velikost textu

Can Model Combination Improve Volatility Forecasting?

Upozornění: Informace získané z popisných dat či souborů uložených v Repozitáři závěrečných prací nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora.
Název:
Can Model Combination Improve Volatility Forecasting?
Název v češtině:
Může modelová kombinace řídit prognózu volatility?
Typ:
Diplomová práce
Autor:
Bc. Sabyrzhan Tyuleubekov
Vedoucí:
PhDr. Jozef Baruník, Ph.D.
Oponent:
RNDr. Michal Červinka, Ph.D.
Id práce:
203074
Fakulta:
Fakulta sociálních věd (FSV)
Pracoviště:
Institut ekonomických studií (23-IES)
Program studia:
Ekonomické teorie (N6201)
Obor studia:
Ekonomie a finance (NEF)
Přidělovaný titul:
Mgr.
Datum obhajoby:
16. 9. 2019
Výsledek obhajoby:
Výborně (A)
Jazyk práce:
Angličtina
Klíčová slova:
model combination, time series, volatility, forecast, machine learning
Klíčová slova v angličtině:
model combination, time series, volatility, forecast, machine learning
Abstrakt:
V současné době existuje řada metod predikce a prognostici čelí mnoha výzvám při výběru optimální metody pro predikci volatility. Tato diplomová práce testuje několik metod kombinací predikce, aby bylo možné využít široké škály prognóz. Bez ohledu na to, že existuje spousta literatury o kombinaci prognóz, kombinace tradičních metod s metodami machine learning je relativně vzácná. V této práci implementujeme následující kombinované metody: (1) simple mean forecast combination, (2) OLS combination, (3) ARIMA on OLS combined fit, (4) NNAR on OLS combined fit a (5) KNN regression on OLS combined fit. Na základě námi dostupných informací nejsou poslední dvě kombinované metody doposud zkoumány v akademické literatuře. Tato práce by navíc měla pomoci prognostici se třemi možnými komplikacemi: (1) výběr volatility proxy, (2) výběr měřítka přesnosti predikce a (3) výběr délky zkušebního vzurku. Zjistili jsme, že squared a absolute return proxy jsou mnohem méně účinné než Parkinson a Garman-Klass volatility proxy. Dále ukazujeme, že metriky přesnosti prognózy (RMSE, MAE nebo MAPE) ovlivňují pořadí optimálních prognóz. Dalším zjištěním je, že přestože kvalita predikce nezáleží na délce zkušebního vzorku, je vidět, že metody kombinace predikcí překonávají samostatné metody na delších zkušebních vzorcích. Na závěr jsme zjistili, že Garman-Klass volatiltiy proxy, KNN regression on OLS combined fit na střední délce zkušebního vzorku překonává jiné metody pro estimaci Garman- Klass volatility.
Abstract v angličtině:
Nowadays, there is a wide range of forecasting methods and forecasters encounter several challenges during selection of an optimal method for volatility forecasting. In order to make use of wide selection of forecasts, this thesis tests multiple forecast combination methods. Notwithstanding, there exists a plethora of forecast combination literature, combination of traditional methods with machine learning methods is relatively rare. We implement the following combination techniques: (1) simple mean forecast combination, (2) OLS combination, (3) ARIMA on OLS combined fit, (4) NNAR on OLS combined fit and (5) KNN regression on OLS combined fit. To our best knowledge, the latter two combination techniques are not yet researched in academic literature. Additionally, this thesis should help a forecaster with three choice complication causes: (1) choice of volatility proxy, (2) choice of forecast accuracy measure and (3) choice of training sample length. We found that squared and absolute return volatility proxies are much less efficient than Parkinson and Garman-Klass volatility proxies. Likewise, we show that forecast accuracy measure (RMSE, MAE or MAPE) influences optimal forecasts ranking. Finally, we found that though forecast quality does not depend on training sample length, we see that forecast combination methods outperform standalone methods on a longer training sample. Finally, we found that KNN regression on OLS combined fit on medium training sample outperforms other methods for Garman-Klass volatility estimate.
Dokumenty
Stáhnout Dokument Autor Typ Velikost
Stáhnout Text práce Bc. Sabyrzhan Tyuleubekov 1.87 MB
Stáhnout Abstrakt v českém jazyce Bc. Sabyrzhan Tyuleubekov 315 kB
Stáhnout Abstrakt anglicky Bc. Sabyrzhan Tyuleubekov 51 kB
Stáhnout Posudek vedoucího PhDr. Jozef Baruník, Ph.D. 130 kB
Stáhnout Posudek oponenta RNDr. Michal Červinka, Ph.D. 513 kB
Stáhnout Záznam o průběhu obhajoby prof. Ing. Michal Mejstřík, CSc. 152 kB