Základy teorie reálných funkcí; elementární funkce a metody řešení úloh s nimi spojených.
Poslední úprava: Pilous Derek, Mgr., Ph.D. (08.04.2019)
Basic theory of real functions, elementary functions and methods for solving standard problems connected with them.
Poslední úprava: Pilous Derek, Mgr., Ph.D. (08.04.2019)
Podmínky zakončení předmětu -
Písemný test (podle sylabu cvičení) a ústní zkouška (podle sylabu přednášek). Ústní zkouška je podmíněna úspěšným absolvováním písemného testu.
Poslední úprava: Pilous Derek, Mgr., Ph.D. (08.04.2019)
The course is taught only in Czech, so the requirements are only in Czech.
Poslední úprava: Jančařík Antonín, doc. RNDr., Ph.D. (28.10.2019)
Literatura -
§ Botek, L.: Výukový materiál k základům teorie elementárních funkcí (bakalářská práce). PedF UK, Praha 2016
§ Odvárko, O.: Matematika pro gymnázia - Funkce. 4. vydání. Prométheus, Praha 2008
§ Veselý, J.: Matematická analýza pro učitele I, II. Matfyzpress, Praha 1997
§ Jarník, V.: Diferenciální počet I, II. Academia, Praha 1984
Poslední úprava: Pilous Derek, Mgr., Ph.D. (08.04.2019)
§ Botek, L.: Výukový materiál k základům teorie elementárních funkcí (bakalářská práce). PedF UK, Praha 2016
§ Odvárko, O.: Matematika pro gymnázia - Funkce. 4. vydání. Prométheus, Praha 2008
§ Veselý, J.: Matematická analýza pro učitele I, II. Matfyzpress, Praha 1997
§ Jarník, V.: Diferenciální počet I, II. Academia, Praha 1984
Poslední úprava: Jančařík Antonín, doc. RNDr., Ph.D. (28.10.2019)
Požadavky ke zkoušce -
Písemný test (podle sylabu cvičení) a ústní zkouška (podle sylabu přednášek). Ústní zkouška je podmíněna úspěšným absolvováním písemného testu.
Poslední úprava: Jančařík Antonín, doc. RNDr., Ph.D. (28.10.2019)
The course is taught only in Czech, so the requirements are only in Czech.
Poslední úprava: Jančařík Antonín, doc. RNDr., Ph.D. (28.10.2019)
Sylabus -
Přednášky
Číselné obory a jejich základní vlastnosti. Rozšířená reálná osa, aritmetika v R*. Intervaly.
Supremum a infimum v R a v R*.
Zobrazení. Obraz a vzor prvku a množiny, definiční obor a obor hodnot. Složené zobrazení, restrikce. Inverzní zobrazení, jeho vlastnosti a užití.
Funkce. Extrémy, supremum a infimum funkce. Operace mezi funkcemi. Prostota a její vztah k monotonii na množině.
Omezenost a ohraničenost množiny a funkce, jejich ekvivalence v R.
Monotonie funkce na množině a v bodě, lokální extrémy. Ekvivalence bodové a množinové monotonie na intervalu. Inverze ryze monotónní funkce.
Konvexnost a konkávnost funkce na intervalu: dvě definice, jejich geometrické interpretace a ekvivalence. Inverze konvexních a konkávních funkcí.
Parita a periodicita funkcí. Vlastnosti sudých a lichých funkcí, rozklad funkce na sudou a lichou část. Množina period funkce, základní perioda. Parita a periodicita výsledků aritmetických operací a skládání v závislosti na operandech, určování parity.
Základní funkce: konstantní, mocninné, odmocninné, exponenciální, logaritmické, goniometrické a cyklometrické. Jejich vlastnosti (včetně vzorců). Signum a Dirichletova funkce.
Elementární funkce. Jejich spojitost a její důsledky. Elementárnost základních funkcí, které nejsou obsaženy v definici. Příklady neelementárních funkcí.
Cvičení
Nerovnice v R, definiční obor elementárních funkcí, lineární transformace grafů funkcí, inverze elementárních funkcí.
Poslední úprava: Pilous Derek, Mgr., Ph.D. (08.04.2019)
Lectures
Number systems and their properties. Affinely extended real number line R* and its arithmetics. Intervals.
Supremum and infimum for R and R*.
Mapping (general function). Input and output of function, doman and codomain, image and inverse of set. Composition, restriction of function. Inverse fuction, its properties and use.
Function (with codomain in number set). Extrema, supremum and infimum of function. Operations on functions. Injective function.
Boundness in ordered sets and in metric spaces. Case of real numbers.
Monotonic and strictly monotonic functions. Local monotonicity and local extrema. Relation between monotonicity and local monotonicity in Q and in R. Inverse of strictly monotonic function.
Convexity and concavity of function: two definitions, geometric interpretations and equivalence. Inverse of convex and concave function.
Parity and periodicity of function. Properties of even and odd functions, decomposition to even part and odd part. Set of periods, fundamental period. Relation between parity and periodicity of operands and result for arithmetic operations and composition.
Basic real functions: constant, powers, roots, exponential functions, logarithms, trigonometric and inverse trigonometric functions. Properties and formulas. Sign function, indicator function, Dirichlet function.
Elementary functions. Continuity of elementary functions and its consequences. Elementarity of basic functions. Examples of non-elementary functions.
Seminar
Solving of inequalities in R, determining domain of elementary functions, linear transformations of graphs of functions, determining inverse of elementary functions.
Poslední úprava: Pilous Derek, Mgr., Ph.D. (08.04.2019)