
MASTER THESIS

Bc. Kseniya Kuzminskaya

Acceleration of calculations in life
insurance

Department of Probability and Mathematical Statistics

Supervisor of the master thesis: RNDr. Janeček Martin, Ph.D.
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Introduction
Proper valuation of liabilities in insurance companies is the key, not only from
the view of good risk management of insurance company, but also it is strongly
emphasized by the supervisor. Under Solvency II legislative, which came into
effect at the beginning of 2016, they paid specific attention to the correct valuation
of liabilities which is included in internal and external reporting.

The standard technique for valuating the liabilities is risk-neutral Monte Carlo
valuation, where the development of liabilities is simulated for a large number of
investment return scenarios. Currently, insurance companies consume a signifi-
cant amount of time to process liabilites and cash flows. This thesis discusses the
techniques of accelerating the valuation of these processes. The aim of this work
is to introduce and test two possible aprroaches how to calculate the future cash
flow of the company faster under many interest rate scenarios, with reasonable
error.

This thesis will show the results of the implementation of standard cash flow
calculations compared to the usage of analytic function and cluster analysis. We
will simulate the interest rate scenarios using a Hull-White model. We want to
show the result comparison between the standard calculation technique, analytic
function and cluster analysis. We will simulate the rates and a sample of life
insurance company’s portfolio to show the different time achievements between
each technique.

The thesis is consisted of four chapters. The first chapter introduces us the
main principles of valuation of cash flows in insurance companies. We get ac-
quainted with the basic insurance principle and with the typical future projection
of cash inflows and outflows in life insurance company. It explaines the processes
of calculation of best estimate liability. In this part we also discuss the assupmtion
used in calcualtion of best estimate of liabilities.

Second chapter insroduces the acceleration techniques tested in this thesis.
It presents the method of analytic function and cluster analysis. In this chapter
we are explaining the usage of analytic function based on two types of insurance
products and introducing two methods of cluster analysis .

Third chapter introduces the theory for simulation of interest rates. It briefly
describes the Hull-White interest rate model.

Final forth chapter introduces the implementation of previous chapters in
practice. It compares the obtained results for two types of insurance profucts
using each of discussed methods. Comparison is based on the accuracy of the
result and time needed to process the liabilities.

This thesis was implemented in Wolfram Mathematica Software.
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1. Valuation of Liabilities in
Insurance Companies

1.1 Main principles of valuation
Life insurance is a form of insurance in which a person makes payments to an
insurance company, in return for a sum of money to be paid to him/her after a
period of time, or to his/her family if he/she dies or survives.

Usually, life insurance companies offer two main types of products, one is
traditional, that provides guaranteed financnial coverage, and unit-link product.
In the scope of this thesis, we will consider unit-link products. Unit-link insurance
combines elements of term life insurance with an investment savings option. It
“links” the policyholder’s benefit to some financial index or fund. Premiums
within the unit-link insurance policy are broken down by the insurance and saving
component. Savings premiums are continuously invested in the underlying assets
and the benefits might be different according to its performance. To attract
more people to invest in such products, the insurance companies usually offer a
guaranteed minimum interest rate, which is also defined as technical interest rate
(TIR).

1.2 Options and Guarantees in Life Insurance
Holders of unit-link policies have accounts in insurance companies, which is
termed as fund value. The insurance companies invest money received from pol-
icyholders and in exchange, every year they credit policyholder’s accounts with
some investment return. This investment return is a random element and it heav-
ily depends on market performance. In the case of low investment return, the
contract requires insurance companies to pay the guaranteed interest rate from
their resources. If the investment return is higher than guranteed interest rate,
the difference comes to a so called profit share. Part of profit share is turned to
provision that will cover the future undesirable investment performance. Another
part of profit share is paid to policyholders as a profit.

The guranteed return or technical interest rate might be different for each
type of product. Within this work, we will assume the same technical interest
rate for all products and policyholders. We will assume technical interest rate to
be equal to 2.1%.

We can write the final payoff of investment return that would be assigned to
poliholder’s account as follows:

InvReturnPayoff = TIR + max{0, i − TIR},

where i stands for market return of investment.
Such a defined financial instrument is called financial option in insurance. We

can compare it with formula of payoff for call option used in finance. Policyholders
can profit in future situations where the investment return is higher than the

3



guaranteed interest rate. Figure 1.1 shows the policyholders’ payoff of investment
return.
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Investment Return [in %]
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3
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Payoff [in %]

Payoff of investment return, TIR=2.1%

Figure 1.1: Investment return of financial option in life insurance

1.3 Fair Value approach
A proper and consistent valuation of options and guarantees is vitally important
for insurance companies, not only from good risk managment point of view, but
also for internal and supervisor reports. One of the main examples of such reports
is Solvency II legislative. It defines the amount of capital that European insurance
companies must hold to be solvent.

Solvency II defines the fair value of insurance company’s liabilities as a sum
of a best estimate liability (BEL) and a risk margin ([1] Art.77):

FV0 = BEL0 + RM, (1.1)

where

FV0 fair value of liabilities at present time,
BEL0 best estimate liability at present time,
RM risk margin.

Risk margin from the formula 1.1 can be calculated for example, within the
Solvency II legislative as defined in Article 37 in [2]. Further, we will focus mainly
on calculation of best estimate liability. Valuation of options and guarantees is
included in the value of BEL.

Under Solvency II, the best estimate liability is defined as ”probability -
weighted average of future cash-flows, taking account of the time value of money
(expected present value of future cash-flows), using the relevant risk-free interest
rate term structure” ([1] Art.77).
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Formula 1.2 shows the present value of future cash flow projection at the
moment of valuation (time 0).

PV CF0 =
∞∑

t=1

CFt

(1 + rfrt)t
, (1.2)

where

PV CF0 present value of future cash flows at present time
CFt cash flow at the end of the projection year t,
rfrt risk free interest rate related to projection year t,
t projection year.

Projection of future cash flows is calculated for all policies that are in-force
at the moment of valuation. We don’t consider any future new business of the
insurance company. So, cash flows are projected till the maximum length of all
policy periods: T = max(n1, . . . , nJ), where J is the total number of policies
in-force, and n1, . . . , nJ are periods of each policy. In formula 1.2 we assume the
total years of projection T to be infinity.

Present value of cash flows projection in formula 1.2 equals to the sum of all
discounted future cash flow calculated in risk-neutral world. In a risk-neutral
world, each individual is indifferent to risk and therefore expects to gain a return
for all investment categories equal to the risk-free interest rate [3].

1.4 Monte Carlo simulations
The standard technique for valuating options and guarantees, and also for best
estimate liability is Monte Carlo simualations. Monte Carlo algorithm relies on
repeated random samplings to obtain numerical results. For example, to obtain
the best estimate of liabilities, we need to calculate many random cash flow
projections then calculate present value and average the obtained values. Random
cash flows projection refers to random possible scenarios of risk-free interest rate.
We can write the estimation of best estimate as follows:

BEL0 = E{PV CF0}
We estimate the expected value of cash flows at the present time as an average

of present values of cash flows under the interest rate scenario s = {1, . . . , S}

E{PV CF0} = PV CF 0,S = 1
S

S∑
s=1

PV CF0,s

where S is total number of scenarios, and PV CF0,s means the present value of
cash flows at present time calculated under the interest rate scenario s.

The aim is to make so many scenarios S that the difference between the
average of present value of cash flow for S and S + 1 scenarios is insignificant.

S : lim
S→∞

(PV CF 0,S+1 − PV CF 0,S) = 0.

Usually insurance companies make from 500 to 1000 scenarios of interest rates
to obtain the stable result.
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Figure 1.2 shows the idea of best estimate liability calcualtion using the
method of Monte Carlo.

Out[275]=

0 20 40 60 80 100
Scenarios [s]

Value of PVCF
Mean of PVCF

all scenarios

s scenarios

Figure 1.2: BEL calculation using Monte Carlo simulations

Gray line shown in Figure 1.2 is an average of all S scenarios used in simulation
and is equal to BEL0. The red line shows the average of exactly s = {1, . . . , S}
scenarios and is calculated by formula:

BEL0,s = PV CF 0,s = 1
s

s∑
i=1

PV CF0,i, s = 1, . . . , S

To perform an estimation of best estimate in this way, with large amount of
scenarios, takes an extreme amount of calculation time for insurance companies.
However, some advanced computers could help and reduce the calculation time,
but it is not always possible to perform such calculations within reasonable time.
In this thesis, we want to show two of many possible techniques that might help
to accelerate the cash-flow calculation for life insurance companies.

1.5 Assumptions used in best estimate valua-
tion

1.5.1 Non-financial assumptions
In this section we will discuss the issues for the assumptions used in calculation
of liabilities. All assumptions used for the cash flow projection are to be on the
best estimate level, which is understood to be their expected value.

Mortality

Underlying expected mortality assumptions are based on mortality tables, which
are statistical tables of expected annual mortality rates.

The insurance companies should use their past years of experiences when cre-
ating mortality assumptions. Mortality experience tables might be split according
to sex and age of the insured person, as well as smoker status, type of policy, etc
[4].
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Information gathered on an individual is taken into account for insurance
calculations. A selected mortality table includes mortality data on individuals
who have recently purchased life insurance. These individuals tend to have lower
mortality rates than individuals who are already insured, due to the fact that they
have most likely just passed certain medical exams required to obtain insurance.
We will assume such adjustments in mortality tables (expected mortality) for our
cash-flow model defined below.

Lapses

Lapses are the cancellation of the policy and it can be an important component
for the pricing of long term cash flows. The policyholder is allowed to cancel his
policy at any time. As well as mortality experience, the companies should take
into account their recent and reliable experience of lapse development.

In case of policy lapse, the insurance company returns the fund value deducted
by some surrender fee to the policyholder.

Lapses analysis is usually built according to the policy year of insurance, type
of product or calendar year of the policy inception [4].

Commissions

Commissions are usually based upon the size of the policy the agent is selling
(means the size of annual premiums) and by the type of product.

Within this thesis, we will use two forms of commission payments: initial and
renewal. In case of regular premium payments we will use initial and renewal
commissions payments. In case of single premium payment, there will be only
one commission payment.

Usually, the initial commissions payment is a payment that is equal to a
percentage of the total annual premium that will be made to the policy during
the first policy year.

A renewal commission (in the case of regular premium payments) is a com-
mission paid for a specific number of years after the first policy year. The number
of years that a renewal is paid vary between the companies, but frequently it is
a significant number of years.

There can be claw back commission, which allows companies to return some
amount of money back from the agents due to the withdrawal by the insurer of
the policy agreement. It is usually concerned with the initial commissions during
the first years.

Expenses

General and administrative expenses typically refer to policies, regardless of
whether the company produces or sells anything. Examples of expenses can
be product advertisement, salaries, building rent etc.

The expenses can be split into initial and renewal expenses just like commis-
sions.

Initial commissions usually exist during the closure of the life insurance con-
tract. Examples of such expenses can be the inital medical treatments or prod-
uct advertisement. The renewal expenses exist during the life time of the policy.
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Possible examples of such expenses can be building rent or salaries to insurance
company’s employees.

The expenses can be a fixed amount or caclulated as a percentage of the sum
assured or the premium. The expenses increase over time due to inflation. We
will consider the increase in expenses as well.

1.5.2 Financial Assumptions
In order to calculate the liabilities of cash flows in risk-neutral world, the risk-free
rate is used. Risk-free rate is the theoretical rate of return of an investment with
zero risk. Often for such a rate, the return yield of government bonds is used.

Usually, there are two rates used in cash flow projection: one for discount
of cash flows and another for investment return on assets (based on which the
profit share is distributed). Within this work we will assume that the insurance
company invests in risk-free asssets, and for further calculation, we will use one
rate for evaluation of the policyholder’s fund value and for discounting of cash
flows.

1.6 Projection of cash flows in insurance com-
pany

In this section we will define the cash flow projection for life insurance company.
The main idea of any cash flow valuation is the simple principle of income

amounts minus outcome amounts at the end of the year. Let’s assume that an
insurance company has J policies in their portfolio. The income for insurance
company is premium that it gets from policyholders. We assume the insurance
company collects the premium P

(j)
t from some policy j = {1, . . . , J} at the be-

ginning of the projection year t. Further, we assume the insurance company pays
the commissions to agents C

(j)
t and expenses E

(j)
t , both at the beginning of the

year t for some policy j. And finally, we assume the insurance company pays the
benefits in case of jth policyholder’s death resp. maturity at the end of the year
t. We will denote these amount as Dths

(j)
t resp. Mat

(j)
t . Also we assume that in

case of lapse the company pays the agreed surrender amount Surr
(j)
t at the end

of the year t for some policy j. All these cash flow amounts are derived including
the probabilities to be happen every year.

Formula 1.3 shows the cash flows projection of one policy.

CF
(j)
t = (P (j)

t−1 − C
(j)
t−1 − E

(j)
t−1)(1 + rfrt) − Dths

(j)
t − Mat

(j)
t − Surr

(j)
t , (1.3)

To valuate the cash flow projection, we will total the projections for all policies
in the portfolio. Formula 1.4 shows the valuation of annual cash flows of all
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policies used in calculation by the end of the year t [4].

CFt =
J∑

j=1
CF

(j)
t =

=
J∑

j=1
(P (j)

t−1 − C
(j)
t−1 − E

(j)
t−1)(1 + rfrt) − Dths

(j)
t − Mat

(j)
t − Surr

(j)
t =

= (Pt−1 − Ct−1 − Et−1)(1 + rfrt) − Dthst − Matt − Surrt,

(1.4)

where

CFt cash flow at the end of the projection year t,
Pt−1 probability-weighted premium income at the beginning of the year t,
Ct−1 probability-weighted commisions paid to agents at the beginning

of the year t,
Et−1 probability-weighted expenses paid at the beginning of the year t,
rfrt risk free interest rate related to projection year t,
Dthst outflow representing the death benefit assumed to be paid at the

end of the projection year,
Matt outflow representing the maturity benefits assumed to be paid at

the end of projection year,
Surrt outflow representing surrenders assumed to be paid at the end of

the projection year.

1.6.1 Definition of cash flows in projection
It is important to note the difference between the projection and policy year
in our cash flow calculation. Projection year is a year of our future projection,
that means the projection year 0 is a moment of calculation and the total year
of projection was defined in Formula 1.2 as infinity. Policy year, which we will
denote as τ , is the year of policy existing. Depending on the year of one policy
existence, the amounts of cash flows might differ. For example, a policy with
single premium payment has premium inflow paid for the first policy year only.
It is equal to zero, if the policy year doesn’t equal to projection year. The size
of commissions and expenses outcome also depends on the one’s policy year.
The policy year of some contract equals to projection year, when one signs the
insurance contract at the year of valuation (before the valuation date). The cash
flow CFt is then defined as the sum of all probability-weighted cash flows for all
policies in-force j = 1, . . . , J that occure in a projection year t, and the amount
of each policyholder’s cash flows depends on their policy year τ .

Every projection year there are probabilities of all cash flows to happen. For
futher defining of cash flows probability we will use the following notation ([4],
[5]):
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x age of a policy holder at the projection year t
Tx the remaining number of life years at the age x
qx probability that a person who is alive at the age of x will die

before the age x + 1
qx = P(Tx ≤ 1)

px probability that a person who is alive at the age of x will be alive
at the age of x + 1
px = P(Tx > 1)

tpx probability that a person who is alive at the age of x will be alive
at the age of x + t

tpx = P(Tx > t)
qexp

x,τ expected mortality; adjusted probability that a person who is
alive at the age of x will die before the age x + 1
qexp

x,τ = coefτ · qx, where
coefτ is mortality adjustmet depending on the policy year τ

wthdt probability of lapse at the policy year t
ℓt expected number of policies in-force at the end of the projection

year t
ℓt = ℓt−1 − dt − mt − wt

dt expected number of deaths at the end of the projection year t
dt = ℓt−1 · qexp

x,τ

mt expected number od maturities at the end of the projection year t

mt =
{

0, if τ < n
ℓt−1 − dt − wt, if τ = n

wt expected number of lapses at the end of the year t
wt = (ℓt−1 − dt) · wthdt

Insurance companies might offer a large variety of unit-link products. De-
pending on the type of policyholder’s contract, the outflow payments in case of
death or maturity defined in Formula 1.4 might be different. Also products can
differ depending on frequencey or method of premium payments.

We will consider two types of unit-link insurance products according to their
death benefit. For the first product, the death benefit will be a value of sum
assured plus the policyholder’s fund value at the end of the year of the occurance.
Sum assured is amount paid by the contract in case of event occurence, in our
case, it is a death of policyholder. For the second type of product, we assume
that the death benefit is the maximum value of sum assured and policyholder’s
fund value within the year of payment. Later on, we will use the notation SA for
sum assured amount, and CVt will denote the fund or capital value at the year t.

Further, we will define the cash flows per one policy without probablity as-
sumption

Premium

As we mentioned in section 1.1 the premium in unit-link is divided into saving and
risk component. Also the gross premium, that the insurance companies get from
the policyholders, contains the amount for coverage of administrative expenses
α(j), β(j), γ(j) (see [5]):
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prem
(j)
t = SP

(j)
t + RP

(j)
t + α(j) + β(j) + γ(j),

where SP
(j)
t is saving part of premium of some policy j at the year t; RP

(j)
t is

risk part of premium of some policy j at the year t; and premt is premium per
one policy at the year t.

Risk part of the premium is intended to cover the risk of death. We wil define
the risk premium as follows:

RP
(j)
t = SAR

(j)
p,t · q(j)

x

1 + TIR
,

where SAR
(j)
p,t is sum at risk per one policy and is equal to the difference between

the death benefit and fund value SAR
(j)
p,t = Benefit

(j)
p,t − CV

(j)
t , and p means a

type of product p = 1, 2.
For the first type of product, where the death benefit is paid as a summation

of fund value and sum assured, it is equal to SAR
(j)
1,t = SA(j). For the type of

products, where the death benefit is a maximum amount of sum assured and
policyholder’s fund value, it is equal to SAR

(j)
2,t = [SA(j) − CV

(j)
t ]+.

We will get the saving part of policyholder j’s premium by deducting the risk
component and expenses α(j), β(j), γ(j) (see [5]) from the premium:

SP
(j)
t = prem

(j)
t − α(j) − β(j) − γ(j) − RP

(j)
t .

We can distinguish the insurance products according to premium payment
method and frequencies. Insurance products might be with single or regular
payments. For simplicity we assume that regular premium payments are on a
yearly basis only.

Commissions

We distinguish the initial commission at the first year of policy existence, and
renewal commissions, which is paid regularly during the whole policy period.

τ = 1 :comm
(j)
t = SA(j) · InitCommSA%(j) + prem

(j)
t · InitCommP%(j),

τ ≥ 1 :comm
(j)
t = SA(j) · RenCommSA%(j) + prem

(j)
t · RenCommP%(j),

where

comm
(j)
t is commission per one policy at the year t,

InitCommSA%(j) initial commission per one policy as a percentage of a
sum assured,

InitCommP%(j) initial commission per one policy as a percentage of a
premium,

RenCommSA%(j) renewal commission per one policy as a percentage of
sum assured,

renCommP%(j) renewal commission per one policy as a percentage of
premium,

SA(j) sum assured per one policy,
prem

(j)
t premium per one policy at the year t.

11



Expenses

We distinguish the initial and renewal expenses, and we also assume the increase
of expeneses in time at least due to inflation. In our example, we assume the
expenses outflows to be calculated as follows:

τ = 1 : exp
(j)
t =InitF ixExp(j) + InitExpP%(j) · prem

(j)
t +

+RenFixExp(j)(1 + Infl)(t−1) + RenExpP%(j) · prem
(j)
t ;

τ ≥ 1 : exp
(j)
t =RenFixExp(j)(1 + Infl)(t−1) + RenExpP%(j) · prem

(j)
t ;

where

exp
(j)
t total expenses per one policy at the year t;

InitF ixExp(j) fix amount of initial expenses per one policy;
InitExpP%(j) initial expenses as a percentage of the policyholder’s

premium;
RenFixExp(j) fix amount of renewal expenses per one policy;
RenExpP%(j) renewal expenses as a percentage of the policyholder’s

premium;
Infl expense inflation

Capital Value

The savings part of the premium is continuously invested in by insurance company
and is becoming a policyholder’s fund value. We assume that in the first policy
year, the policyholder’s fund value is zero (CV

(j)
t = 0). For year t ≥ 1 it is equal

to

CV
(j)

t = (CV
(j)

t−1 + SP
(j)
t ) · (1 + max{it, T IR}), (1.5)

where it stands for the return of investment in year t.
As we agreed before in Section 1.5.2 we assume for simplicity the investment

return and risk-free rate used for discount to be equal. Further, in the text we
will use the notation i as possible scenarios of risk-free interest rate and return
from company’s investments.

Surrender payment

We assume in our example the existence of surrender period. Before that period
it is forbidden to cancel the contract and surrender payment is equal to zero.
After the surrender period, in case of lapse, the insurance company pays the
policyholder’s fund value decreased by surrender charge.

τ ≤ SurrPeriod :Surr
(j)
t = 0,

τ > SurrPeriod :Surr
(j)
t = CV

(j)
t · (1 − fee

(j)
t ),

where
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fee
(j)
t surrender charge (as a percentage from fund value) per one

policy applied when the surrender is paid assumed to be at
the end of the year t,

SurrPeriod surrender period.

Benefit payments

As we mentioned before we consider two types of products with aggregate amount
of sum assured and capital value

Benefit
(j)
1,t = SA(j) + CV

(j)
t

and as a maximum of these two values

Benefit
(j)
2,t = max(CV

(j)
t , SA(j)).

For both type of products, we assume the benefit in case of maturity to be
equal to the policyholder’s fund value CV

(j)
t .

Adding the probability weight

Table 1.1 shows the defined probability-weighted cash-flows from formula 1.4 for
some policy j.

Projection
year

1 Premium Income P
(j)
0 = ℓ

(j)
0 · prem

(j)
0

Comm. & Exp. Outcome (E(j)
0 + C

(j)
0 ) = ℓ

(j)
0 · (comm

(j)
0 + exp

(j)
0 )

Death Benefit Outcome Dths
(j)
1 = d

(j)
1 · (Benefit

(j)
i,t )

Maturity Benefit Outcome Mat
(j)
1 = m

(j)
1 · CV(j)

1

Surrender Outcome Surr
(j)
1 = w

(j)
1 · CV(j)

1 (1 − fee
(j)
1 )

... ...

... ...
t Premium Income P

(j)
t−1 = ℓ

(j)
t−1 · prem

(j)
t−1

Comm. & Exp. Outcome (E(j)
t−1 + C

(j)
t−1) = ℓ

(j)
t−1 · (comm

(j)
t−1 + exp

(j)
t−1)

Death Benefit Outcome Dths
(j)
t = d

(j)
t · (Benefit

(j)
i,t )

Maturity Benefit Outcome Mat(j)
n = m

(j)
t · CV(j)

t

Surrender Outcome Surr
(j)
t = w

(j)
t · CV(j)

t (1 − fee
(j)
t )

... ...

... ...

Table 1.1: Cash flow of Endowment policy
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2. Acceleration techniques
In the section above, we have defined the cash flows of the insurance company.
The total cash flows is calculated as projection of each policy in the porftolio
and then it is summarized. Usually, to calculate the present value of insurance
company’s cash flows by policy-by-policy approach take an extreme amount of
time.

In this section we will discuss two possible methods to speedup cash flows
calculation: the analytic function and cluster analysis. The method of analytic
function is based on the partition of the formula of cash flow projection into parts
that depend and do not depend on the return of investment. We will discuss two
types of possible insurance products according to their death benefit:

1. Death benefit is paid as an amount of sum assured and fund value;

2. Death benefit is paid as maximum amount of sum assured and fund value.

The method of cluster analysis relies on reduction of number of policies needed
to be processed; this method doesn’t depend on the type of product. We will
describe two possible techniques of cluster analysis and we will also try to speed
up the calculation for two types of products as in analytic funcion.

2.1 Analytic function
In the previous chapter we have defined the basic cash flow model for life insurance
company (Formula 1.4 and Table 1.1). Furhermore, we won’t distinguish if the
cash-flow was in the beginning or at the end of year t. It is a common practice
for insurance companies on the market. We will assume that all cash flows occur
at the end of the year. Formula 2.1 shows the cash flow for all policies in life
insurance company’s portfolio.

CFt =
J∑

j−1
P

(j)
t − C

(j)
t − E

(j)
t − Dths

(j)
t − Mat

(j)
t − Surr

(j)
t , (2.1)

where
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J total number of policies in-force used in projection,
CFt cash flow at the end of the policy year t for the whole life

insurance portfolio,
P

(j)
t probability-weighted premium income of some policy j paid at

policy year t,
C

(j)
t probability-weighted commissions of some policy j paid at

policy year t,
E

(j)
t probability-weighted expenses of some policy j paid at policy

year t,
Dths

(j)
t outflow representing the death benefit for some policy j

assumed to be paid at the policy year t,
Mat

(j)
t outflow representing the maturity benefit for some policy j

assumed to be paid at policy year t,
Surr

(j)
t outflow representing surrender for some policy j assumed

to be paid at the the policy year t.

Our aim is to divide the formula 2.1 into parts that depend on the value of
investment return and doesn’t depend on it. The part that does not depend on the
investment income is the same for every scenario, and can be easily summarized
for all policies in our portfolio. The part that does depend on investment return
we can calculate separetely with aggregated values for the whole portfolio. If
we are able to separate the cash flows projection and find such a way, then
the calcualtion won’t be policy-by-policy but for aggregated portfolio. Such an
approach might speed up the calculation compared to standard policy-by-policy
approach.

We want to split formula 2.1 in the following form [6]:

CFt =
∑

j:∀policies

fixCF(j)
t +

∑
q

Coef q
t · f

(q)
t (is

1, is
2, . . . , is

t), (2.2)

where

fixCF(j)
t part of cash flow for some policy j, that doesn’t depend on

interest rate is
t and can be calculated from the one run of

the full model,
s number of interest rate scenario s ∈ {1, . . . , S}
Coef

(q)
t coefficients relevant at the time t, that is determined for the whole

portfolio
f

(q)
t is a function of investment return on assets at the time t that is

common for all policies,
q number of Coeft and ft pair, typically more than 1.

2.1.1 Death Benefit as a summation of fund value and
sum assured

We will start with the first product, where the death benefit is paid to the poli-
cyholder as a summation of sum assured defined by contract and policyholder’s
accumulated fund value at the year of payment. Let’s start with calculation of

15



the cash flow from one contract during one year as defined in Formula 1.4 and
in the Table 1.1. For this type of product, the death benefit for some policy j is
defined as (SA(j)+CV

(j)
t ), where t is a year of payment. In a case of maturity, the

insurance compamy pays the policyholder’s capital value at the year of payment
t (CV

(j)
t ). In the case of lapse at the year t, the company pays the policyholder

the fund value deducted by the surrender fee (CV
(j)

t (1 − fee
(j)
t )). So, we have:

CF
(j)
1 = l

(j)
0 (prem

(j)
1 − comm

(j)
1 − exp

(j)
1 ) − CV

(j)
1 (1 − fee

(j)
1 )w(j)

1 −
− (CV

(j)
1 + SA(j))d(j)

1 − CV
(j)

1 m
(j)
1 =

= l
(j)
0 (prem

(j)
1 − comm

(j)
1 − exp

(j)
1 )−

− CV
(j)

1 [w(j)
1 (1 − fee

(j)
1 ) + d

(j)
1 + m

(j)
1 ] − SA(j) · d

(j)
1 =

= l
(j)
0 (prem

(j)
1 − comm

(j)
1 − exp

(j)
1 ) − SA(j) · d

(j)
1 −

− (CV
(j)

0 + SP
(j)
1 )(1 + is

1)[w1(1 − fee
(j)
1 ) + d1 + m1]−

= l
(j)
0 (prem

(j)
1 − comm

(j)
1 − exp

(j)
1 ) − SA(j) · d

(j)
1 −

− CV
(j)

0 [w(j)
1 (1 − fee

(j)
1 ) + d

(j)
1 + m

(j)
1 ](1 + is

1)−
− SP

(j)
1 [w(j)

1 (1 − fee
(j)
1 ) + d

(j)
1 + m

(j)
1 ](1 + is

1),

where

SP
(j)
t denotes the saving part of premium of some policy j, that increased

the fund value,
SP

(j)
t = prem

(j)
t − α(j) − β(j) − γ(j) − RP

(j)
t ,

α, β, γ denote the expenses used for calculation of premium [5]:
α(j) initial expenses on policy j,
β(j) regular administrative expenses on policy j,
γ(j) collecting expenses on policy j;
PR

(j)
t denotes the risk part of premium of some policy j,

is
t return on investment under the scenario s = {1, . . . , S} related to

the policy year t.

Using the same logics, we can continue with the value of cash flow for one
policy in the second year:

CF
(j)
2 = · · · = l

(j)
1 (prem

(j)
2 − comm

(j)
2 − exp

(j)
2 ) − SA(j) · d

(j)
2 −

− (CV
(j)

0 + SP
(j)
1 )[w(j)

2 (1 − fee
(j)
2 ) + d

(j)
2 + m

(j)
2 ](1 + is

1)(1 + is
2)−

− SP
(j)
2 [w(j)

2 (1 − fee
(j)
2 ) + d

(j)
2 + m

(j)
2 ](1 + is

2) =
= l

(j)
1 (prem

(j)
2 − comm

(j)
2 − exp

(j)
2 ) − SA(j) · d

(j)
2 −

− CV
(j)

0 [w(j)
2 (1 − fee

(j)
2 ) + d

(j)
2 + m

(j)
2 ](1 + is

1)(1 + is
2)−

− SP
(j)
1 [w(j)

2 (1 − fee
(j)
2 ) + d

(j)
2 + m

(j)
2 ](1 + is

1)(1 + is
2)−

− SP
(j)
2 [w(j)

2 (1 − fee
(j)
2 ) + d

(j)
2 + m

(j)
2 ](1 + is

2).

And for the third year we will have:
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CF
(j)
3 = · · · = l

(j)
2 (prem

(j)
3 − comm

(j)
3 − exp

(j)
3 ) − SA(j) · d

(j)
3 −

− (CV
(j)

0 + SP
(j)
1 )[w(j)

3 (1 − fee
(j)
3 ) + d

(j)
3 + m

(j)
3 ](1 + is

1)(1 + is
2)(1 + is

3)−
− SP

(j)
2 [w(j)

3 (1 − fee
(j)
3 ) + d

(j)
3 + m

(j)
3 ](1 + is

2)(1 + is
3)−

− SP
(j)
3 [w(j)

3 (1 − fee
(j)
3 ) + d

(j)
3 + m

(j)
3 ](1 + is

3)
= l

(j)
2 (prem

(j)
3 − comm

(j)
3 − exp

(j)
3 ) − SA(j) · d

(j)
3 −

− CV
(j)

0 [w(j)
3 (1 − fee

(j)
3 ) + d

(j)
3 + m

(j)
3 ](1 + is

1)(1 + is
2)(1 + is

3)−
− SP

(j)
1 [w(j)

3 (1 − fee
(j)
3 ) + d

(j)
3 + m

(j)
3 ](1 + is

1)(1 + is
2)(1 + is

3)−
− SP

(j)
2 [w(j)

3 (1 − fee
(j)
3 ) + d

(j)
3 + m

(j)
3 ](1 + is

2)(1 + is
3)−

− SP
(j)
3 [w(j)

3 (1 − fee
(j)
3 ) + d

(j)
3 + m

(j)
3 ](1 + is

3).

We can derive the parts of Formula 2.2 from the last equation for projection
year t = 3 and some policy j. So, we have:

fixCF
(j)
3 =l

(j)
2 (prem

(j)
3 − comm

(j)
3 − exp

(j)
3 ) − SA(j) · d

(j)
3 ;

Coef 1
3 =(CV

(j)
0 + SP

(j)
1 )[w(j)

3 (1 − fee
(j)
3 ) + d

(j)
3 + m

(j)
3 ];

Coef 2
3 =SP

(j)
2 [w(j)

3 (1 − fee
(j)
3 ) + d

(j)
3 + m

(j)
3 ];

Coef 3
3 =SP

(j)
3 [w(j)

3 (1 − fee
(j)
3 ) + d

(j)
3 + m

(j)
3 ];

f 1
3 =(1 + is

1)(1 + is
2)(1 + is

3);
f 2

3 =(1 + is
2)(1 + is

3);
f 3

3 =(1 + is
3)

q =3

The cash flow in year t for some policy j is:

CF
(j)
t = · · · = l

(j)
t−1(prem

(j)
t − comm

(j)
t − exp

(j)
t ) − SA(j) · d

(j)
t −

− (CV
(j)

0 + SP
(j)
1 )[w(j)

t (1 − fee
(j)
t ) + d

(j)
t + m

(j)
t ](1 + is

1) . . . (1 + is
t)−

− SP
(j)
2 [w(j)

t (1 − fee
(j)
3 ) + d

(j)
t + m

(j)
t ](1 + is

2) . . . (1 + is
t)−

− · · · −
− SP

(j)
t [w(j)

t (1 − fee
(j)
3 ) + d

(j)
t + m

(j)
t ](1 + is

t)
= l

(j)
t−1(prem

(j)
t − comm

(j)
t − exp

(j)
t ) − SA(j) · d

(j)
t −

− CV
(j)

0 [w(j)
t (1 − fee

(j)
t ) + d

(j)
t + m

(j)
t ](1 + is

1) . . . (1 + is
t)−

− SP
(j)
1 [w(j)

t (1 − fee
(j)
t ) + d

(j)
t + m

(j)
t ](1 + is

1) . . . (1 + is
t)−

− SP
(j)
2 [w(j)

t (1 − fee
(j)
t ) + d

(j)
t + m

(j)
t ](1 + is

2) . . . (1 + is
t)−

− · · · −
− SP

(j)
t [w(j)

t (1 − fee
(j)
t ) + d

(j)
t + m

(j)
t ](1 + is

t).
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We can derive parts from Formula 2.2 for some policy j in year t as follows:

fixCF(j)
t =l

(j)
t−1(prem

(j)
t − comm

(j)
t − exp

(j)
t ) − SA(j) · d

(j)
t ,

Coef 1
t =(CV

(j)
0 + SP

(j)
1 )[w(j)

t (1 − fee
(j)
t ) + d

(j)
t + m

(j)
t ].

Coef q ̸=1
t =SP (j)

q [w(j)
t (1 − fee

(j)
t ) + d

(j)
t + m

(j)
t ],

f q
t =

q∏
k=1

(1 + is
k), q ∈ {1, . . . t}, s ∈ {1, . . . , S}

(2.3)

The summarization of all policies in-force J in insurance company’s portfolio
will be

CFt =
J∑

j=1
CF

(j)
t =

=
J∑

j=1

(
l
(j)
t−1(prem

(j)
t − comm

(j)
t − exp

(j)
t ) − SA(j) · d

(j)
t

)
−

−
J∑

j=1
CV

(j)
0 [w(j)

t (1 − fee
(j)
t ) + d

(j)
t + m

(j)
t ](1 + is

1) . . . (1 + is
t)−

−
J∑

j=1
SP

(j)
1 [w(j)

t (1 − fee
(j)
t ) + d

(j)
t + m

(j)
t ](1 + is

1) . . . (1 + is
t)−

−
J∑

j=1
SP

(j)
2 [w(j)

t (1 − fee
(j)
t ) + d

(j)
t + m

(j)
t ](1 + is

2) . . . (1 + is
t)−

− · · · −

−
J∑

j=1
SP

(j)
t [w(j)

t (1 − fee
(j)
t ) + d

(j)
t + m

(j)
t ](1 + is

t) =

=
J∑

j=1
fixCF(j)

t −

−
J∑

j=1
CV

(j)
0 · [w(j)

t (1 − fee
(j)
t ) + d

(j)
t + m

(j)
t ] ·

t∏
k=1

(1 + is
k)−

−
t∑

q=1

J∑
j=1

SP (j)
q · [w(j)

t (1 − fee
(j)
t ) + d

(j)
t + m

(j)
t ] ·

t∏
k=q

(1 + is
k).

(2.4)

We can note from the Formula 2.4 that the coefficients Coef q
t defined in 2.3

doesn’t depend on investment rate of return and it can be obtained without
assumptions about rate of return. Functions f q

t doesn’t depend on the policy,
they are the same for all policies and can be extracted from the sum [6].

The calculation process by the analytic function can be summarized as the
follows, [7]:

1. Run the full model once. This run doesn’t depend on investment return;

2. Derive the coefficients fixCFt and Coef
(q)
t and save them (usually about

100 ths or more variables based on the product complexity);
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3. Take the selected scenario of interest rates (is
1, is

2, . . . , is
t);

4. Calculate CFt =
J∑

j=1
fixCF(j)

t +
∑

k

Coef
(q)
t · f

(q)
t (is

1, is
2, . . . , is

t).

The estimation of cash flow by analytic function requires patience and con-
centration, but the final results of the estimation by analytic function are fast
and concluded for our defined product with no significant errors.

2.1.2 Death Benefit as Maximum of Fund Value and Sum
Assured

For a product with death benefit as (SA(j)+CV
(j)

t ) and maturity benefit as CV
(j)

t

the Formula 2.1 can be easily split into two parts: one depends on interest rate
and another doesn’t. It becomes more complicated when the death benefit is the
greatest of these two values max(CV

(j)
t , SA(j)). However, we also can try split

the cash flow projection into parts as defined in Formula 2.2. Figure 2.1 shows
the development of the policyholder j’s death benefit. According to the year of
payment, the death benefit can be the amount of policyholder’s sum assured or
fund value.

Figure 2.1: Death Benefit as a maximum value of policyholder’s fund value and
sum assured

We also can start from derivation of cash flow for one policy. Except the death
benefit, all other cash flows are defined in the same way as in the first product.
Insurance company pays the capital value CV

(j)
t in the year t in case of maturity.

In case of lapse, the outflow is (CV
(j)

t (1 − fee
(j)
t )). Cash flow of some policy j in

year 1:
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CF
(j)
1 = l

(j)
0 (prem

(j)
1 − comm

(j)
1 − exp

(j)
1 ) − CV

(j)
1 (1 − fee

(j)
1 )w(j)

1 −
− max{CV

(j)
1 ; SA(j)}d

(j)
1 − CV

(j)
1 m

(j)
1 =

= l
(j)
0 (prem

(j)
1 − comm

(j)
1 − exp

(j)
1 ) − CV

(j)
1 [w(j)

1 (1 − fee
(j)
1 ) + m

(j)
1 ]−

− max{CV
(j)

1 ; SA(j)} · d
(j)
1 =

= l
(j)
0 (prem

(j)
1 − comm

(j)
1 − exp

(j)
1 )−

− (CV
(j)

0 + SP
(j)
1 )(1 + is

1) · [w(j)
1 (1 − fee

(j)
1 ) + m

(j)
1 ]−

− max{(CV
(j)

0 + SP
(j)
1 )(1 + is

1); SA(j)} · d
(j)
1 =

= l
(j)
0 (prem

(j)
1 − comm

(j)
1 − exp

(j)
1 )−

− CV
(j)

0 [w(j)
1 (1 − fee

(j)
1 ) + m

(j)
1 ](1 + is

1)−
− SP

(j)
1 [w(j)

1 (1 − fee
(j)
1 ) + m

(j)
1 ](1 + is

1)−
− max{CV

(j)
0 (1 + is

1) + SP
(j)
1 (1 + is

1); SA(j)} · d
(j)
1

For year t the cash flow projection for some policy j and some scenario of
investment rate s is:

CF
(j)
t = l

(j)
t (prem

(j)
t − comm

(j)
t − exp

(j)
t )−

− CV
(j)

0 [w(j)
t (1 − fee

(j)
t ) + m

(j)
t ]

t∏
k=1

(1 + is
k)−

− SP
(j)
1 [w(j)

t (1 − fee
(j)
t ) + m

(j)
t ]

t∏
k=1

(1 + is
k)−

− · · · −
− SP

(j)
t [w(j)

t (1 − fee
(j)
t ) + m

(j)
t ](1 + is

t)−

− max{(CV
(j)

0 + SP
(j)
1 )

t∏
k=1

(1 + is
k) + · · · + SP

(j)
t (1 + is

t); SA(j)} · d
(j)
t

In section 1.2 we have discussed an assumption of guaranteed minimum rate of
return. It means that the policyholder’s fund value will be increased in time by at
least guranteed rate of return. This assumption implies the monotone increase of
fund value function, that is shown in the Figure 2.1. We can use an intermidiate
value theorem, which states that it is a continuous function f , that is defined on
an interval [a, b], takes the values f(a) and f(b) at each end of the interval, then
it also takes any value between [f(a); f(b)] at some point in the interval [a, b] (see
Appendix).

Applying the theorem in our example, we have: the domain interval of the
fund function for some policy j is the projection interval t ∈ [1, nj], where nj is a
period of policy j. We assume, that the policyholder’s fund value in time 1 is less
than the value of sum assured (CV

(j)
1 < SA(j)) and in time nj is greater than the

sum assured (CV (j)
nj

> SA(j)). Then from the intermediate value theorem there
exists time t∗j ∈ [1, nj] where the policyholder’s fund value equals to the value
of sum assured. So, we can bisect an interval [1, nj] on two subintervals [1, t∗j]
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and (t∗j; nj]. Then in each subinterval we can select the relevant value of death
benefit. The cash flow projections in year t of some policy j is:

t ≤ t∗j : CF
(j)
t = l

(j)
t (prem

(j)
t − comm

(j)
t − exp

(j)
t ) − SA(j)d

(j)
t

− CV
(j)

0 [w(j)
t (1 − fee

(j)
t ) + m

(j)
t ]

t∏
k=1

(1 + is
k)−

− SP
(j)
1 [w(j)

t (1 − fee
(j)
t ) + m

(j)
t ]

t∏
k=1

(1 + is
k)−

− · · · −
− SP

(j)
t [w(j)

t (1 − fee
(j)
t ) + m

(j)
t ](1 + is

t)

t > t∗j : CF
(j)
t = l

(j)
t (prem

(j)
t − comm

(j)
t − exp

(j)
t )−

− CV
(j)

0 [w(j)
t (1 − fee

(j)
t ) + m

(j)
t + d

(j)
t ]

t∏
k=1

(1 + is
k)−

− SP
(j)
1 [w(j)

t (1 − fee
(j)
t ) + m

(j)
t + d

(j)
t ]

t∏
k=1

(1 + is
k)−

− · · · −
− SP

(j)
t [w(j)

t (1 − fee
(j)
t ) + m

(j)
t + d

(j)
t ](1 + is

t)

(2.5)

And also the division on the parts as in Formula 2.2 will be depend on year t
of the projection:

t ≤ t∗j : fixCF(j)
t =l

(j)
t−1(prem

(j)
t − comm

(j)
t − exp

(j)
t ) − SA(j) · d

(j)
t ,

Coef 1
t =(CV

(j)
0 + SP

(j)
1 )[w(j)

t (1 − fee
(j)
t ) + m

(j)
t ].

Coef q ̸=1
t =SP (j)

q [w(j)
t (1 − fee

(j)
t ) + m

(j)
t ],

f q
t =

q∏
k=1

(1 + is
k), q ∈ {1, . . . t}, s ∈ {1, . . . , S}

t > t∗j : fixCF(j)
t =l

(j)
t−1(prem

(j)
t − comm

(j)
t − exp

(j)
t ),

Coef 1
t =(CV

(j)
0 + SP

(j)
1 )[w(j)

t (1 − fee
(j)
t ) + d

(j)
t + m

(j)
t ].

Coef q ̸=1
t =SP (j)

q [w(j)
t (1 − fee

(j)
t ) + d

(j)
t + m

(j)
t ],

f q
t =

q∏
k=1

(1 + is
k), q ∈ {1, . . . t}, s ∈ {1, . . . , S}

(2.6)

We can note from the Formula 2.5 that the functions of investment f q
t does

not depend on the values of t∗j and also can be extracted from the sum. The
total amount of cash flows for all policies is then:

CFt =
J∑

j=1
CF

(j)
t

To derive the formula of cash flows for all policies in year t we will define the
time t∗j for each of the policy used in calculation. Before that time, the death
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benefit for policy j is the value of sum assured, and after that time, the benefit
is calculated as fund value at the year t. According to the year of death benefit
change (1 < t∗(1) < · · · < t∗(J) < ∞), we will order the policies in our portfolio
({j∗(1), . . . , j∗(J)}). We assume that before the first time of change [1, t∗(1)] all
the policies have a death benefit as the value of sum assured. Then we assume
that in interval (t∗(1); t∗(2)] there is some policy j∗(1) that ”changes” the benefit, in
interval (t∗(2); t∗(3)] there are already two policies {j∗(1), j∗(2)} with death benefit
as a fund value, etc. Finally, after the last time of change (t∗(J), ∞) all policies
in the portfolio have the death benefit as a value of policyholder’s fund.

According to our assumptions we have:

t ∈ [1, t∗(1)] : CFt =
J∑

j=1
CF

(j)
t =

=
J∑

j=1

(
l
(j)
t (prem

(j)
t − comm

(j)
t − exp

(j)
t ) − SA(j)d

(j)
t

)

−
J∑

j=1
CV

(j)
0 [w(j)

t (1 − fee
(j)
t ) + m

(j)
t ]

t∏
k=1

(1 + is
k)−

−
J∑

j=1
SP

(j)
1 [w(j)

t (1 − fee
(j)
t ) + m

(j)
t ]

t∏
k=1

(1 + is
k)−

− · · · −

−
J∑

j=1
SP

(j)
t [w(j)

t (1 − fee
(j)
t ) + m

(j)
t ](1 + is

t),

where we can easily defined the parts of Formula 2.2 as follows:

fixCF(j)
t =l

(j)
t−1(prem

(j)
t − comm

(j)
t − exp

(j)
t ) − SA(j) · d

(j)
t ,

Coef 1
t =(CV

(j)
0 + SP

(j)
1 )[w(j)

t (1 − fee
(j)
t ) + m

(j)
t ].

Coef q ̸=1
t =SP (j)

q [w(j)
t (1 − fee

(j)
t ) + d

(j)
t + m

(j)
t ],

f q
t =

q∏
k=1

(1 + is
k), q ∈ {1, . . . t}, s ∈ {1, . . . , S}

(2.7)

After the first time t∗(1) and before the the second time t∗(2) the sum of cash
flows is:
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t ∈ [t∗(1); t∗(2)] :CFt =
J∑

j=1
CF

(j)
t =

=
J∑

j=1
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(j)
t (prem
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(j)
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with partitiation

J∑
j=1

fixCF(j)
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j=1
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(j)
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(j)
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f q
t =
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k), q ∈ {1, . . . t}, s ∈ {1, . . . , S}

(2.8)

After the time t∗(2) there are already two policies, that have a death benefit
as a capital value. The sum of total cash flows in this time interval is:

t ∈ [t∗(2); t∗(3)] : CFt =
J∑

j=1
CF

(j)
t =

=
J∑

j=1
l
(j)
t (prem

(j)
t − comm

(j)
t − exp

(j)
t ) −

J∑
j=3

SA(j)d
(j)
t

−
( J∑

j=1
CV

(j)
0 [w(j)

t (1 − fee
(j)
t ) + m

(j)
t ] +

2∑
j=1

CV
(j)

0 d
(j)
t

) t∏
k=1

(1 + is
k)−

−
( J∑

j=1
SP

(j)
1 [w(j)

t (1 − fee
(j)
t ) + m

(j)
t ] +

2∑
j=1

SP
(j)
1 d

(j)
t

) t∏
k=1

(1 + is
k)−

− · · · −

−
( J∑

j=1
SP

(j)
t [w(j)

t (1 − fee
(j)
t ) + m

(j)
t ] +

2∑
j=1

SP
(j)
t d

(j)
t

)
(1 + is

t),
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with separation on the parts as:

J∑
j=1

fixCF(j)
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J∑
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(j)
t − exp

(j)
t ) −

J∑
j=3

SA(j) · d
(j)
t ,

J∑
j=1

Coef 1
t =

J∑
j=1

(CV
(j)

0 + SP
(j)
1 )[w(j)

t (1 − fee
(j)
t ) + m

(j)
t ]+

+
2∑

j=1
(CV

(j)
0 + SP

(j)
1 )d(j)

t ,

J∑
j=1

Coef q ̸=1
t =

J∑
j=1

SP (j)
q [w(j)

t (1 − fee
(j)
t ) + m

(j)
t ] +

2∑
j=1

SP (j)
q d

(j)
t ,

f q
t =

q∏
k=1
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k), q ∈ {1, . . . t}, s ∈ {1, . . . , S}

(2.9)

And finally, we have that all policies in the portolio have after time of last
policy change the death benefit as value of policyholder’s fund.

t ∈ [t∗(J), ∞] : CFt =
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Parts from the Formula 2.2 are defined as follows:
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(j)
t + d

(j)
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t =SP (j)
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(j)
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(j)
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t + d

(j)
t ],

f q
t =

q∏
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(1 + is
k), q ∈ {1, . . . t}, s ∈ {1, . . . , S}

(2.10)

Of course, there might be already some policies, that at beginning of the
projection have the fund value greater than sum assured. The total amount of all
policies in-force J is deducted then by this amount of policies. For these policies,
the outflows of death benefit is calculated as a policyholder’s fund value.
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Here we have shown the capabilities of the analytic function using two main
insurance products. It also can be easily adjusted for other insurance products,
where the death benefit is paid as fund value or sum assured only. Or there might
be products with different maturity benefits.

2.2 Cluster analysis

2.2.1 Data Preparation
In this section we will focus on a method of cluster analysis.

The purpose of clustering is to allocate observations of varaibles into homoge-
nous and distinct groups (”clusters”). That means that observations are similar
to each other within the group and different from observation in other groups [8].

Generally, in data clustering we work with the data matrix as shown below [9],
where the row stands for an observation and each columns represents a variable:

X =

⎛⎜⎜⎜⎜⎝
xT

1
xT

2
...

xT
J

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
x1,1 x1,2 . . . x1,L

x2,1 x2,2 . . . x2,L
... ... . . . ...

xJ,1 xJ,2 . . . xJ,L

⎞⎟⎟⎟⎟⎠
To make our variables more comparable, it is possible to scale them, so they

will have zero mean and the variance equals to one [10]:

zj,l = xj,l − x̄l

σl

, j = 1, . . . , J ; l = 1, . . . , L,

where x̄l is the sample mean, and σl is the sample standard deviation of lth
attribute (variable).

2.2.2 Distance Measures
Generally, it is not so easy to define ’cluster’ in formal way [11], it has been
used in an essentially intuitive character. There are combination of acceptable
criterias and requirements that help to understand the common sense of clusters,
for example:

1. Share the same or closely related properties;

2. Show small mutual distances;

3. Have ”contacts” or ”relations” with at least one other object in the group;
or

4. To be clearly distinguishable from the complements, i.e. rest of the objects
in the data set.

We don’t have any assumptions about the distibution of the underlying data.
Using the cluster analysis, we are able to form groups of related observations.
Clustering techniques can be used for any data set. All that is needed is a
measure of how far one element in the set is from another element, using the
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function that gives the distance between the elements. The larger the distance
value is, the more dissimilar the pair of observations are, and vice versa. The
distance function d satisfies the follows [12]:

• d(xi, xi) = 0,

• d(xi, xj) ≥ 0,

• d(xi, xj) = d(xj, xi).

where xi is ith element of the dataset.
There are many methods to calculate the distance between the elements of

(xi, xj). In cluster analysis the choice of distance function is a important step,
which will impact the clustering results [10]. The most common distance function
in practical are:

1. Eucledean distance:

deuc(xi, xj) =

√ L∑
l=1

(xi,l − xj,l)2;

2. Manhattan distance:

dmanh(xi, xj) =
L∑

l=1

⏐⏐⏐xi,l − xj,l

⏐⏐⏐.
The generalized form of Euclidean and Manhattan distance is Minkowski dis-

tance, which is defined as follows [9]:

dmink(xi, xj) =
( L∑

l=1

⏐⏐⏐xi,l − xj,l

⏐⏐⏐p)1/p

In case of p = 2, the Minkowski distance is equal to Euclidean, and in case of
p = 1 it becomes to Manhattan distance.

In our example we will create clusters of homogenous policies according to the
individual value of future cash flows:

PV CF perpolicy
0 ≈ PV CF MP

0 . (2.11)

So the present values within each cluster are as close as possible.
The vector of present value of cash flow according to which we will create our

groups of policies is one-dimensional. In our example, the distance between the
policies i, j ∈ {1, . . . , J} will be the absolute value of difference between their
present values of projected cash flows:

d(PV CF
(i)
0 , PV CF

(j)
0 ) =

⏐⏐⏐⏐PV CF
(i)
0 − PV CF

(j)
0

⏐⏐⏐⏐
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2.2.3 Clustering methods
Clustering algorithms can be broadly divided into two categories:

• Partitional clustering
A partitioning method constructs K groups, that satisfy the requirements
[13]:

– Each group contains minimum one object;
– Each object belongs to maximum one group.

Conditions mentioned above imply: K ≤ J , where K is a number of groups,
and J is a number of observations. It means that there are at most as many
groups as there are observations. It is important to note that the number
of cluster K is given by users. Requirements of K are discussed below.
Generally, the algorithm tries to find a ”good” partition, that means that
the objects of the same cluster should be close to each other, whereas objects
of different clusters should be as far as possible [13].

• Hierarchial clustering
Hierarchial clustering is an alternative approach of clustering. Compared
to the partitioning clustering, it does not require to specify the number of
clusters [10]. Hierarchial clustering groups the observations into a sequence
of nested clusters, the result is a tree-based representation of the objects.

Within this thesis we will focus on the partitioning clustering method, that
will help to group our insurance policies into K disjoint subsets. All the policies
that belong to the same cluster can be characterized with a group representer
using the scale as a number of policies in the cluster. So, we are able to reduce
the number of policies J to the given number of clusters K and by that to reduce
the total time of calculation.

To group the policies into clusters we will use two commonly used algorithms
of partitioning clustering method [10]:

• K-means clustering
It is the most commonly used algorithm for partitioning a given data set
into a set of K clusters. In this method, each cluster is represented by
the means of the policies that belong to the cluster. K-means clustering
algorithm is more sensitive to outliers and anamalous observations.

• K-medoids clustering or PAM (Partitioning Around Medoids).
In K-medoids algorithm, each cluster is represented by one of the objects
in the cluster, which are called medoids. The algrotithm is less sensitive to
outliers compared to k-means.
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K-means algorithm

The basic idea of k-means clustering is to define the clusters by minimizing the
total within-cluster variation. This is defined as the sum of squared Euclidean
distances between the observations and the corresposning centroid [10]:

W (Sk) =
∑

xi∈Sk

(xi − Ck)2,

where xi is an observation that belongs to the cluster Sk, and Ck is the geometric
centroid of the data points in Sk.

An observation xi is assigned to the cluster Sk, if the sum of squares distance
of the observation xi to the cluster center Ck is minimum.

The total within-cluster variation is defined as follow:

K∑
k=1

W (Ck) =
K∑

k=1

∑
xi∈Sk

(xi − Ck)2. (2.12)

The K-means clustering algorithm can be described in the following steps
([14],[15]):

1. Specify the number of clusters and the elements of each cluster. It can be
chosen arbitarily or deliberatly.

2. Calculate each cluster’s centroid, and the distances between each obser-
vation and each centroid. If the observation is nearer to the centroid of a
cluster than the one to which it currently belongs, re-assign it to the nearest
cluster;

3. Repeat step number 2 until all observations are the nearest to the centroid
of the cluster to which it belongs;

4. If the number of clusters cannot be specified with confidence in advance,
repeat steps 1 to 3 with a different number of clusters and evaluate the
results.

The big disadvantage of such method is that it depends on the order choice,
which is used for grouping and this can cause different cluster results each time.

K-medoids algorithm

The idea of K-medoids partioning algorithm is to select K representative objects
in the data set. The corresponding K clusters are found by assigning each re-
maining object to the nearest representative object, that is called the medoid of
the cluster. To be exact, the average distance of the medoid to all other observa-
tions in the same cluster is being minimized [13]. Medoid in the cluster is then
the most centrally located point.

The K-means algorithm minimizes the the average squared distance, so-called
centroid. Compared to K-means algorithm, the K-medoids algorithm is less sen-
sitive to noise and outliers, because it uses medoids (representative object) as
cluster center.

K-medoids clustering algrotithm can be briefly described in the following steps
[10]:
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1. Select K objects to become medoids;

2. Calculate the distance matrix between the objects;

3. Assign every object to its closest medoid;

4. For each cluster, search if any of the objects of the cluster decreases the
average dissimilarity coefficient; if it does, select the entity that decreases
this coefficient the most as the medoid for this cluster;

5. If at least one medoid has changed go to step 3, else end the algorithm.

Like in K-means clustering, the k-medoids algorithm also requires to specify
the number of clusters to be generated.

Determining the optimal number of clusters in the given dataset is one of
of the fundamental issue in partitioning clustering. Unfortunetely, there is no
definite answer for that issue. The optimal number of clusers depends on the
used method and parameters, it is somehow subjective. There exists some direct
and statistical methods that help to determine the number of clusters, such as
silhouette analysis or gap statistic. One of the possible option can be a quick
rule of thumb K =

⌊√
N
2

⌋
. Our strategy of determining the optimal number of

clusters will be based on dependence between the number of clusters needed to
process and the calculated errors. The error term will be defined as a difference
between the value of cash flows calculated by policy-by-policy approach and by
cluster analysis using exactly K clusters.
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3. Interest rate scenarios

3.1 Models of interest rates
To simulate the scenarios of investment return, we will use the Hull-White model,
which is extension of the Vasecek model. The simulation of interest rate scenarios
is not the main topic of this thesis, however it’s very important step in further
calculations. Instead of using the Hull-White model, there can be used any other
model of interest rate.

In this chapter we will present the short description of the Hull-Wite model
and introduce the basic formulas needed for simulation of interest rates. We
can refer to the work [16], which introduces the practical aspects of interest rate
models and also describes all steps needed for parameter estimates.

The Hull-White model is a short rate model. In general, it has the following
dynamics ([16], [17]):

dr(θ) = [θ(t) − αr(t)]dt + σdW (t),

where α and σ are positive constants, Wt is a Wiener process which is defined as
[17]:

1. W0 = 0;

2. W has continuous paths a.s.;

3. For any 0 = t0 < t1 < · · · < tm the increments W (t1)−W (t0), . . . , W (tm)−
W (tm−1) are independent;

4. W (t + u) − W (t) ∼ N(0, u).

and

θ(t) = ∂fM(0, t)
∂t

+ αfM(0, t) + σ2

2α
(1 − e−2αt)

Function fM(0, t) stands for market instantenous forward rate.
The equition 3.1 can be integrated so as to yield [17]:

r(t) =r(s)eα(t−s) +
∫ t

s
e−α(t−u)θ(u)du + σ

∫ t

s
e−α(t−u)dW (u) =

=r(s)e−α(t−s) + ϕ(t) − ϕ(s)e−α(t−s) + σ
∫ t

s
e−α(t−u)dW (u),

where

ϕ(t) = fM(0, t) + σ2

2α2 (1 − e−αt)2.
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r(t) conditional on F0 (the beginning of the simulation) is normally distributed
with mean and variance given respectively by ([16],[17])

E[r(t)] =fM(0, t) + σ2

2α2 (1 − e−αt)2

V ar[r(t)] = σ2

2α
[1 − e−2αt]

(3.1)

There is limited number of bonds with limited range of maturities. However,
the models of instantaneous rates require continuous function of time to maturity.
Therefore, we will need a suitable model to extrapolate and interpolate the yield
to maturity. One of the most popular models is Nelson-Siegel, or the extended
version Nelson-Siegel-Svensson. The Nelson-Siegel-Svensson model assumes that
the yield curve can be described with the following function:

RM(0, T ) = β0 + β1
1 − exp{− T

γ1
}

T
γ1

+ β2

⎛⎝1 − exp{− T
γ1

}
T
γ1

− exp
{

− T

γ1

}⎞⎠+

+β3

⎛⎝1 − exp{− T
γ2

}
T
γ2

− exp
{

− T

γ2

}⎞⎠,

(3.2)

where β0, β1, β2, β3, γ1 and γ2 are constant parameters.
The instantaneous forward interest rate is:

fM(0, T ) = β0 + β1e
− T

γ1 + β2T
e

− T
γ1

γ1
+ β3T

e
− T

γ2

γ2

The derivation of the function of instantenous forward rate with respect to T
is equal to:

∂fM(0, T )
∂T

= −β1

γ1
e

− T
γ1 + β2

⎛⎝e
− T

γ1

γ1
− T

e
− T

γ1

γ2
1

⎞⎠ + β3

⎛⎝e
− T

γ2

γ2
− T

e
− T

γ2

γ2
2

⎞⎠.

Using the Euler approximation, we can write the discretized equation of 3.1
in the following way [16]:

r(t + ∆t) = r(t) + [θ(t) − αr(t)]∆t + σ∆W (t) =
= (1 − α∆t)r(t) + ∆tθ(t) +

√
∆tσN(0, 1);

r(0) = fM(0, 0),
(3.3)

where N(0, 1) means the random value of standard normal distribution.
The parameters α, σ in Hull-White model can be estimated using the suitable

interest rate derivative. The estimation process is called calibration. This is a
multi-dimensional optimization task that is trying to find a combination of the
parameters, such that the modelled prices fits the best to the market prices of
selected derivatives. Calibration using the Swoptions is introduced in work [16].
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4. Implementation
In this section we will apply in practice the theoretical methods discussed in
previous chapters.

As the first step, we will simulate scenarios of interest rates that will be used
for investment return and for discounting. Usage of interest rate scenarios as
a return on investment and a discount is quite common practice on insurance
market. In our example, we will use 50 scenarios of interest rates. In practice,
insurance company might use much more interest rate scenarios, but for the
purpose of showing the effectivness of the used method it will be enough.

Then, we will focus on calculation of cash-flows using three possible method
for two types of products used in our thesis. These three methods are:

• Policy-by-policy (standard) method;

• Analytic function;

• Clustering method.

And finally, we will compare the results and the final time needed for calcu-
lations.

The total calculations are processed in Wolfram Mathematica software. It is
used in many scientific, mathematical and computing fields.

4.1 Interest rate models
We will simulate the possible interest rate scenarios based on risk-free rate that is
recommended by EIOPA for caclulation of provision under Solvency II legislative.
The risk-free curve is spot and is taken for Czech republic as at December 2017
with no volatility adjustment. The number of observation is 150, the data is
taken from [18].
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Figure 4.1: EIOPA Risk-Free Rate as at 31.12.2017

The estimated parameters of Nelson-Siegel-Svensson model for EIOPA yields,
as at the Formula 3.2 are:

β0 0.0420
β1 -0.0345
β2 -0.0180
β3 -0.0617
γ1 1.2360
γ2 6.7211

Figure 4.2 shows the Nelson-Siegel-Svensson function used on EIOPA spot
rates.
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Figure 4.2: Nelson-Siegel-Svensson model based on EIOPA spot rate

We obtained the estimates of α and σ from the Company Tools4F, Michal
Hakala. Parameters are estimated from the actual market data. The Company
has the all required data and software needed for parameter estimation.

α 0.1413
σ 0.0167

We will simulate the interest rate scenarios as in the Formula 3.3 with the
initial condition r(0, 0) = 0.0075. Figure 4.3 shows the simulation of 50 scenarios
of future interest rates using the Hull-White model with estimated parameters.
Expected value shown in the Figure 4.3 is calculated using the Formula 3.1

Figure 4.3: Simulation of interest rate scenarios

The relationship between spot and forward rates is the following [4]:

1ft = (1 + st)t

(1 + st−1)t−1 − 1,
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where

1ft forward rate for the tth year,
st zero rate for t years.

4.2 Assumptions

4.2.1 Policy data
Unfortunetly, we didn’t have any suitable dataset to use in this thesis for compar-
ison of calculation time. So, we’ve decided to generate the dataset that would be
suitable for this work. We will generate 2000 policies in-force in a life insurance
company. We assume that we have only two type of contracts according to the
frequency of premium payment. The first type of contract is with regular (an-
nual) premium payments and the second type are contracts with single premium
payment. We define a variable Sex as equals to zero for male policyholders and
equals to one for female policyholders. Further, we assume that in our dataset we
have 20% of all policyholders at age of 15 - 25 years old, 20% at age 25 - 35 years
old, 30% at age 35 - 45 years old, 15% at age 45 - 55 years old, and final 15%
at age 55 - 65 years old. We assume that the insurance company offers products
with 8 possible amounts of sum assured (80 TCZK, 100 TCZK, 120 TCZK, 150
TCZK, 180 TCZK, 200 TCZK, 220 TCZK, 250 TCZK). The summary of our
generated variables is shown in the Table 4.1.
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Variable Categories Number of observations
Policy Type 1 994
(1 - regular, 2 - single) 2 1006
Sex 0 1013
(0 - male, 1 - female) 1 987
Age ⟨15; 25) 400
(in years) ⟨25; 35) 400

⟨35; 45) 600
⟨45; 55) 300
⟨55; 65) 300

Sum Assured 80 000 260
(in CZK) 100 000 236

120 000 264
150 000 275
180 000 241
200 000 238
220 000 256
250 000 230

Policy period 5 305
(in years) 10 362

15 375
20 288
25 250
30 162
35 113
40 90
45 55

Table 4.1: The summary of simulated dataset variables

Figure 4.4 shows the histogram of entry age of policyholders in our generted
portfolio.
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Figure 4.4: Histogram of entry age

4.2.2 Other Assumptions
For assumptions of mortality we will use the mortality tables from the Czech
Statistical Office from year 2016. The mortality data can be found at [19]. We
will use the mortality experience coefficients depending on the policy year that is
shown in the Table 4.2. The expected mortality in policy year t is qexp

x,τ = coefτ ·qx.
We assume that the new insurers have lower mortality rates than the individuals
who are already insured.

Assumptions of lapses are shown in the Table 4.3. We assume that the prob-
abilities of lapses are higher during the first five policy years.

Policy
year

Policy type
Regular Single

1 0.30 0.30
2 0.40 0.40
3 0.50 0.50
4 0.60 0.60

≥ 5 0.70 0.70

Table 4.2: Mortality experience

Policy
year

Policy type
Regular Single

1 0.20 0.15
2 0.15 0.10
3 0.18 0.13
4 0.15 0.10
5 0.12 0.07

≥ 6 0.08 0.03

Table 4.3: Lapses assumptions

We will assume that the technical interest rate is equal to 2,1%. All cash flows
are valuated to the date 1.1.2017.

All other assumptions that were used in calculation of our example can be
found in the Table 4.4.
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Assumptions Policy type
Regular Single

α% from SA 3.00% 3.00%
α% from Premium 25.0% 3.00%
β% from SA 0.30% 0.30%
γ% from Premium 2.00% 0.00%
Initial Commission % Premium 35.0% 35.0%
Renewal Commission % Premium 4.00% 0.00%
Initial Expenses Fix 2000 0.000
Initial Expenses % Premium 4.00% 1.50%
Renewal Expenses Fix 600.0 0.000
Renewal Expenses % Premium 8.00% 0.50%
Surrender period 2years 2years
Surrender fee 5.00% 5.00%
Inflation rate of fix expenses 2.00% 2.00%

Table 4.4: Other assumptions used in our example

For estimation of single and regular premium of each policy, we will use the
formulas for gross premium [5]. Compared to net premium, the gross premium
is already increased by insurance company’s expenses. Formula 4.1 shows the
calculation of single gross premium.

JBx = Axn + α + β · äxn , (4.1)
where

x age of a policy holder,
n policy period,
JBx single brutto unit premium,
Axn endowment value

Axn = Mx−Mx+n+Dx+n

Dx
,

α inital expenses (in %),
β regular administrative expenses (in %),
äxn temporary annuity

äxn = Nx−Nx+n

Dx
.

Commutation function used in notation can be found in [5]

Dx =lxvx,

Cx =dxvx+1,

Nx =Dx + Dx+1 + · · · + Dω,

Mx =Cx + Cx+1 + · · · + Dω,

where ω means the maximum age used in life tables, that the probability to reach
that age is going to zero. For example, in Czech Republic, ω = 105.

Formula 4.2 shows the calculation of regular gross premium for a policyholder.

P B
xn = Axn + β · äxn

(1 − γ) · äxn − α · n
, (4.2)
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where

P B
xn regular gross unit premium,

γ collecting expenses (in %).

The capital value of each policy will be calculated as cumulated amounts of
saving premium components from the inception date, where the capital value
is zero, till the valuation date. For evaluation of capital value we will use the
technical interest rate.

CVt = (CVt−1 + SPt) · (1 + TIR), (4.3)

where

CVt fund (capital) value of one policy at the end of year t,
premt premium amount per one policy (single or regular),
SPt saving part of the premium,
TIR technical interest rate.

As it was seen in the Table 4.1, the generated number of policies with regular
premium is 994 and the generated number of policies with single premium is 1006.
Table 4.5 shows the summary of variables of single and regular premium, capital
value at valuation date and age of policy to valuation date. Variables of premium
and capital value are calculated in CZK.

Variable Min 1st Qu. Median Mean 3rd Qu. Max
Single
prem. 65 344.4 102 922.0 149 292.0 152 371.0 194 128.0 256 848.0

Regular
prem. 2 650.2 8 373.8 14 226.3 18 734.9 23 759.8 74 495.8

Capital
Value 0.0 18 151.5 55 093.2 65 624.4 103 297.0 244 296.0

Policy
Age 0.0 2.0 4.0 5.1 8.0 15.0

Table 4.5: The summary of dataset variables

The examples of our generated portfolio can be seen in the Table 4.14, that
is in the appendix of the thesis.

4.3 Results of Calculation
In this section we will submit the comparison of time needed for calculation by
used methods.

For each product, we will use all discussed methods, so we can compare the
results of the best estimate of liability amount and time needed for calculation.
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4.3.1 Death benefit as a summation of sum assured and
fund value

Analytic function

Method of analytical function based on separation of the formula of cash flow
into the parts that depend on the values of investment return and the part that
does not depend. As a result we can evaluate the cash flow not policy-by-policy,
but on the aggregated portfolio.

Table 4.6 shows the calculation time in seconds using policy-by-policy ap-
proach and analytic function approach. We can see that the time needed to
calculate the present value of cash flow for our generating policies is more than
10 minutes, whereas the time needed for analytic function is about 20 seconds.
As we discussed in section 2.1.1 the cash flow for such a product can be easily
separated into required parts, so the average difference between the values of
present value of cash flows is zero.

Time (in sec) Time (in sec) Mean of
Policy-by-policy Analytic function rel. errors

609.45 19.97 < 0.01%

Table 4.6: Time comparison of standard cash flow calculation and analytic func-
tion

In reality, the insurance companies have much more contracts in their portfolio
and with analytic function they can reach the results within a reasonable time.
The time difference in calculation for bigger companies can be from hours to
many days depending on the size of the portfolio.

Cluster analysis: K-means

The idea of cluster analysis used within acceleration techniques of liability calcu-
lation is to speed up the calculation by decreasing the number of policies. This
procedure will group the policies into clusers. For each cluster we will have a
representer and a scale - a count of policies in each cluster.

We will create the clusters according to the value of present value of cash flows
for each of the policy. We have run the policy-by-policy approach for one of the
scenarios, and then we have to use the cluster techniques on scaled values of cash
flows.

PV CF scale
j = PV CFj − PV CF

σP V CF

, where

PV CF = 1
J

J∑
j=1

PV CFj and

σP V CF =

√ 1
J − 1

J∑
j=1

(
PV CFj − PV CF

)2
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where PV CF is a sample mean, σP V CF is a sample standard deviation of the
present value of cash flows, and J = 2000 is a number of policies in our portfolio.

For K-means method we created new model points as representers of the
clusters. The new representers are results of average values of policies within
each group.

The representer’s continuous variables such as entry age, policy period, sum
assured, premium and fund value at the valuation date are calculated as an
average of each values from the cluster. For example:

SArepresenter = 1
nk

nk∑
l=1

SAl,

where nk is the number of policies in some cluster k, k = 1, . . . , K.
The indicator variables such as policy type or sex for the representer model

point are calculated as an integer value of each average.

Pol.typerepresenter =
[ 1
nk

nk∑
l=1

Pol.typel

]
,

Our strategy for the selection of the number of clusters is based on minimal-
ization of relative error of BEL values. We ran the cluster K-means 50 times to
see how the relative error according to selected number of cluster can change.
The results can be seen in Figure 4.5.

Figure 4.5: Dependence of relative error of BEL on number of clusters K

To describe the dependence of relative error of caclulation on the selected
number of clusters (Rel.error ∼ Kt) we have used the simple regression method,
which is briefly described in the Appendix of this thesis, or can be found in [23].
Equation of red fitted line (linear trend) shown in the Figure 4.5 is:

E[Rel.error] = 0.1993 − 0.0002K

The estimated coefficients can be interpreted as follows. The intercept, which
is equal to 0.1993, is the expected mean value of relative error for zero number of
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clusters. The interpetation of intercept has no intrinsic meaning in this situation,
because the number of clusters can’t be zero. With every additional cluster in
calculation we can expect the decrease of the relative error by an average of 0.02%.
The time needed to process the liabilites increases with increasing of number of
clusters.

From the Figure 4.5 we can see, that the relative error ranges from the values
of 10% up to 20%. To compare the results of calculation, we select the observation
with minimum error, which is 9.25% and related number of clusters is 551.

Table 4.7 contains the time comparison of results using the standard method
and the cluster analysis. We can see that for this product in our example, using
cluster analysis, it took about 3 minutes to calculate the present value of future
cash flows.

Time[in sec] Time [in sec] Mean of
Policy-by-policy Cluster Analysis rel. errors

609.45 169.59 9.25%

Table 4.7: Time comparison of standard cash flow calculation for full portfolio
and clustered

Cluster analysis: K-medoids

In K-medoids, we selected the representer as a policy with smallest average dis-
tance to all other observation in the cluster.

xmedoid = argmin
y∈{x1,...,xnk

}

nk∑
i=1

d(y, xi),

where nk is the number of observations in the cluster k, k = 1, . . . , K.
Figure 4.6 shows the dependence of absolute value of relative error on the

number of clusters used in calculation.

Figure 4.6: Dependence of relative error of BEL on number of clusters K
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The equation of dependence between the absolute value of relative error and
the number of cluster is:

E[|Rel.Error|] = 0.0006 − 1.1512 · 10−6K

From the Figure 4.6 We can see, that the absolute value of relative error
ranges from almost 0% to 0.1%. Even for small numbers of clusters, the K-
medoids algorithm showed the accuracy of calculation about 99,9%.

For demonstration of the results, we have selected the observation with 264
clusters. The time needed to process such an amount of clusters is about one
minute (Figure 4.8).

Time[in sec] Time [in sec] Mean of
Policy-by-policy Cluster Analysis rel. errors

609.45 78.06 < 0.01%

Table 4.8: Time comparison of standard cash flow calculation for full portfolio
and clustered

Comparison

Table 4.9 introduces the results of above discussed method for the insurance
product, where the death benefit is paid as a summation of sum assured and
policyholder’s fund value. Values of best estimate liability, calculated for our
generated portfolio, are shown in milion of Czech Crowns. We can see, that the
methods of analytic function and cluster K-medoids show the more precise result
of BEL valuation. The clustered K-means method is more sensitive to noise and
outliers in the cluster. The range of the relative error using the K-means algorithm
were up to 20%. Compare the both: the time and the errors in calculation, the
analytic function shows the best result. K-medoid shows also accurate results of
calculation and as K-means, it can be used for any type of product without any
additional settings.

Policy-by- Analytic Cluster analysis
policy function K-means K-medoids

BEL [in MCZK ] -154.25 -154.25 -168.53 -154.23
Time [in sec] 609.45 19.97 169.59 78.06
Abs. error 0.00 -14.28 0.02
Rel.error < 0.01% 9.25% < 0.01%
Numb.of clusters 551 264

Table 4.9: Results comparison

4.3.2 Death benefit as a maximum of sum assured and
fund value

Analytic function

The idea of partitioning the formula of cash flows into parts that depend and
doesn’t depend on the return of investment is based on bisection method. We
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are able to evaluate the ”time of change” t∗j for each policy in the portfolio j and
then calculate the cash flow according to the projection year t. For this type of
product, we are also able to separate the cash flows formula on the parts that
depend and doesn’t depend on investment return.

The total time of calculation by analytic function also obtains the time needed
to calculate the values of t∗j, which is about 7 seconds for our portfolio. We cal-
culated ”times of change” of death benefit for one selected interest rate scenario.
Further, for the purpose of accelaration, we assumed the same values of t∗j for
all other scenarios used in calculation.

Table 4.10 shows the time comparison of used methods. The time needed to
calculate cash flows projection for our generated porfolio using standard policy-
by-policy method is about 10 minutes, whereas the time needed for analytic
function is about 23 seconds. Even with added time of processing the values of
t∗j the method shows very good difference in time.

Time (in sec) Time (in sec) Mean of
Policy-by-policy Analytic function rel. errors

617.262 23.743 < 0.01%

Table 4.10: Time comparison of standard cash flow calculation and analytic func-
tion

Cluster analysis: K-means

Figure 4.7 shows the output of 50 runs of cluster K-means method with different
number of clusters.

Figure 4.7: Dependence of relative error of BEL on number of clusters K

From the Figure 4.7 we can see that the relative error is ranging from 10% up
to 20% according the selected number of clusters. The equation of linear trend
is:
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E[Rel.Error] = 0.2209 − 0.0002K

Our aim of selection the number of clusters is minimize the error of calcula-
tion. For comparison of the results we have selected the observation with 604
clusters and the relative error about 9%. Table 4.11 shows the comparison of
time of valuation of portfolio’s BEL. The time needed to process the liabilities
for this type of product using the standard ”policy-by-policy” method is about
10 minutes, and using clustered K-means is about three minutes.

Time (in sec) Time (in sec) Mean of
Policy-by-policy Cluster Analysis rel. errors

617.262 184.82 8.91%

Table 4.11: Time comparison of standard cash flow calculation for full portfolio
and clustered

Cluster analysis: K-medoids

Figure 4.8 shows the results of relative error depending on the number of clusters
of 50 runs of K-medoids method.

Figure 4.8: Dependence of relative error of BEL on number of clusters K

From the Figure 4.8 we can see the absolute value of relative difference of BEL
ranges from 0.1% to 0.7%. Even with low number of clusters, the K-medoids
presents the error in BEL lower that 1%.

The equation of linear trend is:

E[|Rel.Error|] = 0.0035 − 5.9718 · 10−6K

Table 4.12 shows the time comparison needed to calculate the liabilities. For
comparison we have selected the observation with 299 clusters and relative error
equals to -0.01%. The time needed to process the liabilities using K-medoids is
about minute and a half.
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Time (in sec) Time (in sec) Mean of
Policy-by-policy Cluster Analysis rel. errors

617.262 94.62 -0.01%

Table 4.12: Time comparison of standard cash flow calculation for full portfolio
and clustered

Comparison

Table 4.13 introduces the results of calculation using all discussed methods. Val-
ues of best estimate liability are calculated on the generated portfolio with a death
benefit paid as a maximum amount of sum assured and policyholder’s fund value.
As for the first type of product, the method of analytic function shows the better
result compared the both: time of calculation and deviation of the output value
of BEL . However, the big disadvantage of analytic function is highly demanding
initial preparations and settings.

Policy-by- Analytic Cluster analysis
policy function K-means K-medoids

BEL [in MCZK ] −144.28 −144.26 −157.12 -144.26
Time [in sec] 617.26 23.74 184.92 94.62
Abs. error 0.02 −12.85 0.02
Rel.error −0.01% 8, 91% -0.01%
Numb.of clusters 604 299

Table 4.13: Results comparison
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Conclusion
Proper and consistent valuation of liabilities is highly demanding task for insur-
ance companies. The standard techniques of policy-by-policy cash flow projection
estimates the insurance company’s liabilities with high accuracy but usually it
takes an extreme time. The purpose of this thesis was to present the two possible
ways of acceleration valuation of life insurance liabilities.

Within this thesis, we focused on the unit-link insurance and discussed two
products, which are mainly used in the companies. Products differs in payments
of death benefit, for the first type of products it is defined as a summation of
sum assured and policyholder’s fund value and for the second it is the maximum
amount of these two values. We introduced the main formulas and principles of
calculation of liabilities in insurance companies. This thesis presents the accela-
ration techniques of analytic function and cluster analysis. We also presented the
theory for interest rate modelling and we choose a Hull-White model to simulate
the investment rates of return.

We ran all our calculations in Wolfram Mathematica software. We started
with the simulation of 50 interest rate scenarios, then we set the assumption and
generated the sample portfolio of 2000 policies in-force for life insurance company.
We were able to use the standard ”policy-by-policy” method, analytic function
and cluster anlysis to calculate the present value of portolio’s cash flows. The time
needed to calculate the cash-flows projection for 2000 policies under 50 scenarios
of interest rate using policy-by-policy approach was about 10 minutes for both
types of products.

For each of two products the analytic function showed the best result according
to the deviation of values and calculation time. To calculate the best estimate
liability with analytic function took about 20 seconds for each type of the products
and the relative errors in both cases is less than 0,01%. The method of analytic
function described in this thesis can be used with not only strictly mathematical
software but also in ordinary available softwares such as MS Excel. It also can be
adjusted on other insurance products with death benefit paid as fund value of sum
assured only, or with different types of maturity payments. The big disadvantage
of the method is that initial preparation is highly demanding.

The method of clustering can decrease the number of policies and so decreases
the final time of calculation. We also compared the effectivness of two clustering
method: K-means and K-medoids. To select the number of policies needed for
precise calculation and see the dependence between these values, we made 50
runs of each method and each type of product. The representer of cluster was
selected as an average value within each group. The maximum precision that was
obtained using the K-means in our eample for both types of products was about
90%. To obtained such a precision we neeeded to create the maximum possible
number of clusters, as a result, more time was needed to calculation. For both
products in our example it took about 3 minutes to calculate the best estimate
liability.

More precise results were obtained using K-medoids clustering method. Com-
pared to K-means, the K-medoids algorithm is less sensitive to outliers in the
groups. The representer was choosen as the most centered policy within each
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group. K-medoids clustering method showed the high precision results of BEL
even with low number of clusters. The presision of obtained results in our exam-
ple for both products were about 99% and time needed to process the liabilites
was about minute and a half.

The advantage of clustering methods is that it can be used for any type of
data without any initial setting. The disadvantage can be producing different
cluster results after each usage.

There are other possibilities to accelerate the calculations that are not dis-
cussed in this thesis, for example so-called interpolation approach that uses the
grid scenarios [6], methods of antithetic variates or control variates. Further,
calculation might be extended on calculation under the stress scenarios. This,
however, would be a seperate topic to be researched.
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VŠE, Fakulta informatiky a statistiky, Prague, 2017.

[17] F.Mercurio D. Brigo. Interest Rate Models - Theory and Practice. Springer,
2006.

49

http://mathworld.wolfram.com
http://mathworld.wolfram.com


[18] European Insurance and Occupational Pensions Au-
thority. Risk-Free Interest Rate Term Structures.
https://eiopa.europa.eu/regulation-supervision/
insurance/solvency-ii-technical-information/
risk-free-interest-rate-term-structures.
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Appendix

The intermediate value theorem for continuous
functions
Theorem: Let f be continuous at each point of a closed interval [a, b]. Choose
two arbitraty points x1 < x2 in [a, b] such that f(x1) ̸= f(x2). Then f takes on
every value between f(x1) and f(x2) somewhere in the interval (x1, x2) [20].

The proof can be seen in [20], or [21]

Simple Linear Regression
Basisc of linear regression can be found in [22], or [23].

We define Y as a response vector, and x1, x2, . . . , xk as a set of input variables
[23].

Y = β0 +
k∑

i=1
βixi + ϵ,

where ϵ is an experimental error term associated with the measured, or ob-
served, response at a point x = (x1, x2, . . . , xk)T in a region of interest, ℜ, and
β0, β, . . . , βk are fixed unknown parameters. When, k = 1, the model is called a
simple linear regression model.

Consider the simple linear regression model,

Yu = β0 + β1xu + ϵu, u = 1, . . . , n,

where the ϵu’s are mutually independent with zero mean and variance σ2, and u =
1, . . . , n is an number of experimental run. The best linear unbiased estimators
(BLUE) of β0 and β1 are

β̂1 = SxY

Sxx

β̂0 = Ȳ − β1x̄,

where Ȳ = 1
n

∑n
u=1 Yu, x̄ = 1

n

∑n
u=1 xu, SxY = ∑n

u=1(xu − x̄)(Yu − Ȳ ), and Sxx =∑n
u=1(xu − x̄)2.
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