PředmětyPředměty(verze: 964)
Předmět, akademický rok 2024/2025
   Přihlásit přes CAS
Pokročilá teorie modelů - NLTM011
Anglický název: Advanced Model Theory
Zajišťuje: Katedra teoretické informatiky a matematické logiky (32-KTIML)
Fakulta: Matematicko-fyzikální fakulta
Platnost: od 2024
Semestr: letní
E-Kredity: 6
Rozsah, examinace: letní s.:2/2, Z+Zk [HT]
Počet míst: neomezen
Minimální obsazenost: neomezen
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: nevyučován
Jazyk výuky: čeština, angličtina
Způsob výuky: prezenční
Garant: doc. RNDr. Josef Mlček, CSc.
Třída: DS, algebra, teorie čísel a matematická logika
Mat. logika a teorie množin
Kategorizace předmětu: Informatika > Teoretická informatika
Je neslučitelnost pro: NMAG407, NAIL017
Je záměnnost pro: NMAG407, NAIL017
Výsledky anket   Termíny zkoušek   Rozvrh   Nástěnka   
Anotace -
V centru pozornosti teorie modelů jsou relační struktury neboli sémantické modely teorií 1. řádu. Studuje se existence, jednoznačnost, kategoričnost, nerozlišitelnost, univerzalita, homogenita, saturovanost, stabilita a další jejich vlastnosti a prezentuje se důkaz Morleyovy věty o kategoričnosti. Výsledky lze uplatnit v řadě matematických disciplín.
Poslední úprava: T_KTI (22.05.2002)
Cíl předmětu -

Naučit základy teorie modelů

Poslední úprava: T_KTI (23.05.2008)
Podmínky zakončení předmětu -

Ústní zkouška

Poslední úprava: Hric Jan, RNDr. (07.06.2019)
Literatura
  • C.C.Chang, J.H.Keisler: Model theory, NHPC 1973
  • W. Hodges: Model Theory, Cambridge Univ. Press, 1993
  • J. Mlček: Nespočetná kategoričnost, studijní text, 1998

Poslední úprava: Zakouřil Pavel, RNDr., Ph.D. (05.08.2002)
Sylabus -

Doporučení: Základní kurz logiky a teorie množin.

Relační struktura neboli model (teorie 1. rádu), relace splňování. Existence modelu, věta o úplnosti predikátové logiky, věta o kompaktnosti, Löwenheim-Skolemova věta. Aplikace. Elementární rozšíření a vnoření, elementární diagram. Řetěz modelů, Robinsonova věta o bezespornosti, Craigova věta o interpolaci. Homomorfismus modelů, diagram. Aplikace. Lindenbaumovy algebry, typy. Věty o pomíjení typů. Základní aplikace: koncová rozšírení, omega-modely. Saturované modely: existence a jednoznačnost, univerzalita a homogenita. Spočetné homogenní modely. Minimální modely spoč. teorií: Vaughtova věta, jednoznačnost, existence. Atomické teorie a modely. Omega-kategoričnost, Ryll-Nardjewského věta. Ultraprodukt a ultramocnina. Lösova fundamentální věta, kanonické vnoření, alef 1-saturovanost. Regulární ultramocnina: existence, kardinalita, univerzalita a relativní saturovanost. Vlastnosti regulárních ultrafiltrů. Ultraprodukt přes dobrý ultrafiltr: existence, saturovanost. Věta o izomorfismu. Vlastnosti kappa-dobrých ultrafiltrů. Elementární třídy modelů, věta o separaci. Skolemovské funkce, nerozlišitelné prvky, velikost grupy automorfismů modelu. Zachovávání podmodelu. Modelová úplnost: vlastnosti, Lindströmova věta, příklady. Nespočetná kategoričnost: kappa-kategoričnost, stabilita, Morleyova věta, príklady.

Poslední úprava: T_KTI (19.05.2004)
 
Univerzita Karlova | Informační systém UK