PředmětyPředměty(verze: 945)
Předmět, akademický rok 2023/2024
   Přihlásit přes CAS
Repetitorium z fyziky II - MC260P49
Anglický název: Repetitorium of Physics II
Český název: Repetitorium z fyziky II
Zajišťuje: Katedra fyzikální a makromol. chemie (31-260)
Fakulta: Přírodovědecká fakulta
Platnost: od 2022
Semestr: zimní
E-Kredity: 0
Způsob provedení zkoušky: zimní s.:
Rozsah, examinace: zimní s.:2/0, --- [HT]
Počet míst: neomezen
Minimální obsazenost: 3
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: vyučován
Jazyk výuky: čeština
Vysvětlení: Kód MFF FOE015
Poznámka: povolen pro zápis po webu
Garant: doc. RNDr. Juraj Dian, CSc.
Anotace -
Poslední úprava: doc. RNDr. Juraj Dian, CSc. (12.04.2018)
Opakování základních pojmů a operací vektorového počtu, procvičení aparátu vektorové algebry na příkladech s fyzikální tématikou. Zavedení tenzorů v třírozměrném prostoru, základní vlastnosti a operace s tenzory. Skalární a vektorové funkce. Úvod do vektorové analýzy, Hamiltonův nabla operátor. Pojem gradientu, divergence a rotace vektoru, fyzikální význam zavedených veličin. Gaussova věta intergrálního počtu a Stokesova věta, aplikace pro Maxwellovy rovnice.
Literatura
Poslední úprava: doc. RNDr. Juraj Dian, CSc. (12.04.2018)

1. R.P. Feynman, R.B. Leigthon, M. Sands, Feynmanovy přednášky z fyziky 1 a 2, Fragment Praha 2000, 2001

2.J. Garaj, Základy vektorového počtu, Alfa Bratislava 1968

3. E.G. Milewski, The vector analysis problem solver, REA New Jersey 1989

4. H.M. Schey, div, grad, curl and all that, W.W. Norton & Company, New York 1996.

5. B. Sedlák, I. Štoll, Elektřina a magnetizmus, Academia Praha 1993 (Dodatek A1)

6. J. Kvasnica, Matematický aparát fyziky, Academia Praha 1989

Sylabus -
Poslední úprava: ZUSKOVA (29.01.2003)

1. Úvod do vektorového počtu

Rozdíl mezi skalárem a vektorem, polohový vektor, lineární závislost a nezávislost vektorů, složkové operace s vektory - souřadnicové soustavy v rovině a prostoru, matice a determinanty.

2. Skalární a vektorový součin dvou vektorů

Definice a geometrický význam skalárního součinu. Absolutní hodnota vektoru, úhel dvou vektorů, určení složek vektoru. Aplikace skalárního součinu ve fyzice - pojem práce, vektor plochy. Definice a geometrický význam vektorového součinu. Axiální vektory, popis rotace, zavedení vektoru úhlové rychlosti.

3. Smíšený a dvojitý vektorový součin

Definice a geometrický význam, pravotočivý a levotočivý systém obecných vektorů, pojem reciprokého vektoru. Shrnutí základních početních operacích s vektory.

4. Zavedení tenzorů, tenzorová algebra, symetrické a antisymetrické tenzory

Transformace vektorů, definice diady, operace s diadami. Fyzikální situace vyžadující zavedení tenzorů - popis silového působení na pružné těleso, napětí, definice tenzoru. Vyjádření tenzoru pomocí jednotkových ortogonálních vektorů, tenzor identity. Rozklad tenzoru na symetrickou a antisymetrickou část, pojem konjugovaného tenzoru. Kvadratická plocha tenzoru a kovariant tenzoru.

5. Úvod do vektorové analýzy, skalární a vektorové funkce jedné proměnné

Pojem vektorové funkce jedné proměnné - základní definice: limita, derivace a primitivní funkce obecné vektorové funkce.

6. Skalární a vektorové funkce vektorové proměnné

Pojem funkce vektorové proměnné, skalární a vektorové pole. Parciální derivace a totální diferenciál funkcí více proměnných. Vyjádření totálního diferenciálu ve formě skalárního součinu - operátorový způsob zápisu totálního diferenciálu. Hamiltonův operátor.

7. Vlastnosti Hamiltonova operátoru

Vektorové operace s Hamiltonovým operátorem - zavedení divergence, rotace a gradientu vektoru. Příklady. Operace druhého řádu. Příklady.

8. Pojem toku vektoru plochou, Gaussova věta

Proudění kapaliny obecnou plochou, pole vektoru rychlosti. Naznačení odvození Gaussovy věty.

9. Pojem rotace vektoru podél křivky, Stokesova věta

Práce síly v gravitačním poli. Fyzikální objasnění původu názvu rotace vektoru. Potenciálové a nepotenciálové pole. Naznačení odvození Stokesovy věty.

10. Použití aparátu vektorové analýzy ve fyzikálních situacích

Formulace Maxwellových rovnic v integrálním tvaru, převedení do diferenciálního tvaru. Odvození vlnové rovnice pro rovinnou elektromagnetickou vlnu, vzájemné vztahy mezi vektory E a B a vektorem směru šíření elmg vlny.

 
Univerzita Karlova | Informační systém UK