velikost textu

Contour methods in the mathematical theory of phase transitions

Upozornění: Informace získané z popisných dat či souborů uložených v Repozitáři závěrečných prací nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora.
Název:
Contour methods in the mathematical theory of phase transitions
Název v češtině:
Konturové metody v matematické teorii fázových přechodů
Typ:
Diplomová práce
Autor:
Bc. Oliver Nagy
Vedoucí:
doc. RNDr. Miloš Zahradník, CSc.
Oponent:
RNDr. Karel Netočný, Ph.D.
Id práce:
203065
Fakulta:
Matematicko-fyzikální fakulta (MFF)
Pracoviště:
Katedra matematické analýzy (32-KMA)
Program studia:
Fyzika (N1701)
Obor studia:
Teoretická fyzika (FTF)
Přidělovaný titul:
Mgr.
Datum obhajoby:
5. 2. 2020
Výsledek obhajoby:
Výborně
Jazyk práce:
Angličtina
Klíčová slova:
kontury, polymery, klastrový rozvoj, Pirogov–Sinaiova teorie, Dysonův model
Klíčová slova v angličtině:
contours, polymers, cluster expansion, Pirogov–Sinai theory, Dyson model
Abstrakt:
Název: Konturové metody v matematické teorii fázových přechodů Autor: Oliver Nagy Katedra: Katedra matematické analýzy Vedoucí: doc. RNDr. Miloš Zahradník, CSc., Katedra matematické analýzy Abstrakt: Práce se zaobírá třemi souvisejícími tématy z matematické statistické fyziky. Jsou to polymerové modely, Pirogov–Sinaiova teorie a Dysonovy modely v dimenzi 1. Práce obsahuje stručný úvod do všech třech uvedených partií. Úvod do Pirogov–Sinaiovy teorie bude využít jako výchozí bod pro budoucí obsáhlejší úvodní text. Takovýto text v soudobé literatuře zatím chybí. Výzkumným přínosem první části práce je detailní kombinatorický rozbor klastrových rozvojů polymerových modelů s tvrdým jádrem založený na pojmu “samovyhýbající se polymerový strom”, vedoucí k zjednodušení struktury sumace v partiční funkci. V případě Dysonových modelů navrhujeme alternativní definici kontury pro jednorozměrný Dysonův model s exponentem polynomiálně klesající interakce p ∈ (1, 2) použitelnou pro zkoumání metodami Pirogov–Sinaiovy teorie. Klíčová slova: Kontury, polymery, klastrový rozvoj, Pirogov–Sinaiova teorie, Dysonův model;
Abstract v angličtině:
Title: Contour methods in the mathematical theory of phase transitions Author: Oliver Nagy Department: Department of Mathematical Analysis Supervisor: doc. RNDr. Miloš Zahradník, CSc., Department of Mathematical Analysis Abstract: This thesis concerns itself with three topics, namely polymer models, Pirogov–Sinai theory and one-dimensional Dyson models. It contains a short introduction into all three topics. The introduction to Pirogov-Sinai theory will serve as a starting point for a future expanded introductory exposition, since such a material is missing in the contemporary literature. Research result of the first chapter is a detailed combinatorial analysis of cluster expansion of hard-core repulsive polymer model based on ‘self-avoiding polymer trees’, leading to simplification of the structure of summation in the partition function. In the case of Dyson models we suggest an alternative definition of contours for the one-dimensional Dyson model with the exponent of polynomially-decaying interaction p ∈ (1, 2) that is usable for study using Pirogov–Sinai methods. Keywords: Contours, polymers, cluster expansion, Pirogov–Sinai theory, Dyson model;
Dokumenty
Stáhnout Dokument Autor Typ Velikost
Stáhnout Text práce Bc. Oliver Nagy 3.66 MB
Stáhnout Abstrakt v českém jazyce Bc. Oliver Nagy 74 kB
Stáhnout Abstrakt anglicky Bc. Oliver Nagy 74 kB
Stáhnout Posudek vedoucího doc. RNDr. Miloš Zahradník, CSc. 56 kB
Stáhnout Posudek oponenta RNDr. Karel Netočný, Ph.D. 155 kB
Stáhnout Záznam o průběhu obhajoby doc. RNDr. Oldřich Semerák, Dr., DSc. 152 kB