i.e. |N | = 2n + 1.

3. Transition function:

(i) pt
i = # → pt+1

i = #

(ii) If pt
i ∈ {0, 1} and there are j, k such that:

(a) j < i < k and k − j = n + 1;

(b) pt
j = pt

k = #

(c) pt
r ∈ {0, 1} for r = j + 1, j + 2,. . . ,i,. . . , k − 1

define

pt+1
i = (f(pt

j+1, . . . , p
t
k−1))i

where (f(pt
j+1, . . . , p

t
k−1))i is the i-th bit of f(pt

j+1, . . . , p
t
k−1).

(iii) If pt
i ∈ {0, 1} and there are no j, k satisfying (ii) then put

pt+1
i = pt

i.

The informal description of the automaton Af can be summarized as
follows: every 0−1 segment between two consecutives #’s that does not have
the lenght exactly n is left unchanged. Segments of length n are trasformed
according to the permutation f .

The inverse automaton B is defined analogously using f−1 in place of f
(B = Af−1).

Theorem 3.3.3 Assume that f : 2n → 2n is a permutation computable by
a size poly(n) circuit such that any circuit computing the inverse function
f−1 must have size at least exp(nΩ(1)). Then the cellular automaton Af is
invertible but has an exponentially smaller circuit-size than its inverse cellular
automaton.

Propositional Proof Complexity 71

Proof. By the construction the inverse cellular automaton is B = Ag where
g = f−1. That is, the transition table of B essentially defines the boolean
function f−1. Hence by hypothesis its circuit-size is exponential in n, while
Af has circuit-size poly(n).

�

Remark: The hypothesis of Theorem 3.3.3 follows from the existence of
cryptographic one-way functions. In particular, it follows from the exponen-
tial hardness of factoring or of discrete logarithm.

Theorem 3.3.3 solves negatively one of the open problem formulated by
Durand [32] that we have described above: a very “simple” algorithm giving
a reversible cellular automaton (even if restricted to finite configurations)
can have an inverse which is given by an algorithm which is exponentially
bigger and then not “simple”.9

Now we answer the other open problem formulated in [32]. The problem
asks about coNP-completeness of the injectivity of cellular automata when
it is represented by a program (circuit) rather than by a transition table.

Consider the following problem:

PROBLEM (P1):
Input: A circuit C(x1, ..., xn) defining the transition table function of 0 − 1
cellular automaton AC with a neighborhood N of size |N | = n.
Question:Is AC injective on Z

1?

Theorem 3.3.4 Problem (P1) is coNP-hard.

Proof. We shall describe a polynomial reduction from TAUT to (P1). Let
φ(x1, ..., xn) be a propositional formula. Let the alphabet be 0,1 and the
neighborhood N be 〈0, ..., n〉. Now define the cellular automaton A as follows:

pt+1
i :=

{
pt

i, if φ(pt
i+1, ..., p

t
i+n)

0, otherwise.

Clearly the circuit defining A is

pt
i ∧ φ(pt

i+1, ..., p
t
i+n)

9Where “simple” algorithm means polynomial time algorithm.

72 S. Cavagnetto

and has size O(|φ|). This means that the map φ → A is polynomial time.
If φ ∈ TAUT then always pt+1

i = pt
i. In this case A is a cellular automa-

ton doing nothing, i.e. its global map is the identity and, in particular, it is
invertible. Assume φ /∈ TAUT . We need to construct two different config-
urations mapped by A to the same configuration. Let i0 ≥ 1 be minimal i0
such that there is a truth assignment ā = (a1, ..., an) ∈ {0, 1}n satisfying:

(i) ¬φ(ā);
(ii) ai0 = . . . = an = 0;

(iii) either i0 = 1 or ai0−1 = 1.
Informally, ā has the longest segment of 0’s on the right hand side that is
possible for assignments falsifying φ. Define two configurations (see Fig. 3.3):

C0 : 〈..., 0, 0, 0, a1, ..., an, 0, 0, ...〉
and

C1 : 〈..., 0, 0, 1, a1, ..., an, 0, 0, ...〉.
The two configurations differ only in the position 0. Easily the theorem

follows from the following lemma.

Figure 3.3: The configurations C0 and C1.

Lemma 3.3.5 The two configurations C0 and C1 are both mapped by A to
C0.

Propositional Proof Complexity 73

Proof. By the definition of A, all 0’s in C0, C1 stay 0. Also ā remains the
same: either it is �0 or also the n-string to the right side from a square i = 1,
..., n, i.e. qi+1, ..., qi+n contains more zeros on the right side than ā does:
this would contradict the definition of ā.

Finally, the 1 in the 0-square of C1 changes to 0, as ¬φ(ā). This proves
the lemma.

�

Hence Theorem 3.3.4 follows.

�

Now, consider a finite modification of the problem (P1):

PROBLEM (P2):
Input:

1. AC as in (P1);

2. 1(m), such that m > n. (Notice that this condition implies that AC is
well-defined on (Z/m) tori.)

Question: Is AC injective on (Z/m)?

Theorem 3.3.6 (P2) is coNP-complete.

Proof. That (P2) is in coNP is obvious. The coNP-hardness of (P2) is
shown exactly as of (P1).

�

74 S. Cavagnetto

Chapter 4

Inverse Cellular Automata as
propositional proofs

In this last chapter we combine the Richardson theorem with the coNP-
completeness result of Durand [32] and we define a new type of a proof
system PCA. This proof system PCA is a proof system for the membership in
a coNP-complete language LD (to be specified below). As the set TAUT
of propositional tautologies can be polynomially reduced to LD, PCA can be
thought of also as a propositional proof system in the sense on Cook and
Reckhow [25].

This last chapter is organized as follows. In Section 1 we briefly recall the
proof of Durand’s Theorem and we prepare the ground for the formulation
of a proof system in terms of cellular automata. In particular we show that:
there is polynomial time algorithm having a cellular automaton A with von
Neumann neighborhood and a cellular automaton B with an arbitrary neigh-
borhood and with the same alphabet of A as inputs, it can decide whether
or not B is an inverse to A. Then, in Section 2 we define a “mathematical”
proof system for LD satisfiyng the Cook and Reckhow definition [25]. At
last, Section 3 has some concluding remarks when we consider our new proof
system with respect to polynomial simulations.

4.1 Durand’s Theorem

In the fourth section of Chapter 3 we considered Durand’s result of coNP-
completeness. We recall the problem and we sketch the idea behind the proof
of the theorem.

The problem that has been called (CA-FINITE-INJECTIVE) and it goes
as follows:

75

76 S. Cavagnetto

PROBLEM (CA-FINITE-INJECTIVE):
Instance: A 2-dimensional cellular automaton A with von Neumann neigh-
borhood. Two integers p and q smaller than the size of A.
Question: Is A injective when restricted to all finite configurations ≤ p × q?

We shall also use the name CA-FINITE-INJECTIVE for the language of
inputs with an affirmative answer. The main result in [32] is the following,

Theorem 4.1.1 (Durand [32]) The problem CA-FINITE-INJECTIVE is
coNP-complete.

The proof is based on tiling. A tile is a square and its sides are colored.
The colors belong to a finite set called the color set. All tiles have the same
size. A plane tiling is valid if and only if all pairs of adjacent sides have
the same color.1 A finite tiling can be defined as follows. We assume that
the set of colors contains a special “blank color” and that the set of tiles
contains a ‘’blank tile” (a tile whose sides are blank.) A finite tiling is an
almost everywhere blank tiling of the plane. If there exist two integers i and
j such that all the nonblank tiles of the tiling are located inside a square of
size i × j, then we say that the size of the finite tiling is lower than i × j.
Inside the i× j square, there can be blank and nonblank tiles. If we have at
least one nonblank tile, then the tiling is called nontrivial.

Durand in its proof introduces a special tile set δ. The sides contain a
color (“blank”, “border”, “odd”, “even”, or “the-end”), a label (N , S, E,
W , N+, S+, E+ W+, or ω), and possibly an arrow. A tiling is valid with
respect to δ if and only if all pairs of adjacent sides have the same color, the
same label, and for each arrow of the plane, its head points out the tail of
an arrow in the adjacent cell. A basic rectangle of size p × q is a finite valid
tiling of the plane of size p×q with no size labeled “blank” or “border” inside
the rectangle.

Then, given a finite set of colors B with a blank color and a collection
τ ∈ B4 of tiles including a blank tile, Durand constructs a cellular automaton
Aτ and proves the following basic theorem which provides a link between
tilings and cellular automata:

Theorem 4.1.2 (Durand [32]) Let n ≥ 3 be an integer and τ be a set
of tiles. The cellular automaton Aτ is not injective restricted to finite con-
figurations of size smaller than 2n × 2n if and only if the tile set τ can

1Notice that is not allowed to turn tiles.

Propositional Proof Complexity 77

be used to form a finite nontrivial tiling of the plane of size smaller than
(2n − 4) × (2n − 4).

Then using Theorem 4.1.2 he proves that PROBLEM (CA-FINITE-
INJECTIVE) is coNP-complete, i.e. Theorem 4.1.1.

Now we reformulate Durand’s problem a bit in that we consider cellular
automata operating on (Z/m)2 rather than on finite rectangles in Z

2. We
are replacing rectangles in Z2 by (Z/m)2 in order to be compatible with our
treatement of Richardson’s theorem given in the third chapter.

Consider a variant of the problem CA-FINITE-INJECTIVE in which the
cellular automata operate on (Z/m)2 rather than on “finite configurations”.
We call this problem PROBLEM(CA-TORI-INJECTIVE):

PROBLEM(CA-TORI-INJECTIVE):
Instance: A 2-dimensional cellular automaton A with von Neumann neigh-
borhood and m ≥ 3, m is smaller than the size of A.
Question: Is A injective when restricted to (Z/m)2?

Definition 4.1.3 The language LD is the set of pairs (m, A) for which the
PROBLEM(CA-TORI-INJECTIVE) has an affirmative answer.

In terms of languages the problem above will be called LD. Thus, of course
Theorem 4.1.1 by Durand can be simply stated as follows:

Theorem 4.1.4 LD is a coNP-complete language.

Lemma 4.1.5 There is a polynomial time algorithm that on the two inputs:

1. a cellular automaton A with von Neumann neighborhood;

2. a cellular automaton B with an arbitrary neighborhood and the same
alphabet as A,

decides whether or not B is an inverse to A.

Proof. The automata A and B are presented to the algorithm by the tables
of their local functions, see Definition 3.3.1. Assume that the alphabet of A

and B has S symbols and that the size of B neighborhood is N . Hence the
size of A and B are O(S5 · log(S)) and O(SN · log(S)), respectively.

78 S. Cavagnetto

To evaluate a cell (i, j) in B ◦ A we need to look at a von Neumann
neighborhood of all N points in the neighborhood of (i, j) in B, i. e. on at
most ≤ 5N cells. Considering all the possible ≤ S5N patterns on these cells
yields in a list of all possible patterns (≤ SN) on the neighborhood of (i, j) in
B, after the action of A. Then we check that in all these patterns B produces
in the cell (i, j) the original symbol.

The time they need is bounded above by O(S5N · (N · S5 · log(S)) ·
(SN log(S)) = SO(N)), where S5N bounds the number of patterns to check,
N ·S5 · log(S) bounds the time need to compute the pattern on the neighbor-
hood of (i, j) in B after the action of A (for any fixed pattern), and SN ·log(S)
bounds the time need to compute the symbol of (i, j) after the action of B.
However, the quantity SO(N) is polynomial in terms of the size of B, i.e. the
algorithm is polynomial time.

�

Let us remark that the restriction on A to a von Neumann neighborhood
is essential. If A was allowed to have an arbitrarily neighborhood M , then
the algorithm would need time SO(M ·N) which is only quasi-polynomial in
the sizes O(SM · log(S)) and O(SN · log(S)) of the inputs A and B.

4.2 A proof system based on cellular automata

In this section we define a new proof system PCA based on cellular automata.
As far as we know this is the first proof system based on cellular automata.

Definition 4.2.1 PCA is a proof system for the language LD. A PCA proof
for the pair (m, A) ∈ LD is cellular automaton B such that:

1. B has the same alphabet as A;

2. B is inverse to A.

Lemma 4.2.2 PCA is a proof system for the language LD.

Proof. If A ∈ LD, then a suitable cellular automaton B exists by Richard-
son’s theorem, Theorem 3.2.1.2 On the other hand the existence of B implies

2See Chapter 3, section 3, p. 62

Propositional Proof Complexity 79

that the cellular automaton A is injective, i.e. A ∈ LD. Hence PCA is com-
plete and sound.

Finally, the provability relation is polynomial time decidable by Lemma
4.1.5.

�

The statement A ∈ LD can be expressed in a propositional way, same as
in our proof of Richardson’s theorem. In particular, a proof of A ∈ LD is a
proof of the unsatisfiability of the formula3:

T0(�p,�r) ∪ {p(0,0)} ∪ T0(�q, �r) ∪ {¬q(0,0)}

Hence any propositional proof system Q can be thought of also as a proof
system for LD: a proof is a proof in Q of this formula.

We may observe at this place - reformulating the remark at the end of
Section 3.2 - that having in particular a resolution proof of the formula gives
us at least a circuit that describes the transition function of the inverse
cellular automaton and whose size is polynomial in the size of the resolution
proof: feasible interpolation (see Theorem 1.4.7) allows to extract a circuit
computing the interpolant and the interpolant defines the transition function.

We remark that this leads to an interesting question about feasible inter-
polation. The size of the inverse automaton B is O(SN log(S)) where S is the
size of the alphabet (common with the cellular automaton A) and N is the
size of the neighborhood of the inverse cellular automaton B. Hence it is the
quantity N that we would like to estimate. For this it would be very useful
to have an estimate on the number of atoms the interpolant (produced by
the feasible interpolation method or by any other specific method) depends
on.

4.3 Some remarks

The main problems which remain open from this section are the followings:
can we establish some polynomial simulation between PCA and some existing
proof system such as Resolution? The investigation of this problem is ham-
pered by the convoluted proof of Durand’s theorem; a good place where to
start thus would be to find a simple (or at least a simpler) proof of the latter.
It would be desirable to have a proof which involves propositional logic, as

3See top page 66, the formula denoted by (*).

80 S. Cavagnetto

our proof of Richardson’s theorem given in the second section of Chapter 3,
since this could give us an elegant and unified framework.

Having such a simplified proof one could use the well-known relation
between bounded arithmetic and proof systems (see [45]) and attempt to
prove the soundness of PCA in the theory corresponding to R. Such a sound-
ness proof would imply polynomial simulation of PCA by R via a universal
argument. We remark that the proof of Durand’s theorem appears to be
formalizable in the theory V 0, if that is indeed the case this would imply a
polynomial simulation of PCA by a constant-depth Frege system. 4

4See [45] for background on bounded arithmetic.

Propositional Proof Complexity 81

Concluding remarks

We have shown that a propositional proof system such as Resolution can be
interpreted as a string rewriting system; in particular as a Semi-Thue system.
The interpretation Σ∗

n of the tree-like case has an interesting representation
based on planar diagrams and they are similar to Van Kampen diagrams.
This representation can be exploited more also to give a concrete geometrical
representation, in Euclidean space in which we interpret the idea of giving a
proof as that of reducing the volume of a given cylinder. This reduction is
performed allowing planes sectioning the initial cylinder. We remark that the
system Σ∗

n is very elegant and his formal representation does not require too
many rules and the proofs in Σ∗

n have a structure which is really transparent
as the structure of proofs in R∗. Indeed, all the complexity measures study
for R∗ can be characterized in a very clear way also for the system Σ∗

n.
In the case of general Resolution R things are less smooth, and this is

because the proofs in R may have very complicated structure. Thus, in
the simulation of them, using a string rewriting approach the number of
rules substantially blow up and the resulting translation in Σn is much more
tangled. Of course, in principle this is possible as we have outlined. We can
simulate using string rewriting systems also general resolution and the gap
between the proofs in R and in Σn is still polynomial, but it is not satisfactory
in terms of its formal representation.

In 1972 Richardson proved the following remarkable result for cellular
automata: let A be an injective cellular automaton. Then A is bijective
and the inverse of GA, G−1

A
, is the global function of a cellular automaton.

We offered a new proof of this theorem exploiting only Craig’s interpolation
theorem and the compactness of propositional logic. Moreover, in the same
chapter we solved two problems left open by Durand [32] about complexity
of cellular automata. In particular the problems can be stated as follows:

1. Consider the case of finite bounded configurations. Let a reversible
automaton be given by a “simple”algorithm. Is the inverse automaton
given by a “simple”algorithm too?

2. The injectivity problem of cellular automata on bounded size is coNP-
complete, Theorem 4.1.1. Does the result still hold if we consider in-
stead of the size of the transition table, the smallest program which
computes its transition table?

In the first case the answer is negative, as shown in Theorem 3.3.3. The
inverse automaton, even if we restrict our investigation to finite configura-
tions, can be given by an algorithm which is exponentially bigger than the

82 S. Cavagnetto

algorithm of the invertible one’s. The second problem has a positive answer.
The injectivity (even if restricted to finite configurations) is indeed a very
difficult problem though we consider the program (circuit) which computes
the transition table of the cellular automaton instead of its transition ta-
ble; it remains an coNP-complete problem. Finally we define a new proof
system based on cellular automata exploiting the coNP-completeness of the
injectivity problem plus the Richardson theorem.

To sum up, in this work we have investigated relations between propo-
sitional proof systems and various rewriting systems, and relations between
complexity of both. We have constructed some concrete simulations (Chap-
ter 2), found applications of propositional logic and Boolean complexity in
cellular automata theory (Chapter 3), and invented an interpretation of an
inverse automaton as a propositional proof (Chapter 4).

We view our results as initial steps in a new direction for research link-
ing propositional logic (and its proof complexity) with rewriting systems
and with cellular automata in particular. We think that studying the proof
complexity strength (in the sense of Chapter 4) of some naturally occurring
invertible cellular automata may be quite interesting.

List of Figures

2.1 The von Koch curve. 30
2.2 The rule Join. 41
2.3 The rule Projection. 42
2.4 The rule Swap. 42
2.5 The proof given in section 2. 43
2.6 The same proof as in Figure 2.5 in three dimensions. 46

3.1 The Moore neighborhood of the cell c, the von Neumann neigh-
borhood of the cell c

′
and the Smith neighborhood of the cell

c
′′
. 58

3.2 A toroidal arrangement: when one goes off the top, one comes
in at the corresponding position on the bottom, and when one
goes off the left, one comes in on the right. 62

3.3 The configurations C0 and C1. 72

83

84 S. Cavagnetto

Bibliography

[1] S. Amoroso and Y.N. Patt, Decision procedures for surjectivity and
injectivity of parallel maps for tasselation structures, Jour. Comput.
System Scie., 6, (1972), 448-464.

[2] A. Atserias, M. L. Bonet, On the automatizability of resolution and
related Propositional Proof Systems, Information and Computation,
189(2), (2004), pp. 182-201.

[3] E. Berlekamp, J. Conway, R. Elwyn and R. Guy, Winning way for your
mathematical plays, vol. 2, Academic Press, (1982).

[4] P. Beame, H. Kautz and A. Sabharwal, Towards Understanding and
Harnessing the Potential of Clause Learning, Journal of Artificial Intel-
ligence Reasearch (JAIR), 22, (2004), pp. 319-351.

[5] P. Beame, R. Impagliazzo, J. Kraj́ıček, T. Pitassi, and P. Pudlák, Lower
bounds on Hilbert’s Nullstellensatz and propositional proofs, in Proc.
London Math. Soc., 73(3), (1996), pp. 1-26.

[6] E. Ben-Sasson and R. Impagliazzo, Random CNF’S are hard for the
polynomial calculus, in Proceedings of the 40th Annual IEEE Symposium
on Foundations of Computer Science, (1999).

[7] E. Ben-Sasson, R. Impagliazzo, and A. Wigderson, Near-optimal sep-
aration of tree-like and general resolution, ECCC, Report TR02-005,
(2000).

[8] E. Ben-Sasson, and A. Wigderson, Short proofs are Narrow–Resolution
made Simple, Journal of the ACM, 48(2), (2001), pp.149-169.

[9] R. Berger, The undecidability of the domino problem, Mem. Amer.
Math. Soc., 66, (1966), pp. 1-72.

[10] A. Blake, Canonical expression in boolean Algebra, Ph.D Thesis, (1937),
University of Chicago.

85

86 S. Cavagnetto

[11] M.L. Bonet, J.L.Esteban, N. Galesi and J. Johannsen, Exponential sep-
arations between Restricted Resolution and Cutting Planes Proof Sys-
tems, In 39th Symposium on Foundations of Computer Science, (FOCS
1998), pp.638-647.

[12] M. Bridson, The geometry of the word problem, in: Invitations to Ge-
ometry and Topology, Oxford University Press, (2002).

[13] K. Büning, T. Lettman, Aussangenlogik: Deduktion und Algorithmen,
(1994), B.G Teubner Stuttgart.

[14] E. Burks, Theory of Self-reproduction, University of Illinois Press,
Chicago, (1966).

[15] S. Buss (ed.), Handbook of Proof Theory, North-Holland, (1998).

[16] S. Cavagnetto, String Rewriting and Proof Complexity: an interpreta-
tion of Resolution, to appear in Reports on Mathematical Logic.

[17] S. Cavagnetto, Some Applications of Propositional Logic to Cellular
Automata, submitted to Mathematical Logic Quarterly.

[18] N. Chomsky, Three models for the Description of Language, IRE Trans-
actions on Information Theory, (2)2, (1956), pp.113-123.

[19] M. Clegg, J. Edmonds, and R. Impagliazzo, Using the Groebner basis
algorithm to find proofs of unsatisfiability, in Proceedings of 28th Annual
ACM Symposium on Theory of Computing, (1996), pp. 174-183.

[20] P. Clote and A. Setzer, On PHP st-connectivity and odd charged graphs,
in P. Beame and S. Buss, editors,Proof Complexity and Feasible Arith-
metics, AMS DIMACS Series Vol. 39, (1998), pp. 93-117.

[21] P. Clote and E. Kranakis, Boolean Functions and Computation Models,
Texts in Theoretical Computer Science, Springer-Verlag, (2002).

[22] S. Cole, Real-time computation by n-dimensional iterative arrays of
finite-state machine, IEEE Trans. Comput, C(18), (1969), pp. 349-365.

[23] S. A. Cook, The complexity of theorem-proving procedures, in Proc. 3rd
Ann. ACM Symp. on Theory of Computing, (1971), pp. 151-158.

[24] S. A. Cook and A. R. Reckhow, On the lenghts of proofs in the propo-
sitional calculus, in Prooceedings of the Sixth Annual ACM Symposium
on the Theory of Computing, (1974), pp. 15-22.

Propositional Proof Complexity 87

[25] S.A Cook and A.R. Reckhow, The relative efficiency of propositional
proof systems, Journal of Symbolic Logic, 44(1), (1979), pp. 36-50.

[26] S. A. Cook, The P versus NP Problem, Manuscript prepared for the Clay
Mathematics Institute for the Millennium Prize Problems, (2000).

[27] W. Cook, C. R. Cullard, and G. Turan, On the complexity of cutting
planes proofs, Discrete Applied mathematics, 18, (1987), pp.25-38.

[28] W. Craig, Three uses of the Herbrand-Gentzen theorem in relating
model theory and proof theory, Journal of Symbolic Logic, 22(3),
(1957), pp. 269-285.

[29] M. Davis, Computability and Unsolvability, Dover Pubblications, Inc,
New York, (1958).

[30] M. Davis and H. Putnam, A computing procedure for quantification
theory, Journal of the ACM, 7(3), pp. 210-215.

[31] M. Delorme and J. Mazoyer, editors, Cellular Automata: a parallel
model, Mathematics and its Application, Springer, (1998).

[32] B. Durand, Inversion of 2D cellular automata: some complexity results,
Theoretical Computer Science, 134, (1994), pp.387-401.

[33] J.L. Esteban, J. Torán, Space bounds for resolution, Information and
Computation, 171(1), (2001), pp. 84-97.

[34] Z. Galil, On resolution with clauses of bounded size, SIAM Journal of
Computing, 6, (1977), pp.444-459.

[35] M. R. Garey and D.S. Johnson, Computers and Intractability - A guide
to the theory of the NP-completeness, W. H. Freeman, (1979).

[36] A. Goerdt, Cutting planes versus Frege proof systems, in: Computer
Science Logic:4th workshop, CSL ’90, E. borger and et al., eds, Lecture
Notes in Computer Science, Spriger-verlag, (1991), pp.174-194.

[37] D. Hilbert and W. Ackermann, Principles of Mathematical Logic, New
York, (1950).

[38] K. Iwama and S. Miyazaki, Tree-like Resolution is superpolinomially
slower then dag-like resolution for the Pigeonhole Principle, in A. Ag-
garwal and C.P. Rangan, editors, Proceedings: Algorithms and Compu-
tation, 10th International Symposium, ISAAC’99, Vol. 1741, (1999), pp
133-143.

88 S. Cavagnetto

[39] M. Karchmer and A. Wigderson, Monotone circuits for connectivity
require super-logarithmic depth, in Proc. 20th Annual ACM Symp. on
Theory of Computing, ACM Press, (1988), pp. 539-550.

[40] J. Kari, Reversibility of 2D cellular automata undecidable, Physica,
D(45), (1990), 379-385.

[41] J. Kari, Reversibility and surjectivity problems of cellular automata,
Jour. Comput. System Scie., 48, (1994), pp. 149-182.

[42] J. Kari, Reversible Cellular Automata, Proceedings of DLT 2005, Devel-
opments in Language Theory, Lecture Notes in Computer Science,3572,
pp. 57-68, Springer-Verlag, (2005).

[43] J. Kari, Theory of cellular automata: A survey, Theoretical Computer
Science, 334, (2005), pp. 3-33.

[44] H. von Koch, Sur une courbe continue sans tangente obtenue par
une construction géométrique élémentaire, Archiv. für Matem. Fys., 1,
(1904), pp. 681-702.

[45] J. Kraj́ıček, Bounded arithmetic, propositional logic, and complexity the-
ory, Encyclopedia of Mathematics and Its Applications, 60, Cambridge
University Press, (1995).

[46] J. Kraj́ıček, Propositional proof complexity I., Lecture notes, available
at http://www.math.cas.cz/krajicek/biblio.html.

[47] J. Kraj́ıček, Dehn function and length of proofs, International Journal
of Algebra and Computation, 13(5),(2003), pp.527-542.

[48] J. Kraj́ıček, Lower bounds to the size of constant-depth propositional
proofs, Journal of Symbolic Logic, 59(1), (1994), pp.73-86.

[49] J. Kraj́ıček, Interpolation theorems, lower bounds for proof systems, and
indipendence results for bounded arithmetic, Journal of Symbolic Logic,
62(2), (1997), pp. 457-486.

[50] L. Levin, Universal search problem (in russian), Problemy Peredachi
Informatsii 9, (1973), 115-116.

[51] E.F. Moore, Machine models of self-reproduction, Proc. Symp. Appl.
Math. Soc., 14, (1962), pp. 13-33.

Propositional Proof Complexity 89

[52] J. Myhill, The converse to Moore’s garden-of-Eden theorem, Proc.
Amer. Math. Soc., 14, (1963), pp.685-686.

[53] D. Mundici, NP and Craig’s interpolation theorem, Proc. Logic Collo-
quium 1982,North-Holland, (1984), pp. 345-358.

[54] J. von Neumann, The General and Logical Theory of Automata, in
Collected Works, vol. 5, Pergamon Press, New York, (1963), pp. 288-
328.

[55] J. von Neumann, Theory of Self-reproducting automata, ed. W. Burks,
University of Illinois Press, Chicago, (1966).

[56] J. von Neumann, Theory of automata: construction, reproduction and
homogeneity, unfinished manuscript edited for pubblication by W.
Burks, see [14] pp. 89-250.

[57] C. H. Papadimitriu, Computational Complexity, Addison-Wesley,
(1994).

[58] C. H. Papadimitriu, NP-completeness: A Retrospective, in Proceedings
of the 24th International Colloquium on Automata, Languages and Pro-
gramming 1256, Lecture Notes in Computer Science, Springer, (1997),
pp. 2-6.

[59] P. Pudlák, The Lenghts of Proofs, in Handbook of Proof Theory, ed. S.
Buss, North-Holland, (1998), ch. 8, pp. 547-637.

[60] P. Pudlák, Lower bounds for resolution and cutting plane proofs and
monotone computations, Journal of Symbolic Logic, (1997), pp. 981-
998.

[61] R. Raz and P. McKenzie, Separation of the monotone NC hierarchy,
in Proc. 38th Symposium on Foundations of Computer Science, (1997),
pp. 234-243.

[62] A. A. Razborov, Unprovability of lower bounds on the circuits size in cer-
tain fragments of bounded arithmetic, Izvestiya of the R. A. N., 59(1),
(1995), pp. 201-224.

[63] D. Richardson, Tesselations with local transformations, Jour. Comput.
System Scie., 6,(1972), pp. 373-388.

[64] J. A. Robinson, A machine-oriented logic based on the resolution prin-
ciple, Journal of the ACM, 12(1), pp. 23-41.

90 S. Cavagnetto

[65] M. Sipser, Introduction to the Theory of Computation, PWS Publishing
Company, Boston, (1997).

[66] M. Sipser, The history and the status of the P versus NP question,
STOC, (1992), pp. 603-618.

[67] S. Smale, Mathematical problems for the next century, in Mathematics:
Frontiers and perspectives, AMS, (2000), pp. 271-294.

[68] A. Smith III, A Simple computatio-universal spaces, Journal of ACM,
(1971), 18, pp. 339-353.

[69] K. Sutner, De Bruijn graphs and linear cellular automata, Complex Sys-
tems, 5, (1991), 19-31.

[70] A. Thue, Die Lösung eines Spezialfalles eines gnerellen Logischen Prob-
lems, Kra. Videnskabs-Selskabets Skriften I. Mat. Nat. Kl., 8, (1910).

[71] A. Thue, Probleme über Veranderungen von Zeichenreihen nach gegeben
Regeln, Skr. Vid. Kristianaia I. Mat. Natarv. Klasse, 10/13, (1914).

[72] T. Toffoli and N. Margolus, Cellular Automata Machines, MIT Press,
Cambridge MA, (1987).

[73] G. S. Tseitin, On the complexity of derivation in propositional calculus,
in A. Slisenko ed., Studies in Constructive Mathematics and Mathemat-
ical Logic, (1970), Consultants Bureau, New York, pp. 115-125.

[74] A. Turing, On computable numbers with an application to the Enth-
scheidungsproblem, Proc. London Math. Soc., 42, (1936), pp. 230-265.

[75] A. Urquhart, The Complexity of Propositional Proofs, Bulletin of Sym-
bolic Logic, 1(4),(1996), pp. 425-467.

[76] A. Wigderson, P, NP and Mathematics-a computational complexity per-
spective, http://www.math.ias.edu/avi/BOOKS/.

[77] K. Wagner and G. Wechsung, Computational Complexity, Riedel,
(1986).

