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Abstrakt

Název práce: Odhady parametr̊u v subkohortńıch studíıch
Autor: Mgr. Petr Klášterecký
Katedra: Katedra pravděpodobnosti a matematické statistiky
Školitel: Mgr. Michal Kulich, Ph.D.
E-mail školitele: kulich@karlin.mff.cuni.cz
Abstrakt:
Dizertačńı práce se zabývá odhadem parametr̊u v regresńıch modelech v ana-
lýze přež́ıváńı, zejména v tzv. subkohortńıch studíıch. V těchto studíıch se
provád́ı výběr pozorováńı do subkohorty, která se sleduje a analyzuje. To
umožňuje výrazné sńıžeńı náklad̊u na provedeńı studie, ale zároveň vyžaduje
při odhadu regresńıch parametr̊u jiné postupy než klasická analýza přež́ıváńı.
Obvyklá úprava odhadovaćıch rovnic spoč́ıvá v zavedeńı váhových funkćı,
které zohledňuj́ı pravděpodobnost výběru jednotlivých pozorováńı do subko-
horty. V práci ukážeme, že tato metoda může vést při malých pravděpodob-
nostech výběru k vychýleným odhad̊um, a navrhneme alternativńı odhad
založený na logistické regresi.
Kĺıčová slova:
Subkohortńı studie, analýza přež́ıváńı, logistická regrese, vážený odhad.

Abstract

Title: Parameter estimation in case-cohort studies
Author: Mgr. Petr Klášterecký
Department: Dept. of Probability and Mathematical Statistics
Supervisor: Mgr. Michal Kulich, Ph.D.
Supervisor’s e-mail address: kulich@karlin.mff.cuni.cz
Abstract:
The concern of this thesis is parameter estimation in regression models in
survival analysis, particularly in case-cohort studies. In case-cohort studies,
observations are sampled to form a subcohort which is followed and analysed.
As a result, the cost of performing such studies is reduced but standard pro-
cedures for parameter estimation need to be modified. This is usually done
by incorporating weights into the estimating equations so that individual
sampling probabilities are accounted for. In this thesis we show that this
method can lead to biased estimators when the subcohort sampling proba-
bility is low and suggest an alternative estimator based on logistic regression.
Keywords:
Case-cohort study, survival analysis, logistic regression, weighted estimator.
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Chapter 1

Introduction

Survival analysis as a standalone statistical discipline emerged more than 40
years ago when the basic methods for analysing censored and/or truncated
time to event data were developed. The original Kaplan-Meier estimator
for the survival function (developed around 1960) and the Cox proportional
hazards model (1972) became extremely popular and are still widely applied
in practice. On the other hand, survival analysis remains an area of active
research and many papers suggesting new approaches, models and estimation
methods recently appeared in the literature.

Similarly the original paper on the case-cohort design by R.L. Prentice
was published long ago in 1986 and new papers appear on a regular basis.
The case-cohort design aims to reduce costs of the study by observing much
fewer subjects compared to classical study designs. Rather than following
the whole cohort, a random sample called subcohort of the individuals is
selected and then followed. As a result, case-cohort studies still generate
time to event data, which can be analysed by known models. Traditional
estimation methods taken from survival analysis cannot be directly used for
the analysis, most usually they are modified in order to reflect the sampling
scheme. Nevertheless, the extensive publishing on survival analysis had a
strong impact on research of case-cohort studies and parameter estimation
in case-cohort regression models.

Regression models for time to event data and parameter estimation under
the case-cohort design are the main topics of this doctoral thesis. Since there
are many regression models for time to event data, many authors aimed to
unify the models and estimating procedures. The resulting class of nonlin-
ear transformation models will be introduced in Chapter 2, however most
attention will be paid to the Cox proportional hazards model and the pro-
portional odds model. While the Cox model is well known and popular, the
latter model often seems to be a reasonable but neglected alternative.
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1. Introduction 2

All of the most important regression models known from survival analysis
can be used for analysing case-cohort data as well. Many case-cohort esti-
mators have been suggested throughout the literature and their development
closely followed the development seen in survival analysis. Originally the
estimators have been developed for specific models, e.g. the Prentice’s esti-
mator from 1986 deals with the Cox proportional hazards model. Later there
were efforts to unify the treatment and to modify or generalise estimating
equations to case-cohort data in the whole class of nonlinear transformation
models. The main ideas of parameter estimation in case-cohort studies are
presented in Chapter 3.

Currently used case-cohort estimators introduce some weight functions
into the estimating equations. They are based on the same principle and
therefore they also share similar weaknesses in situations where the proba-
bility of observing an event is generally very low regardless of the covariates.
In simulation studies we have often seen bias and inaccurate coverage of 95%
confidence intervals. A discussion on reasons for such performance problems
and a small simulation study illustrating this behaviour are also reported in
Chapter 3. These issues are very interesting for practical use of case-cohort
estimators, since situations with low event rates occur frequently in practice
and the case-cohort design would save most resources here.

Most of the original results are presented in Chapter 4, where we develop
a new estimator for regression parameters in the proportional odds model
and its asymptotic properties. The estimating procedure is based on com-
bining logistic regression estimates made in subsequent failure times. To
obtain the estimator we choose a convex linear combination of the individual
logistic estimators that minimizes the asymptotic variance of each estimated
parameter component. Performance of the estimator is then illustrated in a
simulation study presented in Chapter 5. Note that our estimator performed
very well with data generated from the popular proportional hazards model,
although it was developed for the proportional odds model. This behaviour
is also theoretically discussed in Chapter 4.

The thesis is concluded with a summary and discussion on open problems
in Chapter 6.



Chapter 2

Regression models
for survival data analysis

In this chapter we shall introduce several regression models or model families
commonly used for analysing survival data. However, before we can proceed
to regression models it is necessary to introduce some notation, distributional
characteristics frequently used in survival analysis and the concept of censor-
ing. The next section only covers the very basic quantities used throughout
the whole work. Additional notation will be introduced in later chapters as
needed.

2.1 Basic concepts, censoring, notation

Assume there are a nonnegative continuous random variable T , usually called
”failure time” or ”event time” and a p-dimensional vector of covariates Z.
Covariates can generally be time-dependent, however we shall only consider
fixed covariates in this work. The vector of covariates is bound to the failure
time through an unknown p-dimensional regression parameter β. Later on we
shall use β to denote the regression parameter in general while β0 will always
denote the true value of β. Denote the conditional distribution function of
T by FZ(t) = P (T ≤ t|Z) and the conditional survival function SZ(t) =
1 − FZ(t) = P (T > t|Z). In situations where confusion might occur we will
explicitly state the corresponding random variable in the lower index, e.g.
FT |Z(t).

The conditional hazard rate defined by (2.1) is another important char-
acteristic of the failure time distribution:

λ(t|Z) = lim
hց0

1

h
P [t ≤ T < t+ h|T ≥ t,Z]. (2.1)

3



2. Regression models for survival data analysis 4

The conditional hazard rate is often viewed as the instantaneous probability
of failure at T = t given that T ≥ t. It is directly related to the conditional
survival function since clearly

λ(t|Z) =
∂

∂t
[− log(S(t|Z))] .

Modelling the conditional survival function or its transformations is es-
sential for the so called nonlinear transformation models, see Sections 2.3
and 2.4. On the other hand, the conditional hazard function plays a ma-
jor role in the proportional hazards model, see Section 2.2. Regardless of
exploiting survival or hazard functions for modelling there are two features
common to all regression models considered in this work. All the models
are semiparametric (meaning they contain real-valued as well as functional
parameters) and the dependence of the event time T on Z will be always
modelled through a linear term β′Z = β1Z1 + . . . + βpZp. Linearity of the
regression predictor has a clear advantage of simplicity and the regression
parameters β1, . . . , βp often have a practically useful interpretation.

Right censoring

Censoring (in any form) is the most important issue that distinguishes sur-
vival analysis from other parts of mathematical statistics. We will restrict
our attention to censoring on the right since it is the most natural and most
often arising censoring pattern in epidemiological and biological applications.
More details on left or interval censoring can be found in the literature (see
e.g. Kalbfleisch & Prentice, 2002, Chap. 1 and 3). The most important
consequence of right censoring is that it is impossible to observe exact event
times for some objects in a study and this fact has to be taken into account
during the analysis of censored data.

Assume that besides the failure time T there is a random variable C
called the censoring time. We say that T is right-censored if we only observe
X = min(T,C) and the indicator variable δ = I[X=T ] instead of T itself. The
random variable X = min(T,C) is called the censored failure time and δ will
be referred to as the censoring indicator.

Right censoring occurs naturally when the study ends before all enrolled
subjects experienced the event of interest, when subjects are lost during the
study due to moving to another location or, indeed, due to reasons directly
connected with the study such as worsening or improving of their health
condition in medical studies. It is intuitively apparent that some censor-
ing mechanisms will introduce bias to the analysis more likely than others.
When the event time further depends on some covariate vector Z = z, the
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“harmless” censoring mechanism can be formalized mathematically through
the hazard rate. Roughly speaking, the hazard rate should remain the same
whether or not information on censoring is available. This notion is referred
to as independent censoring in the literature.

Definition 2.1: Independent censoring. The censoring mechanism is
called independent, if

lim
hց0

P (T ∈ [t, t+ h)|z, T ≥ t)

h
= lim

hց0

P (T ∈ [t, t+ h)|z, T ≥ t, C ≥ t)

h

holds for almost all t ∈ R
+.

Independent censoring covers many of the common censoring patterns
including the so-called Type I and Type II censoring (censoring up to a
given time or up to a given number of events) and is most often assumed by
standard techniques of survival analysis.

Counting processes

We can see that each study subject in survival analysis can be in several
states at a given time t. The subject either has already experienced the
event of interest, has been censored prior to t or still remains at risk at
time t. Such behaviour is conveniently mathematically expressed through
stochastic processes defined so that N(t) = I[T≤t, δ=1] is the event counting
process and Y (t) = I[X>t] is the at risk process. Note that Y (t) = 0 implies
that a potential failure at time t cannot be observed. In the following we will
suppose there are n subjects in the study providing n independent realisations
of T,C, and Z. Note however that due to censoring we are only able to
observe triplets (Xi, δi,Zi) or (Ni, Yi,Zi) for i = 1, . . . , n.

2.2 Proportional hazards model

Results concerning the proportional hazards model are usually well known
and reviewed in many standard textbooks such as Kalbfleisch & Prentice
(2002) or Fleming & Harrington (1991). We shall therefore only point out
the basic ideas here and later in the text we shall concentrate on comparison
with other regression models in survival analysis.

The proportional hazards model specifies dependence of survival time on
covariates through the conditional hazard rate. Suppose that for any two
covariate values Z1 and Z2 the associated failure rates have a fixed ratio
over time. Then λ(t|Z1) = k(Z1,Z2)λ(t|Z2) where k is a nonnegative real
valued function which does not depend on time. We say that the hazard rates
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are proportional. If we denote the baseline hazard rate by λ0(t) = λ(t|Z = 0),
then

λ(t|Z) = λ0(t)k(Z,0) = λ0(t)g(Z).

The function g(Z) must not be negative (modelling a hazard rate) with
g(0) = 1 and its dependence on Z should not be too complicated in order to
keep the model practically useful. The most common form of the proportional
hazards model is therefore

λ(t|Z) = λ0(t) exp(β′
0Z), (2.2)

which assumes that g depends on Z through the linear combination β′
0Z.

The unknown parameters in (2.2) are β0 and λ0(t). The vector of re-
gression parameters β0 is the main parameter of interest while λ0(t) is
treated as an infinitely dimensional (functional) nuisance parameter. For
β0j, j = 1, . . . , p, the term eβ0j from (2.2) shows the relative risk of failure
for an individual with covariate vector Z1, . . . , Zj−1, Zj + 1, Zj+1, . . . , Zp as
compared to an individual with covariates Z1, . . . , Zj−1, Zj, Zj+1, . . . , Zp.

Parameter estimation

Standard likelihood techniques cannot be used for parameter estimation
in (2.2) due to the presence of λ0(t). Instead, the concept of partial like-
lihood, see (Cox, 1972) and (Cox, 1975), is used for estimating the vector of
parameters β0 from the observed data. The natural logarithm of the partial
likelihood is then treated in much the same way as an ordinary log-likelihood
function in the sense that statistical inference is based on its first and second
derivatives. The main advantage of partial likelihood is that it eliminates
the unknown baseline hazard function λ0(t), see Definition 2.2.

Definition 2.2: The partial likelihood function for the proportional hazards
model (2.2) is given by

L(β) =
n
∏

i=1

∏

s≥0

{

Yi(s) exp(β′Zi)
∑n

l=1 Yl(s) exp(β′Z l)

}∆Ni(s)

. (2.3)

The maximum partial likelihood estimator β̂ can be obtained by setting the
partial derivatives of the logarithm of (2.3) with respect to β equal to 0 and
solving a system of equations

0 = U (β) =
∂

∂β
logL(β)

=
n
∑

i=1

∫ ∞

0

{Zi(u) − E(β, u)} dNi(u),
(2.4)
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where

E(β, t) =
S(1)(β, t)

S(0)(β, t)
=

n−1
n
∑

i=1

ZiYi(t) exp(β′Zi)

n−1
n
∑

i=1

Yi(t) exp(β′Zi)
. (2.5)

This way one can view the score vector as a comparison of the observed
values of covariates of the failed individual and their expected values for in-
dividuals remaining at risk. Using martingale methods one can prove (under
certain regularity conditions) consistency of the partial maximum likelihood
estimator β̂ and weak convergence of the normalized score process to a Gaus-
sian stochastic process. The asymptotic results are therefore similar to those
from the classical maximum likelihood estimation. For more details we refer
to standard textbooks such as (Fleming & Harrington, 1991, Chap. 4).

2.3 Proportional odds model

The proportional odds model was introduced in Bennett (1983) as a gener-
alisation of results derived by McCullagh (1980) to right censored data. The
main purpose of Bennett’s work was to make McCullagh’s results suitable
for use in medicine and epidemiology. In the original 1983 paper Bennett
proposed to use the proportional odds model as an alternative to Cox’s re-
gression in situations when one needs to demonstrate an effective cure, math-
ematically expressed as hazard ratios converging to unity over time. We will
examine this in more detail later in this section.

The proportional odds models is specified through the conditional survival
function as

−logit(S(t|Z)) = G(t) + β′
0Z, (2.6)

where logit(x) = log(x/(1 − x)). The unknown parameters are G(t) =
−logit(S(t|Z = 0)), a baseline log-odds of failure by time t, and the vec-
tor of regression coefficients β0. It is convenient and common to work with
an alternative parametrization of the model that specifies the baseline odds
of failure as H(t) = exp(G(t)). The new functional parameter H is then a
nondecreasing right-continuous function with left-hand limits mapping R

+

to R
+ with H(0) = 0.

The proportional odds model follows the same semiparametric concept as
the proportional hazards model, where the unknown parameters were β0 and
λ0(t), however the interpretation of the model is naturally different. With
continuous covariates, the term eβ0j here shows the change in the odds of
failure per a unit increase in Zj, keeping all other covariate values fixed.
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To illustrate the difference between the proportional hazards and propor-
tional odds models on a simple example suppose for a moment that there
is only one binary covariate Z. Such setting brings up a simple two-sample
problem representing e.g. patients treated with medication and placebo. The
proportional odds model forces the ratio of the odds of survival (or failure)
to be constant over time, more specifically

S(t|Z = 1)

1 − S(t|Z = 1)
:

S(t|Z = 0)

1 − S(t|Z = 0)
=

exp(−G(t) − β)

exp(−G(t))
= exp(−β)

yielding
S(t|Z = 1)

1 − S(t|Z = 1)
=

S(t|Z = 0)

1 − S(t|Z = 0)
exp(−β).

Differentiating logarithms of both sides with respect to t gives

∂ log(S(t|Z = 1))

∂t
− ∂ log(1 − S(t|Z = 1))

∂t

=
∂ log(S(t|Z = 0))

∂t
− ∂ log(1 − S(t|Z = 0))

∂t

which can be simplified to

λ(t|Z = 1) − λ(t|Z = 0) =
f(t|Z = 1)

F (t|Z = 1)
− f(t|Z = 0)

F (t|Z = 0)
. (2.7)

As t → ∞, the right hand side of (2.7) converges to 0 and thus λ(t|Z = 1)
converges to λ(t|Z = 0) in the proportional odds model. In the proportional
hazards model, however, the ratio of hazards is held constant.

Despite this difference, there are situations where both models provide
similar conclusions. This occurs when the overall probability of the event of
interest is low regardless of covariate values. With one binary covariate it
means that S(t|Z = 1) ≈ S(t|Z = 0) ≈ 0 and

S(t|Z = 1)

1 − S(t|Z = 1)
:

S(t|Z = 0)

1 − S(t|Z = 0)
≈ S(t|Z = 1)

S(t|Z = 0)
.

The relative risk is thus approximated with the odds ratio. The possibility of
using the proportional odds model as an approximation to the proportional
hazards model when working with rare events generates new application op-
portunities for the proportional odds model.
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Parameter estimation

In the proportional hazards model (2.2) it was convenient to use the partial
likelihood (2.3) for estimation of β, because it eliminated the problem with
estimating the unknown baseline hazard function. There is no such elegant
solution in the case of the proportional odds model. Bennett (1983) proposed
transforming the the failure times to the log-logistic distribution and treat
such transformed failure times as nuisance parameters while estimating β.
This approach is known as using a profile likelihood, the functional part G
is profiled out. Since there may be almost as many parameters to estimate
as there are observations, this method can lead to biased results, especially
in small samples.

The original Bennett’s paper contains no results regarding asymptotic
properties of his estimator. These were established later by Murphy et al.
(1997). Murphy et al. worked with a slightly reparametrized model using
the baseline odds of failure H(t) = exp(G(t)). They showed that the original
Bennett’s estimator is consistent and asymptotically normal with an effi-
cient variance and that the estimator of H(t), which is a nondecreasing step
function with jumps in the observed failure times, is uniformly consistent.

The contribution to the likelihood for one observation in a right-censored
dataset was shown by Murphy et al. to be

L(X, δ,Z, H,β) =

(

e−Z′β

(H(X) + e−Z′β)(H(X−) + e−Z′β)
∆H(X)

)δ

×
(

e−Z′β

H(X) + e−Z′β

)1−δ

,

(2.8)

where X = min(T,C) as introduced earlier and ∆H(X) = H(X)−H(X−).
The profile log-likelihood for β is then given by

PrL(β) =
n
∑

i=1

log(L(Xi, δi,Zi, Ĥβ,β)), (2.9)

where Ĥβ maximizes the log-likelihood for a fixed β. The maximum profile

likelihood estimator β̂ then maximizes (2.9).
It was also shown that differentiation of the profile log-likelihood yields

consistent estimators of the information matrix and that the profile likelihood
ratio statistics can be compared with χ2 percentiles to produce asymptotic
tests just like an ordinary likelihood function.
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2.4 Nonlinear transformation models

By ”nonlinear transformation models” we understand a broad class of semi-
parametric models where an unknown or unspecified transformation of sur-
vival time is linearly related to the vector of covariates. A nonlinear trans-
formation model is thus a regression model specified through the equation

H(T ) = −β′
0Z + ε, (2.10)

where T is the failure time and H is an unknown monotone transformation
function such that H(0) = −∞. The error term ε is a random variable with
a known and completely specified distribution function Fε and is assumed to
be independent of the covariate vector Z.

The nonlinear transformation model (2.10) can be alternatively described
by the equation

g(SZ(T )) = H(T ) + β′Z, (2.11)

where g is a known decreasing function such that Fε(·) = 1− g−1(·) and the
remaining terms have the same meaning as above in (2.10). This is obvious
since Fε is the distribution function of ε.

This general class contains many regression models, including the propor-
tional hazards and proportional odds models, as special cases. Representa-
tion of a particular model and therefore also interpretation of the regression
parameters are a matter of choice of an appropriate error term distribution.
Using the extreme value distribution for ε we obtain the proportional haz-
ards model while the proportional odds model arises with ε distributed as a
standard logistic random variable.

To see this use (2.11) first with ε following the extreme value distribu-
tion with Fε(x) = 1 − exp(− exp(x)). By substitution we obtain the link
g(·) = log(− log(·)) so that (2.11) becomes log(− log(SZ(t))) = H(t) + β′Z,
which is the proportional hazards model expressed in terms of the survival
function. Now take ε distributed according to the standard logistic distri-
bution. It follows then that the transformation function g(·) = (1 − F )−1(·)
must have the form g(·) = −logit(·) and (2.11) becomes the proportional
odds model (2.6).

As a consequence, any estimation method developed for the general class
of the nonlinear transformation models can be used with either of those two
widely used regression models. Some of the estimating equations presented
later in this section simplify to the partial likelihood score equations in the
case of the proportional hazards model, however, there is no such result
for the proportional odds model. The original Bennett’s profile likelihood
estimator (Bennett (1983)) has been proved to be efficient in this particular
case. See Murphy et al. (1997) for the proof and further details.
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Parameter estimation

Several methods, which mainly differ in their assumptions imposed on the
censoring mechanism, have been developed for parameter estimation in non-
linear transformation models. Examples include the method of Cheng et al.
(1995) based on the Kaplan-Meier estimator of the “survival” function for
the censoring variable C or the method of Chen et al. (2002) with estimating
equations motivated by a counting process representation of the model.

We shall first outline the approach of Cheng et al. (1995) here without
going into much detail. The paper is mostly interesting because it is prob-
ably the first work developing a unified estimating procedure for nonlinear
transformation models and because there were many attempts to generalize
it to case-cohort data. However, since it has been published, new methods
with less restrictive assumptions appeared in the literature.

Cheng et al. assume independence of time to event T and the censoring
variable C and also independence of C and covariates Z (although this as-
sumption was shown not to matter for discrete covariates). Using these two
key assumptions, Cheng et al. developed generalized estimating equations
for β as if there were no censoring at all and then used the Kaplan Meier
estimator for G to replace quantities that were unobservable due to censor-
ing. Finally they showed that the modified estimating equations have an
asymptotically unique solution β̂, established the asymptotic normality of β̂

and calculated its asymptotic variance-covariance matrix.
These results were further extended in Cheng et al. (1997) to predict-

ing the survival function and its quantiles from nonlinear transformation
models. However, Fine et al. (1998) noted that the Cheng’s estimator is
asymptotically biased if the support of the censoring variable is shorter than
the support of failure time. They suggested an improvement to both the
estimator and confidence limits for the survival function. The approach of
Fine et al. served as a basis for one of the case-cohort estimators in nonlinear
transformation models, see Section 3.

Although Cheng et al. (1995) report good properties of their estima-
tor based on some simulation studies, their assumptions may be difficult to
meet particularly when analysing observational data. An estimator devel-
oped under less restrictive conditions, particularly without the independence
of censoring variable and covariates, was therefore presented in Chen et al.
(2002) and will be described in the remainder of this section.

Denote by λε(·) the known hazard function and by Λε(t) the cumulative
hazard function of ε. Let further

M(t) = N(t) −
∫ t

0

Y (s)dΛε{β′
0Z +H0(s)}
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and recall that both N(t) and Y (t) are quite simple counting processes. It
follows from standard counting process theory in survival analysis (Fleming
& Harrington, 1991, Chapter 1) that

∫ t

0
Y (s)dΛε{β′

0Z + H0(s)} is a com-
pensator for N(t) and therefore M(t) defined in this way is a martingale
process with zero expectation. This fact motivated Chen et al. (2002) to de-
velop a unified estimation procedure for model (2.10) based on the estimating
equations

n
∑

i=1

∫ ∞

0

Zi[dNi(t) − Yi(t)dΛε{β′Zi +H(t)}] = 0 (2.12a)

n
∑

i=1

[dNi(t) − Yi(t)dΛε{β′Zi +H(t)}] = 0 (for t ≥ 0). (2.12b)

The first equation (2.12a) is an analogue to the partial likelihood score
equation (2.4) from the proportional hazards model, equation (2.12b) is nec-
essary for estimating values of the unknown transformation function at the
observed failure times. This was not needed in the proportional hazards
model, where the unknown baseline hazard function vanished from the par-
tial likelihood. In fact, the above equations simplify to the partial likelihood
score equation (2.4) if the cumulative hazard rate Λε(t) = exp(t) is plugged
in according to the proportional hazards model. The method of Chen et al.
can thus also be viewed as a generalization of partial likelihood methods to
nonlinear transformation models.

Suppose there are K observed distinct failure times 0 < t1 < · · · < tK <
∞. The iterative algorithm for obtaining the estimates of H and β works in
four steps as follows:

Step 1: Fix β at an initial value β(0).

Step 2: Compute H(0)(t1), . . . , H
(0)(tK) by solving equations

n
∑

i=1

Yi(tk)Λε{H(tk) + β′Zi} = 1 +
n
∑

i=1

Yi(tk)Λε{H(tk−) + β′Zi}

for H(0)(tk), k = 1, . . . , K, with β = β(0). Recall that Ĥ, the estimator
ofH, is a nondecreasing step function which only jumps at the observed
failure times. We set H(0)(t1−) = −∞, reflecting the fact that H(0) =
−∞. The last sum thus vanishes in the first equation.

Step 3: Update the estimate of β by solving equation (2.12a) for β with
H fixed at the H(0) obtained in Step 2.
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Step 4: Set β(0) to the new value obtained in Step 3 and repeat steps 2
and 3 until convergence is reached.

Although the estimating equations have to be solved iteratively (except for
the special case of the proportional hazards model), standard numerical pro-
cedures such as the Newton-Raphson algorithm work quite well and reason-
ably fast. As a further computational simplification Chen et al. proposed an
approximation for estimating H based on first order differences. According
to simulation studies however the inaccuracy induced in this way overrides
the advantage of simplicity.

Chen et al. (2002) showed that the resulting estimator Ĥ of H0 is a
nondecreasing step function with jumps in the observed failure times and
that the estimator β̂ of β0 is consistent and asymptotically normal under
suitable regularity conditions, with a closed-form variance.

2.5 Logistic regression model

We conclude this Chapter with a short overview of the logistic regression
model. Logistic regression is not a typical tool for analysing time to event
data, mainly because the response variable for this model is a binary indicator
rather than some (censored) time. Nevertheless, a logistic model can be used
with survival data when we only know which observations experienced the
event of interest and which were censored. That means we do not use any
time information and the binary censoring indicator δ plays the role of the
response variable. The logistic regression model can be described by

logit(P (δ = 1|Z)) = log
P (δ = 1|Z)

1 − P (δ = 1|Z)
) = α0 + β′

0Z, (2.13)

where β0 is the main parameter of interest providing information on odds
ratios or a change in odds ratios while α0 is important for estimating the
overall probability of failure P (δ = 1|Z). Compared to the proportional
odds model (2.6), the only difference is in the intercept term α0, which is a
constant in (2.13) but was an unspecified function in (2.6).

Parameter estimation

Standard likelihood techniques provide parameter estimates and further in-
ference such as standard errors, confidence intervals and significance tests.
Given iid observations of (δi,Zi) we can express the likelihood as

L =
n
∏

i=1

[π(zi)]
δi [1 − π(zi)]

1−δi , (2.14)
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where π(zi) is the probability of failure given the covariates, i.e.

π(zi) = P (δi = 1|Zi = zi) =
exp(α+ βzi)

1 + exp(α+ βzi)
.

Differentiating the logarithm of (2.14) with respect to individual parameters
leads directly to the score vector U (α,β) with components

U(α) =
n
∑

i=1

[δi − π(zi)] (2.15a)

U(βj) =
n
∑

i=1

zi,j[δi − π(zi)], j = 1, . . . , p. (2.15b)

Setting (2.15) equal to 0 provides score equations which can be solved with
standard iterative algorithms. Logistic regression models are implemented in
most statistical software packages.

Finally, using the first order Taylor expansion of U around the true pa-
rameter (α0,β0)

′ it can be shown that the estimator (α̂, β̂)′ is unbiased and
asymptotically normal and also its variance can be easily estimated. De-
tailed calculations can be found in many standard statistical textbooks (see
e.g. McCulloch & Searle, 2001, p. 102).



Chapter 3

Parameter estimation
under the case-cohort design

All methods introduced in Chapter 2 assume that all data is available for all
individuals from the study cohort. In this chapter we present the concept
of the case-cohort study design, show how the standard methods need to
be adapted under the case-cohort design and, in a small simulation study,
we illustrate some problems of current approaches to case-cohort parameter
estimation.

3.1 Introduction to the case-cohort design

In classical cohort studies, a group of subjects or a cohort is randomly se-
lected from the target population and followed for a given time period. The
covariates are measured according to the study design, the failure or cen-
soring time is recorded for each individual and a suitable regression model
is fitted to the data to draw conclusions. If the occurrence of the event of
interest is low in the population, cohort studies must be very large to ensure
a sufficient number of cases. The covariates of interest may be expensive
to measure (blood sample analyses, complicated laboratory tests etc.). The
main drawback of this type of study is then the cost of measuring covariates
on a large number of subjects.

For estimating probabilities (odds) of rare events a cost saving solution to
this problem is the case-control design (see e.g. the review by Breslow, 2005).
Under the case-control design, cases and controls are sampled separately and
the sampling probability is typically much larger for the cases. The study
design is retrospective and the data can be analysed by logistic regression.
Many attempts to extend the case-control design to time to event data were

15
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published in the literature. They are known as a synthetic or nested case-
control design, see e.g. Mantel (1973), Prentice & Breslow (1978) or Gold-
stein & Langholz (1992), a hybrid retrospective design (Kupper et al., 1975)
or a case-base design (Miettinen, 1982). Recently the case-cohort design by
Prentice (1986) became very popular.

The main idea of the Prentice’s case-cohort design is to sample individ-
uals from the full cohort and add all cases as they appear. This way a
subcohort is formed consisting of the cases and sampled controls. Only these
individuals from the subcohort are used for the analysis. This way the cases
are always included and their covariate values are recorded at their failure
times, while only a relatively small number of the remaining individuals are
available. Under the case-cohort design the same sampled individuals are
used throughout the whole time of study duration. On the contrary, new
controls are sampled at each failure time to form the risk set in the nested
case-control design.

The oversampling of cases would lead to biased results during the anal-
ysis if not accounted for. In order to consistently estimate the regression
parameters, case-cohort data are often analysed using various modifications
of the corresponding procedures developed for complete data; these were out-
lined in Chapter 2. The only information that can be used with case-cohort
data are covariate measurements for the controls and cases sampled into the
subcohort1 and maybe some additional characteristics such as age, gender or
some database entries for the whole cohort. The key problem is to modify
the estimating equations, eliminate anything that is not observed due to the
case-cohort design and account properly for the sampling scheme. Currently
a typical way of dealing with these issues is to introduce weighting functions
or constants. The weights should give zero weight to all subjects not sam-
pled into the study and a positive weight to all sampled cases and controls.
This approach often leads to weighting individual contributions to estimating
equations by inverse sampling probabilities.

This concept is general and common to all regression models for case-
cohort data. We shall demonstrate it in more detail by applying it to the
proportional hazards model in the next section.

1We would have to be more careful here if we allowed time dependent covariates, since
then we would only observe covariate values at failure times and covariate histories for
individuals sampled into the subcohort at the beginning of the study.
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3.2 Fitting the proportional hazards model

to case-cohort data

Recall that parameter estimation in the proportional hazards model with full
data is based on the partial likelihood score equation

U (β) =
n
∑

i=1

∫ ∞

0

{Zi − E(β, u)} dNi(u) = 0,

where E(β, t) is defined as

E(β, t) =
S1(β, t)

S0(β, t)
=

n−1
n
∑

i=1

ZiYi(t) exp(β′Zi)

n−1
n
∑

i=1

Yi(t) exp(β′Zi)
.

Even though only the cases contribute directly to the summation in the
partial likelihood score U (β), the controls’ influence is hidden in the at-risk
covariate averages E(β, t). The term E(β, t) contains data that is unobserved
under the case-cohort design. It is therefore necessary to assure that any un-
observed subjects will contribute zero to the summation. This idea motivates
the pseudoscore

UC(β, t) =
n
∑

i=1

∫ t

0

{Zi − EC(β, u)} dNi(u), (3.1)

where the case-cohort at risk covariate average EC(β, t) is given by

EC(β, t) =
S1

C(β, t)

S0
C(β, t)

=

n−1
n
∑

i=1

̺i(t)ZiYi(t) exp(β′Zi)

n−1
n
∑

i=1

̺i(t)Yi(t) exp(β′Zi)
(3.2)

with ̺i(t) being some weight functions or processes. The weights ̺i(t) are set
to zero for subjects with incomplete data. Various proposals for the choice
of ̺i(t) have been published in the literature leading to different parameter
estimators, see e.g. Kulich & Lin (2004) for a comprehensive overview.

Let the selection of a subject into the subcohort be indicated by a binary
random variable ξ so that ξi = 1 if subject i was sampled to the subcohort and
ξi = 0 otherwise. Let P(ξi = 1) = α > 0 be the sampling probability. Since
we need to eliminate unobserved data, the weights should be zero whenever
the observation is censored and the subject is not sampled to the subcohort,
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that is ̺i = 0 whenever δi = ξi = 0. For the remaining individuals the
weights usually involve the inverse sampling probability 1/α. The estimator
α̂ (e.g. the empirical proportion of sampled subjects) can be used instead
of α itself. According to Robins et al. (1994), parameter estimation can be
actually more efficient when the estimator α̂ is used.

The original Prentice’s estimator was derived through a modification of
the standard risk set without the emphasis on weighting by the inverse sam-
pling probabilities. Its estimating equation can be however represented in
the form of (3.1) with ̺(t) = ξi/α for t less than the failure time Ti and
̺(Ti) = 1/α. Such weights represent the concept of following the sampled
subcohort and adding any unsampled cases whenever their failures are ob-
served. Cases and sampled controls are given the same importance and equal
weight of 1/α. Moreover, (3.2) can be rewritten without the weights as sums
over cases and sampled controls, since α cancels out in the formula.

With another approach the contributions from cases are weighted by 1
through their entire at-risk period and weighting by inverse sampling proba-
bilities is applied to controls only. The weights take the form ̺i(t) = δi+(1−
δi)ξi/α and can be estimated by some constant estimator δi + (1− δi)ξi/α̂ or
some time-varying estimator δi +(1− δi)ξi/α̂(t), where supt |α̂(t)−α| → 0 in
probability. The dependence on t is most often expressed through Yi(t), i =
1, . . . , n. An example of an estimator with time-varying weights is the es-
timator proposed by Borgan et al. (2000), Estimator II, which is obtained
by setting α̂(t) =

∑n
i=1 ξi(1 − δi)Yi(t)/

∑n
i=1(1 − δi)Yi(t) – the proportion of

sampled controls among all controls remaining at risk at time t. We shall
refer to this estimator as the BII estimator further on.

The estimators, where the cases are sampled with probability one at their
failure times only and the subcohort is treated as a sample of all study sub-
jects are referred to as N-estimators by Kulich & Lin (2004). The original
Prentice’s estimator belongs to this class. The latter, where all cases are sep-
arated and the subcohort is considered to be sampled from the controls only,
are known as D-estimators. Both classes of estimators weight contributions
to the estimating equations by inverse sampling probabilities.

Asymptotic properties of the estimators

Several regularity conditions need to be satisfied in order to show consistency
and asymptotic normality of the case-cohort estimators. These conditions
can be naturally divided into two groups – conditions known from standard
survival analysis and new conditions because of the subcohort sampling. The
former conditions for inference based on partial likelihood are summarized
e.g. in Fleming & Harrington (1991), p. 289-90. They mainly involve re-
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striction to a finite time interval t ∈ [0, τ ] and asymptotic stability of the
information matrix and of population averages Sℓ(β, t), ℓ = 0, 1 (see (2.5)).

Regularity conditions specific to the case-cohort design may vary slightly
from estimator to estimator. Basically they assure the asymptotic stability
of case-cohort averages Sℓ

C(β, t), ℓ = 0, 1 (see (3.2)) and restrict the sub-
cohort sampling probability to be bounded away from zero. We shall now
adapt the general treatment of (Kulich & Lin, 2004, Theorems 1 and 2 and
the Appendix) for the BII estimator, state the asymptotic results for this
estimator and sketch the proofs.

Theorem 3.1: Assume the usual regularity conditions for the Cox pro-
portional hazards model (Fleming & Harrington, 1991, p. 289-90). Further
assume that the selection probability α(t) is strictly positive, α(t) > 0 for
all t ∈ [0, τ ], and that all covariates are fixed. Then the pseudoscore (3.1) of
the BII estimator can be decomposed into the partial likelihood score (2.4),
a sum of iid. zero mean terms and a remainder term as follows:

1√
n

UC(β0) =
1√
n

U (β0)

+
1√
n

n
∑

i=1

(1 − δi)

(

1 − ξi
α

)∫ τ

0

{Ri(t) −
Yi(t)

m(t)
ψ(t)}dΛ0(t)

+ oP (1),

where Ri(t) = [Zi − z̄] exp{β′
0Zi}Yi(t), m(t) = E(1− δi)Yi(t), ψ(t) = E(1−

δi)Ri(t), Λ0(t) =
∫ t

0
λ0(s) ds and z̄ is the uniform probability limit of E(β, t)

(see Fleming & Harrington, 1991).

Proof: The proof is an adaptation of the proof given by (Kulich & Lin,
2004, Appendix A3) to the BII estimator. However, rather than a complete
and rigorous proof we give a commented sketch of the proof.

The pseudoscore (3.1) can be represented as

1√
n

UC(β0) =
1√
n

U (β0) +
1√
n

n
∑

i=1

∫ τ

0

(E(β0, t) − EC(β0, t))dNi(t).

The counting process Ni(t) can be decomposed to a martingale Mi(t) and
a compensator

∫ t

0
Yi(s) exp(β′

0Zi)dΛ(s), which splits the above integral into
two components. The first integral with respect to Mi(t) can be shown to
converge to zero in probability, thus 1√

n

∑

i

∫ τ

0
(E(β0, t)−EC(β0, t))dNi(t) can

be approximated by

1√
n

∫ τ

0

(

E(β0, t) − EC(β0, t)
)

∑

i

Yi(t) exp(β′
0Zi)dΛ0(t). (3.3)
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Now we can express the integrand of (3.3) in terms of S(0),S(1) and S
(0)
C ,S

(1)
C .

Since (E−EC)S(0) = (S(1)−S
(1)
C )+EC(S

(0)
C −S(0)) and EC converges uniformly

to z̄, (3.3) becomes

√
n

∫ τ

0

(S(1) − S
(1)
C )dΛ0 +

√
n

∫ τ

0

(S
(0)
C − S(0))z̄dΛ0 + oP (1). (3.4)

Substituting the definitions of S(1) and S
(1)
C to the first part of (3.4) we get

√
n

∫ τ

0

(S(1) − S
(1)
C )dΛ0(t) =

=
1√
n

n
∑

i=1

(

1 − ξi
α

)

(1 − δi)

∫ τ

0

Zi exp(β0Zi)Yi(t)dΛ0(t)

− 1√
n

n
∑

i=1

ξi(1 − δi)

∫ τ

0

(α̂−1 − α−1)Zi exp(β0Zi)Yi(t)dΛ0(t).

(3.5)

While the first part of (3.5) is already a sum of iid terms, the second
term needs one more approximation. This approximation is based on an
asymptotic expansion of the weights (Kulich & Lin, 2004, Appendix A1)
and relies heavily on the assumption that the sampling probabilities αi are
bounded away from zero. Provided αi > ε > 0, the last part of (3.5) can be
approximated by

1√
n

∑

i

ξi(1 − δi)

∫ τ

0

Zi exp(β′
0Zi)Yi(t)

αm(t)

{

1

n

n
∑

j=1

(

1 − ξj
α

)

(1 − δj)Yj(t)

}

dΛ0

=
1√
n

∑

j

(

1 − ξj
α

)

(1 − δj)

×
∫ τ

0

Yj(t)

m(t)

{

1

n

∑

i

ξi
α

(1 − δi)Zi exp(β′
0Zi)Yi(t)

}

dΛ0,

where
{

1
n

∑

i
ξi

α
(1 − δi)Zi exp(β′

0Zi)Yi(t)
}

→ ψ(t) uniformly in t. Similar

operations can be performed on the latter term in (3.4) with S(0) and the
proof can be completed by combining these two results and Proposition A1
in the Appendix in Kulich & Lin (2004).

Theorem 3.1 is a key result for the asymptotical properties of the pseu-
doscore BII estimator β̂B. Using Theorem 3.1 one can directly prove con-
sistency of β̂B and the asymptotic normality of UC , which in turn implies
the asymptotic normality of β̂B itself by Taylor expansion. We shall only
state the main result in Theorem 3.2 without proof, which can be found
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in Kulich & Lin (2004), Appendix A4, and uses Theorem 3.1 and standard
approximation techniques.

Theorem 3.2: Under conditions assumed in Theorem 3.1,

n−1/2UC(β0)
D−→ N(0, I + ΣC) and

√
n(β̂B − β0)

D−→ N(0, I−1 + I−1ΣCI−1),

where I is the limiting partial likelihood information matrix (see Fleming &
Harrington, 1991),

ΣC =
1 − α

α
E

[

(1 − δi)

∫ τ

0

{Ri(t) −
Yi(t)

m(t)
ψ(t)}dΛ0(t)

]⊗2

and x⊗2 = xx′ for any vector x.

The asymptotic variance of β̂B can be expressed as the variance of the
full data partial likelihood estimator plus an extra component expressing
the variability induced by the case-cohort sampling. The proof is based on
Theorem 3.1 that requires α(t) > 0 for all t ∈ [0, τ ]. In practice if α is close to
zero, the case-cohort estimators based on the inverse probability weighting
principle do not follow their theoretical asymptotic distributions. We will
illustrate this phenomenon on a small simulation study later in this chapter.

Chen & Lo (1999) give a sketch of an alternative proof of Theorem 3.1
adapted to their modified estimators. A robust approach to the variance
estimation is presented in Barlow (1994) and yet another approach to esti-
mation of the variance of β̂, which utilizes bootstrapping, can be found in
Wacholder et al. (1989).

3.3 Other regression models

under the case-cohort design

All the main ideas of the case-cohort design illustrated on the proportional
hazards model apply directly to the whole class of nonlinear transformation
models. The subcohort and cases can be selected in the same ways as de-
scribed earlier. Most authors adapt estimating equations by introducing the
principle of inverse probability weighting. Therefore case-cohort estimators
used in transformation models generally have similar properties as those used
in the proportional hazards model.

As introduced earlier in (2.10) in Section 2.4, transformation models as-
sume that the survival time T follows the equation H(T ) = −β′Z + ε,
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where H is an unknown monotone transformation function such that H(0)
= −∞, β is a p-dimensional regression parameter, Z is a p × 1 vector of
covariates and ε is a random error variable with a known distribution, in-
dependent of Z. Specific models of this class are obtained by choosing a
particular distribution of ε. Both the proportional hazards and the propor-
tional odds models are special cases of model (2.10). The former is obtained
when ε follows the extreme-value distribution, the latter arises from the stan-
dard logistic distribution.

Although the basic ideas are similar, there is one principal difference
between the proportional hazards model and any other model from the class
of nonlinear transformation models. The baseline hazard function λ0(t),
which plays the role of the nonparametric (functional) part of the model,
disappears from the estimating equations with full data and also under the
case-cohort design. On the contrary, the functional parameter remains in
some form in all the other nonlinear transformation models and has to be
estimated. With most methods, this function only needs to be estimated at
failure times, which are completely observed under the case-cohort design.

Let us now take a closer look at general parameter estimation methods
in nonlinear transformation models under the case-cohort design.

The procedure by Lu and Tsiatis

This procedure is a direct generalisation of Chen et al. (2002). Recall that
Chen et al. were motivated by a martingale representation of the model and
suggested estimating equations

n
∑

i=1

∫ ∞

0

Zi[dNi(t) − Yi(t)dΛε{β′Zi +H(t)}] = 0,

n
∑

i=1

[dNi(t) − Yi(t)dΛε{β′Zi +H(t)}] = 0 (t ≥ 0).

Lu & Tsiatis (2006) proposed a modification of these estimating equations
to case-cohort data by weighting with inverse sampling probabilities. The
modified estimating equations have the form

n
∑

i=1

∫ ∞

0

Zi̺i[dNi(t) − Yi(t)dΛε{β′Zi +H(t)}] = 0, (3.6a)

n
∑

i=1

̺i[dNi(t) − Yi(t)dΛε{β′Zi +H(t)}] = 0 (t ≥ 0), (3.6b)
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where the weight ̺i is the inverse sampling probability for each individual in
the full cohort. Specifically ̺i = δi + (1 − δi)ξi/α, where ξi is the indicator
variable for being sampled into the subcohort and α = P(ξi = 1) is the prob-
ability of being sampled into the subcohort. According to the terminology
introduced in Section 3.2 this estimator belongs to the class of D-estimators
with constant weights. Weights chosen in this way fulfill the basic require-
ment of eliminating all unobserved data, while the weight of 1 is given to all
cases during the whole study period regardless of their subcohort status. The
Chen’s estimator specified for full data as a solution to (2.12a) and (2.12b) is
simply obtained by setting α = 1, i = 1, . . . , n, since then ξi = 1 and ̺i = 1.

The computing algorithm mimics the procedure of Chen et al. (2002).
Since all failures are observed with probability one, we can keep the notation
0 < t1 < · · · < tK < ∞ for the K observed distinct failure times from the
full cohort. The algorithm again switches between estimation of H and β

and can be summarized as follows:

Step 1: Fix β at an initial value β(0).

Step 2: Compute H(0)(t1), . . . , H
(0)(tK) by solving the equations

n
∑

i=1

̺iYi(tk)Λε{H(tk) + β′Zi} = 1 +
n
∑

i=1

̺iYi(tk)Λε{H(tk−) + β′Zi}

for H(0)(tk), k = 1, . . . , K, with β = β(0) and H(0)(t1−) = −∞.

Step 3: Update the estimate of β by solving equation (3.6a) for β with H
fixed at the H(0) obtained in Step 2.

Step 4: Set β(0) to the new value obtained in Step 3 and repeat steps 2
and 3 until convergence is reached.

Except for certain special cases, in particular the proportional hazards
model, solving the nonlinear equations in steps 2 and 3 again requires an iter-
ative procedure. The modified Newton-Raphson algorithm with step halving
performs generally quite well. Similarly to the algorithm for complete data,
simplifying the above equations by using first order differences rather than
derivatives increases the inaccuracy in a substantial way and should not be
used for computation (Klášterecký & Kulich, 2006).

Asymptotic properties

Regularity conditions needed to prove the existence, consistency and asymp-
totical normality of the estimator are taken from Chen et al. (2002). In addi-
tion to conditions necessary for the martingale central limit theorem (Flem-
ing & Harrington, 1991) they mainly involve positivity and some smoothness
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assumptions on the hazard rate λε and the transformation function H0, the
usual restriction to a finite time interval (0, τ ] and a requirement on covariates
to be bounded in probability.

Although it is not stated explicitly anywhere in Lu & Tsiatis (2006), the
condition of positive sampling probability α > 0 is a necessary condition.
We shall only state the main result of Lu & Tsiatis without proof. A sketch
of the proof can be found in Lu & Tsiatis (2006).

Theorem 3.3: Under suitable regularity conditions the estimator β̂ defined
as a solution of (3.6a) and (3.6b) exists and is consistent. Moreover, β̂ is
asymptotically normally distributed with

√
n(β̂ − β)

D−→ N(0,A−1ΣA−1′),

where A and Σ can be consistently estimated by

Â =
1

n

n
∑

i=1

∫ τ

0

̺i(Zi − Z̄(t))Z ′
i

∂λε(Ĥ(t) + β̂
′
Zi)

∂t
Yi(t)dĤ(t),

Σ̂ =
1

n

n
∑

i=1

̺2
i

[

∫ τ

0

(Zi − Z̄(t))dM̂i(t)

]⊗2

− 1 − α

α

[

1

n

n
∑

i−1

δi

∫ τ

0

(Zi − Z̄(t))dM̂i(t)

]⊗2

,

where M̂i(t) = Ni(t) −
∫ τ

0
Yi(s)dΛε(Ĥ(s) + β̂

′
Zi) and Z̄(t) is a kind of

weighted average of the covariates of individuals being at risk at time t,
see Lu & Tsiatis (2006).

Theorem 3.3 theoretically justifies consistency and asymptotic normality
of β̂ and allows constructing asymptotic confidence intervals for β and testing
hypotheses about β. Lu & Tsiatis (2006) investigate β̂ and Ĥ in simulation
studies and report good properties of β̂ – unbiasedness, good coverage of
confidence intervals and some efficiency gain over the estimator by Kong
et al. (2004). The behaviour of the estimator will be explored in more detail
later in this chapter.

Chen’s weighted semiparametric likelihood

Nearly all of the estimation methods developed with full data were modi-
fied or generalized to the case-cohort problem with one interesting excep-
tion. There is a very limited number of papers devoted specifically to the
proportional odds model for case-cohort studies. The authors either cover



3. Parameter estimation under the case-cohort design 25

this model by deriving estimating equations for the whole class of nonlinear
transformation models or restrict their attention to the proportional hazards
model only.

The proportional odds model plays quite a prominent role in the work
of Chen (2001). Chen introduces the concept of weighted semiparametric
likelihood for the proportional odds model, a modified version of the likeli-
hood (2.8) derived by Murphy et al. (1997). The controls’ contributions to
the likelihood are weighted by the estimated inverse sampling probabilities
using ̺i = δi + (1− δi)ξi/α̂, yielding the weighted semiparametric likelihood
function

n
∏

i=1

{

[

1

1 +H(t) exp(β′Zi)

]ξi
1−δi

α̂

×
[

exp(β′Zi)dH(t)

(1 +H(t) exp(β′Zi))2

]δi

}

, (3.6)

where H(t) is the baseline odds of failure at t, α̂ = n0/(n − n1) is the
weight for subcohort controls and n1 and n0 are the number of all cases
and the number of sampled controls, respectively. Comparing (3.6) to the
original likelihood function (2.8) on page 9 reveals that the structure of both
formulas is identical. Other estimators can again be obtained using different
sampling probability estimators as weight functions. However, according to
Chen (2001), using the overall proportion of controls α̂ = n0/n as the most
natural estimator is less efficient.

Chen (2001) showed the existence, consistency and asymptotic normality
of the resulting estimator by following the proofs of Murphy et al. (1997)
and making changes when necessary. In the latter part of the paper the re-
sults are subsequently extended to estimation of survival probabilities. The
method of weighted semiparametric likelihood and its connection to the ap-
proach of Chen & Lo (1999) are then studied for the whole class of nonlinear
transformation models and for the Cox model in particular. One of the most
important assumptions for establishing the asymptotic properties of any es-
timator based on (3.6) or a similar weighted likelihood function is naturally
again a positive sampling probability α > 0.

Kong’s method

The Kong’s estimator, that was used as a benchmark in simulation stud-
ies by Lu & Tsiatis, is an extension of the approach of Fine et al. (1998),
see p. 11. The estimator is obtained by introducing inverse sampling prob-
ability weights into the estimating equations. The original idea of estimat-
ing the survival function for the censoring variable remains unchanged but
the survival function is now estimated from the case-cohort data only. The
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authors give methods and formulas for making inference about regression
parameters, for estimating the survival function and also for its confidence
bands. Since independence of the censoring variable on covariates remains
to be a necessary condition, the Kong’s approach is less attractive compared
to e.g. the algorithm of Lu & Tsiatis (2006).

3.4 Performance of case-cohort estimators

Asymptotic results for currently used case-cohort estimators assume that the
sampling probability α is positive. However, this asymptotic theory is also
used in situations where few controls are sampled for the analysis. Commonly
an equal number of controls and cases are sampled from a huge cohort, see
e.g. a recent paper by Vogel et al. (2004) concerning risk of lung cancer where
there were 265 cases and 270 subcohort controls sampled for the analysis out
of a cohort consisting of 55 000 members. The sampling proportion of the
controls was only around 0.005. We have reviewed this analysis and found the
resulting case-cohort parameter estimates to be biased with low confidence
interval coverage.

This Section is an extension of the study presented by Klášterecký &
Kulich (2006). We shall examine the behaviour of two estimators used in
case-cohort studies: the classical Prentice estimator for the proportional haz-
ards model and the estimator proposed by Lu & Tsiatis (2006) for the propor-
tional odds model. Both estimators are examined under various settings and
with different values of α. The estimator by Lu and Tsiatis has been chosen
because it is very general and covers the whole class of nonlinear transforma-
tion models. Similar results can however be expected with other estimators
based on the usual inverse sampling probability weighting principle.

Simulation settings

In every set of simulations we generated 1000 full cohorts with complete data.
Failure times were generated from the proportional hazards model for the
Prentice estimator and from the proportional odds model for the estimator
by Lu and Tsiatis. Censoring times were independent of the covariates and
uniformly distributed over the interval (0, c) where c was chosen so that
we observed approximately 100 cases in each sample. The subcohort was
selected by independent Bernoulli sampling so that the expected number of
subcohort controls was equal to 100, i.e. to the expected number of failures.

We considered cohorts consisting of 10 000, 50 000, 100 000 and 300 000
subjects, each time with 100 cases giving a failure rate of 0, 01, 0, 002,
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0, 001 and 0, 0003, respectively. Keeping around 100 subcohort controls, we
achieved subcohort sampling probabilities α to be also 0, 01, 0, 002, 0, 001
and 0, 0003, respectively. For each α we simulated a scenario with two inde-
pendent covariates (i) and a scenario with three correlated covariates (ii).

The simpler scenario (i) is very frequently reported in the literature for
illustrating theoretical results and was also used by Lu and Tsiatis. Two
independent covariates Z1 ∼ U(0, 1) and Z2 ∼ Alt(0.35) were generated, the
true regression parameters were set to β1 = 1, β2 = −1.

The latter scenario (ii) represents one of other practically relevant set-
tings. We considered three mutually correlated covariates: a dichotomous
covariate Z1 ∼ Alt(0.35) and two continuous covariates. The conditional
distribution of Z2 given Z1 was normal with mean −0.2Z1 and variance
(0.5+0.2Z1)

2. The conditional distribution of Z3 given Z1 and Z2 was normal
with mean −0.3Z1 + 0.3Z2 and variance (0.1 + 0.1Z1 + 0.1|Z2|)2. The condi-
tional normal distributions for Z2 and Z3 were truncated 3 standard devia-
tions away from the mean, because the asymptotic theory assumes bounded
covariates. The true parameter values were set to β1 = 2.3, β2 = 0.7, and
β3 = 2.9.

Results

For the Prentice estimator, the results summarised in Table 3.1 confirm that
the estimator performs well in scenario (i) with independent covariates and
its properties are very little influenced by the subcohort sampling probability.
Even with a very low value of the sampling probability α = 0, 0003, parame-
ter estimates are only slightly biased, standard errors are well estimated and
the confidence interval coverage is good.

For correlated covariates and larger parameter values, however, the per-
formance of the Prentice’s estimator is much worse. Already for α = 0.01
the estimator suffers from substantial bias, underestimated standard errors
and poor confidence interval coverage. The results get worse when we further
decrease the subcohort sampling probability α.

A similar pattern can be seen for the estimator by Lu & Tsiatis. The
results summarised in Table 3.2 confirm that the estimator performs well in
scenario (i) with independent covariates. In all simulations the parameter
estimates have only a slight bias and good confidence interval coverage. The
influence of the subcohort sampling probability is more apparent than in the
proportional hazards model, but still negligible.

Results for dependent covariates and larger parameter effects are rather
unsatisfactory. The performance of the estimator was much worse with a
clear bias, underestimated standard errors and poor confidence interval cov-
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erage. As for the proportional hazards model, the results are bad even for
α = 0.01 and get worse when the sampling rate decreases.

Table 3.1: Simulation summary for the Prentice’s estimator.

(i) Independent covariates, β1 = 1, β2 = −1

Mean Empirical Mean est. 95% CI
α Par. Bias

Estim. std. err. std. err. coverage
α = 0.01, β1 −0.031 1.031 0.599 0.578 0.940

Coh. 10 000 β2 0.020 -1.020 0.385 0.379 0.946
α = 0.02, β1 −0.014 1.014 0.581 0.577 0.957

Coh. 50 000 β2 0.035 -1.035 0.394 0.379 0.947
α = 0.001, β1 −0.016 1.016 0.607 0.580 0.944

Coh. 100 000 β2 0.026 -1.026 0.377 0.378 0.956
α = 0.0003, β1 −0.041 1.041 0.560 0.577 0.962
Coh. 300 000 β2 0.018 -1.018 0.391 0.378 0.937

(ii) Dependent covariates, β1 = 2.3, β2 = 0.7, β3 = 2.9

Mean Empirical Mean est. 95% CI
α Par. Bias

Estim. std. err. std. err. coverage
β1 −0.201 2.501 0.687 0.488 0.825

α = 0.01, β2 −0.102 0.802 0.634 0.479 0.858
Coh. 10 000 β3 −0.286 3.286 1.457 1.029 0.833

β1 −0.242 2.542 0.709 0.486 0.808
α = 0.002, β2 −0.108 0.808 0.677 0.492 0.861
Coh. 50 000 β3 −0.507 3.407 1.506 1.025 0.809

β1 −0.235 2.535 0.736 0.491 0.815
α = 0.001, β2 −0.208 0.808 0.677 0.492 0.851

Coh. 100 000 β3 −0.474 3.374 1.600 1.040 0.786
β1 −0.258 2.578 0.755 0.493 0.795

α = 0.0003, β2 −0.123 0.823 0.696 0.491 0.844
Coh. 300 000 β3 −0.491 3.391 1.575 1.037 0.802
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Table 3.2: Simulation summary for the estimator by Lu & Tsiatis.

(i) Independent covariates, β1 = 1, β2 = −1

Mean Empirical Mean est. 95% CI
α Par. Bias

Estim. std. err. std. err. coverage
α = 0.01, β1 −0.018 1.018 0.599 0.588 0.950

Coh. 10 000 β2 0.018 -1.018 0.387 0.380 0.949
α = 0.02, β1 −0.042 1.042 0.616 0.588 0.937

Coh. 50 000 β2 0.025 -1.025 0.376 0.380 0.962
α = 0.001, β1 −0.036 1.036 0.609 0.586 0.954

Coh. 100 000 β2 0.015 -1.015 0.379 0.380 0.950
α = 0.0003, β1 −0.048 1.048 0.660 0.588 0.951
Coh. 300 000 β2 0.063 -1.063 0.388 0.382 0.955

(ii) Dependent covariates, β1 = 2.3, β2 = 0.7, β3 = 2.9

Mean Empirical Mean est. 95% CI
α Par. Bias

Estim. std. err. std. err. coverage
β1 −0.378 2.678 0.760 0.525 0.772

α = 0.01, β2 −0.140 0.840 0.688 0.520 0.858
Coh. 10 000 β3 −0.676 3.576 1.611 1.100 0.759

β1 −0.525 2.825 0.882 0.555 0.715
α = 0.002, β2 −0.163 0.863 0.830 0.560 0.819
Coh. 50 000 β3 −1.025 3.925 1.963 1.158 0.687

β1 −0.547 2.847 0.982 0.572 0.705
α = 0.001, β2 −0.161 0.861 0.826 0.566 0.851

Coh. 100 000 β3 −1.152 4.052 2.029 1.191 0.660
β1 −0.671 2.971 1.107 0.597 0.683

α = 0.0003, β2 −0.244 0.944 0.939 0.592 0.800
Coh. 300 000 β3 −1.380 4.280 2.295 1.241 0.650

For illustration we also show histograms of the simulated estimates for the
proportional odds model, α = 0.01, on Figures 3.1 and 3.2. Each histogram
is shown with the density of the respective theoretical asymptotic normal dis-
tribution for comparison. Figure 3.1 shows the situation with independent
covariates: the asymptotic normal distribution well approximates the empiri-
cal distribution of the simulated estimates. Figure 3.2 (dependent covariates)
reveals noticeable skewness towards the upper tail of the distribution for all
the three parameter estimates.
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Figure 3.1: Relative frequency histograms of simulated case-cohort estimates
of (a) β1 and (b) β2 with independent covariates.
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Figure 3.2: Relative frequency histograms of simulated case-cohort estimates
of (a) β1, (b) β2, and (c) β3 with correlated covariates.
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Summary

Our simulation study shows that both estimators performed well in scenario
(i) with two independent covariates. The subcohort sampling probability α
only had a minor effect on the properties of both estimators. Similar results
are usually also reported for other case-cohort estimators in the literature.
Both estimators behaved much worse in scenario (ii) with dependent covari-
ates. Even for the best case with α = 0.01 the estimators were biased and had
underestimated standard errors. We can also see the influence of α on the
results, smaller values of α resulted in worse properties of both estimators.

Our simulation study focused only on the estimators proposed by Prentice
and Lu & Tsiatis. However, any case-cohort estimator utilising the same
principle of weighting by inverse sampling probabilities is likely to be affected
by similar problems. We have seen that even values of α around 0.01 are
small enough and theoretical results can break down here. In practice the
sampling fractions can be considerably lower than 1% of the whole cohort,
leading to even worse properties of known estimators. The full cohort can
include hundreds of thousands of people, while the number of cases remains
in the hundreds and the size of the subcohort comparable to the number of
cases or somewhat larger.

The idea and principles of the case-cohort design are most useful under
such rare-event scenarios and developing a good estimator is therefore very
important. Constructing new estimators in the usual manner by modifying
the existing weights does not solve the problem because the principle remains
unchanged. In this work, we shall introduce an alternative estimation method
based on logistic regression models.

3.5 Logistic models and case-control data

In Section 2.5 we have briefly introduced the logistic regression model as a
tool for analysing cross-sectional data with a binary response variable. When
dealing with case-cohort data, an alternative approach is using a case-control
logistic regression analysis at the end of the study. Case-control data can be
easily obtained from a case-cohort study by counting the numbers of cases
and controls and ignoring the actual times of events and censoring.

A logistic regression model can be fitted to retrospectively collected case-
control data without the need for inverse probability weighting (Prentice
& Pyke, 1979). We shall exploit this property of logistic regression when
developing a new estimator in Chapter 4. In this section we review the rela-
tionship between prospective and retrospective models and briefly summarise
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main results of Prentice & Pyke (1979). Their paper is very general but we
only focus on developing the retrospective likelihood function and asymptotic
properties of the odds ratio estimator.

Likelihood and score for logistic models in retrospective studies

Logistic regression models were originally developed for prospective data,
that is for observations sampled from the conditional distribution of event
(disease) status given the covariates. In our notation2 this means sampling
from the distribution of δ given the covariates Z – let us denote it3 by P(δ|Z).
In case-control studies, however, data are sampled from the distribution of
covariates Z given the event status δ (denoted by P(Z|δ)).

Prentice & Pyke (1979) started from the original prospective logistic re-
gression model (2.13) written as

P(δ = 1|Z) =
exp(α+ β′Z)

1 + exp(α+ β′Z)
,

P(δ = 0|Z) =
1

1 + exp(α+ β′Z)
.

(3.7)

The (prospective) odds ratios based on (3.7) comparing an individual with
covariates Z to an individual with a baseline or reference set of covariates
Z0 equal

P(δ = 1|Z)/P(δ = 0|Z)

P(δ = 1|Z0)/P(δ = 0|Z0)
= exp(β′(Z − Z0))

=
P(Z|δ = 1)/P(Z0|δ = 1)

P(Z|δ = 0)/P(Z0|δ = 0)
.

(3.8)

The last equality is true due to the fact that P(δ|Z) = P(Z|δ)P(δ)/P(Z)
and gives the first important result: the odds ratios can be estimated from
retrospective data. Furthermore, using (3.8) we can write

P(Z|δ = 1) = c1 exp(γ(Z) + β′Z) and

P(Z|δ = 0) = c0 exp(γ(Z)),
(3.9)

where γ(Z) = log[P(Z|δ = 0)/P(Z0|δ = 0)] and c0(γ) and c1(γ,β) are nor-
malizing factors. So, the resulting model for retrospective data is again of

2The censoring indicator δ becomes the response variable for the case-control analysis.
3During this section we shall use a unified notation by P(·) for both, discrete and

continuous distributions.
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the logistic form with γ in place of the intercept term. This new model is in
fact induced by the original model (2.13) which would be fitted to prospec-
tive data and both models are equivalent if the original α in (2.13) and the
function γ in (3.9) are both unrestricted.

The likelihood function for the retrospective model is given by a product
of corresponding parts of (3.9) over all observations. It is more convenient
to work with a reparametrized problem where we put

q(Z) = exp(γ(Z))[
n0

n0 + n1

c0 +
n1

n0 + n1

c1 exp(β′Z)]. (3.10)

By n0 and n1 we denote the number of controls and cases in the sample,
respectively. The function q(·) introduced in (3.10) can be interpreted as the
marginal probability density function for Z under the case-control sampling
scheme with P(δ = i) = ni/(n1 + n0), i = 0, 1. To simplify the formu-
las let us finally introduce ηi = log(cini/(n0 + n1)), i = 0, 1. With these
reparametrisations we arrive to a likelihood function LLR proportional to

LLR ∝
n0
∏

j=1

exp(η0)

exp(η0) + exp(η1 + Z ′
jβ)

n1
∏

j=1

exp(η1 + Z ′
jβ)

exp(η0) + exp(η1 + Z ′
jβ)

n0+n1
∏

j=1

q(Zj)

= L1(η0, η1,β) ×
n0+n1
∏

j=1

q(Zj). (3.11)

When we treat q(·) as a functional nuisance parameter, the likelihood (3.11)
depends on the remaining model parameters solely through L1 and any in-
ference concerning the regression parameters can thus be now based on L1

only. Further calculations show that

logL1(η0, η1,β) =

n0
∑

j=1

[η0 − log(exp(η0) + exp(η1 + Z ′
jβ))]

+

n1
∑

j=1

[η0 + Z ′
jβ − log(exp(η0) + exp(η1 + Z ′

jβ))]

= n1(η1 − η0) +

n1
∑

j=1

Z ′
jβ

−
n0+n1
∑

j=1

log(1 + exp(η1 − η0 + Z ′
jβ)),
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leading to score equations

0 =
∂ logL1

∂β
=

n1
∑

j=1

Zj − exp(η1 − η0)

n0+n1
∑

j=1

Zj exp(Z ′
jβ)

1 + exp(η1 − η0) exp(Z ′
jβ)

,

0 =
∂ logL1

∂ηi

= ±
(

n1 −
n0+n1
∑

j=1

exp(η1 − η0) exp(Z ′
jβ)

1 + exp(η1 − η0) exp(Z ′
jβ)

)

.

(3.12)

Solving (3.12) simultaneously provides estimates of regression parameters.
Note that the main parameter of interest from the prospective model (3.7), β,
remains exactly the same parameter here. Note also that since we have case-
control data, we cannot make any population-wide inference regarding the
intercept term or anything related to the intercept. We cannot for example
estimate the overall probability of failure from case-control data, no matter
how they were collected.

Asymptotic results

The asymptotic theory for retrospective case-control parameter estimators
requires some nonstandard approaches due to the nuisance functional pa-
rameter q, but the main results are quite straightforward. Denote by θ =
(η0, η1,β)T all the parameters, let

G(θ) = E

{

− 1

n

∂2 logL1

∂θ∂θ

}

be the expected information matrix based on L1 and denote the normalised
score by

S(θ) =
1√
n

∂ logL1

∂θ
.

Prentice & Pyke (1979) showed that S(θ) is asymptotically normal with
mean zero and variance matrix

Σcc = E

{

(

∂ logL1

∂θ
|θ=θ0

)(

∂ logL1

∂θ
|θ=θ0

)T
}

, (3.13)

where θ0 denotes the true parameter values in the retrospective model. Using
Taylor expansion of the first derivative of logL1 around θ0 then provides the
asymptotic normality for the case-control regression estimators and their
asymptotic variance, which equals

G−1(θ0)ΣccG
−1(θ0). (3.14)
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Prentice & Pyke (1979) also showed that the bottom-right submatrix
of (3.14) related to β is exactly equal to the corresponding bottom-right sub-
matrix of G−1(θ0), which would be the asymptotic variance matrix from the
prospective logistic regression model obtained by standard maximum likeli-
hood estimation theory. This asymptotic variance matrix can be consistently
estimated from retrospective data by plugging in the estimated parameters.
The resulting submatrix for β remains correct even though the intercept term
has a different meaning.

In summary, the most important message is that the same formal model
can be used for analysing data stemming from both types of studies, prospec-
tive as well as retrospective. The case-control estimator of the odds ratio re-
mains consistent and asymptotically normal, its asymptotic variance matrix
is the same as if the model were applied to prospectively collected data and
the estimated parameters can be plugged in to obtain a consistent estimator
of the variance matrix of the odds ratios.





Chapter 4

The Combined
Logistic Estimator

In Section 3.4 we have seen that the usual case-cohort estimators may en-
counter serious performance problems. Two estimators suggested by Prentice
and by Lu and Tsiatis were used as examples, however similar problems af-
fect all currently known estimators that are based on the inverse probability
weighting principle. It is therefore desirable to develop a new estimator with
better properties, especially for situations with very low event probabilities.
The new estimator is presented in the current chapter. First we show how
the likelihood and score functions of the proportional odds model can be
rewritten into a form comparable to the likelihood and score of the logistic
regression model; we also highlight similar aspects and important differences
resulting from such comparison. In Section 4.2 we present the main ideas
and construct the new estimator and in Section 4.3 we formulate and prove
its asymptotic properties.

4.1 Background

Logistic regression models can estimate odds ratios from retrospective case-
control data without weighting the observations by inverse sampling prob-
abilities (see Section 3.5 or Prentice & Pyke (1979) for more details). We
aim to avoid using inverse sampling probabilities for reasons explained in
Chapter 3, so we view the logistic regression model as a natural alternative
to traditional approaches.

Among all survival regression models, the proportional odds model is
closest to logistic regression in many aspects, as we will show in more detail
later in this section. Therefore we developed the new estimator for data

37
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following the proportional odds model and used the close relationship of
proportional odds and logistic models to construct the estimator.

In situations with very low event probabilities, in which we are particu-
larly interested, the proportional odds model closely approximates the Cox
model because odds ratios closely approximate hazard ratios. In such circum-
stances, the proportional odds model can be used to analyse data generated
by the Cox model (see the simulation study in Chapter 5).

Logistic regression and the proportional odds model

Logistic regression and the proportional odds model both estimate odds ratios
(or log odds ratios). The logistic analysis does this only at one, fixed time
point. The proportional odds model takes time dependence into account
through the baseline log odds function G(t), which replaces the intercept
term from logistic regression. There is no time dependence for β, the model
assumes that the effects of model covariates do not change over time. The
proportional odds model can thus be treated as a direct generalization of the
logistic regression model allowing time-dependent intercepts.

Similarly, the case-cohort design can be viewed as a direct generalization
of the case-control design – a case-control study can be obtained from a case-
cohort study by simply ignoring or not observing the actual failure times,
their ranks or other statistics. In other words, a case-control study occurs
if δ = I[T≤C] is treated as the response variable and controls are sampled
instead of following all individuals.

This leads to the idea that the proportional odds model, applied to case-
cohort data, could provide consistent parameter estimators just like logistic
regression does in case-control studies. A naive approach would simply fit
the proportional odds model to case-cohort data as if all individuals were
observed. This is the way case-control data are analysed via logistic regres-
sion, but this logistic regression is performed at a single given time point.
Viewed only at this one time point, cases and controls remain the same dur-
ing the whole study. On the other hand, subjects may change their status
from controls to cases when they are followed in a case-cohort study. For
a more formal illustration of the differences we need to compare the odds
ratios, likelihoods and score functions from both models.

Odds ratios and sampling probabilities

Denote by p the probability of developing the event of interest (or being a
case), given covariates: p = P(δ = 1|Z = z). For the probability of being a
control we thus have P(δ = 0|Z = z) = 1 − p. Denote by ξ = 1 the event
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that an observation is sampled for the analysis. With full data we would
have P(ξ = 1) = 1 for all cohort members independently of event status,
implying P(δ = 1|z, ξ = 1) = P(δ = 1, ξ = 1|z)/P(ξ = 1) = P(δ = 1|z) = p.
The logistic regression model with full data has the form

log
P(δ = 1|z)

1 − P(δ = 1|z)
= log

p

1 − p
= α+ β′z.

In a case-control study we usually have different values of P(ξ = 1|δ = 1)
and P(ξ = 1|δ = 0). Even if we keep the sampling independent of covariates
(e.g we do not consider any stratification) we have

P(δ = 1|z, ξ = 1) =
P(δ = 1, ξ = 1|z)

P(ξ = 1|z)

=
p · P(ξ = 1|δ = 1,z)

p · P(ξ = 1|δ = 1,z) + (1 − p) · P(ξ = 1|δ = 0,z)

and therefore

log
P(δ = 1|z, ξ = 1)

1 − P(δ = 1|z, ξ = 1)
= log

p · P(ξ = 1|δ = 1,z)

(1 − p) · P(ξ = 1|δ = 0,z)

= log
p

1 − p
+ log

P(ξ = 1|δ = 1,z)

P(ξ = 1|δ = 0,z)

= α+ β′z + log
P(ξ = 1|δ = 1,z)

P(ξ = 1|δ = 0,z)

= α⋆ + β′z.

(4.1)

This is the reason why the intercept term cannot be directly estimated from
case-control data even when the odds ratios remain unchanged. Conse-
quently, no function of the intercept, such as the overall event probability
P(δ = 1|z), can be estimated from case-control data.

For a case-cohort study assume that there is a time τ > 0, which is the
end of the study, and recall that F (t) denotes the cumulative distribution
function of T . The event of interest [δ = 1] now depends on time and becomes
[δ(t) = I[T≤t]] with probability P[δ(t) = 1] = p(t) = F (t). Since the event of
interest can develop after t and before τ for an individual, who is a control
at t, being a control at t does not necessarily mean being a control later.

Suppose that the cases are sampled at their failure times and not before.
Then sampling (observing an individual) is also time-dependent and [ξ(t) =
1] denotes the event of being sampled at time t. The conditional probabilities
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and odds ratios are

P(δ(t) = 1|z, ξ(t) = 1) =
P(δ(t) = 1, ξ(t) = 1|z)

P(ξ(t) = 1|z)
=

P(T ≤ t, ξ(t) = 1|z)

P(ξ(t) = 1|z)

=
P(ξ(t) = 1|T ≤ t,z) · F (t)

P(ξ(t) = 1|T ≤ t,z) · F (t) + P(ξ(t) = 1, T > t|z))
.

The last term in the denominator can be rewritten as

P(ξ(t) = 1, T > t|z) = P(ξ(t) = 1|t < T ≤ τ |z) · P(t < T ≤ τ)

+ P(ξ(t) = 1|T > τ |z) · P(T > τ)

= P(ξ(t) = 1|t < T ≤ τ |z) · [F (τ) − F (t)]

+ P(ξ(t) = 1|T > τ |z) · [1 − F (τ)],

where the extra term P(ξ(t) = 1|t < T ≤ τ |z)) is the probability of sampling
a control at t that becomes a case prior to τ . Therefore

log
P(T ≤ t|z, ξ(t) = 1)

1 − P(T ≤ t|z, ξ(t) = 1)
= log

F (t)·P(ξ(t) = 1|T ≤ t,z)

D(t, τ)
, (4.2)

where

D(t, τ) = [1 − F (τ)] · P(ξ(t) = 1|T > τ,z)

+ [F (τ) − F (t)] · P(ξ(t) = 1|t < T ≤ τ,z).

The problem is that (4.2) cannot be easily split into the original odds ratio
plus a correction term like in (4.1). As time t approaches the end of study
τ , the probability that a control sampled at t becomes a case prior to τ
converges to zero and the odds ratio gets closer to that from a case-control
study.

Likelihood and score in the proportional odds model

Let us now explore in detail the likelihood and score functions of the propor-
tional odds model and compare them to the retrospective logistic likelihood
and score from Section 3.5. Recall that under the proportional odds model
we can observe the censored failure time Yi (the response variable), censoring
indicator δi and covariates Zi, i = 1, . . . n. Murphy et al. (1997) derived that
the likelihood is proportional to LPO, which can be written as
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LPO(H,β) =
n
∏

i=1

[

exp(Z ′
iβ)h(yi)

(1 +H(yi) exp(Z ′
iβ))2

]δi
[

1

1 +H(yi) exp(Z ′
iβ)

]1−δi

=
n
∏

i=1

[

exp(Z ′
iβ)h(yi)

1 +H(yi) exp(Z ′
iβ)

]δi
[

1

1 +H(yi) exp(Z ′
iβ)

]

,

(4.3)

where H(t) = exp{G(t)} is the baseline odds of failure by time t and h(t) is
the first derivative of H(t).

In order to compare the score equations for β based on (4.3) to those
from logistic regression, we should rewrite (4.3) in some form that reflects
its evolution over time. Suppress for a moment its dependence on H and
β and denote it just LPO(t). Let there be K observed failures indexed by
f1, . . . , fK and ordered so that tf1 < tf2 <, . . . , < tfK

. For all t < tf1 we have
LPO(t) = 1 since H(t) = 0 for t < tf1 and further

LPO(tf1) = 1 ×
h(tf1) exp(Z ′

f1
β)

1 +H(tf1) exp(Z ′
f1

β)
×

n
∏

i=f1

1

1 +H(tf1) exp(Z ′
iβ)

,

LPO(t) = L(tf1) for t ∈ (tf1 , tf2),

LPO(tf2) = 1 ×
h(tf1) exp(Z ′

f1
β)

1 +H(tf1) exp(Z ′
f1

β)
×

f2−1
∏

i=f1

1

1 +H(tf1) exp(Z ′
iβ)

×
h(tf2) exp(Z ′

f2
β)

1 +H(tf2) exp(Z ′
f2

β)
×

n
∏

i=f2

1

1 +H(tf2) exp(Z ′
iβ)

,

LPO(t) = L(tf2) for t ∈ (tf2 , tf3) and so on.

If we continue this way until the last observation is included, we obtain

LPO(tK) =
K
∏

k=1

[

h(tfk
) exp(Z ′

fk
β)

1 +H(tfk
) exp(Z ′

fk
β)

×
fk+1−1
∏

i=fk

1

1 +H(tfk
) exp(Z ′

iβ)

]

,

(4.4)
where we set fK+1 = n+1 for brevity. Finally, taking the logarithm and first
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derivative of (4.4) yields the score equation for estimating β

0 =
∂ log(LPO(tK))

∂β

=
K
∑

k=1

Zfk
−

K
∑

k=1

[

H(tfk
)Zfk

exp(Z ′
fk

β)

1 +H(tfk
) exp(Z ′

fk
β)

+

fk+1−1
∑

i=fk

H(tfk
)Zi exp(Z ′

iβ)

1 +H(tfk
) exp(Z ′

iβ)

]

=
K
∑

k=1

Zfk

1 +H(tfk
) exp(Z ′

fk
β)

−
K
∑

k=1

fk+1−1
∑

i=fk

H(tfk
)Zi exp(Z ′

iβ)

1 +H(tfk
) exp(Z ′

iβ)
.

(4.5)

Comparing (4.5) to the logistic regression score (3.12) shows that both
functions look very similar. There is a correction term for the cases in (4.5)
and the time-varying term H(tfk

) is replaced by a constant term exp(η1−η0)
in (3.12). In fact, H(tfk

) represents a functional parameter that captures
the time-dependent part of the model. The risk set changes between two
successive events and we would estimate incorrect parameters by fitting a
proportional odds model directly to case-cohort data. On the other hand,
logistic regression can only analyse data collected at one given time point,
does not need to handle time dependence and can be applied to case-control
data for estimating the odds ratios.

4.2 Construction of the estimator

Motivated by the fact that logistic regression can be used with case-control
data without inverse probability weighting, the main idea of our approach
is to estimate the odds ratios repeatedly by applying the logistic regression
model. We obtain a sequence of estimators computed at different time points
and combine them into a new estimator. The estimator will be introduced
in this section with emphasis placed on main thoughts and steps in the de-
velopment of the estimator. The whole section is therefore rather informal,
providing a step by step explanation of the ideas and their generalizations.
Rigorous proofs and detailed calculations are provided later in Section 4.3,
a simulation study is presented in Chapter 5 and a discussion on some open
problems follows in Chapter 6.

Combining estimators computed at fixed times

Let the data satisfy the proportional odds model

−logit(S(t|Z)) = α0(t) + β′
0Z. (4.6)
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In Section 2.3, the same model was introduced in equation (2.6) with G(t)
in place of α0(t). Assume that there is a time point τ , the endpoint of the
study, such that all individuals that have not failed until τ are censored at τ
and also assume that no other censoring occurs. A logistic regression model
can be used to estimate β0 at any fixed time point t, 0 < t ≤ τ . Choose K
fixed time points t1, . . . tK such that 0 < t1 < t2 · · · < tK ≤ τ and perform
the case-control analysis at these time points t1, . . . tK . We obtain a sequence
of case-control estimators α̂(t1), β̂(t1), . . . , α̂(tK), β̂(tK), where each β̂(tk) is
a consistent and asymptotically normal estimator of the odds ratios from the
original proportional odds model. These estimators are computed from data
available at each time of analysis. As we move t towards τ , we observe new
cases and some controls develop the event of interest and become cases.

Although the latest possible analysis conducted at τ is the best one mea-
sured by the amount of information available, the earlier analyses contain
additional information on the ordering of individual failures. Such informa-
tion cannot be captured in any single cross-sectional analysis, not even in the
latest one performed at τ . To exploit the time information contained in the
sequence of estimators, these individual estimators will be combined into a
single estimator of β0 by computing a weighted average. Let us call the new
estimator the combined logistic estimator (CLE).

Choosing the appropriate combination

Denote by I the identity matrix and by W (t1, . . . , tK) a set of p×p matrices
of known constants {W1 , . . . ,WK } such that

∑K
k=1 Wk = Ip×p. For any set

W (t1, . . . , tK) define the combined logistic estimator as

β̃W(t1,...,tK) =
K
∑

k=1

Wk β̂(tk). (4.7)

We would like to choose W opt(t1, . . . , tK) so that the asymptotic variance
matrix ΣWopt(t1,...,tK) of β̃Wopt(t1,...,tK) satisfies {ΣW(t1,...,tK)−ΣWopt(t1,...,tK)} ≥
0 for any choice of W (t1, . . . , tK). In theory, such a set of weighting matrices
can be identified. However, because the optimal weighting matrices need
to be estimated from the data, such estimators do not behave well even for
K = 2 (Kulich & Lin (2004)). In our situation K is typically much larger.

Thus, we consider only diagonal matrices

Wk(p×p)
= diag{wk} = diag{(w1k, . . . , wpk)

′}, k = 1, . . . , K,

where 0 ≤ wjk ≤ 1 for all j and k. Using diagonal matrices leads to com-
bining individual components of the parameter vector β separately and dis-
cards Kp(p − 1) variance-covariance parameters, but we are still working
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with highly correlated consecutive logistic regression estimators. As a con-
sequence the influence of one estimator is often eliminated by another one
(they both have weights of similar magnitudes with opposite signs). There-
fore we need to restrict the weights further and work only with convex lin-
ear combinations of the individual components. The combined estimator
β̃W(t1,...,tK) = (β̃1,W(t1,...,tK), . . . , β̃p,W(t1,...,tK))

′ can be written component-wise
as

β̃j,W(t1,...,tK) =
K
∑

k=1

wjkβ̂j(tk),
K
∑

k=1

wjk = 1, 0 ≤ wjk ≤ 1. (4.8)

It can be shown (see Section 4.3), that any estimator β̃W(t1,...,tK) belonging
to the class defined in (4.7) or (4.8) is consistent and asymptotically normally
distributed,

√
n(β̃W(t1,...,tK) − β0)

D−→ Np(0,ΣW(t1,...,tK)), (4.9)

where the diagonal elements of ΣW(t1,...,tK) are given by

V(β̃j) =
K
∑

k=1

w2
jk V(β̂j(tk)) + 2

K
∑

k=1

K
∑

l=k+1

wjkwjl C(β̂j(tk), β̂j(tl)) (4.10)

and the off-diagonal elements by

C(β̃j, β̃j′) = C

(

K
∑

k=1

wjkβ̂j(tk),
K
∑

l=1

wj′lβ̂j′(tl)
)

=
K
∑

k=1

wjkwj′k C(β̂j(tk), β̂j′(tk)) +
K
∑

k=1

K
∑

l=1, l 6=k

wjkwj′l C(β̂j(tk), β̂j′(tl)).

(4.11)

By V(·) and C(·, ·) we denote asymptotic variances and covariances of the
arguments.

Intuitively, consistency is clear since each β̂(tk) is a consistent estimator
of β0 and

∑K
k=1 Wk = Ip×p. The asymptotic normality follows from the joint

asymptotic normality of the vector of estimators (β̂(t1), . . . , β̂(tK))′, which
is also proved in Section 4.3. More detailed expressions for the individual
variances and covariances can be obtained through logistic regression score
functions and are given in Theorem 4.4 and Corollary 4.5.

The optimal combined logistic estimator β̃
opt

W(t1,...,tK) is defined through
weights that minimize (4.10), the asymptotic variance of each component
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of β̃W(t1,...,tK). The constrained minimization of variances (4.10) for each

j = 1, . . . , p with respect to wj1, . . . , wjK subject to
∑K

k=1wjk = 1 and 0 ≤
wjk ≤ 1 can be solved with standard numerical optimization algorithms
allowing for constraints, such as the L-BFGS-B method (Byrd et al., 1995).
This algorithm is a limited memory modification of the quasi-Newton BFGS
(Broyden-Fletcher-Goldfarb-Shanno) method, see e.g. Broyden (1970).

In practice we do not know the asymptotic variances and covariances
V(β̂j(tk)) and C(β̂j(tk), β̂j(tl)) in (4.10), they must be estimated from the data

(Lemma 4.2). Replacing each V(β̂j(tk)) and C(β̂j(tk), β̂j(tl)) by its estimator
and solving the minimization problem leads to estimated optimal weights
ŵopt

j1 , . . . , ŵ
opt
jK for each j. The resulting CLE with estimated weight matrices

diag{ŵopt
1 }, . . . , diag{ŵopt

K } remains consistent and asymptotically normal
(Theorem 4.6).

Combining estimators computed at failure times

In the previous part we proposed the combined logistic estimator for a known
numberK of fixed time points. To capture information from the proportional
odds model we would like to perform the subanalyses as frequently as pos-
sible. Recall however that the likelihood function (4.4) of the proportional
odds model can only change at times when one or more failures occur. Thus,
the individual case-control analyses should be performed at all the observed
failure times.

Combining the estimators computed at failure times has two major conse-
quences. First, all results derived for fixed time points need to be adjusted for
a random number of random time points and the number of analysis times K
tends to infinity as the number of observations n increases. Nevertheless, the
key results for random time points are all the same as for fixed time points
(Theorem 4.12). The estimators remain consistent and asymptotically nor-
mal and we can apply the same principles for estimating the variances and
covariances and computing optimal weights.

Second, with random times of the subanalyses we must assure that there
will be enough cases for all subanalyses. Since we rely on asymptotic prop-
erties of the individual case-control estimators β̂(tk), k = 1, . . . , K, assume
there is a fixed starting time τ0, P(T < τ0) = c0 > 0 and include only
subanalyses occurring after τ0 in the linear combination. In practice we can
eliminate the early estimators by choosing some threshold k0, 1 ≤ k0 < K
and setting wj1 = · · · = wjk0 = 0 ∀j = 1, . . . , p (or shortly W1 = · · · =
Wk0 = 0(p×p)). The optimization process is then only run for the remaining
weight matrices Wk0+1, . . . ,WK .
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The practical choice of the threshold k0 is a subjective decision. Smaller
values of k0 include more time information from the early estimators while
larger values of k0 discard more case-control analyses. Note that if we set
k0 = K−1, we obtain a simple case-control analysis equivalent to an analysis
performed at the end of the study. We recommend to use a threshold k0 =
max{30, kη}, where limK→∞ kη/K = η > 0. Other options for the threshold
parameter are discussed later in Chapter 6.

Summary

We have proposed the combined logistic estimator for estimating regression
parameters in the proportional odds model. With full data, the CLE is
an alternative to the estimator proposed by Murphy et al. (1997). With
case-cohort data, the CLE combines estimators from case-control logistic re-
gression analyses. The combined logistic estimator thus does not use inverse
sampling probabilities for weighting the individual contributions if applied
to case-cohort data. The whole procedure works in the following five steps:

1. Choose the threshold index k0.

2. Perform a case-control logistic regression analysis at all failure times
and obtain the case-control estimates β̂(tk), k ≥ k0.

3. Estimate the asymptotic covariance matrices for all β̂(tk) and the
asymptotic covariances between the individual case-control estimators
computed at different times, i.e. C(β̂(tk), β̂(tk′)), k, k′ = k0, . . . , K.

4. Estimate the optimal weights and combine the case-control estimators

into the combined logistic estimator β̃
opt

.

5. Estimate ΣWopt – the asymptotic covariance matrix of β̃
opt

.

The resulting estimator β̃
opt

is consistent, asymptotically normal and its
components have the smallest variance among all convex linear combinations
of logistic regression estimators. In particular, measured by the asymptotic

variance of individual components of β̃
opt
, the combined logistic estimator is

not worse than the last case-control logistic regression estimator β̂(tK).

4.3 Theoretical results

This section presents all theorems referenced in previous sections with proofs
and technical details. We shall start with fixed time points and generalize
the results step by step.
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Notation

We assume that data are generated from the proportional odds model

logit(P(δ(t) = 1|Z = z)) = α0(t) + β′
0z, (4.12)

where α0(t) and β0 denote true parameter values. Parametrisation (4.12) is
equivalent to the most common definition of the proportional odds model,
which specifies −logit(S(t)|z)) on the left hand side (formula (2.6) in Chap-
ter 2), because S(t|z) = 1 − P(δ(t) = 1|z) and the minus sign reverses the
logit. It follows that

P(δ(t) = 1|Z = z) =
exp{α0(t) + β′

0z}
1 + exp{α0(t) + β′

0z}
. (4.13)

Denote the true conditional probability of an event in (4.13) by π0(t,z) and
define π(·) as a function of time, parameters and covariates

π(t) = π(t, α,β,z) =
exp{α(t) + β′z}

1 + exp{α(t) + β′z} . (4.14)

Note that (4.14) no longer has the interpretation of event probability unless
evaluated at the true parameters α0(t) and β0, then we write π0(t). In case
we need to specify the dependence on a particular set of covariates zi for
individual i, we shall use πi(t) or πi0(t).

For t > τ0 denote by θ̂(t) = (α̂(t), β̂(t))′ the maximum likelihood estima-
tors obtained from a logistic regression model fitted to data at time t. Such
analysis is retrospective, based on case-control data, and according to Pren-
tice & Pyke (1979), α̂(t) and β̂(t) estimate parameters α⋆

0(t) and β0. With
retrospective data, α⋆

0(t) is generally different from the true value α0(t). As
summarised in Section 3.5, for each t the estimator β̂(t) remains consistent,
asymptotically normal and its variance has the same form as in a prospective
study. Results concerning the intercept are affected by the retrospective case-
control design, so we need to treat the parameters separately and distinguish
between the intercept term α(t) and the p×1 vector β. Similarly as in (4.14)
we denote the case-control event probability by π⋆

0(t) = π(t, α⋆
0(t),β0,z), its

estimator π̂(t) = π(t, α̂(t), β̂(t),z) and use i in the subscript for expressing
the dependence on zi.

Assumptions

Throughout the whole section on theoretical results we assume that

i Censoring can only occur at the end of the study

ii All covariates are bounded.

We will discuss relaxing or weakening of the conditions later in Chapter 6.
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CLE with fixed times of individual analyses

Assume for now that there are K fixed time points t1 < t2 < · · · < tK at
which the study is stopped and analysed by a logistic regression model.

Lemma 4.1: For each s ∈ {t1, . . . , tK} the normalized logistic regres-
sion score function evaluated at (α⋆

0(s),β0)
T is asymptotically normally dis-

tributed
1√
n

(

Uα(s, α⋆
0(s))

Uβ(s,β0)

)

D−→ N(0,ΣU(s)),

where the elements of the asymptotic variance matrix ΣU(s) equal

Cα,α(s) = EZ{π⋆
0(s)[1 − π⋆

0(s)]}
Cα,βj

(s) = EZ{Zjπ
⋆
0(s)[1 − π⋆

0(s)]}, j = 1, . . . , p

Cβj ,βj′
(s) = EZ{ZjZj′π

⋆
0(s)[1 − π⋆

0(s)]}, j, j′= 1, . . . , p.

(4.15)

The asymptotic variance matrix ΣU(s) can be consistently estimated by
Σ̂U(s) with elements

Ĉα,α(s) =
1

n

n
∑

i=1

π̂i(s)[1 − π̂i(s)]

Ĉα,βj
(s) =

1

n

n
∑

i=1

zi,jπ̂i(s)[1 − π̂i(s)], j = 1, . . . , p

Ĉβj ,βj′
(s) =

1

n

n
∑

i=1

zi,jzi,j′ π̂i(s)[1 − π̂i(s)], j, j
′= 1, . . . , p.

Proof: For full prospective data, Lemma 4.1 with π⋆
0(·) replaced by π0(·) is

a standard result from theory of maximum likelihood estimation. Regular-
ity conditions are satisfied for logistic regression scores and the asymptotic
normality follows from the Central limit theorem for independent identically
distributed random variables. The form of the asymptotic variance matrix
and its estimator can be found in standard textbooks. The generalisation for
case-control studies follows from Prentice & Pyke (1979).

Lemma 4.2: The vector of normalized logistic regression score functions
calculated at times t1, . . . , tK is jointly asymptotically normally distributed

n−1/2















Uα(t1, α
⋆
0(t1))

Uβ(t1,β0)
...

Uα(tK , α
⋆
0(tK))

Uβ(tK ,β0)















D−→ N(0,ΣU(t1, . . . , tK)),
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where the asymptotic variance matrix ΣU(t1, . . . , tK) is a K(p+ 1)×K(p+
1) matrix composed of K2 blocks ΣU(s, t) with s = tk, t = tk′ , k, k′ =
1, . . . , K, s ≤ t. The elements of each ΣU(s, t) are given by

Cα,α(s, t) = EZ{π⋆
0(s)[1 − π⋆

0(t)]}
Cα,βj

(s, t) = EZ{Zjπ
⋆
0(s)[1 − π⋆

0(t)]}, j = 1, . . . , p

Cβj ,βj′
(s, t) = EZ{ZjZj′π

⋆
0(s)[1 − π⋆

0(t)]}, j, j′ = 1, . . . , p.

Note that the off-diagonal blocks of ΣU(t1, . . . , tK) contain asymptotic
covariances of normalised scores computed at different time points, while its
diagonal blocks ΣU(s, s) = ΣU(s) are the asymptotic variance matrices of
the individual normalised logistic regression scores from Lemma 4.1.

The asymptotic marginal distribution of scores for β alone (without α
scores) is also multivariate normal with zero mean. Its asymptotic variance
matrix is composed of appropriate rows and columns from ΣU(t1, . . . , tK).
Proof: The asymptotic normality in Lemma 4.2 follows from the multivari-
ate Central limit theorem for independent identically distributed random
variables since we can write















Uα(t1, α
⋆
0(t1))

Uβ(t1,β0)
...

Uα(tK , α
⋆
0(tK))

Uβ(tK ,β0)















=
n
∑

i=1















Ui,α(t1, α
⋆
0(t1))

Ui,β(t1,β0)
...

Ui,α(tK , α
⋆
0(tK))

Ui,β(tK ,β0)















=
n
∑

i=1

































δi(t1) − π⋆
0,i(t1)

Zi,1[δi(t1) − π⋆
0,i(t1)]

...
Zi,p[δi(t1) − π⋆

0,i(t1)]
...

δi(tK) − π⋆
0,i(tK)

Zi,1[δi(tK) − π⋆
0,i(tK)]

...
Zi,p[δi(tK) − π⋆

0,i(tK)]

































.

It remains to derive the blocks of the asymptotic variance matrix. Denote
by Ui the score contribution from the ith individual and recall that with
full (prospective) data, δi(t) is a binary random variable with conditional
expectation E[δi(t)|z] = π0(t) and variance Var[δi(t)|z] = π0(t)[1 − π0(t)]
for each i = 1, . . . , n. In a case-control study we have E[δi(t)|z] = π⋆

0(t),
Var[δi(t)|z] = π⋆

0(t)[1 − π⋆
0(t)] and we can write

Cov[Ui,α(s), Ui,α(t)|z] = Cov[Ui,α(s), Ui,α(s)|z]

+ Cov[Ui,α(s), (Ui,α(t) − Ui,α(s))|z]

= Var[Ui,α(s)|z] + E{Ui,α(s)[Ui,α(t) − Ui,α(s)]|z},

since E[Ui,α(s)|z] = 0. Therefore
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Cov[Ui,α(s), Ui,α(t)|z] = Var[δi(s) − π⋆
0(s)|z]

+ E{[δi(s) − π⋆
0(s)][δi(t) − π⋆

0(t) − δi(s) + π⋆
0(s)]|z}

= π⋆
0(s)[1 − π⋆

0(s)]

+ E{δi(s)[δi(t) − δi(s) − (π⋆
0(t) − π⋆

0(s))]|z}
− E{π⋆

0(s)[δi(t) − δi(s) − (π⋆
0(t) − π⋆

0(s))]|z}.

Now, the last term above equals 0 while from the previous one we obtain

E{δi(s)[π⋆
0(t) − π⋆

0(s)]|z} = π⋆
0(s)(π

⋆
0(t) − π⋆

0(s))

and E{δi(s)[δi(t) − δi(s)]|z} = 0,

because the product δi(s)[δi(t) − δi(s)] is constantly 0. Putting all together
yields

Cov[Ui,α(s), Ui,α(t)|z] = π⋆
0(s)[1 − π⋆

0(s)] − π⋆
0(s)[π

⋆
0(t) − π⋆

0(s)]

= π⋆
0(s)[1 − π⋆

0(t)]

implying the unconditional covariance

Cov[Ui,α(s), Ui,α(t)] = EZ{Cov[Ui,α(s), Ui,α(t)|z]}
= EZ π

⋆
0(s)[1 − π⋆

0(t)].

The remaining covariances involving scores for components of β can be cal-
culated similarly.

Lemma 4.3: The asymptotic variance matrix of scores ΣU(t1, . . . , tK) in-
troduced in Lemma 4.2 can be consistently estimated by Σ̂U(t1, . . . , tK), a
matrix composed of K2 blocks Σ̂U(s, t), s = tk, t = tk′ , k, k′ = 1, . . . , K
with elements

Ĉα,α(s, t) =
1

n

n
∑

i=1

π̂i(s)[1 − π̂i(t)]

Ĉα,βj
(s, t) =

1

n

n
∑

i=1

zi,jπ̂i(s)[1 − π̂i(t)], j = 1, . . . , p

Ĉβj ,βj′
(s, t) =

1

n

n
∑

i=1

zi,jzi,j′ π̂i(s)[1 − π̂i(t)], j, j
′ = 1, . . . , p.
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Proof: We shall only present the proof for Ĉβj ,βj′
(s, t) in detail, the proof

for other elements of ΣU(t1, . . . , tK) is analogous. The estimated parameters
α̂(s) and β̂(s) are contained in π̂(s), which makes the summands depen-
dent. Standard solution is to rewrite each term Ĉβj ,βj′

(s, t), which should be

in fact denoted by Ĉβj ,βj′
(α̂(s), β̂(s), α̂(t), β̂(t)) to reflect its dependence on

parameters, as Ĉβj ,βj′
(α⋆

0(s),β0, α
⋆
0(t),β0) plus an asymptotically negligible

remainder term. First order Taylor expansion of Ĉβj ,βj′
(α̂(s), β̂(t), α̂(t), β̂(t))

around (α⋆
0(s),β0, α

⋆
0(t),β0) gives

Ĉβj ,βj′
(α̂(s), β̂(s), α̂(t), β̂(t))

.
= Ĉβj ,βj′

(α⋆
0(s),β0, α

⋆
0(t),β0)

+









α̂(s) − α⋆
0(s)

β̂(s) − β0

α̂(t) − α⋆
0(t)

β̂(t) − β0









T



















∂Ĉβj,β
j′

∂α̂(s)

∣

∣

α⋆
0(s),β0

∂Ĉβj,β
j′

∂β̂(s)

∣

∣

α⋆
0,β0

∂Ĉβj,β
j′

∂α̂(t)

∣

∣

α⋆
0(t),β0

∂Ĉβj,β
j′

∂β̂(t)

∣

∣

α⋆
0,β0



















where

∂Ĉβj ,βj′

∂α̂(s)

∣

∣

α⋆
0(s),β0

=
1

n

n
∑

i=1

∂zi,jzi,j′π
⋆
i (s)(1 − π⋆

i (t))

∂α̂(s)

=
1

n

n
∑

i=1

zi,jzi,j′

1 + exp(α⋆
0(s) + β′

0zi)
π⋆

i (s)(1 − π⋆
i (t)),

∂Ĉβj ,βj′

∂α̂(t)

∣

∣

α⋆
0(t),β0

= − 1

n

n
∑

i=1

zi,jzi,j′

1 + exp(α⋆
0(t) + β′

0zi)
π⋆

i (s)(1 − π⋆
i (t)),

∂Ĉβj ,βj′

∂β̂l(s)

∣

∣

α⋆
0(s),β0

=
1

n

n
∑

i=1

zijzi,j′zi,l

1 + exp(α⋆
0(s) + β′

0zi)
π⋆

i (s)(1 − π⋆
i (t)),

∂Ĉβj ,βj′

∂β̂l(t)

∣

∣

α⋆
0(t),β0

= − 1

n

n
∑

i=1

zijzi,j′zi,l

1 + exp(α⋆
0(t) + β′

0zi)
π⋆

i (s)(1 − π⋆
i (t))

(4.16)

for l = 1, . . . , p. Now, {(α̂(s), β̂(s), α̂(t), β̂(t)) − (α⋆
0(s),β0, α

⋆
0(t),β0)} tends

to 0 in probability (consistency of the estimators) and the derivatives are
bounded in probability due to assumptions imposed on the covariates. Thus

Ĉβj ,βj′
(α̂(s), β̂(s), α̂(t), β̂(t)) = Ĉβj ,βj′

(α⋆
0(s),β0, α

⋆
0(t),β0) + oP (1),

terms on the right hand side are independent identically distributed and the
law of large numbers applies to complete the proof.
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Theorem 4.4: The vector of normalized logistic regression estimators com-
puted at times t1, . . . , tK is jointly asymptotically normally distributed

√
n















α̂(t1) − α⋆
0(t1)

β̂(t1) − β0
...

α̂(tK) − α⋆
0(tK)

β̂(tK) − β0















D−→ N(0,Σθ(t1, . . . , tK)),

where Σθ(t1, . . . , tK) = J−1ΣU(t1, . . . , tK)J−1 is a K(p + 1) × K(p + 1)
matrix, J is a block-diagonal matrix diag{ΣU(t1), . . . ,ΣU(tK)}, ΣU(s) is
the asymptotic variance matrix of logistic score at time s (Lemma 4.2) and
ΣU(t1, . . . , tK) is the asymptotic variance matrix of logistic scores computed
at times t1, . . . , tK (Lemma 4.3).

Note in particular, that Theorem 4.4 implies joint asymptotic normality

√
n







β̂(t1) − β0
...

β̂(tK) − β0







D−→ N(0,Σβ(t1, . . . , tK)),

where the asymptotic Kp × Kp variance matrix Σβ(t1, . . . , tK) consists of
appropriate rows and columns of Σθ(t1, . . . , tK).

Since J is a block-diagonal matrix, its inverse J−1 is also a block-diagonal
matrix, J−1 = diag{{ΣU(t1)}−1, . . . , {ΣU(tK)}−1}. Splitting the expression
J−1ΣU(t1, . . . , tK)J−1 according to diagonal blocks of J−1 provides for each
tk the usual result for logistic regression estimators.

Proof: It is sufficient to provide a proof for K = 2 and p = 1, that is two
logistic regression estimators and a single covariate. The extension to any
finite number K and more covariates is straightforward. From Lemma 4.2
we can see that

n−1/2









Uα(t1, α
⋆
0(t1))

Uβ(t1, β0)
Uα(t2, α

⋆
0(t2))

Uβ(t2, β0)









D−→ N(0,ΣU(t1, t2)).

Using first order Taylor expansion of (U (t1, α̂(t1), β̂(t1)),U (t2, α̂(t2), β̂(t2)))
T

around (α⋆
0(t1), β0, α

⋆
0(t2), β0)

T together with Lemma 4.3 gives
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1√
n











Uα(t1, α̂(t1), β̂(t1))

Uβ(t1, α̂(t1), β̂(t1))

Uα(t2, α̂(t2), β̂(t2))

Uβ(t2, α̂(t2), β̂(t2))











=
1√
n









Uα(t1, α
⋆
0(t1),β0)

Uβ(t1, α
⋆
0(t1),β0)

Uα(t2, α
⋆
0(t2),β0)

Uβ(t2, α
⋆
0(t2),β0)









− J
√
n









α̂(t1) − α⋆
0(t1)

β̂(t1) − β0

α̂(t2) − α⋆
0(t2)

β̂(t2) − β0









+ oP (1) = 0,

leading directly to

√
n









α̂(t1) − α⋆
0(t1)

β̂(t1) − β0

α̂(t2) − α⋆
0(t2)

β̂(t2) − β0









=
1√
n

J−1









Uα(t1, α
⋆
0(t1), β0)

Uβ(t1, α
⋆
0(t1), β0)

Uα(t2, α
⋆
0(t2), β0)

Uβ(t2, α
⋆
0(t2), β0)









+ oP (1). (4.17)

The scores are asymptotically jointly normal, thus the estimators are also
asymptotically jointly normal and the proof is complete.

The joint multivariate normality implies that also all subvectors and their
linear combinations are asymptotically normal. Theorem 4.4 therefore serves
as a basis for establishing asymptotic normality and the asymptotic variance
matrix for the class of combined logistic estimators β̃W .

Corollary 4.5: Any estimator β̃W belonging to the class of combined lo-
gistic estimators defined in (4.7), and in particular the optimal combined
logistic estimator β̃Wopt defined on page 44, is asymptotically normal

√
n(β̃W − β0)

D−→ Np(0,Σβ,W(t1,...,tK)),

where

Σβ,W(t1,...,tK) =
K
∑

k=1

K
∑

k′=1

Wk Σβ(tk, tk′)Wk′

T. (4.18)

The asymptotic covariance matrices Σβ(tk, tk′) are p × p blocks taken from
the asymptotic variance matrix Σβ(t1, . . . , tK).

Theorem 4.6: The asymptotic variance matrix Σθ(t1, . . . , tK) from Theo-
rem 4.4 can be consistently estimated by

Σ̂θ(t1, . . . , tK) = Ĵ
−1

Σ̂U(t1, . . . , tK)Ĵ
−1
, (4.19)
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where Σ̂U(t1, . . . , tK) is the estimated asymptotic variance matrix of nor-
malised scores computed at t1, . . . , tK , see Lemma 4.3, and Ĵ is the estimated
block-diagonal matrix Ĵ = diag{Σ̂U(t1), . . . , Σ̂U(tK)}.
Proof: A similar result was shown for Σ̂U(t1, . . . , tK) in Lemma 4.3, the
proof for Σ̂θ(t1, . . . , tK) proceeds in the same way.

Theorem 4.6 shows that if we replace the unknown values of α⋆
0(s) and β0

by their estimated versions α̂(s) and β̂(s) for s ∈ {t1, . . . , tK}, we obtain a
consistent estimator of Σ̂θ(t1, . . . , tK) and consequently also for its submatrix
Σ̂β(t1, . . . , tK). Similarly, if the unknown true covariance matrices Σβ(tk, tk′)

are replaced by their consistent estimators Σ̂β(tk, tk′) in (4.18), we obtain

Σ̂β,W(t1,...,tK), a consistent estimator of Σβ,W(t1,...,tK) for any fixed weight
matrices W (t1, . . . , tK).

However, when computing the optimal combined estimator, we are look-
ing for weights that minimize the variance of individual components of β̃W .
Therefore the optimal weights are some function of the asymptotic variances
and covariances, they are random and need to be estimated. The following
theorem assures that we can use the estimated weights.

Theorem 4.7: Let the optimal weights be defined as W opt(t1, . . . , tK) =
φ(Σβ(t1, . . . , tK)) for some continuous function φ. Define the estimated

weights by plugging in the estimated variance matrix, Ŵ
opt

(t1, . . . , tK) =
φ(Σ̂β(t1, . . . , tK)). Then

√
n(β̃

Ŵ
opt − β0)

D−→ Np(0,Σβ,Wopt(t1,...,tK)),

where β̃
Ŵ

opt =
K
∑

k=1

Ŵ
opt

k β̂(tk) is the optimal combined logistic estimator

computed using the estimated weights.

Proof: Both the true as well as estimated weights must add up to the
identity matrix:

∑

k Ŵk =
∑

k Wk = Ip×p. Therefore

√
n(β̃

Ŵ
opt − β0) =

√
n

(

K
∑

k=1

Ŵ
opt

k β̂(tk) − β0

)

=
K
∑

k=1

Ŵ
opt

k

√
n
(

β̂(tk) − β0

)

=
K
∑

k=1

W
opt

k

√
n
(

β̂(tk) − β0

)

+
K
∑

k=1

(

Ŵ
opt

k − W
opt

k

)√
n
(

β̂(tk) − β0

)
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=
√
n

(

K
∑

k=1

W
opt

k β̂(tk) − β0

)

+
K
∑

k=1

(

φ(Σ̂β(t1, . . . , tK)) − φ(Σβ(t1, . . . , tK))
)

×
√
n
(

β̂(tk) − β0

)

=
√
n
(

β̃Wopt − β0

)

+ oP (1),

since φ is continuous, Σ̂β(t1, . . . , tK) and β̂(tk) are consistent estimators of

Σβ(t1, . . . , tK) and β0, respectively, and
√
n(β̂(tk) − β0) is asymptotically

normal for all k = 1, . . . , K. The rest follows from Corollary 4.5.

Finally, if we use the estimated weights and estimated covariance matrices
Σ̂β(tk, tk′), we obtain a consistent estimator of the variance-covariance matrix
of the optimal combined logistic estimator. The elements of Σβ,Wopt(t1,...,tK)

for fixed weights are given by formulas (4.10), the estimator Σ̂
β,Ŵ

opt
(t1,...,tK)

consists of

V̂(β̃j) =
K
∑

k=1

ŵ2
jkV̂(β̂jk) + 2

K
∑

k=1

K
∑

l=k+1

ŵjkŵjlĈ(β̂jk, β̂jl),

Ĉ(β̃j, β̃j′) =
K
∑

k=1

ŵjkŵj′kĈ(β̂jk, β̂j′k) +
K
∑

k=1

K
∑

l=1, l 6=k

ŵjkŵj′lĈ(β̂jk, β̂j′l).

(4.20)

Consistency of the estimators defined in (4.20) is obvious.
Theorems 4.4 – 4.7 justify the intuitive development of the combined lo-

gistic estimator computed from a finite number of fixed time points. Now
we need to generalise the results for combined logistic estimators assembled
from individual analyses performed at random times, particularly at the fail-
ure times.

CLE with individual analyses performed at failure times

Consider now U (t), α̂(t) and β̂(t) as random processes that generalize the
traditional logistic regression score function and parameter estimators. For
convenience denote the whole parameter process by θ(t) = (α(t),β(t))′, by
θ̂(t) = (α̂(t), β̂(t))′ the estimator and by θ0(t) = (α⋆

0(t),β0)
′ true parameter

values. Let us now restate an important result of Kulich & Lin (2004), which
will be used as a basis for deriving weak convergence of U (t) and θ̂(t) to
Gaussian processes.
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Lemma 4.8: Let Bi(t), i = 1, . . . , n be independent and identically dis-
tributed real-valued random processes on [0, τ ] with EBi(t) = µB(t) and
finite variances VarBi(0) < ∞ and VarBi(τ) < ∞. Suppose that almost
all paths of Bi(t) have finite variation. Then n−1/2

∑

i[Bi(t) − µB(t)] con-
verges weakly in ℓ∞[0, τ ] to a zero-mean Gaussian process, and n−1

∑

iBi(t)
converges in probability to µB(t) uniformly in t.

Proof: The proof is given in the Appendix of Kulich & Lin (2004), Propo-
sition A1.

Theorem 4.9: Let the baseline log odds function α⋆
0(t) have finite variation.

The estimator θ̂(t) is consistent uniformly in t, i.e.

sup
τ0≤t≤τ

∣

∣

∣

∣

∣

∣θ̂(t) − θ0(t)
∣

∣

∣

∣

∣

∣

P−→ 0. (4.21)

Proof: Using first order Taylor expansion of 1
n
U (t, θ̂(t)) around θ0(t) gives

0 =
1

n
U(t, θ̂(t)) =

1

n
U (t,θ0(t)) +

1

n

n
∑

i=1

∂Ui

∂θ(t)

∣

∣

∣

∣

θ(t)=θ•(t)

(

θ̂(t) − θ0(t)
)

for some θ•(t) between θ̂(t) and θ0(t). Therefore

sup
τ0≤t≤τ

∣

∣

∣

∣

∣

∣
θ̂(t) − θ0(t)

∣

∣

∣

∣

∣

∣

= sup
τ0≤t≤τ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[

1

n

n
∑

i=1

− ∂Ui

∂θ(t)

∣

∣

∣

∣

θ(t)=θ•(t)

]−1
1

n
U(t,θ0(t))

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ sup
τ0≤t≤τ

∣

∣

∣

∣

∣

∣

∣

∣

J−1(t)
1

n
U (t,θ0(t))

∣

∣

∣

∣

∣

∣

∣

∣

+ sup
τ0≤t≤τ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣





[

1

n

n
∑

i=1

− ∂Ui

∂θ(t)

∣

∣

∣

∣

θ(t)=θ•(t)

]−1

− J−1(t)





1

n
U (t,θ0(t))

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where J(t) is the expected information matrix for θ at time t. Now we need to
verify the assumptions of Lemma 4.8 for the score process and its derivative
to show that the right hand side tends to 0.

The expectation of Ui(t) equals 0 for all t, since Ui(t) is a piecewise
constant process which can only jump at times of individual analyses tk and
at each tk, Ui(tk) is a contribution to the case-control logistic regression score
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with mean zero. For the variance we have that

VarUi,α(t) = EZ π
⋆
0(t)(1 − π⋆

0(t))

VarUi,βj
(t) = EZ Z

2
j π

⋆
0(t)(1 − π⋆

0(t))

Cov(Ui,βj
(t), Ui,βj′

(t)) = EZ ZjZj′π
⋆
0(t)(1 − π⋆

0(t)),

hence the variances at 0 and τ are finite since we assume bounded covariates.
Finally, the paths of Ui(t) are functions of the form

Zc
j [δi(t) − π⋆

0(t)], c = 0, 1, j = 1, . . . , p

and these have finite variation as long as α⋆
0(t) does.

The derivatives of Ui with respect to α(t) and β equal

∂Ui

∂α(t)
=











−π⋆
i (t)(1 − π⋆

i (t)
−zi1π

⋆
i (t)(1 − π⋆

i (t)
...

−zipπ
⋆
i (t)(1 − π⋆

i (t)











∂Ui

∂β
=











−zi1π
⋆
i (t)(1 − π⋆

i (t) . . . −zipπ
⋆
i (t)(1 − π⋆

i (t)
−z2

i1π
⋆
i (t)(1 − π⋆

i (t) . . . −zi1zipπ
⋆
i (t)(1 − π⋆

i (t)
...

. . .
...

−zi1zipπ
⋆
i (t)(1 − π⋆

i (t) . . . −z2
ipπ

⋆
i (t)(1 − π⋆

i (t)











and the expectation E−∂Ui(t)
∂θ(t)

equals J(t) for each t. Due to bounded covari-

ates the variances of ∂Ui(t)
∂θ(t)

at 0 and τ are finite. The paths of ∂Ui(t)
∂θ(t)

have

finite variation if α⋆
0(t) does. The assumptions of Lemma 4.8 are satisfied

and θ̂(t) is uniformly consistent.

Theorem 4.10: Let the baseline log odds function α⋆
0(t) have finite vari-

ation. The normalised score process evaluated at the true case-control pa-
rameter values 1√

n
U (α⋆

0(t),β0, t) converges weakly to a zero-mean Gaussian

process in ℓ∞(0, τ ]

1√
n

n
∑

i=1

Ui(t,θ0(t))
D−→ WU(t). (4.22)

The finite-dimensional covariance structure of WU(t) is given by the covari-
ance matrix ΣU(t1, . . . , tK), see Lemma 4.2, consistent estimators of individ-
ual covariances are elements of Σ̂U(t1, . . . , tK), see Lemma 4.3.
The normalised process of logistic regression estimators converges weakly to
a zero-mean Gaussian process in ℓ∞(0, τ ]

√
n(θ̂(t) − θ0(t))

D−→ Wθ(t). (4.23)
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The covariance structure of Wθ(t) is given by Σθ(t1, . . . , tK) in Theorem 4.4
and can be consistently estimated by Σ̂θ(t1, . . . , tK), see Theorem 4.6. In
particular, √

n(β̂(t) − β0(t))
D−→ Wβ(t) (4.24)

with covariance structure Σβ(t1, . . . , tK) estimated by Σ̂β(t1, . . . , tK).

Proof: Convergence of the score process U follows as a special case of
Lemma 4.8, validity of its assumptions was verified in the proof of Theo-
rem 4.9. Finite dimensional distributions of the limiting process WU(t) were
calculated and estimated earlier in Lemma 4.2 and Lemma 4.3.

The proof of convergence of the estimator process is done similarly as in
Theorem 4.4. From the score equation we have that

0 =
1√
n

U(t, θ̂(t)) =
1√
n

U (t,θ0(t)) − J(t)
√
n(θ̂(t) − θ0(t)) +Rn(t),

where the leading term in Rn(t) is given by

1√
n

(θ̂(t) − θ0(t))
∂2U(t,θ(t))

∂θ(t)

∣

∣

∣

∣

θ0(t)

(θ̂(t) − θ0(t)).

Since θ̂(t) is uniformly consistent, Rn is oP (1) uniformly in t and

√
n(θ̂(t) − θ0(t)) =

1√
n

J−1(t)U(t,θ0(t)) + oP (1),

implying convergence to a Gaussian process. The covariance structure of
Wθ(t) was calculated and estimated earlier (Theorems 4.4 and 4.6), the result
for β̂(t) is a simple consequence.

Now we need to generalize the concept of weights for the individual com-
ponents of the combined logistic estimator, the weights are now nonnegative
functions w1(t), . . . , wp(t), τ0 ≤ t ≤ τ . The values of wj at observed failure
times t1, . . . , tK are then used to construct the combined logistic estimator.

Definition 4.1: Define the combined logistic estimator β̃W as

β̃W =

∫ τ

τ0

W (t)β̂(t)dN̄(t), (4.25)

where

W (t) = diag

{

w1(t)
∫ τ

τ0
w1(t)dN̄(t)

, . . . ,
wp(t)

∫ τ

τ0
wp(t)dN̄(t)

}

, (4.26)
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wj(t) ≥ 0 for all t ≥ τ0 and the counting process N̄(t) =
n
∑

i=1

δiI[T≤t].

Definition 4.1 is a direct generalization of the previous definition of β̃W for
fixed time points.

For proving the main result we will need one more technical lemma from
Kulich & Lin (2000).

Lemma 4.11: Let An(t), A⋆
n(t) and Bn(t) be three sequences of bounded

processes on [0, τ ]. Suppose that

a) Bn(t) converges weakly to a tight limit B(t) with almost surely contin-
uous sample paths

b) An(t) and A⋆
n(t) are monotone in t

c) there exist processes A(t) and A⋆(t), both right continuous at 0 and
left continuous at τ , such that sup0≤t≤τ |An(t) − A(t)| →P 0 and also
sup0≤t≤τ |A⋆

n(t) − A⋆(t)| →P 0.

Then

sup
0≤t≤τ

∣

∣

∣

∣

∫ t

0

{An(s)A⋆
n(s) − A(s)A⋆(s)} dBn(s)

∣

∣

∣

∣

P→ 0.

Proof: The proof is given in Kulich & Lin (2000).

Theorem 4.12: The combined logistic estimator (4.25) is consistent and
asymptotically normal

√
n(β̃W − β0)

D−→ N(0,Σ⋆
β,W). (4.27)

The asymptotic covariance matrix Σ⋆
β,W consists of elements

C(β̃j, β̃j′) =

∫ τ

τ0

∫ τ

τ0

C

(

β̂j(t), β̂j′(u)
)

dµWj
(t)dµWj′

(u), j, j′ = 1, . . . , p,

(4.28)
where C(β̂j(t), β̂j′(u)) is the asymptotic covariance of components of β̂(t) and

β̂(u) and µWj
(t) =

∫ t

τ0
wj(s) dENi(s)/

∫ τ

τ0
wj(s) dENi(s) is the asymptotic

cumulative weight of the jth component till time t.

Note that the asymptotic covariances C(β̂j(t), β̂j′(u)) are for any pair of
times (t, u) elements of the asymptotic covariance matrix Σβ(t, u), which was
defined in Theorem 4.4 more generally for K analysis times.
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Proof: To simplify the notation denote for any vector am×1 the vector
of absolute values (|a1|, . . . , |am|)′ by |a|. Since

∫ τ

τ0
W (t)dN̄(t) = Ip×p and

dN̄(t) is nondecreasing, we can write

|β̃W − β0| =

∣

∣

∣

∣

∫ τ

τ0

W (t)β̂(t) dN̄(t) −
∫ τ

τ0

W (t)β0 dN̄(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ τ

τ0

W (t)(β̂(t) − β0) dN̄(t)

∣

∣

∣

∣

≤
∫ τ

τ0

W (t)
∣

∣

∣β̂(t) − β0

∣

∣

∣ dN̄(t)

≤
∫ τ

τ0

W (t) sup
τ0≤t≤τ

∣

∣

∣β̂(t) − β0

∣

∣

∣ dN̄(t)

=

[∫ τ

τ0

W (t) dN̄(t)

]

sup
τ0≤t≤τ

∣

∣

∣β̂(t) − β0

∣

∣

∣

= sup
τ0≤t≤τ

∣

∣

∣β̂(t) − β0

∣

∣

∣ .

Uniform consistency of β̂(t) implies consistency of β̃W .
To avoid cumbersome matrix notation we shall prove the asymptotic nor-

mality only for p = 1 in detail. The generalization to p > 1 is straightforward.
We have

√
n(β̃W − β0) =

∫ τ

τ0

W (t)
√
n
(

β̂(t) − β0

)

dN̄(t)

=

∫ τ

τ0

√
n
(

β̂(t) − β0

)

dNW (t),

where NW (t) =
∫ t

τ0
W (s) dN̄(s) is the cumulative weight process. This pro-

cess can be represented as

NW (t) =
1
n

∑n
i=1

∫ t

τ0
w(s) dNi(s)

1
n

∑n
i=1

∫ τ

τ0
w(s) dNi(s)

, (4.29)

the numerator and denominator converge in probability to their respective
expectations uniformly in t by Lemma 4.8 and therefore NW (t) converges in
probability to some nonrandom function µW (t) uniformly in t.

Denote further
√
n(β̂(t) − β0) by Bn(t); we know that Bn(t) converges

weakly to a zero-mean Gaussian process Wβ. Using integration by parts
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√
n(β̃W − β0) =

∫ τ

τ0

Bn(t)dNW (t)

= Bn(τ)NW (τ) −Bn(τ0)NW (τ0) −
∫ τ

τ0

NW (t−) dBn(t)

= Bn(τ)NW (τ) −Bn(τ0)NW (τ0) −
∫ τ

τ0

µW (t−) dBn(t) + oP (1),

since
∣

∣

∣

∫ τ

τ0
NW (t) dBn(t) −

∫ τ

τ0
µW (t) dBn(t)

∣

∣

∣ tends to 0 in probability by Lem-

ma 4.11. Moreover, we have convergence of 1
n
N̄(s) to the continuous distri-

bution function of failure time T (censoring only occurs at the end of the
study), therefore both the numerator and the denominator of (4.29) have
continuous limits. The denominator is bounded away from zero so µW is
continuous and thus µW (t−) = µW (t).

Applying integration by parts again gives

∫ τ

τ0

µW (t) dBn(t) = Bn(τ)µW (τ) −Bn(τ0)µW (τ0) −
∫ τ

τ0

Bn(t−) dµW (t)

and therefore
√
n(β̃W − β0) = Bn(τ) [NW (τ) − µW (τ)] −Bn(τ0) [NW (τ0) − µW (τ0)]

+

∫ τ

τ0

Bn(t−) dµW (t) + oP (1)

=

∫ τ

τ0

Bn(t−) dµW (t) + oP (1)

=

∫ τ

τ0

Wβ(t) dµW (t) + oP (1),

(4.30)

since [NW (τ) − µW (τ)] and [NW (τ0) − µW (τ0)] both converge to 0 in prob-

ability (Lemma 4.8) and
∣

∣

∣

∫ τ

τ0
Bn(t−) dµW (t) −

∫ τ

τ0
Wβ(t) dµW (t)

∣

∣

∣ tends to 0

almost surely (a result taken from the proof Lemma 4.11, see Kulich & Lin
(2000)). The asymptotic normality is now clear because the last integral
in (4.30) can be expressed as a sum of jointly normally distributed random
variables

∫ τ

τ0

Wβ(t) dµW (t) = Wβ(τ)µW (τ) − Wβ(τ0)µW (τ0) −
∫ τ

τ0

µW (t) dWβ.
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For p > 1 the proof proceeds in the same way as above, the process Wβ(t)
still has mean zero and its covariance structure is given by

Cov(Wβj
,Wβj′

) = C

(

β̂j(t), β̂j′(u)
)

,

see Theorem 4.4. Therefore the elements of the asymptotic variance matrix
of

√
n(β̃W − β0) are given by

C(β̃j, β̃j′) = Cov

(∫ τ

τ0

Wβj
(t)dµWj

(t),

∫ τ

τ0

Wβj′
(u)dµWj′

(u)

)

= E

(∫ τ

τ0

Wβj
(t)dµWj

(t)

∫ τ

τ0

Wβj′
(u)dµWj′

(u)

)

=

∫ τ

τ0

∫ τ

τ0

Cov
(

Wβj
(t),Wβj′

(u)
)

dµWj
(t)dµWj′

(u).

Theorem 4.13: The asymptotic variance matrix of β̃ can be consistently
estimated by a p× p matrix Σ̂

⋆

β,W with elements

Ĉ(β̃j, β̃j′) =

∫ τ

τ0

∫ τ

τ0

Wj(t)Ĉ
(

β̂j(t), β̂j′(u)
)

Wj′(u)dN̄(t)dN̄(u), (4.31)

where Ĉ(β̂j(t), β̂j′(u)) are estimated asymptotic covariances of components

of β̂(t) and β̂(u), that is elements of Σ̂β(t1, . . . , tK).

Note that formula (4.31) can be rewritten as

Ĉ(β̃j, β̃j′) =
K
∑

k=1

K
∑

k′=1

Wj(tk)Ĉ
(

β̂j(tk), β̂j′(tk′)
)

Wj′(tk′),

which is the estimator of the elements of Σβ,W(t1,...,tK) (4.18) calculated at
the observed failure times.
Proof: By Theorem 4.6 and Lemma 4.3, Ĉ(β̂j(t), β̂j′(u)) is a consistent

estimator of C(β̂j(t), β̂j′(u)) for any fixed times t and u. The proof utilises

consistency of β̂(t) and Taylor expansion of Ĉ(β̂j(t), β̂j′(u)) around true pa-

rameter values. By Theorem 4.9, the estimator β̂(t) is uniformly consistent
in t, therefore Ĉ(β̂j(t), β̂j′(u)) is also uniformly consistent. Thus
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Ĉ(β̃j, β̃j′) =

∫ τ

τ0

∫ τ

τ0

Wj(t)Ĉ
(

β̂j(t), β̂j′(u)
)

Wj′(u)dN̄(t)dN̄(u)

=

∫ τ

τ0

∫ τ

τ0

Ĉ

(

β̂j(t), β̂j′(u)
)

dNWj
(t)dNWj′

(u)

=

∫ τ

τ0

∫ τ

τ0

[

C

(

β̂j(t), β̂j′(u)
)

+Rn(t, u)
]

dNWj
(t)dNWj′

(u)

=

∫ τ

τ0

∫ τ

τ0

C

(

β̂j(t), β̂j′(u)
)

dµWj
(t)dµWj′

(u) + oP (1),

since Rn(t, u) is oP (1) uniformly in t and u and NWj
(t) converges in proba-

bility to µWj
(t) uniformly in t.

True weights (weighting processes) W (t), which were used in all previous
statements since Theorem 4.9, depend through asymptotic variance matrices
on unknown parameters. We need to show that true weights can be replaced
with estimated weights when constructing the combined logistic estimator
without affecting the results.

Theorem 4.14: Let the optimal weights W opt(t) depend on the covari-
ance function of β̂(t) through some continuous function φ, i.e. W opt(t) =

φ(Σβ(s, t)). Define the estimated weights as Ŵ
opt

(t) = φ(Σ̂β(s, t)). Then

√
n
(

β̃
opt

Ŵ − β0

)

D→ Np(0,Σ
⋆
β,Wopt), (4.32)

where β̃
opt

Ŵ =
∫ τ

τ0
Ŵ

opt
(t)β̂(t)dN̄(t) is the optimal combined logistic estima-

tor computed using the estimated weights.

Proof: Similarly as in the proof of Theorem 4.7 we can write

√
n(β̃

opt

Ŵ − β0) =
√
n

(∫ τ

τ0

Ŵ
opt

(t)β̂(t) dN̄(t) − β0

)

=

∫ τ

τ0

Ŵ
opt

(t)
√
n
(

β̂(t) − β0

)

dN̄(t)

=

∫ τ

τ0

W opt(t)
√
n
(

β̂(t) − β0

)

dN̄(t)

+

∫ τ

τ0

(

Ŵ
opt

(t) − W opt(t)
)√

n
(

β̂(t) − β0

)

dN̄(t)
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=
√
n

(∫ τ

τ0

W opt(t)β̂(t) dN̄(t) − β0

)

+

∫ τ

τ0

(

φ(Σ̂β(s, t)) − φ(Σβ(s, t))
)√

n
(

β̂(t) − β0

)

dN̄(t)

=
√
n
(

β̃
opt

W − β0

)

+ oP (1),

since N̄(t) is nondecreasing, φ is continuous, Σ̂β(s, t) and β̂(t) are uniformly

consistent estimators of Σβ(s, t) and β0, respectively, and
√
n(β̂(t) − β0)

converges weakly to a Gaussian process. Therefore

∫ τ

τ0

(

φ(Σ̂β(s, t)) − φ(Σβ(s, t))
)√

n
(

β̂(t) − β0

)

dN̄(t)

≤
∫ τ

τ0

sup
t

∣

∣

∣φ(Σ̂β(s, t)) − φ(Σβ(s, t))
∣

∣

∣ sup
t

∣

∣

∣

√
n(β̂(t) − β0)

∣

∣

∣ dN̄(t)

= oP (1).

Similarly as for fixed times of analyses it follows that the elements of the
asymptotic variance matrix Σ⋆

β,W can be consistently estimated using the es-
timated weights by Σ⋆

β,Ŵ
. The elements of Σ⋆

β,Ŵ
are given by formulas (4.20)

calculated in the observed failure times.
By proving asymptotic normality of the combined logistic estimator we

have established the basis for building asymptotic tests and confidence in-
tervals for the regression parameter β. The section on theoretical results is
completed.



Chapter 5

A numerical study

In a simulation study in Chapter 3 we have shown that small values of the
subcohort sampling probability α can influence the performance of standard
case-cohort estimators. To support the idea of the combined logistic estima-
tor (CLE) we have conducted another simulation study, where we compared
our estimator with traditional approaches. The simulation design, compari-
son of estimators and performance reports are provided in this chapter.

5.1 Simulation design

We performed 2 × 2 × 2 = 8 sets of simulation studies combining data from
the proportional hazards model and from the proportional odds model, con-
stant and uniform censoring and small and large cohorts. For each of the
simulation designs we generated 1000 full cohorts, selected the subcohort by
independent Bernoulli sampling and computed mean estimate, mean stan-
dard error (based on the asymptotic distribution) and estimated (empirical)
standard error of the estimate, mean 95% confidence interval coverage, bias
and mean squared error for all the compared estimators.

There were always two dependent covariates, a binary covariate Z1 with
P(Z1 = 1) = 0.35 and a truncated normal covariate Z2 ∼ N(µZ2 , σ

2
Z2

) with
µZ2 = 1.5Z1 and σ2

Z2
= (1 + 1.5Z1)

2, truncated at µZ2 ± 3σZ2 . Trunca-
tion was introduced in order to satisfy the condition of bounded covariates,
which is imposed by some of the estimating techniques. The true regression
parameters were set to β0 = (2.3, 1.2)′.

Censoring mechanisms were constant censoring and independent uniform
censoring. We always kept the expected number of cases to be 100 and the
expected number of controls sampled to the case-cohort study to be also
100. The small cohort consisted of 10 000 and the large cohort of 300 000

65
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individuals. The subcohort sampling rates were therefore 0.01 for the small
cohort and 0.0003 for the large cohort.

In simulations for the large cohort we only estimated model parameters
based on case-cohort data. In simulations for the small cohort we estimated
model parameters based on the case-cohort data as well as based on the full
cohort. Using case-cohort data, we compared the combined logistic estimator
to the original Prentice estimator, the estimator proposed by Lu & Tsiatis
(2006) and to the case-control estimator obtained from a logistic regression
model at the end of the study. When full data were analysed, we used
the Cox partial likelihood estimator and the estimator proposed by Chen
et al. (2002) as representants of traditional estimators, since the Prentice
estimator and the estimator by Lu & Tsiatis are their case-cohort variants.
The threshold parameter of the combined logistic estimator k0 was set to 30
for all simulations, that means each combined logistic estimator was based
on 70 logistic regression models.

5.2 Results

Constant censoring

In the first set of simulations we generated data from the proportional odds
model and applied censoring by a constant value. In 1000 repetitions we ob-
served on average 99.46 cases and 100.96 sampled subcohort subjects (99.95
subcohort controls) out of 10 000 observations in the full cohort. Table 5.1
shows performance of the estimators for case-cohort and full data.

We can see the same pattern as in Chapter 3. All estimators perform
reasonably well with full data, even the Cox partial likelihood estimator –
hazard ratios estimated by the Cox model closely approximate odds ratios
specified by the proportional odds model. The estimators of Prentice and
Lu & Tsiatis encounter problems with case-cohort data. There is a clear
bias (as high as 10% and 16%) and low confidence interval coverage. More-
over, model-based standard errors seem to be underestimated compared to
their empirical counterparts. Note that the sampling probability and the
probability of an event are still relatively large here (0.01).

The combined logistic estimator behaves well with full data and is the
best estimator (measured by mean squared errors) with case-cohort data.
It is only minimally biased, the model-based and sample standard errors
agree and confidence intervals cover the true parameters better than with
traditional estimators. The case-control estimator from the end of the study
also performs quite well and in many aspects it is comparable to the combined
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logistic estimator. This may be due to special censoring patters, however
more detailed studies would be necessary to support this hypothesis.

Table 5.1: Simulation summary I – Proportional odds model, constant cen-
soring, cohort size 10 000, sampling probability α = 0.01.

(a) Case-cohort data

Mean Average Empirical 95% CI
Method Par. Bias

Est. st. err. st. err. coverage
MSE

β1 0.049 2.349 0.384 0.403 95.300 0.165
Prentice

β2 0.100 1.300 0.345 0.456 88.200 0.218
β1 0.124 2.424 0.400 0.433 95.200 0.203

Lu
β2 0.194 1.394 0.372 0.508 86.100 0.296
β1 0.005 2.305 0.360 0.371 94.483 0.137

CLE
β2 −0.001 1.199 0.279 0.311 92.477 0.096

Case – β1 0.063 2.379 0.373 0.376 95.386 0.145
Control β2 0.046 1.246 0.300 0.314 95.186 0.100

(b) Full data

Mean Average Empirical 95% CI
Method Par. Bias

Est. st. err. st. err. coverage
MSE

β1 0.006 2.306 0.272 0.287 95.300 0.083
Cox

β2 −0.024 1.176 0.151 0.156 93.700 0.025
β1 0.026 2.326 0.272 0.289 95.000 0.084

Chen
β2 0.000 1.200 0.156 0.162 94.000 0.026
β1 0.022 2.322 0.273 0.288 94.960 0.083

CLE
β2 −0.004 1.196 0.157 0.161 94.355 0.026

Case – β1 0.025 2.325 0.273 0.289 95.161 0.084
Control β2 0.001 1.201 0.157 0.162 94.254 0.026

For the second set of simulations we increased the cohort size to 300 000
and in 1000 repetitions we observed on average 100.76 cases and 100.67 sam-
pled subcohort subjects (100.64 subcohort controls). Results are summarised
in Table 5.2. Problems of traditional estimators are more pronounced when
the sampling probability drops to 0.0003, while the combined logistic esti-
mator still shows small bias and MSE. The Prentice estimator designed for
the proportional hazards model is surprisingly better than the estimator by
Lu & Tsiatis, which is much more general.
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Table 5.2: Simulation summary II – Proportional odds model, constant cen-
soring, cohort size 300 000, sampling probability α = 0.0003.

Case-cohort data

Mean Average Empirical 95% CI
Method Par. Bias

Est. st. err. st. err. coverage
MSE

β1 0.049 2.349 0.385 0.435 92.900 0.192
Prentice

β2 0.110 1.310 0.347 0.461 88.000 0.224
β1 0.112 2.416 0.410 0.495 92.800 0.258

Lu
β2 0.228 1.428 0.404 0.614 88.800 0.429
β1 −0.001 2.299 0.359 0.387 93.173 0.150

CLE
β2 −0.003 1.197 0.276 0.300 93.876 0.090

Case – β1 0.050 2.350 0.372 0.391 94.277 0.156
Control β2 0.035 1.235 0.296 0.299 95.582 0.091

We performed the same pair of studies with data following the propor-
tional hazards model to see how the combined logistic estimator would per-
form in this situation. In 1000 repetitions we observed on average 96.79
cases and 100.88 sampled subcohort subjects (99.98 subcohort controls) out
of 10 000 observations in the full cohort. In the last study for constant censor-
ing, with 300 000 individuals, we observed on average 97.83 cases and 101.43
sampled subcohort subjects (101.40 subcohort controls).

Table 5.3: Simulation summary III – Proportional hazards model, constant
censoring, cohort size 10 000, sampling probability α = 0.01.

(a) Case-cohort data

Mean Average Empirical 95% CI
Method Par. Bias

Est. st. err. st. err. coverage
MSE

β1 0.059 2.359 0.388 0.426 93.700 0.185
Prentice

β2 0.111 1.311 0.344 0.477 85.600 0.240
β1 0.127 2.427 0.402 0.453 93.000 0.221

Lu
β2 0.196 1.396 0.370 0.521 84.900 0.310
β1 0.017 2.317 0.364 0.396 92.871 0.157

CLE
β2 −0.004 1.204 0.280 0.307 93.574 0.094

Case – β1 0.070 2.370 0.377 0.400 93.474 0.165
Control β2 0.049 1.249 0.301 0.301 95.482 0.098
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(b) Full data

Mean Average Empirical 95% CI
Method Par. Bias

Est. st. err. st. err. coverage
MSE

β1 0.020 2.320 0.298 0.298 94.400 0.088
Cox

β2 −0.003 1.197 0.155 0.155 95.300 0.022
β1 0.040 2.340 0.278 0.298 94.600 0.090

Chen
β2 0.022 1.222 0.158 0.155 94.300 0.025
β1 0.033 2.333 0.279 0.293 95.147 0.087

CLE
β2 0.017 1.217 0.159 0.153 95.046 0.024

Case – β1 0.036 2.336 0.279 0.294 95.046 0.087
Control β2 0.023 1.223 0.160 0.155 94.641 0.025

Table 5.4: Simulation summary IV – Proportional hazards model, constant
censoring, cohort size 300 000, sampling probability α = 0.0003.

Case-cohort data

Mean Average Empirical 95% CI
Method Par. Bias

Est. st. err. st. err. coverage
MSE

β1 0.054 2.354 0.388 0.406 94.000 0.167
Prentice

β2 0.100 1.300 0.343 0.456 87.500 0.217
β1 0.121 2.421 0.409 0.462 93.500 0.228

Lu
β2 0.216 1.416 0.397 0.608 88.800 0.417
β1 −0.001 2.299 0.362 0.368 94.052 0.135

CLE
β2 −0.007 1.193 0.277 0.303 92.440 0.095

Case – β1 0.051 2.351 0.374 0.371 95.161 0.140
Control β2 0.033 1.233 0.297 0.306 94.355 0.095

Tables 5.3 and 5.4 show performance of the estimators for case-cohort
and full data. We can see that the combined logistic estimator performs well
already with the smaller cohort size 10 000, that means event probability 0.01.
The odds ratios closely approximate relative risks and the estimator shows
better performance than the original Prentice’s estimator for the proportional
hazards model. The case-control estimator also shows very good results and
finally all estimators behave well with full data.
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Independent uniform censoring

The remaining four sets of simulations were carried out in the same way
as before but censoring occurred randomly – censoring time was simulated
as a uniformly distributed random variable, independent on survival time.
Let us first report the results with data from the proportional odds model
with 10 000 subjects in the full cohort. In 1000 repetitions we observed on
average 97.55 cases and 101.09 sampled subcohort subjects (100.08 subcohort
controls), for a detailed report see Table 5.5.

All estimators perform reasonably well with full data, the problems of es-
timators by Prentice and Lu & Tsiatis with case-cohort data remain roughly
the same as with constant censoring. We can see high bias and wrong stan-
dard errors and interval coverage, especially for the second parameter β2

belonging to the truncated normal covariate.
The combined logistic estimator still behaves well with full as well as with

case-cohort data. There is minimal bias, good agreement in model-based
and empirical standard errors and good coverage probability for confidence
intervals. Surprisingly, the case-control logistic regression estimator outper-
forms both traditional case-cohort estimators even when random censoring
is present.

Table 5.5: Simulation summary V – Proportional odds model, uniform cen-
soring, cohort size 10 000, sampling probability α = 0.01.

(a) Case-cohort data

Mean Average Empirical 95% CI
Method Par. Bias

Est. st. err. st. err. coverage
MSE

β1 0.015 2.315 0.402 0.424 93.200 0.180
Prentice

β2 0.109 1.309 0.349 0.468 86.000 0.230
β1 0.115 2.415 0.427 0.470 92.000 0.233

Lu
β2 0.225 1.425 0.384 0.544 83.300 0.346
β1 −0.025 2.275 0.359 0.369 94.472 0.137

CLE
β2 0.004 1.204 0.279 0.299 92.171 0.089

Case – β1 0.026 2.326 0.372 0.371 95.779 0.138
Control β2 0.045 1.245 0.300 0.299 95.779 0.091
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(b) Full data

Mean Average Empirical 95% CI
Method Par. Bias

Est. st. err. st. err. coverage
MSE

β1 −0.022 2.288 0.272 0.275 94.600 0.076
Cox

β2 −0.012 1.178 0.154 0.150 95.600 0.023
β1 0.013 2.313 0.272 0.276 94.800 0.076

Chen
β2 0.009 1.209 0.160 0.157 95.400 0.025
β1 −0.005 2.295 0.273 0.274 94.726 0.075

CLE
β2 −0.009 1.191 0.159 0.154 95.842 0.024

Case – β1 −0.003 2.297 0.273 0.274 94.726 0.075
Control β2 −0.005 1.195 0.159 0.155 95.740 0.024

With cohort size equal 300 000 we observed on average 105.17 cases and
100.36 sampled subcohort subjects (100.31 subcohort controls). Results sum-
marised in Table 5.6 confirm what we have already seen before – the com-
bined logistic estimator performs clearly better than Prentice or Lu & Tsiatis
estimators.

Also here the Prentice estimator designed for the proportional hazards
model is better than the estimator by Lu & Tsiatis. The case-control esti-
mator remains a good alternative showing only slightly worse results than
the combined logistic estimator.

Table 5.6: Simulation summary VI – Proportional odds model, uniform cen-
soring, cohort size 300 000, sampling probability α = 0.0003.

Case-cohort data

Mean Average Empirical 95% CI
Method Par. Bias

Est. st. err. st. err. coverage
MSE

β1 0.059 2.359 0.400 0.448 92.500 0.204
Prentice

β2 0.105 1.305 0.347 0.464 86.100 0.226
β1 0.160 2.460 0.435 0.538 91.900 0.315

Lu
β2 0.265 1.465 0.420 0.670 85.200 0.519
β1 0.007 2.307 0.355 0.378 93.970 0.143

CLE
β2 0.002 1.202 0.272 0.301 92.764 0.090

Case – β1 0.060 2.360 0.368 0.384 94.271 0.151
Control β2 0.038 1.238 0.293 0.302 94.573 0.092
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Finally, the last two sets of simulations involve data from the proportional
hazards model. For the small cohort of 10 000 individuals we observed on av-
erage 102.33 cases and 101.48 sampled subcohort subjects (100.45 subcohort
controls), for the larger cohort size it was 102.02 cases and 101.31 sampled
subcohort subjects (101.27 subcohort controls).

Table 5.7: Simulation summary VII – Proportional hazards model, uniform
censoring, cohort size 10 000, sampling probability α = 0.01.

(a) Case-cohort data

Mean Average Empirical 95% CI
Method Par. Bias

Est. st. err. st. err. coverage
MSE

β1 0.049 2.349 0.399 0.436 93.000 0.192
Prentice

β2 0.105 1.305 0.347 0.448 86.900 0.211
β1 0.144 2.444 0.424 0.482 92.900 0.252

Lu
β2 0.213 1.413 0.379 0.518 84.000 0.313
β1 −0.002 2.298 0.355 0.379 93.921 0.144

CLE
β2 0.002 1.202 0.276 0.290 94.428 0.084

Case – β1 0.056 2.356 0.369 0.381 94.630 0.148
Control β2 0.046 1.246 0.298 0.295 96.454 0.089

(b) Full data

Mean Average Empirical 95% CI
Method Par. Bias

Est. st. err. st. err. coverage
MSE

β1 0.017 2.317 0.268 0.273 95.100 0.075
Cox

β2 0.003 1.203 0.150 0.149 94.600 0.022
β1 0.045 2.345 0.269 0.275 96.000 0.078

Chen
β2 0.037 1.237 0.157 0.158 93.000 0.026
β1 0.022 2.322 0.269 0.268 95.799 0.072

CLE
β2 0.014 1.214 0.156 0.154 94.980 0.024

Case – β1 0.025 2.325 0.269 0.268 96.004 0.072
Control β2 0.019 1.219 0.156 0.155 94.262 0.024
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Table 5.8: Simulation summary VIII – Proportional hazards model, uniform
censoring, cohort size 300 000, sampling probability α = 0.0003.

Case-cohort data

Mean Average Empirical 95% CI
Method Par. Bias

Est. st. err. st. err. coverage
MSE

β1 0.050 2.350 0.403 0.446 91.900 0.202
Prentice

β2 0.137 1.337 0.348 0.474 85.300 0.243
β1 0.155 2.455 0.438 0.549 90.700 0.325

Lu
β2 0.308 1.508 0.422 0.681 84.300 0.558
β1 −0.011 2.289 0.356 0.362 94.657 0.131

CLE
β2 0.012 1.212 0.275 0.309 92.742 0.095

Case – β1 0.039 2.339 0.369 0.362 96.069 0.132
Control β2 0.050 1.250 0.295 0.309 95.363 0.098

The results reported in Tables 5.7 and 5.8 again confirm what we have
seen with constant censoring. All estimators are good with full data. The
combined logistic estimator outperforms both traditional estimators on case-
cohort data, the approximation of hazard ratios with odds ratios works well.

Summary

Simulation results show that the combined logistic estimator is a useful al-
ternative to classical approaches when analysing case-cohort data following
the proportional hazards or the proportional odds model. Compared to tra-
ditional estimators, the combined logistic estimator is less biased and has
lower MSE on case-cohort data, its performance on full cohort data does not
substantially differ from the other estimators.

Theoretically the combined logistic estimator should show better perfor-
mance than the case-control logistic regression estimator from the end of
the study, since the combined logistic estimator has the weights optimised
for variance. In practice we have seen that the case-control estimator is
only slightly worse when we compare mean squared errors. This makes the
case-control estimator an interesting option in situations where computa-
tional time is an issue. Further research would be necessary to explain this
behaviour in more detail.





Chapter 6

Summary and discussion

In the thesis we were dealing with regression models and parameter estima-
tion in case-cohort studies. After a brief introduction to regression models
in survival analysis and to the case-cohort design we described in detail how
standard estimation techniques from survival analysis are usually adapted to
case-cohort data. We reviewed the principle of weighting estimating equa-
tions with inverse sampling probabilities and theoretical properties of case-
cohort estimators. We also compared parameter estimation in the propor-
tional odds model with parameter estimation in logistic regression and found
a close relationship.

We were particularly interested in situations where only a small fraction
of individuals is sampled for the analysis from a large cohort. The case-cohort
design is most useful here as it can save most of the costs. In a simulation
study in Chapter 3 we performed a sensitivity analysis on α, the probability
of subcohort sampling, and demonstrated problems of current case-cohort
estimators when dealing with small sampling probabilities. Motivated by
the fact that logistic regression can be applied to case-control data without
inverse probability weighting we developed a new estimator of parameters
in the proportional odds model. The estimator is based on fitting a logistic
regression model repeatedly after each failure (event) and using a convex
linear combination of the results as the combined logistic estimator. This
way we retain time information that cannot be captured in any single case-
control logistic analysis.

In Chapter 4 we showed consistency and asymptotic normality of the
combined logistic estimator and in Chapter 5 we studied its performance
in comparison with classical case-cohort estimators. We found out that the
combined logistic estimator performed better than traditional estimators in
all the settings we considered. Most notably the combined logistic estimator
was always only slightly biased, had better confidence interval coverage and
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smaller MSE than traditional estimators. Since we were focused on situations
with low event rates 0.01 and 0.0003, the relative risk was well approximated
by the odds ratio and the combined logistic estimator also performed well
for data generated from the proportional hazards model.

There are several open problems and topics for further work. The whole
procedure was developed under the assumptions of constant censoring and
fixed covariates. The procedure will still work with a general censoring distri-
bution independent of the covariates. The only difference is due to subjects
who would fail until τ but are censored earlier instead.

Consider an example with a single binary covariate for illustration. With
censoring only at the end of study, the odds ratio can be expressed as

P(Z = 1, T < τ)P(Z = 0, T > τ)

P(Z = 1, T > τ)P(Z = 0, T < τ)
=

P(T < τ |Z = 1)

P(T < τ |Z = 0)
· 1 − P(T < τ |Z = 0)

1 − P(T < τ |Z = 1)
.

With a censoring variable C, this odd ratio becomes

P(Z = 1, T < τ ∧ C)P(Z = 0, T > τ ∧ C)

P(Z = 1, T > τ ∧ C)P(Z = 0, T < τ ∧ C)
,

where τ ∧ C denotes min(τ, C). This formula can be expressed as

q1
q0

· P(T < τ |Z = 1)

P(T < τ |Z = 0)
· 1 − q0P(T < τ |Z = 0)

1 − q1P(T < τ |Z = 1)
,

where qz = P(T < C|T < τ, Z = z) = P(δ = 1|T < τ, Z = z) for z = 0, 1.
With small event probabilities, the last fraction equals approximately 1. The
bias is then primarily induced by q1/q0 and can be expressed as

q1
q0

=
F (τ |Z = 0)

F (τ |Z = 1)
·
∫∞
0
F (u ∧ τ |Z = 1)g(u|Z = 1)du

∫∞
0
F (u ∧ τ |Z = 0)g(u|Z = 0)du

,

where F (·) denotes the distribution function of T and g(·) the density of C.
Since F (τ |Z = z) = exp{α(τ)+βz}/(1+exp{α(τ)+βz}) in the proportional
odds model, we have

q1
q0

=

exp{α(τ)}
1+exp{α(τ)}
exp{α(τ)+βz}

1+exp{α(τ)+βz}
·
∫∞
0

exp{α(u∧τ)+βz}
1+exp{α(u∧τ)+βz}g(u|Z = 1)du

∫∞
0

exp{α(u∧τ)}
1+exp{α(u∧τ)}g(u|Z = 0)du

= exp{−βz}1 + exp{α(τ) + βz}
1 + exp{α(τ)} ·

exp{βz}E

[

exp{α(C∧τ)}
1+exp{α(C∧τ)+βz} |Z = 1

]

E

[

exp{α(C∧τ)}
1+exp{α(C∧τ)} |Z = 0

] ,
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where the expectation is taken with respect to C. Again, with low event
probabilities we have approximately 1+exp{α(τ)+βz}

1+exp{α(τ)} ≈ 1. If g(·) and therefore

the expectation do not depend on Z, the ratio q1/q0 is approximately 1.
If the censoring variable depends on the covariates or the covariates are

time-dependent, the formulas for covariances between individual estimators
need to take this into account. General at-risk processes could also be al-
lowed, but the individual scores would then be based on different individuals
every time. However, with corrected covariances between the estimators, the
rest of the procedure remains the same.

In the development of the estimator we only considered diagonal weight-
ing matrices for combining individual logistic estimators. We believe that
efficiency gains from allowing more general structures for the weights would
be minimal. Moreover, all elements of the weighting matrices need to be
estimated from the data and simpler weighting matrices are preferable. Sim-
ilarly, the choice of k0 can be viewed as a tuning parameter for the procedure.
This work was primarily concerned with rare event studies, however the role
of this parameter can be more interesting for studies with a large number of
cases. First, it would be cumbersome to include all the logistic estimators
computed after each failure. Second, we need to cover the whole time inter-
val (0, τ) rather than discard first k0 estimators. It is therefore more natural
to change the procedure so that k0 is the fraction of logistic estimators that
are used and to take these estimators systematically from the whole time
interval.

Finally let us mention the issue of stratification. In principle there is no
problem to incorporate stratification into the estimation procedure. Stratifi-
cation in logistic regression models only affects the intercept – instead of one
α we have a separate parameter for each stratum. The odds ratio parameters
βj remain unchanged. In practice we need to invert large matrices, which
become even larger due to stratification. Therefore we only recommend using
stratification with a small number of strata.
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