velikost textu

Ising Model Boundary States from String Field Theory

Upozornění: Informace získané z popisných dat či souborů uložených v Repozitáři závěrečných prací nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora.
Název:
Ising Model Boundary States from String Field Theory
Název v češtině:
Okrajové stavy Isingova modelu z teorie strunných polí
Typ:
Bakalářská práce
Autor:
Bc. Miroslav Rapčák
Vedoucí:
Mgr. Martin Schnabl, Ph.D.
Oponent:
RNDr. Jiří Novotný, CSc.
Id práce:
130109
Fakulta:
Matematicko-fyzikální fakulta (MFF)
Pracoviště:
Ústav částicové a jaderné fyziky (32-UCJF)
Program studia:
Fyzika (B1701)
Obor studia:
Obecná fyzika (FOF)
Přidělovaný titul:
Bc.
Datum obhajoby:
12. 9. 2013
Výsledek obhajoby:
výborně
Jazyk práce:
Angličtina
Klíčová slova:
Isingův model, hranice, konformní teorie pole, teorie strunných polí
Klíčová slova v angličtině:
Ising model, boundary, conformal field theory, string field theory
Abstrakt:
Isingův model je jedním z nejstudovanějších modelů statistické fyziky. V této práci shrnujeme metody užívané k jeho řešení a soustředíme se na stav při kritické teplotě, kdy je systém popsatelný metodami konformní teorie pole (CFT). Konformní teorie pole vnáší nový vhled do problému a umožňuje klasifikaci tříd univerzality či relativně snadný výpočet korelačních funkcí v případě dvou dimenzí. CFT také umožňuje studium okrajových efektů a defektů na mřížce. Kritický systém s hranicí lze obvykle popsat metodami CFT s konformně invariantní okrajovou podmínkou. Klasifikace všech konformních teorií pole s hranicí zůstává stále otevřeným problémem. Diskutujeme detailně metodu vyvinutou nedávno ve strunové teorii pole (SFT) přicházející s novým přístupem a ilustrujeme ji na příkladu Isingova modelu. Z každého řešení pohybových rovnic SFT lze zkonstruovat okrajový stav popisující konzistentní okrajovou podmínku. V této práci formulujeme SFT Isingova modelu, numericky nalezneme nová řešení a zkonstruujeme jim odpovídající okrajové stavy. Vyhneme se tak řešení komplikovaných sešívacích podmínek a získáme velmi dobrou shodu s exaktním řešením. Narozdíl od metody renormalizační grupy limitované g-teorémem ukazujeme, že lze zkonstruovat také stavy s vyšší energií. Konformní defekty a korespondence dvojitého Isingova modelu s bosonem na S^1/Z_2 orbifoldu je také diskutována. Práce rozšiřuje diskuzi připravovaného článku [1]. Powered by TCPDF (www.tcpdf.org)
Abstract v angličtině:
The Ising model is widely studied model in statistical physics. In this thesis, we review methods used to solve it and we concentrate on the state at the critical temperature, where the system exhibits phase transition and can be described by means of conformal field theory (CFT). This description comes with a new insight into the problem and enables to study boundary effects. Critical behavior for systems with boundaries is often described by conformally invariant boundary conditions. Classification of all boundary CFTs still remains an open problem. We discuss methods developed recently in string field theory (SFT) proposing a new approach and we illustrate it on the Ising model. Knowing a solution to the SFT equations of motion, one can construct corresponding boundary state describing consistent conformally invariant boundary condition. We have formulated SFT for the Ising model, found new solutions numerically, and constructed corresponding boundary states. This procedure avoids solving difficult sewing constraints and results agree with exact values. Unlike the renormalization group approach, where we are limited by the g-theorem, we can construct also states with higher energy. Conformal defects and correspondence with free boson on S^1/Z_2 orbifold is also discussed. This thesis is based on forthcoming paper [1]. Powered by TCPDF (www.tcpdf.org)
Dokumenty
Stáhnout Dokument Autor Typ Velikost
Stáhnout Text práce Bc. Miroslav Rapčák 5.05 MB
Stáhnout Abstrakt v českém jazyce Bc. Miroslav Rapčák 84 kB
Stáhnout Abstrakt anglicky Bc. Miroslav Rapčák 84 kB
Stáhnout Posudek vedoucího Mgr. Martin Schnabl, Ph.D. 78 kB
Stáhnout Posudek oponenta RNDr. Jiří Novotný, CSc. 73 kB
Stáhnout Záznam o průběhu obhajoby prof. RNDr. Josef Štěpánek, CSc. 100 kB