|
|
|
||
Povinně volitelný předmět, zahrnující tyto oblasti: symetrie a polynomy, symetrie a relace, symetrie a grupy, symetrie a matice, symetrie a grafy.
Poslední úprava: STEHLIKO/PEDF.CUNI.CZ (27.03.2009)
|
|
||
Cílem kurzu je rozšířit a prohloubit znalosti zájemců o algebru na základě zdůraznění souvislostí v algebře i mimo algebru. Poslední úprava: NOVOTNAJ/PEDF.CUNI.CZ (31.08.2008)
|
|
||
Informace jsou k dispozici v různém rozsahu v řadě publikací, např. ? Adámek, J.: Matematické struktury a kategorie. Praha: SNTL 1982. ? Blažek, J. a kol.: ATA I, II. Praha, SPN 1983, 1985. ? Boltjanskij, V.G. - Vilenkin, N.Ja.: Symmetrija v algebre. Moskva, Nauka 1967. ? Fried, E.: O algebrze abstrakcyjnej. Varšava, WPN 1978. ? Katriňák, T. a kol.: ATA I. Bratislava ? Praha, ALFA ? SNTL 1984. ? Kopka, J.: Svazy a Booleovy algebry. Ústí n.L., UJEP 1991. ? Kořínek, V.: Základy algebry. Praha, NČSAV 1956. ? Birkhoff, G. ? Mac Lane, S.: Algebra. Bratislava, Alfa 1974 ? Nešetřil, J.: Teorie grafů. Praha, SNTL. ? Novotná, J. - Trch, M.: ATA, sbírka příkladů, 2. část Polynomická algebra. Praha, SPN 1990. ? Pondělíček, B.: Algebraické struktury s binárními operacemi. MS SNTL 10. Praha, SNTL 1977. ? Rieger, L.: O grupách. Praha, MF 1974. ? Svatokrížny, P. a kol.: Aritmetika a algebra pre pedagogické fakulty, II. Algebra. Bratislava, SPN 1978. ? Šalát a kol.: Algebra a teooretická aritmetika 2. Bratislava, Alfa 1986. ? Šrejder, J.A.: Binární relace. Praha, SNTL 1978. Poslední úprava: NOVOTNAJ/PEDF.CUNI.CZ (31.08.2008)
|
|
||
Seminář Poslední úprava: NOVOTNAJ/PEDF.CUNI.CZ (31.08.2008)
|
|
||
Symetrie a polynomy: Polynomy více neurčitých, symetrické polynomy, součin jednoduchých symetrických polynomů, Hlavní věta o symetrických polynomech a její užití, využití symetrických polynomů při řešení algebraických rovnic jedné neznámé Symetrie a relace: Symetrické a antisymetrické relace, jejich znázorňování, kvaziuspořádání, uspořádání, ekvivalence, svazy a Booleovy algebry, jejich vlastnosti a aplikace Symetrie a grupy: Grupy permutací a jejich využití, souvislost s geometrií. Symetrie a matice: Symetrické matice, jejich souvislost s řešením soustav lineárních rovnic a s kvadratickými formami Poslední úprava: NOVOTNAJ/PEDF.CUNI.CZ (31.08.2008)
|