PředmětyPředměty(verze: 957)
Předmět, akademický rok 2011/2012
   Přihlásit přes CAS
Lineární algebra - OB2310009
Anglický název: Linear algebra
Zajišťuje: Katedra matematiky a didaktiky matematiky (41-KMDM)
Fakulta: Pedagogická fakulta
Platnost: od 2008 do 2011
Semestr: letní
E-Kredity: 5
Způsob provedení zkoušky: letní s.:kombinovaná
Rozsah, examinace: letní s.:2/2, Z+Zk [HT]
Počet míst: 150 / 52 (200)
Minimální obsazenost: neomezen
4EU+: ne
Virtuální mobilita / počet míst pro virtuální mobilitu: ne
Stav předmětu: vyučován
Jazyk výuky: čeština
Způsob výuky: prezenční
Způsob výuky: prezenční
Poznámka: předmět je možno zapsat mimo plán
povolen pro zápis po webu
při zápisu přednost, je-li ve stud. plánu
Garant: prof. RNDr. Jarmila Novotná, CSc.
doc. RNDr. Antonín Jančařík, Ph.D.
Vyučující: PhDr. Jiří Bureš, Ph.D.
prof. RNDr. Jarmila Novotná, CSc.
Třída: Matematika 1. cyklus - povinné
Kategorizace předmětu: Matematika > Matematika
Prerekvizity : OB2310008
Záměnnost : O02310009
Je prerekvizitou pro: OB1310101, OB2310098, OB2310010, OB2310062, OB2310099, OB1310106, OB1310107, OB1310505, OB1310506, OKB1310505, OKB1310506, OB2310201, OB2310258, OB2310259, OB2310260
Je záměnnost pro: O02310009
Výsledky anket   Termíny zkoušek   Rozvrh   Nástěnka   
Anotace -
Základní kurz zaměřený na vektorové prostory, matice, soustavy lineárních rovnic, determinanty a lineární zobrazení. Získané znalosti a dovednosti patří k základům nutným pro další kurzy z matematiky.
Poslední úprava: Novotná Jarmila, prof. RNDr., CSc. (29.01.2019)
Cíl předmětu -

Předmět, jehož cílem je seznámit posluchače s těmi základními partiemi algebry a teoretické aritmetiky, na nichž je jednak založena školská matematika, jednak jsou aparátem pro další matematické disciplíny zařazené do učitelského vzdělání.

Poslední úprava: Novotná Jarmila, prof. RNDr., CSc. (29.01.2019)
Literatura -

BLAŽEK, J. a kol.: Algebra a teoretická aritmetika 1. Praha: SPN, 1983.
KATRIŇÁK, T. a kol.: Algebra a teoretická aritmetika 1. Bratislava, Praha: ALFA, SNTL, 1985.
NOVOTNÁ, J., TRCH, M.: Algebra a teoretická aritmetika, Sbírka příkladů část 1, Lineární algebra. 2. vyd. Praha: Karolinum, 2005. Praha: Karolinum, 1995.
DEMLOVÁ, M., NAGY, J.: Algebra. Praha: SNTL, 1985.

Poslední úprava: Novotná Jarmila, prof. RNDr., CSc. (29.01.2019)
Metody výuky -

Přednáška & cvičení, v některých případech podložená e-learningovými materiály

Poslední úprava: Novotná Jarmila, prof. RNDr., CSc. (29.01.2019)
Požadavky ke zkoušce

Požadavky k zápočtu:
Úspěšné vypracování dvou zápočtových testů, vypracování seminárních prací, které budou průběžně zadávány + splnění individuálních požadavků cvičícího. Pro testy jsou možné dva opravné termíny. Požadovaná účast na cvičeních: 80 %

Požadavky ke zkoušce:
Zvládnutí teoretické části a odpovídajících početních dovedností dle určeného rozsahu.

Poslední úprava: Novotná Jarmila, prof. RNDr., CSc. (29.01.2019)
Sylabus -

- Vektorové prostory nad tělesem T a jejich podprostory. Průnik a lineární, příp. direktní součet prostorů, lineární kombinace vektorů, lineární obal, podprostor generovaný konečnou skupinou vektorů. Vektory lineárně závislé a nezávislé. Dovolené úpravy skupiny generátorů a skupiny lineárně nezávislé. Steinitzova věta, báze a dimenze prostoru, věta o dimenzi součtu a průniku prostorů. Souřadnice vektoru v dané bázi.
- Matice nad tělesem, typ matice, matice nulová, jednotková. Transponovaná matice k dané matici. Hodnost matice. Úpravy zachovávající ekvivalenci matic. Operace s maticemi. Inverzní matice a její výpočet. Regulární a singulární matice.
- Soustavy lineárních rovnic nad tělesem, matice soustavy, rozšířená matice soustavy, soustavy homogenní. Frobeniova věta o řešitelnosti nehomogenní soustavy, popis množiny řešení soustavy.
- Permutace a pořadí z n čísel. Znaménko pořadí, transpozice, inverze v pořadí. Determinant čtvercové matice. Subdeterminant, algebraický doplněk prvku. Dovolené úpravy determinantů. Věta o rozvoji determinantu podle řádku. Cramerovo pravidlo, determinanty a inverzní matice.
- Lineární zobrazení. Matice lineárního zobrazení. Skládání lineárních zobrazení, inverzní lineární zobrazení a inverzní matice.
- Skalární a vektorový součin

Poslední úprava: Novotná Jarmila, prof. RNDr., CSc. (29.01.2019)
 
Univerzita Karlova | Informační systém UK