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Katedra logiky

Alexandr Chládek
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Abstract

Práce se věnuje kombinatorickým vlastnostem filtr̊u na přirozených
č́ıslech. Obsahuje úvod a motivaci do problematiky definovatelnosti
filtr̊u a jejich kombinatorikou, definice základńıch typ̊u filr̊u: P-filtr,
Q-filtr, Rapid filtr; upořádáńı: Rudin-Kiesler, Rudin-Blass, Katětov
a Tukey; konstrukce filtr̊u; základńı definice z kombinatoriky na ω;
úvod do deskriptivńı teorie množin, topologie a základńı výsledky.

Abstract

The work is devoted to combinatorial properties of filters on natu-
ral numbers as an introduction and motivation to the definability of
the filters and its combinatorics. Basic filter types: P-filter, Q-filter,
Rapid filter; orders: Rudin-Kiesler, Rudin-Blass, Katětov and Tukey;
filter constructions; basic definitions related to combinatorics on ω;
introduction to basic descriptive set theory and topology and some
specific results.
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1. Introduction

Introduction

The goal of this work is to show the Mazur theorem from [Mazu91] as a bridge
between the topology and combinatorics. In the Chapters I and II there
are basic definitions related to combinatorics on ω. Chapter III contains an
introduction to topology and basic descriptive set theory. Chapter IV focuses
to Mazur’s specific result.
Set theory is a domain of mathematical logic that studies sets. Georg Cantor
as the invertor of the Set theory, a theory of actual infinity, commonly based
on ZFC (the Zermelo-Fraenkel axioms with the axiom of choice). The first
infinite ordinal number in ZFC (the first after all natural numbers) is denoted
ω and relates to common natural numbers N.

Definition 1.1. The set X is strictly larger then Y, denoted X � Y , if there
exists one-to-one function from Y to X and there is not bijection from Y to
X.

The Power set axiom says there exists the set of all subsets of any set X
denoted P(X).

Theorem 1.2. P(X) � X The power set of any set is strictly larger then
given set.

Proof. Obviously there is a one-to-one function from X to P(X). Using a
contradiction, let there is a bijection f : X → P(X), so there is a pairing
between these sets.
Let imagine the set A = {Y ∈ X | Y /∈ f(Y )}. A is a subset of P(X), so
there must be some element z ∈ X such that f(z) = A.

If z ∈ A, then z /∈ f(z) = A.
If z /∈ A, then z ∈ A by definition of A.

In this sense the set P(ω) is strictly larger than ω. So there are many in-
finities. Cantor’s development of the theory of infinite sets with various sizes
of infinity denoted ℵ0,ℵ1,ℵ2, ... stimulates a discussion of the philosophy of
mathematics. This theorem hasn’t probably anything with physics otherwise
there are various philosophical views, such as Finitism, Constructivism, Pla-
tonism, Formalism, regarding what this theorem really means.[Kun11]
Finitism says that it’s meaningless. The sence of an infinite set is a fic-
tion. Finitism is an extreme form of constructivism, according to which a
mathematical object does not exist unless it can be constructed from natural
numbers in a finite number of steps. Platonism has come to mean that the
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1. Introduction

infinitistic concepts really do have some meaning in the abstract mathemat-
ical universe.
The formalist philosophy of mathematics maintains the interest in studying
the consequences of some collections of axioms. In this case it is ZFC. The
focus to the relation between truth and proof appears after Gottlob Freges’s
invention of the concept of formal logic, and Kurt Gödel’s proofs of arith-
metics incopleteness in 1931.
In ZFC is not provable which cardinality equals the cardinality of P(ω). This
can be assumed as the additional axiom 2ℵ0 = ℵ1 which is called the Contin-
uum hypothesis1. For this, the size of continuum 2ℵ0 is abbreviated c, and the
first uncountable cardinal ℵ1 (the first uncountable ordinal ω1). There are
many cardinal characteristic of the continuum. The continuum could mean
R, Cantor space 2ω, [ω]ω or Baire space ωω. These spaces are essentially the
same after removal of at most a countable set from each space, there exists
a homeomorphism between the modified spaces.
The mathematical aspect of ZFC is called infinitary combinatorics.[Kun11]
It means proving the theorems using ordinary reasoning. The concept of
Filter realizes the notion of big sets. It could be imagined as a decision pro-
cedure of the majority. For example if the set of people, who voted for some
alternative, is in the filter, then they form a majority.
An ultrafilter contains every subset or its complement so it is a truth-value
assignment. It has a connection to two-valued logic. In this text all ultrafil-
ters are on the set ω. This set of ultrafilters has size same as P(P(ω)). It is
a question: How can be distingwished the ultrafilters?

In the lecture at the fourth international congress held in Rome in 1908,
Frigyes Riesz (1880 - 1956) introduced the concept of ultrafilter. Henri Car-
tan (1904 - 2008) pointed out the usefulness of this concept nearly thirty
years after in the articles of Théorie des filters and Filters et ultrafilters pub-
lished in Compt. rend. Acad, Sci. Paris (1937).
The theory of definability plays important role here, it developes the topo-
logical hierarchy which classifies the sets over real numbers R. As the real
number it is possible to take the points from Cantor space and an ultrafilter
could be regarded as a subspace of Cantor space.

1Paul Cohen in 1963 showed that Continuum hypothesis is independent to ZFC axioms.
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2. Chapter I

Chapter I

In this chapter there is an introduction of basic definitions and facts related
to the concept of an ultrafilter.

2.1 Filters

Definition 2.1 (Filter on a set). A filter on a set X is a collection F of
subsets of X such that:

1. X ∈ F ;

2. if A ∈ F and B ∈ F , then A ∩B ∈ F ;

3. if A,B ⊆ X, A ∈ F , and A ⊆ B, then B ∈ F .

4. A ∈ F or X \ A ∈ F for all A ⊆ X then F is called ultrafilter.

A filter F is proper if ∅ /∈ F . Only proper filters are considered. A filter
F is principal2 if there is an x ∈ X such that F = {A ⊆ X | x ∈ A}.

Observation 2.2. Principal filter is ultrafilter.

Proposition 2.3. An ultrafilter is principal if and only if it contains a finite
set.

Proof. The right direction is obvious. If there is an ultrafilter which con-
tains finite set A. By dividing the part of A and checking if the part is in
the ultrafilter then there is a singleton of some element x. So ultrafilter is
principal.

Corollary 2.4. An ultrafilter is non-principal (free) if and only if it contains
all cofinite sets.

Definition 2.5. A filter F is Fréchet filter on a infinite set X if F = {A ⊆
X | |X \ A| < ω}.
A filter containing Fréchet filter is called Free filter.

Proposition 2.6. A filter is a free filter if the intersection of all its members
is empty.

Proof. If the intersection is not empty so there is some set A and the fil-
ter contains all cofinite sets. The comlements of finite parts of A give a
contradiction.

2The terminology ”principal” is imported from ring theory.
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2.1 Filters 2. Chapter I

Observation 2.7. If A is a nonempty family of filters over X, then
⋂
A is a

filter over X.

Proof. If
⋂
A is not a filter, then there is some member of A which doesn’t

satisfy filter conditions.

Observation 2.8. If A is a ⊂-chain of filters over X, then
⋃
A is a filter

over X.

Proof. If
⋃
A is not a filter, then there is some member of A which doesn’t

satisfy filter conditions.

Observation 2.9. If F is a filter and X ∈ F , then P(X)∩F is a filter over
X.

Proof. If P(X) ∩ F is not a filter, obviously then F can’t be a filter.

Observation 2.10. Let κ be an infinite cardinal, |S| ≤ κ. The set
{X ⊂ S ||X| > κ} is a nonprincipal filter over S.

Definition 2.11 (Finite intersection property FIP). A nonempty system E
of sets has the Finite intersection property, FIP; if for every n ∈ ω and every
family e0, ..., en ∈ E is true:

e0 ∩ ... ∩ en 6= ∅.

Observation 2.12. Every E ⊆ P(X) with the FIP can be extended to a
proper filter.

Proof. F is defined: F = {A ⊆ X |∃n ∈ ω∃e0, ...,∃en ∈ E(e0∩ ...∩en ⊆ A)}.
F is closed under intersection, i.e. that for A,B ∈ F there is X ∩ Y ∈ F
because if

e0 ∩ ... ∩ en ⊆ A and f0 ∩ ... ∩ fm ⊆ B

then

e0 ∩ ... ∩ en ∩ f0 ∩ ... ∩ fm ⊆ A ∩B

Lemma 2.12.1. A filter F over X is an ultrafilter if and only if it is maximal
in the order ⊆.
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2.1 Filters 2. Chapter I

Proof. Let U is ultrafilter. For contradiction, there is a F ⊃ U
and is some A ∈ F \ U and X \ A ∈ U . Then X \ A ∈ F and A ∈ F is
contradiction.
For other side assume F is a filter that is not an ultrafilter. To find F ′ ⊃ F :
Let B ⊆ X be such that neither B nor X \ B is in F . Consider the family
G = F ∪ {B}, G has the finite intersection property because if A ∈ F , then
A ∩B 6= ∅, otherwise there is A ⊆ X \B and X \B ∈ F . If A1, ..., An ∈ F ,
we have A1 ∩ .. ∩ An ∈ F and so

B ∩ A1 ∩ .. ∩ An 6= ∅

G has finite intersection property, so there is a filter F ′ ⊆ G.
Since B ∈ F ′ \ F , F is not maximal.

The Axiom of choice implies following useful theorem.

Theorem 2.13 (Zorn’s lemma). If X is a partially ordered set such that
every chain in X has an upper bound, then X contains a maximal element.

Theorem 2.14 (Tarski’s Ultrafilter Theorem). Every filter can be extended
to an ultafilter

Proof. Let F0 be a filter. P = {F | F0 ⊆ F and F is filter}. 〈P,⊂〉 is
partially ordered set. Let C is a chain in P. Let C is a chain in P, then

⋃
C

is a filter and an upper bound of C in P. By the Zorn’s lemma there exists a
maximal element U in P. This U is an ultrafilter.

A filter F over S is countably complete (σ-complete) if it is closed un-
der countable intersections. Every principal filter is closed under arbitrary
intersections.

Definition 2.15 (Filter Base). A filter Base over a set X is a collection B
of subsets of X such that:

1. if A ∈ B and A′ ∈ B, then A ∩ A′ ∈ B;

2. B 6= ∅ and ∅ /∈ B.

Given a filter base B, the filter generated by B is defined as the smallest
filter containing B. Every filter is also a filter base, so the process of passing
from base to the filter generated by it.

Let X be a non-empty set and C be a non-empty subset of X. Then {C}
is a filter base. The filter generated by C (i.e., the collection of all subsets
containing C) is called the filter generated by C.
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2.1 Filters 2. Chapter I

Definition 2.16. An ultrafilter F is a uniform ultrafilter in X if |A| = |X|
for every A ∈ F .

Definition 2.17 (Filter Generators). The set S is said to generate a fil-
ter F (or it is called a set of filter generators of F) if the family all finite
intersections of elements of S forms a filter base of F .

For the answer how many ultrafilters are possible on ω let define following
concept.

Definition 2.18. A set C ⊆ P(ω) is uniformly independent if for any distinct
sets X1, ..., Xn, Y1, ..., Ym ∈ C

|X1 ∩ ... ∩Xn ∩ (ω \ Y1) ∩ ... ∩ (ω \ Ym)| = ω.

It means that for all finite boolean combinations of distinct sets the intersec-
tion has cardinality ω.

Firstly let be proven the following lemma.

Lemma 2.18.1. There exist 2ω uniformly independent subsets of ω.

Proof. Let Fin is the set of all finite subsets of ω and let

A = {〈F, F ′〉 | F ∈ Fin and F ′ ⊆ Fin and |F ′| ∈ Fin},

the size of Fin× Fin<ω is ω, so |A| = ω.
For each X ⊆ ω, let

AX = {〈F, F ′〉 ∈ A | F ∩X ∈ F ′}

and let

C = {AX | X ⊆ ω}

If X and Y are distinct subsets of ω, then AX 6= AY . For example, if n ∈ X
but n /∈ Y , then let F = {n}, F ′ = {F}, and 〈F, F ′〉 ∈ AX and 〈F, F ′〉 /∈ AY ,
so |C| = 2ω.
To show that C is uniformly independent, let X1, ..., Xn, Y1, ..., Ym are distinct
subsets of ω. For each i ≤ n and each j ≤ m, let aij ∈ ω such that either
aij ∈ Xi \ Yj or aij ∈ Yj \Xi.
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2.1 Filters 2. Chapter I

Now let F ∈ Fin such that {aij | i ≤ n and j ≤ m} ⊆ F .
∀i ≤ n, j ≤ m(F ∩Xi 6= F ∩ Yj). So if F ′ = {F ∩Xi |i ≤ n}, then

∀i ≤ n〈F, F ′〉 ∈ AXi
,

∀j ≤ m〈F, F ′〉 /∈ AYj ,

then,

|AX1 ∩ ... ∩ AXn ∩ (ω \ AY1) ∩ ... ∩ (ω \ AYm)| = ω.

Theorem 2.19 (Posṕı̌sil3). The number of uniform ultrafilters on ω is 22ω .

Proof. Let C be an uniformly independent family of subsets of ω. For every
function f : C → {0, 1}, consider this family of subsets of ω:

Gf = {X | ω \X | ≤ ω} ∪ {X | f(X) = 1} ∪ {ω \X | f(X) = 0}

The family Gf has the finite intersection property, and so there exists an
ultrafilter Df such that Df ⊇ Gf . Df is uniform. If f 6= g, then for some
X ∈ C, f(X) 6= g(X); e.g. f(X) = 1 and g(X) = 0 and then X ∈ Df while
ω \X ∈ Dg. So there are 22ω distinct uniform ultrafiters over ω.[Jech78]

3 Bedřich Posṕı̌sil (1912-1944) proved the theorem in a work On bicompact spaces
published in 1939 at Masaryk Univerzity periodicals in Brno. On the request of the most
significant set theory magazine published at the time, Fundamenta Mathematicae. Posṕı̌sil
published a revised version of his paper in this magazine. In 1941 he was arrested by the
Gestapo and sentenced to three years in a concentration camp, from where he returned on
May 17, 1944 but be soon succumbed to the consequences of long imprisonment.
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3. Chapter II

Chapter II

At first sight it is not clear that all non-principal ultrafilters are not the same
(up to permutation of ω). However a simple cardinality argument shows that
this can’t be the case. There are too many ultrafilters and not enough per-
mutations so that there are non-isomorphic non-principal ultrafilters on ω.
It is an important problem to find the properties that distinguish them.
The analysis of different orders on the set of all ultrafilters on ω gives some
view on complicated structure of this set. There is a ordering of the ultra-
filters which says that U is less than V if it is a quotient of V under some
mapping of the natural numbers.
Let define following useful order concepts.

Definition 3.1. A quasiorder is a set with a transitive reflexive relation ≤.

Definition 3.2. A partial order is antisymetric quasiorder.

Definition 3.3. A partial order is directed if for any two members there is
another member such is above both.

Definition 3.4. A subset A ⊆ X of partially ordered set 〈X,≤〉 is cofinal if
∀x ∈ X∃a ∈ A(x ≤ a).

Definition 3.5. A subset A ⊆ X of partially ordered set 〈X,≤〉 is bounded
if ∃x ∈ X∀a ∈ A(a ≤ x).

The cofinal and unbounded set is same in linear order.

Observation 3.6. If 〈X,≤〉 is directed order, and A ⊆ X is cofinal, then A
is directed.

Proof. For any two a, b ∈ A there is another c ∈ X above. The cofinality
gives some d ∈ A above c. From transitivity a, b ≤ d.

Definition 3.7. A function f : X → Y is cofinal if the image of each cofinal
subset of X is cofinal in Y.

Definition 3.8. A partial ordering 〈Y,≤Y 〉 is Tukey reducible to a partial or-
dering 〈X,≤X〉, X ≤T Y , if there is a cofinal function f : Y → X.[Dobrinen]
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3.1 Orders on filters on ω 3. Chapter II

3.1 Orders on filters on ω

Definition 3.9 (image of a filter under a function f : ω → ω). For f ∈ ωω
and a filter V ⊆ P(ω) let

f(V) = {x ⊆ ω |∃y ∈ Vf [y] ⊆ x}

V

f
.
.

. . .
.
. ..

..
.

x

f−1[x]

ω

ω

Picture ilustrates a factoring on ω
induced by the function f and pre-image of some set x.

Observation 3.10. f(V) = {x ⊆ ω | f−1[x] ∈ V}

Observation 3.11. If V ⊆ P(ω) is an ultrafilter over ω, then U = f(V) is
also an ultrafilter over ω.

Proof. Since f−1[ω] = ω, so ω ∈ U , and since f−1[∅] = ∅ , so ∅ /∈ U .
If x ⊆ x′ and x ∈ f(V), then f [y] ⊆ x for some y ∈ V , and therefore f [y] ⊆ x′,
which shows that x′ ∈ f(V).
If x, x′ ∈ f(V), then f−1[x], f−1[x′] ∈ V , and since V is a ultrafilter,
f−1[x] ∩ f−1[x′] ∈ V . Since f−1[x ∩ x′] ∈ V we get x ∩ x′ ∈ f(V).
if x /∈ f(V), then f−1[x] /∈ V , and ω \ f−1[x] ∈ V , then f−1[ω] \ f−1[x] ∈ V ,
and f−1[ω \ x] ∈ V , so ω \ x ∈ V . U is ultrafilter.

Lemma 3.11.1. if U is ultrafilter and f(U) = U , then {n |f(n) = n} ∈ U ,
f is identity.

Proof. Let A = {n |f(n) = n}, B = {n |f(n) < n}, and C = {n |f(n) > n}.
f (n) abbreviates n-th iteration of f .
If B ∈ U , let Bn = {m | ∀n′ < n(f (n′)(m) ∈ B) and f (n)(m) /∈ B}.
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3.1 Orders on filters on ω 3. Chapter II

⋃
1≤n

Bn = B.

One of BE =
⋃
1≤n

B2n and BO =
⋃
1≤n

B2n+1 is in U because U is ultrafilter.

If BE ∈ U , then f [BE] ∈ U , and if BO ∈ U , then f [BO] ∈ U , so both cases
are impossible, B /∈ U
If C ∈ U , let Cn = {m | ∀n′ < n(f (n′)(m) ∈ C) and f (n)(m) /∈ C}.⋃
1≤n

Cn = C. Same as for B, C /∈ U .

Let Cc = ω \ C and Cc
0 = {n ∈ Cc | n /∈ f [Cc]},

Cc
n = {m ∈ Cc | ∀n′ < n(m ∈ f (n′)[Cc

0]) and m /∈ f (n)[Cc
0]}, so Cc /∈ U , then

A ∈ U .

Definition 3.12 (Rudin-Keisler order). Let F , G are filters. If there is a
function f : ω → ω such that A ∈ F if and only if f−1[A] ∈ G, then
F ≤RK G.[Hrus11]

Definition 3.13. F ≡RK G if and only if F ≤RK G and G ≤RK F

Observation 3.14. F ≡RK G if and only if there is a permutation f : ω → ω
such that F = {A ⊂ ω |f−1(A) ∈ G}.

Proof. By definition of RK order, A ∈ F if and only if g−1[f−1[A]] ∈ F , then
ω = g−1[f−1[ω]], so f ◦ g is a permutation.

Ultrafilters that are RK equivalent are said to be isomorphic. There are
several partial orders on isomorphism types of ultrafilters in the following
definitions. The given isomorphism type means the set of all isomorphic
ultrafilters.

Observation 3.15. If U and V are ultrafilters on ω and ∀A ∈ V(f [A] ∈ U),
then f witnesses that U ≤RK V .

Proof. Let B ∈ U , for contradictory let f−1[B] /∈ V , then ω \ f−1[B] ∈ V , so
f−1[ω \B] ∈ V , then f [f−1[ω \B]] ⊆ ω \B ∈ U , then B /∈ U .
The other side, let f−1[A] /∈ V , then ω \ f−1[A] ∈ V , and f−1[ω \ A] ∈ V , so
f [f−1[ω \ A]] ⊆ ω \ A ∈ U , and then A /∈ U .

The relation ≤RK is a quasiorder since the relation is not antisymmetric.

Definition 3.16 (Katětov order). Let F , G are filters. If there is a function
f : ω → ω such that f−1[A] ∈ G, for all A ∈ F then F ≤K G.[Hrus11]

The Katětov order was introduced by Miroslav Katětov4 together with
the Rudin-Keisler order.[Hrus11]

4Since 1953 to 1957 he was rector of Charles University in Prague.
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3.2 Ultrafilter constructions 3. Chapter II

On ultrafilers the orders became the same. The filters are Katětov equivalent,
F ≡K G, analogously as Rudin-Keisler equivalence.
The same for Katětov-Blass and Tukey orders.

Observation 3.17. If F ⊆ G, then F ≤K G, f is identity.

Let consider a variant of Katětov order.

Definition 3.18 (Katětov-Blass order). Let F , G are filters. If there is a
finite-to-one function f : ω → ω such that f−1[A] ∈ G, for all A ∈ F then
F ≤KB G.[Hrus11]

Let consider a variant of Rudin-Keisler order.

Definition 3.19 (Rudin-Blass order). Let F , G are filters. If there is a
finite-to-one function f : ω → ω such that A ∈ F if and only if f−1[A] ∈ G,
then F ≤RB G.[Hrus11]

An ultrafilter can be considered as a partial ordering by reverse inclusion.
So 〈U ,⊇〉 is a directed partial ordering.

Definition 3.20 (Tukey order). Let U , V are ultrafilters. If there is a cofinal
function f : V → U , then U ≤T V .

Observation 3.21. Let U , V are ultrafilters. If U ≤RK V , then U ≤T V

Proof. Let ∀A ∈ V(f [A] ∈ U). The Tukey function f ′(A) = f [A] for all
A ∈ V . f ′ is obviously cofinal, so U ≤T V .

Tukey ordering on ultrafilters is a weakening of Rudin-Keisler ordering.
The Tukey equivalence class of an ultrafilter is called its Tukey type.

3.2 Ultrafilter constructions

Above there are constructions of filter via function f. Following constructions
operate with the set of filters.

Definition 3.22 (Fubini product). Let F , G are filters on ω.
The F ×G = {A ⊆ ω× ω |{n |A(n) ∈ G} ∈ F} such A ⊆ ω× ω where A(n)
is vertical section at n; Ax(n) = {m |(n,m) ∈ A}
The product F × G is induced by the base {a× b |a ∈ F and b ∈ G}.

This filter can be viewed as a filter on ω by fixing a bijection b : ω×ω → ω.
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3.3 Standard combinatorial properties 3. Chapter II

Definition 3.23 (F-sum). If {Fs |s ∈ S} is a set of filters and F is a filter
on ω. Then the F-sum of the filters is:
F \

∑
s∈ω

Fs = {A ⊆
⋃
s∈ω
{s} × Ss |{s |Ax(s) ∈ Fs} ∈ F}}

Definition 3.24 (Free-product filter). Let F , G are filters on ω. F ⊗ G =
{(A,B) |A ∈ F and B ∈ G}

Note. If U , V are ultrafilters then so is U × V . However U ⊗ V is never
an ultrafilter (e.g. because of the set

∑
n<ω

{n} ⊗ ω \ n)

3.3 Standard combinatorial properties

Let define some special sorts of ultrafilters. The first combinational property
of filters, a generalization of the standard P-point property of ultrafilters.

Definition 3.25 (P-filter). A filter F is P-filter if for every (descending:
A0 ⊇ A1 ⊇ A2...) countable sequence 〈An ∈ F |n < ω〉 of elements of F
there exists X ∈ F such that X ⊆∗ An for all n < ω. X \ Fn is finite.

P-ultrafilters are called P-points (weakly selective). A P-point is a non-
principal ultrafilter (A point of topological space is a P-point if its filter of
neighbourhoods is closed under countable intersections.)

Definition 3.26 (P-ultrafilter 1). An ultrafilter U is P-ultrafilter (weakly

selective): Let there is a ω factoring: ω =
.⋃

n<ω

Xn and for U there are satisfied

one of following items:

1. ∃n < ω(Xn ∈ U)

2. ∃(X ∈ U)(∀n)(|X ∩Xn| < ω)

15



3.3 Standard combinatorial properties 3. Chapter II

Definition 3.27 (P-ultrafilter 2). An ultrafilter U is P-ultrafilter (weakly
selective)
if (∀f : ω → ω)(∃X ∈ U)(∀n ∈ ω)(|(f � X)−1(n)| < ω),
it means f � X is constant or finite-to-one.

Every function on ω becomes finite-to-one or constant when restricted to
some set in U .
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ω

.∪
n<ω

Xn

The both previous P-ultrafilter definitions are equivalent using
f(x) = n⇔ x ∈ Xn. {Xn |n < ω} is ω factoring. If some Xn ∈ U , it is done.
If not, there is a X ∈ U such that |f � X| < ω. This means X ∩Xn < ω.
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Observation 3.28. The definitions of P-filter and P-ultrafilter are equiva-
lent.

Proof. Let there is a factoring ω =
.⋃

n<ω

Xn. If some set Xn ∈ U it is finished.

If no partition is in the ultrafilter, let there is an enumeration of theirs com-
plements: 〈X ′n |X ′n = ω \Xn for n ∈ ω〉. For this set exists X ∈ U , and for
every n ∈ ω, |X ∩X ′n| < ω.
The other direction, let 〈An ∈ U |n < ω〉 is a sequence in U . Without
loss of generality the sequence is strictly decreasing, and A0 = ω. If U con-
tains the intersection it is finished. If not, let consider the factoring defined
Xn = An \ An+1 ilustrated on the following picture.

X

.

.

.

.

.

.

.
..

..
.

.
..

.
...

.

.
.
.

...
.

ω
.∪

n<ω
Xn

No part this factoring of ω is in U since if Xn ∈ U then Xn∩An+1 = ∅ ∈ U .
There is some X ∈ U where |X ∩ An| < ω. By induction, X ⊆ A0. Suppose
X ⊆∗ An. X ∩An+1 = (X ∩An) \Xn, since Xn∩X is finite, then X ∩An =∗

X ∩ An+1, so X ⊆∗ An+1.

Definition 3.29 (Q-filter). A filter F is Q-filter if for every partition P of
ω into finite sets there is a selector A ∈ F , set ∀p ∈ P (A ∩ p 6= ∅).

Definition 3.30 (Rapid-filter). A filter F is Rapid-filter if for each function
h : ω → ω, there is A ∈ F with |A ∩ h(n)| ≤ n for every n < ω.
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Chapter III

Descriptive set theory deals with sets of real numbers that are described in
some simple way: sets that have simple topological structure (e.g., cotinuous
images of closed sets) or are definable in a simple way. The goal of this
chapter presents filters on ω in the context of their topological properties. It
means to identify filters on ω with subsets of 2ω via characteristic functions
of their elements.

4.1 Topology

Definition 4.1 (Topological space). A Topological space is an ordered pair
〈X, τ〉, where X is a set and τ ⊆ P(X) such that:

1. ∅, X ∈ τ ;

2. if A ⊆ τ , then
⋃
A ∈ τ ;

3. if A,B ∈ τ , then A ∩B ∈ τ .

The collection τ is called topology. Members of the topology are called open
sets. The set is called closed if its complement is open. The idea behind this
definition, at least for the standard spaces, is that an open set is one which
contains no point of its boundary. For instance, in 2-dimensional euclidean
space, an open disc, meaning the set of points having distance strictly less
than some fixed number from a fixed point, forms an open set. Another way
of explain this is that wherever in the set is possible to move a little in any
direction, and stay in the set. For the closed disc moving any distance may
possible leave the set.[Truss97]
Though the definition of closed as the complement of open, it is possible
for a set to be both closed and open. In this case the set is called clopen.
Obvious examples of clopen sets in all spaces are ∅ and X, but there may
be many more clopen sets than that. The more clopen sets are in the more
disconnected spaces.

Definition 4.2 (Neighbourhood). Nx is neighbourhood of x ∈ X if there is
an open set O containing x such that O ⊆ Nx. If Nx is open, we call it open
neighbourhood Ox.

Observation 4.3. Directly from definition, the system of closed sets contains
X and ∅ and is closed under arbitrary intersections and finite unions (De
Morgan’s laws).
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Definition 4.4 (Interior). If Y is a subset of X, let int(Y) be the union of
open sets contained in Y.

int(Y) =
⋃
{O ∈ τ |O ⊆ Y }

Definition 4.5 (Closure). Let Y be the intersection of all closed sets con-
taining Y.

Y =
⋂
{C |C is closed and Y ⊆ C}

Observation 4.6. int(Y) is the greatest open set contained in Y and Y is
the smallest closed set containing Y in the ordering under inclusion.

Definition 4.7. Set D ⊆ X is dense in (X, τ) if D = X.

Definition 4.8. Set B ⊆ P(X) is topology base if

1. for U, V ∈ B and x ∈ U ∩ V then ∃W ∈ B(x ∈ W ⊆ U ∩W ).

2. ∀x ∈ X ∃U ∈ B(x ∈ U)

Definition 4.9 (Compactness). 〈X, τ〉 is compact if every open cover of X
has a finite subcover, where C is an open cover if C ⊆ τ and

⋃
C = X.

Conversely if F is a system of closed sets and has FIP then
⋂
F is non-empty.

Definition 4.10. 〈X, τ〉 is locally compact if every point x has a compact
neighbourhood.

Definition 4.11 (Filter converges to x). Let F be a filter and x ∈ X. Filter
converges to x, or that x is a limit of F if all Nx ⊆ F .

Example 4.12. Frechet filter F in discrete topology on ω is non-convergent
filter. Singleton set {n} cannot belong to F .

Definition 4.13 (Hausdorff space). A Hausdorff space5 is a topological space
with a separation property: any two distinct points can be separated by
disjoint open sets.

Lemma 4.13.1. X is Hausdorf space if every filter has at most one limit.

5 Hausdorff included the separation property in his axiomatic description of general
spaces in Grundzüge der Mengenlehre (1914; “Elements of Set Theory”). Although later
it was not accepted as a basic axiom for topological spaces, the Hausdorff property is often
assumed in certain areas of topological research. It is one of a long list of properties that
have become known as “separation axioms” for topological spaces.

19



4.1 Topology 4. Chapter III

Proof. Suppose X is Hausdorf and let x 6= y. Then there are neighbourhoods
U and V of x and y respectively with U ∩ V = ∅. No filter contains both U
and V, and so no filter can converge to both x and y. Hence all filters have
at most one limit.
Conversely, suppose that x and y do not have disjoint neighbourhoods. Then
Nx ∪ Ny forms a subbase for a filter with converges to both x and y. So if
every filter has at most one limit the X is Hausdorf.

So requiring X to be Hausdorf is equivalent to requiring unique limits. In
Hausdorf space limF = x means x is unique limit of F . Note that not all
filters have a limit.

Definition 4.14 (Regular space). A regular space is a topological space with
a separation property: Any point and closed set can be separated by disjoint
open sets.

Lemma 4.14.1. Locally compact Hausdorff space 〈X, τ〉 is regular.

Proof. Let there is closed set F ⊆ X and point x ∈ X \ F . Let 〈Nx, τNx〉
is compact neighbourhood subspace with the following disjoint open sets
Ox =

⋃
{O ∈ τNx | O ∩ F = ∅} and OF = X \Ox

Definition 4.15 (Normal space). A normal space is a topological space
with a separation property: Any two distinct closed sets can be separated by
disjoint open sets.

Definition 4.16 (Continuous function). Let 〈X, τ〉, 〈Y, σ〉 are topological
spaces and f : X → Y is function. f is continuous if for every open set U in
Y, f−1[U ] is open in X.

Observation 4.17. A topological space is normal if and only if for every
open set U and every closed C ⊆ U , there is an open set V such C ⊆ V ⊆
V ⊆ U .

Theorem 4.18 (Urysohn’s lemma6). Let 〈X, τ〉 is normal space and F, H
are closed sets such that F ∩H = ∅, then exists a continuous function which
separates F and H.

Proof. Firstly let construct a system of open sets {Vq |q ∈ Q ∩ [0, 1]}, where
is satisfied Vq ⊆ Vq ⊆ Vp ⇐⇒ q < p ∈ Q∩ [0, 1]} and ∀q ∈ Q∩ [0, 1](F ⊆ Vq
and H ∩ Vq = ∅).

6Urysohn’s lemma has the usefull applications. For example Urysohn Metrization The-
orem. If X is a normal space with a countable basis, then there is the continuous function
from X to [0, 1] to assign numerical coordinates to the points of X and obtain an embedding
of X into Rω. From this, every countable normal space is a metric space.
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F

H

... ...

V0

V0

Vq Vq

V1

V1

The construction uses the induction. Firstly there is enumeration Q∩[0, 1]
as 〈qn |n < ω〉 where g0 = 0 and q1 = 1. Using the previous observation we
setup V0 and V1 as the first step.
The induction step:
For Vqi there is k > i maximal where qi < qk+1. For Vqi ⊆ Vqi+ there is Vqk+1

where

Vqi ⊆ Vqi ⊆ Vqk+1
⊆ Vqk+1

⊆ Vqi+1

The function f is defined:

f(x) =

{
inf({q |x ∈ Vq}) if x ∈

⋃
q∈Q∩[0,1] Vq

1 otherwise

For showing the function f is continuous. Let (q1, q2) is open interval in
Q ∩ [0, 1]. Firstly let q2 < 1 then

f−1[(q1, q2)] = U(q1,q2) =
⋃
q∈(q1,q2) vq \ Vq1

is open set. Now let q2 = 1 then

f−1[(q1, q2)] = U(q1,q2) ∪X \ V1
is open set.
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Theorem 4.19. A topological space X is compact if and only if every ultra-
filter on X converges to at least one point.

Proof. Suppose that X is compact, and let U be an ultrafilter on X. Then U
has FIP, since it is closed under finite intersections, and ∅ /∈ U . Compactness
causes that there is some point x ∈

⋃
B∈U

B. This means that every open

neighbourhood of x meets every B ∈ U . Let Nx be an open neighbourhood
of x. Since no member of U is disjoint from Nx, in particular ω \ Nx /∈ U .
Since U is an ultrafilter, it must be that N ∈ U . This proves that U converges
to x.
For the converse, suppose that every ultrafilter converges and let F be a
family of subsets of X that has FIP. Then F generates a filter, which can be
extended to an ultrafilter U . By assumption, U converges to some point x.
Consider B ∈ F . Since U converges to x, every neighbourhood of x meets
B. This says exactly that x ∈ B, so, since this is true of every B ∈ F , so
x ∈

⋃
B∈F

B. This proves that X is compact.

Definition 4.20 (P-point). A point x in topological space X is called a
P-point if the intersection of countably many neighbourhoods of x is again a
neighbourhood of x.

Definition 4.21 (Weak P-point). A point x in a topological space that is
not an accumulation point of any countable subset of the space is called a
weak P-point. Every P-point is a weak P-point.

Let 2<ω denotes the set of all finite sequences of 0,1. The ordering by
inclusion of these sequences turns 〈2<ω,⊆〉 into a tree. 〈2<ω,⊆〉 is the full
binary tree of height ω.

Definition 4.22 (Cantor space). The pair 〈2ω, τ〉 is called Cantor space with
topology generated by base set B = {B | B ⊃ A ∈ 2<ω}. (the set of all cofinal
branches).

Observation 4.23. Cantor space has a countable base.
(A set of all finite sequences is countable.)

Observation 4.24. Cantor space has a base composed of clopen sets.7

(A complement of any base set is union of base sets which have different
initial sequence.)

7The space is totally disconnected.
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Definition 4.25 (Product topology of two Cantor spaces). 〈2ω × 2ω, σ〉
Let B is a base of Cantor space.
The base of the product is B × B, and σ = {

⋃
A | A ⊆ B × B}.

Observation 4.26. The intersection and union, as the functions
f : P(ω) × P(ω) → P(ω), are continuous as the function from 〈2ω × 2ω, σ〉
to 〈2ω, τ〉, where 2ω ≈ P(ω).

Proof. Let O = {
⋃
A | A ⊆ B} is an open set.

Using base sets contained in O, so let X ∈ B and X ⊆ O,
Pre-image

⋂−1[X] is obviously a subset of B × B and
⋃−1[X] is a subset of

B × B,
(all possible boolean combinations of initial seqments of the pairs from the
base set according to ∩ or ∪).
Then for any base subset A ⊆ B,
∃A′ ⊆ B × B ∀A,B(A ∩B ∈

⋃
A and 〈A,B〉 ∈

⋃
A′),

∃A′ ⊆ B × B ∀A,B(A ∪B ∈
⋃
A and 〈A,B〉 ∈

⋃
A′),

then
⋂−1[O] = {〈A,B〉 | A ∩B ∈

⋃
A and A ⊆ B} is open,⋃−1[O] = {〈A,B〉 | A ∪B ∈

⋃
A and A ⊆ B} is open.

4.2 Definable sets

Descriptive set theory clasifies the sets according to the complexity of their
definitions. Borel hierarchy is used to describe a collection of subsets of
R, Baire space or Cantor space, etc. Level one consists of all open (Σ0

1) and
closed (Π0

1) sets, and levels 2, 3, 4, ... are obtained by taking countable unions
ad intersections of previous level. More complex definable sets are projective
sets, those obtained from Borel sets by the operation of continuous image
and complementation.

Definition 4.27 (Fσ). A set A ⊆ R is Fσ
8 if it is countable union of closed

sets F. The class is denoted Σ0
2 in logical notation.

Definition 4.28 (Gδ). A set A ⊆ R is Gδ
9 if it is countable intersection of

open sets G. The class is denoted Π0
2 in logical notation.

The next levels are Fσδ, it is a countable intersections of Fσ. And Gδσ, it
is a countable unions of Gδ.

8Fσ comes from French: The F stands for fermé, meaning ”closed,”while the sigma
stands for somme, meaning ”sum.”

9Gδ comes from German: The G stands for Gebiet, meaning ”area,” while the delta
stands for Durchschnitt, meaning ”intersection.”
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4.3 Meager sets

Meager set of first category is a set that, considered as a subset of a topolog-
ical space, is in a precise sense small or negligible.

Definition 4.29 (Nowhere dense set). Given a topological space X, a sub-
set A of X is nowhere dense if for every non-empty open set O there is a
non-empty open set O′ ⊆ O such that O′ ∩ A = ∅.

A subset B of X is nowhere dense if there is no neighbourhood on which
B is dense: for any nonempty open set U in X, there is a nonempty open set
V contained in U such that V and B are disjoint.

Definition 4.30 (Meager set). Given a topological space X, a subset A of X
is meager (the first category) if it can be expressed as the union of countably
many nowhere dense subsets of X.

The rational numbers are meager as a subset of R. The Cantor set is
meager as a subset of R, but not as a space, since it is complete metric
space.

Definition 4.31 (Baire space). A topological space is called a Baire space
if the complemensts of meager sets in X are dense.

Observation 4.32. A topological space is Baire if and only if the intersection
of countable many open dense sets in X is dense in X.

Theorem 4.33 (Baire category theorem). Every locally compact Hausdorff
space 〈X, τ〉 is Baire.

Proof. Let there are countable many open dense sets

D = {Dn∈ω ∈ τ | Dn is dense },

and open set O, so O ∩D0 is not empty, then there exists open set O0,

O0 ⊆ O ∩D0,

by the regularity of locally compact Hausdorff space. Inductively there exists

On+1 ⊆ Bn ∩ Un⋂
n∈ω

On has FIP and by the local compactness is not empty.⋂
n∈ω

On =
⋂
n∈ω

On ⊆
⋂
D ∩O, so

⋂
D is dense.
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4.4 Filters and convergence

Standard limit (convergence) of a sequence 〈xn∈ω | xn ∈ R〉 is defined:

lim
n→∞

xn = a if ∀ε∃n0∀n > n0(|an − a| < ε)

The notion of the filter convergence is a generalization of the classical no-
tion of the convergence of a sequence. The use of filter is way how to talk
about convergence in arbitrary topological space. Let Na be a set of all open
neighbourhoods of a. Na has following properties:

1. X ∈ Na;

2. if A ∈ Na and B ∈ Na, then A ∩B ∈ Na;

3. if A,B ⊆ Na, A ∈ Na, and A ⊆ B, then B ∈ Na.

4. ∅ /∈ Na.

The neighbourhood satisfies the filter properties and is called a neigh-
bourhood filter.

Definition 4.34. F-limxn = a if ∀A ∈ Na({n | xn ∈ A} ∈ F),
for 〈xn | n ∈ ω〉. 10

In other words for all neighbourhoods A of the point a almost all sequence
members are in Na. Standard limit definition is equivalent to F-lim where F
is Fréchet filter.

Observation 4.35. Let S is a sequence 〈xn∈ω |xn ∈ R〉 and a is a limit point.
a ∈ {xn |n < ω} \ {a} and A = {X ⊆ ω | lim

n∈X
xn = a}

If A is non-empty, A is closed under union and subsets. It leads to the
following chapter.

10Filter convergence was formulated by Henri Cartan around 1937 and explored by Bour-
baki in the 1940s.
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Chapter IV

In this chapter there is a basic result of the relation between submeasures
and ideals on ω.

5.1 Ideals and filters

Definition 5.1 (Ideal over a set). An ideal over a set X is a collection I of
subsets of X such that:

1. ∅ ∈ I;

2. if A ∈ I and B ∈ I, then A ∪B ∈ I;

3. if A,B ⊆ X, A ∈ I, and A ⊆ B, then A ∈ I.

Given an ideal I, I∗ is the dual filter, consisting of complements of the
sets in I. Similarly, if F is a filter on X, F∗ denotes the dual ideal.
I∗ = {A ⊆ X | X \ A ∈ I}

Duality between ideals and filters allows to examine only one of this
concepts which is in some particular situation better. The sentences could
be transformed using De Morgan’s laws.
The ideal convergence is dual to the filter convergence. The sequence
〈xn | n ∈ ω〉 is I-convergent to a if ∀ε > 0 ({n ∈ ω |ε ≤ |xn − a|} ∈ I),
so I-lim xn = a. If I = Fin, then I-convergence is equivalent to standard
convergence.

Definition 5.2 (P-ideal). A ideal I is P-ideal if for every (descending: A0 ⊇
A1 ⊇ A2...) countable sequence 〈Ai ∈ I |i ∈ ω〉 of elements of I there exists
B ∈ I such that B ⊇∗ Ai for all n < ω. Ai \B is finite.
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5.2 Submeasure

Definition 5.3. A submeasure on ω is a function ϕ : P(ω) → R+
0 ∪ {∞}

satisfying:

1. ϕ(∅) = 0,

2. if A ⊆ B then ϕ(A) ≤ ϕ(B),

3. ϕ(A ∪B) ≤ ϕ(A) + ϕ(B),

To avoid trivialities, let ϕ(X) <∞ for all finite sets X.

Definition 5.4. If ϕ submeasure satisfies ϕ(A) = lim
n→∞

ϕ(A∩{1, ..., n}), then

ϕ is called a lower semicontinuous submeasure (lscsm).

Definition 5.5. Fin(ϕ) = {A ⊆ ω | ϕ(A) <∞}, called a finite ideal of ϕ.

Observation 5.6. If ϕ is lscsm, then Fin(ϕ) is an Fσ ideal.

Proof. Fin(ϕ) =
⋃
m∈ω
{A ⊆ ω | ϕ(A) ≤ m}. For ϕ lscsm is equal to⋃

m∈ω
{A ⊆ ω | lim

n→∞
ϕ(A ∩ {1, ..., n}) ≤ m} and⋃

m∈ω

⋂
n∈ω
{A ⊆ ω | ϕ(A ∩ {1, ..., n}) ≤ m}, so ϕ(A ∩ {1, ..., n}) ≤ m is a

condition for closed set A, then Fin(ϕ) is Fσ.

Definition 5.7. Exh(ϕ) = {A ⊆ ω | lim
n→∞

ϕ(A \ {1, ..., n}) = 0}, called an

exhaustive ideal of ϕ.

Observation 5.8. If ϕ is lscsm, then Exh(ϕ) ⊆ Fin(ϕ).

Observation 5.9. If ϕ is lscsm, then Exh(ϕ) is an Fσδ P-ideal.

Proof. Let Fm,n = {A ⊆ ω | ϕ(A \ {1, ...,m}) ≤ 1
n
}, Fm,n is closed set, then

Exh(ϕ) =
⋂
n∈ω

⋃
m∈ω

Fm,n.

Let 〈Ai ∈ I | i ∈ ω〉 is in Exh(ϕ), then let have a sequence
〈ni | ϕ(Ai \ {1, ..., ni}) ≤ 1

2n+1 〉, and B =
⋃
i∈ω

(Ai \ {1, ..., ni}), so Ai \ B is

finite.
For any n there exists k ϕ(

⋃
i≤n

Ai \ {1, ..., k}) ≤ 1
2n+1 ,

so for any n ϕ(B \ {1, ..., k}) ≤ 1
2n

, then B ∈ Exh(ϕ).
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Definition 5.10. A set A ⊆ P(ω) is hereditary if it is closed under subsets.

Lemma 5.10.1. For any hereditary Fσ set H there exists a family {Fn |n ∈
ω} of hereditary closed sets such that H =

⋃
n∈ω

Fn and Fn ⊆ Fn+1 for n ∈ ω.

Proof. Let H =
⋃
n∈ω

Dn where Dn is closed for n ∈ ω.

Fn = {A ∩B | ∃A∃B(A ∈
⋃
k≤n

Dk and B ∈ P(ω)}

If Fn is not closed, then
⋃
k≤n

Dk is not closed by the continuity of ∩ function.

So Fn is hereditary closed set.

Theorem 5.11 (Mazur). Let I be an ideal on ω. Then I is an Fσ if and
only if there is a lscsm ϕ such that I = Fin(ϕ).[Mazu91]

The idea of the proof is to define such sets with the indexes satisfying the
submeasure conditions.

Proof. For right direction of equivalence let have a Fσ-ideal I.
I =

⋃
n≤ω

Dn; where each Dn are closed sets.

I =
⋃
n≤ω

F ′n; where each F ′n is hereditary closed and F ′n ⊆ F ′n+1 for each n.

Now let define inductively:
F0 = F ′0
Fn+1 = {x ∪ y | x, y ∈ Fn} ∪ F ′n+1

{x ∪ y | x, y ∈ Fn} is closed by the continuity of ∪ function. For every
x ∈ Fin there is ϕ(x) = min({n+ 1|x ∈ Fn}) which satisfies:

1. ∀x, y ∈ Fin (x ⊆ y ⇒ ϕ(x) ≤ ϕ(y))
Let ϕ(a) > ϕ(b), then ∃n(a /∈ Fn and b ∈ Fn) where Fn is hereditary,
so a 6⊆ b.

2. ∀x, y ∈ Fin (ϕ(x ∪ y) ≤ ϕ(x) + ϕ(y))
Let ϕ(a ∪ b) > ϕ(a) + ϕ(b), then
∃m∃n(a ∪ b /∈ Fm+n and a ∈ Fm and b ∈ Fn). Then a /∈ Fm+n and
b /∈ Fm+n is contradictory.

3. ϕ is total because the function min : P(ω)→ ω is total.
(ω is well-ordered)

For the proof of the left direction of equivalence there is a submeasure ϕ :
Fin → R+

0 ∪ {∞}, so for every n let

Fn = {x ⊆ ω| ∀k(ϕ(x ∩ k) ≤ n)}.
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For fixed k the set is a finite sum of basic clopen sets, so Fn is closed and
I =

⋃
n≤ω

Fn. I is hereditary, closed under finite unions and ω /∈ I.

In the following examples of some ideals, if the ideal does not consist of
subsets of ω but of subsets of some other countable sets, then this countable
set is being identical with ω.

Example 5.12. I 1
n

= {A ⊆ ω |
∑
n∈A

1
n
<∞} is Fσ P-ideal where submeasure

ϕ is defined: ϕ(A) =
∑
n∈A

1
n

Example 5.13. IFinω = {A ∈ 2ω×ω | ∀n ∈ ω(({n} × ω) ∩ A is finite)}

Example 5.14. Inwd = {A ⊆ Q | A is nowhere dense in R} is neither a
P-ideal nor Fσ.

Example 5.15. I1 = {A ∈ 2ω×ω | ∃n ∈ ω(A ⊆ n× ω)}[Sole97]
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